

Test report No. : 14033664S-A-R1 Page : 1 of 76

Issued date : December 24, 2021

FCC ID : AZDWM01B

SAR TEST REPORT

Test Report No.: 14033664S-A-R1

Applicant : Canon Inc.

Type of Equipment : Built-in Wireless module with Bluetooth in Flat Panel Detector

Model Number of EUT: WM01B FCC ID: AZDWM01B

Test Standard : FCC 47CFR §2.1093
Test Result : Complied (Refer to Section 3)

Highest Reported SAR [W/kg]					Host platfo		Remarks (2.4GHz band)			Remarks (5GHz band)				Reference		
Partial-body Har Limit: 1.6 (1g) Limit: 4			No.	Type	Model	-			output pow rage) [dBm				output powerage) [dBm]		SAR test	
2.4GHz band	5GHz band	2.4GHz band	5GHz band		31			[MHz]	Mode	Measured	Max.	[MHz]	Mode	Measured	Max	report
0.30	0.40	0.33	0.43	1	Flat Panel Detector	WM5B04	Partial body	2412	b	12.37	14	5670	n40	11.43	13	14033664S-A
(Antenna 1)	(Antenna 1)	(Antenna 2)	(Antenna 1)	1	Fiat Failer Detector	WIVIOD04	Hand	2412	b	12.29	14	5190	n40	11.55	13	(This report)

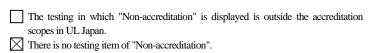
Highest reported SAR of all test configurations and in this platform for partial-body and hand are 0.30 W/kg and 0.33 W/kg in 2.4GHz (DTS) band, 0.40 W/kg, and 0.43 W/kg in 5GHz (U-NII) band respectively.

Highest estimated summed reported SAR value for simultaneous transmission BT LE + WLAN (5GHz band) in this platform is enough lower than limit.

*. Since highest reported SAR (1g) and SAR (10g) on this platform obtained in accordance with KDB447498 D01 (v06) was kept under 1.2 W/kg (SAR (1g)), 3 W/kg (SAR(10g)), the EUT was approved to operate this "Flat Panel Detector" series single platform.

*. Max.:Maximum, (Mode) b: IEEE 802.11b, n40: IEEE 802.11n(40HT).

- 1. This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- 2. The results in this report apply only to the sample tested.
- 3. This sample tested is in compliance with the limits of the above regulation.
- The test results in this test report are traceable to the national or international standards.
- 5. This test report must not be used by the customer to claim product certification, approval, or endorsement by the A2LA accreditation body.
- 6. This test report covers Radio technical requirements. It does not cover administrative issues such as Manual or non-Radio test related Requirements. (if applicable)
- 7. The all test items in this test report are conducted by UL Japan, Inc. Shonan EMC Lab.
- 8. The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan has been accredited.
- 9. The information provided from the customer for this report is identified in SECTION 1.
- 10. This report (-R1) is a revised version of 14033664S-A. 14033664S-A report is replaced with this report.


Date of test: October 4~8, 2021

Test engineer:

Hiroshi Naka (Engineer)

Approved by: T. Smamura

Toyokazu Imamura (Leader)

CERTIFICATE 1266.03

UL Japan, Inc. Shonan EMC Lab.

(Revision Date: 2021/10/4)

Test report No. : 14033664S-A-R1

Page : 2 of 76

Issued date : December 24, 2021

FCC ID : AZDWM01B

REVISION HISTORY

Revision	Test report No.	Date	Page revised	Contents
Original	14033664S-A	November 4, 2021	-	-
-R1	14033664S-A-R1	December 24, 2021	P14, 24. 25,	Corrected description error.
				p14) (6.2.2) conductivity information of 2437 MHz. (conductivity [S/m]; corrected: 1.857, was: 1.833,
				$\Delta\sigma$ [%]; corrected: 3.9, was: 2.5, Δ SAR(1g) [%]; corrected: 1.6, was: 0.9, Δ SAR(10g) [%]; corrected:
				0.8, was: 0.5)
				p24) listed frequency of Plot 2d-1 title. (corrected: 5230 MHz, was: 5190 MHz)
				p25) listed frequency of Plot 3b-1 title. (corrected: 5670 MHz, was: 5510 MHz)
				p29) listed frequency of Plot 1b-5 title. (corrected: 2412 MHz, was: 2462 MHz)
				p42) permittivity number of daily plot data of 5600 MHz. (corrected: 34.52, was: 34.54)

^{*.} By issue of new revision report, the report of an old revision becomes invalid.

Reference : Abbreviations (Including words undescribed in this report) (radio_r0v03_200214)

A2LA	The American Association for Laboratory Accreditation	IF	Intermediate Frequency
AC	Alternating Current	ILAC	International Laboratory Accreditation Conference
AFH	Adaptive Frequency Hopping	ISED	Innovation, Science and Economic Development Canada
AM	Amplitude Modulation	ISO	International Organization for Standardization
Amp, AMP	Amplifier	JAB	Japan Accreditation Board
ANSI	American National Standards Institute	LAN	Local Area Network
Ant, ANT	Antenna	LIMS	Laboratory Information Management System
AP	Access Point	MCS	Modulation and Coding Scheme
ASK	Amplitude Shift Keying	MRA	Mutual Recognition Arrangement
Atten., ATT	Attenuator	N/A	Not Applicable
AV	Average	NIST	National Institute of Standards and Technology
BPSK	Binary Phase-Shift Keying	NS	No signal detect.
BR	Bluetooth Basic Rate	NSA	Normalized Site Attenuation
BT	Bluetooth	NVLAP	National Voluntary Laboratory Accreditation Program
BTLE	Bluetooth Low Energy	OBW	Occupied Band Width
BW	BandWidth	OFDM	Orthogonal Frequency Division Multiplexing
Cal Int	Calibration Interval	P/M	Power meter
CCK	Complementary Code Keying	PCB	Printed Circuit Board
Ch., CH	Channel	PER	Packet Error Rate
CISPR	Comite International Special des Perturbations Radioelectriques	PHY	
			Physical Layer
CW	Continuous Wave	PK	Peak
DBPSK	Differential BPSK	PN	Pseudo random Noise
DC D.f	Direct Current	PRBS	Pseudo-Random Bit Sequence
D-factor	Distance factor	PSD	Power Spectral Density
DFS	Dynamic Frequency Selection	QAM	Quadrature Amplitude Modulation
DQPSK	Differential QPSK	QP	Quasi-Peak
DSSS	Direct Sequence Spread Spectrum	QPSK	Quadrature Phase Shift Keying
DUT	Device Under Test	RBW	Resolution Band Width
EDR	Enhanced Data Rate	RDS	Radio Data System
EIRP, e.i.r.p.	Equivalent Isotropically Radiated Power	RE	Radio Equipment
EMC	ElectroMagnetic Compatibility	RF	Radio Frequency
EMI	ElectroMagnetic Interference	RMS	Root Mean Square
EN	European Norm	RSS	Radio Standards Specifications
ERP, e.r.p.	Effective Radiated Power	Rx	Receiving
EU	European Union	SA, S/A	Spectrum Analyzer
EUT	Equipment Under Test	SAR	Specific Absorption Rate
Fac.	Factor	SG	Signal Generator
FCC	Federal Communications Commission	SVSWR	Site-Voltage Standing Wave Ratio
FHSS	Frequency Hopping Spread Spectrum	TR	Test Receiver
FM	Frequency Modulation	Tx	Transmitting
Freq.	Frequency	VBW	Video BandWidth
FSK	Frequency Shift Keying	Vert.	Vertical
GFSK	Gaussian Frequency-Shift Keying	WLAN	Wireless LAN
GNSS	Global Navigation Satellite System		
GPS	Global Positioning System		
Hori.	Horizontal		
ICES	Interference-Causing Equipment Standard		
IEC	International Electrotechnical Commission		
IEEE	Institute of Electrical and Electronics Engineers		

Test report No. : 14033664S-A-R1

Page : 3 of 76 Issued date : December 24, 2021

FCC ID : AZDWM01B

CONTENTS		PAGI
	RYtions (Including words undescribed in this report)	2
SECTION 1:	Customer information	4
SECTION 1: SECTION 2:	Equipment under test (EUT)	1
2.1	Identification of EUT	1
2.1	Product Description (Wireless LAN + Bluetooth Combo Module)	
2.3	Host platform information	
2.4	SAR test consideration of this host platform	
SECTION 3:	Test specification, procedures and results	
3.1	Test specification	
3.2	Exposure limit	
3.3	Addition, deviation and exclusion to the test procedure	6
3.4	Test location	
3.5	Procedure and result	
3.6	SAR measurement procedure	
SECTION 4:	Operation of EUT during testing	
4.1	Operation modes for SAR testing	
4.2	RF exposure conditions	9
4.3	SAR test exclusion considerations accordance to KDB 447498 D01	10
SECTION 5:	Confirmation before testing	
5.1	SAR reference power measurement (antenna terminal conducted average power of EUT)	
SECTION 6:	SAR Measurement results	
6.1	SAR test reduction consideration	
6.2	Tissue simulating liquid measurement	
6.3	SAR results	15
6.4	Simultaneous transmission evaluation	
6.5	SAR Measurement Variability (Repeated measurement requirement)	16
6.6	Device holder perturbation verification	
Contents of ap	<u>pendixes</u>	
APPENDIX 1:	Photographs of test setup	17
Appendix 1-1	Photograph of Host platform, EUT and antenna position	
Appendix 1-2	EUT and support equipment	19
Appendix 1-3	Photograph of test setup	20
APPENDIX 2:	SAR Measurement data	22
Appendix 2-1	Worst Reported SAR Plot	
Appendix 2-2	Other SAR Plots	
APPENDIX 3:	Test instruments	37
Appendix 3-1		
Appendix 3-1 Appendix 3-2	Equipment used	
Appendix 3-2 Appendix 3-3	Test system specification	
Appendix 3-4	Simulated tissues composition and parameter confirmation	
Appendix 3-4 Appendix 3-5	Daily check results.	
Appendix 3-6	Daily check measurement data	
Appendix 3-7	Uncertainty assessment (SAR measurement/Daily check)	
Appendix 3-8	Calibration certificate: E-Field Probe (EX3DV4)	
Appendix 3-9	Calibration certificate: Dipole (D2450V2)	
Appendix 3-10	Calibration certificate: Dipole (D5GHzV2)	

Test report No. : 14033664S-A-R1 Page : 4 of 76

Issued date : December 24, 2021

FCC ID : AZDWM01B

SECTION 1: Customer information

Company Name	Canon Inc.
Address	9-1, Imaikamicho, Nakahara-ku, Kawasaki, Kanagawa 211-8501, Japan
Telephone Number	+81-3-3758-2111
Contact Person	Tetsuo Watanabe

The information provided from the customer is as follows;

- Applicant, Type of Equipment, Model No., FCC ID on the cover and other relevant pages
- SECTION 1: Customer information
- SECTION 2: Equipment under test (EUT)
- SECTION 4: Operation of EUT during testing
- Appendix 1: The part of Antenna location information, Description of EUT and Support Equipment
- The laboratory is exempted from liability of any test results affected from the above information in SECTION 2, SECTION 4 and Appendix 1.

Equipment under test (EUT) SECTION 2:

Identification of EUT and platform

	EUT	Host platform					
Type of Equipment	Built-in Wireless Module with Bluetooth	Flat Panel Detector					
Model Number	WM01B	WM5B04 (*2)					
Serial Number	f4:a9:97:ff:d0:bc	20MED-0062					
Condition of sample	Engineering prototype (*1)	Engineering prototype (*1)					
Country of Mass-production	Japan	Japan					
Receipt Date of Sample	March 29, 2021 (for power measurement) (*. No modification by the Lab.)						
Receipt Date of Sample	October 4, 2021 (for SAR test) (*. No modification by the Lab.)						
Category Identified	Portable device						
Rating (EUT)	DC3.3V supplied form the platform.						
Feature of EUT	The EUT is a Built-in Wireless Module with Blueton	oth, model: WM01B which installs into the specified					
Teature of EOT	platform as "Flat Panel Detector".						
SAR Accessory	None						

2.2 **Product Description (WM01B)**

*. The operation frequency in each operation band refer to remarks in below.									
T-LE: 2MHz (BT-LE) / WLAN: 5 MHz (2.4GHz band), 20 MHz ((5GHz band)								
T-LE: 79 MHz (FHSS) / WLAN: 20 MHz (b, g, a, n20, ac20), 40 M	MHz (n40, ac40), 80 MHz (ac80)								
T-LE: GFSK/WLAN: DSSS: DBPSK, DQPSK, CCK (b), WLAN: OFDM: BPSK, QPSK, 16QAM, 64QAM (g, a, n20, ac20, n40, 240, ac80), 256OAM (ac80)									
*. The specification of typical and maximum transmit power (which may occur) refer to remarks in below. *. The measured output power (conducted) as SAR reference power refers to section 5 in this report.									
pcs. (*3)									
Antenna 2: ANT2444-16B/M-AB-285	Antenna 1: ANT2444-16B/M-AB-160								
285 mm	160 mm								
na gain (*. max.peak) 2.86 dBi (2.4GHz band), 3.05 dBi (5GHz band) (*including 285 mm cable loss) 3.22 dBi (2.4GHz band), 3.63 dBi (5GHz band) (*including 160 mm cable loss)									
Monopole (1/4λ)/PCB side: MHF, Antenna side: soldered Monopole (1/4λ)/PCB side: MHF, Antenna side: soldered									
I I I I	**LE: 2MHz (BT-LE) / WLAN: 5 MHz (2.4GHz band), 20 MHz (**LE: 79 MHz (FHSS) / WLAN: 20 MHz (b, g, a, n20, ac20), 40 M **LE: GFSK / WLAN: DSSS: DBPSK, DQPSK, CCK (b), WLA **L0, ac80), 256QAM (ac80) The specification of typical and maximum transmit power (which in the measured output power (conducted) as SAR reference power in the measured output power (conducted) as SAR reference power in the measured output power (conducted) as SAR reference power in the measured output power (conducted) as SAR reference power in the measured output power (conducted) as SAR reference power in the measured output power (conducted) as SAR reference power in the measured output power (conducted) as SAR reference power in the measured output power (conducted) as SAR reference power in the measured output power (sold the measured output p								

A transmission is performed from one of antenna 2 or antenna 1 (diversity). A transmission of WLAN(2.4GHz) and BT-LE is time-division-processing. Therefore, simultaneously transmitted SAR was only considered for the WLAN(5GHz) and BT-LE.

Typical power and tune-up limit power (as "maximum power")

			Output power (Typical and maximum) [dBm] (*. The measured output power (conducted) refers to section 5 in this report.)									rt.)					
	Mode	Data rate	2.4	GHz		U-	NII-1		U-N	III-2A		U-NII-20			U-1	NII-3	
			F[MHz]	Typical	Max.	F[MHz]	Typical	Max.	F[MHz]	Typical	Max.	F[MHz]	Typical	Max.	F[MHz]	Typical	Max.
	BT-LE	1Mbps, 2Mbps	2402~2480	3	5	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	b	1~11Mbps	2412~2462	12	14	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	g	6~54Mbps	2412~2462	12	14	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	a	6~54Mbps	N/A	N/A	N/A	5180~5240	11	13	5260~5320	11	13	5500~5580, 5660~5700	11	13	5745~5825	11	13
	n20	MCS0~7	2412~2462	12	14	5180~5240	11	13	5260~5320	11	13	5500~5580, 5660~5700	11	13	5745~5825	11	13
	ac20	MCS0~8	N/A	N/A	N/A	5180~5240	11	13	5260~5320	11	13	5500~5580, 5660~5700	11	13	5745~5825	11	13
	n40	MCS0~7	2422~2452	11	13	5190, 5230	11	13	5270, 5310	11	13	5510, 5550, 5670	11	13	5755, 5795	11	13
	ac40	MCS0~9	N/A	N/A	N/A	5190, 5230	11	13	5270, 5310	11	13	5510, 5550, 5670	11	13	5755, 5795	11	13
	ac80	MCS0~9	N/A	N/A	N/A	5210	8.5	10.5	5290	8.5	10.5	5530	8.5	10.5	5775	8.5	10.5
-14		3.6		3 T / A	3 T .	1' 11 /	1 \		7 D1	1		TEPE 000 111 TEE	T 000 1	4	TEPE 000 1:	1 20	TOTAL

F: Frequency; Max.: maximum; N/A: Not applicable; (mode) BT-LE: Bluetooth low energy, b: IEEE 802.11b, g: IEEE 802.11g, a: IEEE 802.11a, n20: IEEE 802.11n(20HT), n40: IEEE 802.11n(40HT), ac20: IEEE 802.11ac(20VHT), ac40: IEEE 802.11n (40VHT), ac80: IEEE 802.11ac(80VHT).

UL Japan, Inc. Shonan EMC Lab.

^{*1.} Not for sale: The sample is equivalent to mass-produced items.
*2. Another name for the model WM5B01 is AR-E3543W or CXDI-720C Wireless.

The EUT do not use the special transmitting technique such as "beam-forming" and "time-space code diversity." The EUT only supports BT-LE, does not support BR/EDR even though the EUT supports Bluetooth 5.2.

Maximum tune-up tolerance limit is conducted burst average power and is defined by a customer as Duty cycle 100% (continuous transmitting).

Test report No. : 14033664S-A-R1 Page : 5 of 76

Issued date : December 24, 2021

FCC ID : AZDWM01B

2.3 Host platform information

 $This\ EUT\ (Built-in\ Wireless\ Module\ with\ Bluetooth,\ model:\ WM01B)\ is\ installed\ into\ the\ following\ ``Flat\ Panel\ Detector''\ series\ models.$

The host platform has the following "Model number" and specified "Medical equipment model number."

			SAR	test information		
No.	Type of equipment	SAR test status	Reference SAR test report			
1	Flat Panel Detector	WM5B04	CXDI-720C Wireless, AR-E3543W	14"×17" detector, Wireless High-end model	Tested	14033664S-A (this report)

2.4 SAR test consideration of this host platform

This platform is a large-sized transportable equipment and has a part coming in contact directly with a patient. An operator (a patient become an operator uncommonly) maintains EUT by hand. (Refer to photographs of Appendix 1-3: Usage example) Because there is not the KDB for the product which is such a design specifications, we decide the SAR test method in below.

Physical characteristics of platform: WM5B04

Dimensions: $384 \times 460 \times 15.5$ mm

- This platform is a transportable equipment, but, because it is a large-sized equipment, an operator (or a patient) fixes the edge of
 platform to stands and pushes or supports platform to a patient's body part (head, body, arm, hand, foot, etc.) by hand at the time
 of use.
 - The X-ray imaging by platform changes the imaging part of the patient's body at every imaging after having needed several minutes for setting.
- The image transfer time (continuous transfer time) per one imaging is two or three seconds, it is short enough.
 - The imaging of the same part can be performed consecutively several times.
 - In the case of serial imaging, the image transfer time (continuous transfer time) occupies two or three seconds among the image intervals of 15 seconds. (Duty Cycle: < 20 %)
- On this account, the time when an operator (or patient) is really exposed to RF energy is short.
- In addition, an operator is only a doctor or a legally certified person because platform is medical equipment.
 - Explanatory note in the manual-
 - "Only a physician or a legally certified operation should use the product."

In consideration of the terms of use mentioned above, we decide the SAR examination as the following contents.

a) The front (imaging area side) and side edge of platform carries out the Partial-body SAR examination.

The front of platform comes in contact with a patient directly. In addition, consecutive RF energy may be exposed to the same neighborhood part of the patient although duty cycle is less than 20%.

Because the front of platform comes in contact with a patient directly, we measure the Partial-body SAR at the position of the touch to a phantom around the antenna of the front and side-edge of platform with continuous transmission in 100% duty cycle as a worse condition.

b) The back of platform carries out the Hand SAR examination.

An operator (or a patient) fixes the edge of platform to stands and pushes or supports platform to a patient's body part (head, body, arm, hand, foot, etc.) by hand and by holding back of platform at the time of use.

In addition, consecutive RF energy may be exposed to the same neighborhood part of the patient although duty cycle is less than 20%.

We measure the Hand SAR at the position of the touch to a phantom around the antenna of the back of platform with continuous transmission in 100% duty cycle as a worse condition.

- *. In addition, because the following instructions for the operator are mentioned in a manual, the physical part of the operator does not touch directly the antenna part of the back.
 - Explanatory note in the manual -
 - "Please do not adhere to your hands and body to an antenna part to restrain exposure of the RF energy when conducting an X-ray examination."

Test report No. : 14033664S-A-R1 Page : 6 of 76

Issued date : December 24, 2021

FCC ID : AZDWM01B

SECTION 3: Test specification, procedures and results

3.1 **Test specification**

FCC47CFR §2.1093: Radiofrequency radiation exposure evaluation: portable devices.

The US Federal Communications Commission has released the report and order "Guidelines for Evaluating the Environmental Effects of RF Radiation", ET Docket No. 93-62 in August 1996. The order requires routine SAR evaluation prior to equipment authorization of portable transmitter devices, including portable telephones. For consumer products, the applicable limit is 1.6 mW/g for an uncontrolled environment and 8.0 mW/g for an occupational/controlled environment as recommended by the ANSI/IEEE standard C95.1-1992. The device should be evaluated at maximum output power (radiated from the antenna) under "worst-case" conditions for normal or intended use, incorporating normal antenna operating positions, device peak performance frequencies and positions for maximum RF energy coupling in accordance with the following measurement procedures.

The tests documented in this report were performed in accordance with FCC 47 CFR Parts 2, IEEE Std.1528-2013 (latest), the following FCC Published RF exposure KDB procedures, and TCB workshop updates.

KDB 447498 D01 (v06):	General RF exposure guidance
KDB 248227 D01 (v02r02):	SAR Guidance for IEEE 802.11 (Wi-Fi) transmitters
KDB 865664 D01 (v01r04):	SAR measurement 100MHz to 6GHz
	IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.

3.2 **Exposure limit**

Environments of exposure limit	Whole-Body (averaged over the entire body)	Partial-Body (averaged over any 1g of tissue)	Hands, Wrists, Feet and Ankles (averaged over any 10g of tissue)
(A) Limits for Occupational /Controlled Exposure (W/kg)	0.4	8.0	20.0
(B) Limits for General population /Uncontrolled Exposure (W/kg)	0.08	1.6	4.0

^{*.} Occupational/Controlled Environments:

*. General Population/Uncontrolled Environments: are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

The limit applied in this test report is;

General population / uncontrolled exposure, Partial-Body (averaged over any 1g of tissue) limit: 1.6 W/kg (*. Refers to clause 2.3) General population / uncontrolled exposure, Hands (averaged over any 10g of tissue) limit: 4 W/kg (*. Refers to clause 2.3)

3.3 Addition, deviation and exclusion to the test procedure

No addition, exclusion nor deviation has been made from the test procedure.

Test Location

UL Japan, Inc., Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken 259-1220 JAPAN

Telephone number: +81 463 50 6400 / Facsimile number: +81 463 50 6401

*. A2LA Certificate Number: 1266.03 (FCC Test Firm Registration Number: 626366, ISED Lab Company Number: 2973D/CAB identifier: JP0001)

Used?	Place	Width × Depth × Height (m)	Size of reference ground plane (m)/ horizontal conducting plane	distance	Used?	Place	Height (m)	Size of reference ground plane (m) /horizontal conducting plane
	No.1 Semi-anechoic chamber	$20.6 \times 11.3 \times 7.65$	20.6×11.3	10 m		No.4 Shielded room	$4.4 \times 4.7 \times 2.7$	4.4×4.7
	No.2 Semi-anechoic chamber	$20.6 \times 11.3 \times 7.65$	20.6×11.3	10 m		No.5 Shielded room	$7.8 \times 6.4 \times 2.7$	7.8×6.4
	No.3 Semi-anechoic chamber	$12.7 \times 7.7 \times 5.35$	12.7×7.7	5 m		No.6 Shielded room	$7.8 \times 6.4 \times 2.7$	7.8×6.4
	No.4 Semi-anechoic chamber	$8.1 \times 5.1 \times 3.55$	8.1×5.1	ı	X	No.7 Shielded room	$2.76 \times 3.76 \times 2.4$	2.76×3.76
	No.1 Shielded room	$6.8 \times 4.1 \times 2.7$	6.8×4.1	ı		No.8 Shielded room	$3.45 \times 5.5 \times 2.4$	3.45×5.5
	No.2 Shielded room	$6.8 \times 4.1 \times 2.7$	6.8×4.1	-		No.1 Measurement room	$2.55 \times 4.1 \times 2.5$	2.55×4.1
	No.3 Shielded room	$6.3 \times 4.7 \times 2.7$	6.3×4.7	-				

Telephone: +81 463 50 6400 / Facsimile: +81 463 50 6401

are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

Test report No. : 14033664S-A-R1

Page : 7 of 76

Issued date : December 24, 2021

FCC ID : AZDWM01B

3.5 Procedures and Results

Tes	t Procedure			SA	R measu	rement: KT	OB 447498	D01. KDF	3 248227 DC)1. KDB 86	55664 D01.	IEC Std. 15	528		
	Category		F			93 (Portable			SAR			dy (SAR (1		(SAR(10	z))
	outogory .	BT-I		WLAN		WLAN		W/I ANI	U-NII-2A)	<i>y</i> 1	U-NII-2C)	WLAN (<i>U</i> ,,,,	1	5//
					(/						~5700	`		Simulta	
Free	juency [MHz]	2402~	2480	2412~	2462	5180-	-5240	5260	~5320		excluding 5600~5650)		-5825	transm	
Res	sults (SAR)	Comp (Low po (Refer to S	ower)	Comp (Refer to S		Com (Refer to	plied Section 6)		Complied (Refer to Section 6)		plied Section 6)	Complied (Refer to Section 6		Comp (Refer to S	
	Type	1g	10g	1g	10g	1g	10g	1g	10g	1g	10g	1g	10g	1g	10g
	**	Partial-body	Hands	Partial-body	Hands	Partial-body	Hands	Partial-body	Hands	Partial-body	Hands	Partial-body	Hands	Partial-body	Hands
CAD	Limit	1.6	4	1.6	4	1.6	4	1.6	4	1.6	4	1.6	4	1.6	4
SAR [W/kg]	Scaled	n/a	n/a	0.30	0.33	0.30	<mark>0.43</mark>	0.38	0.35	<mark>0.40</mark>	0.39	0.39	0.37	< 1.6	<4
[W/Kg]	Measured	n/a	n/a	0.203	0.222	0.307	0.218	0.264	0.234	0.280	0.268	0.287	0.270	(Estim	ated)
	Antenna (*1)	-	-	1	2	1	1	1	1	1	1	1	1	-	-
	Liquid type	-	-	Head	Head	Head	Head	Head	Head	Head	Head	Head	Head	-	-
Ope	eration mode	-	-	b	b	n40	n40	n40	n40	n40	n40	n40	n40		
Freq	uency[MHz]	-	-	2412	2412	5230	5190	5270	5270	5670	5670	5795	5795		
Outmust	Measured [dBm]	-	-	12.37	12.29	11.55	11.55	11.47	11.47	11.43	11.43	11.62	11.62	The sum	
Output	Tune-up [dBm]	5	5	14	14	13	13	13	13	13	13	13	13	estimated "BTLE-	
power	limit [mW]	3	3	25	25	20	20	20	20	20	20	20	20	(5GHz)	
Powe	er scaled factor	-	-	1.46	1.48	1.38	1.40	1.42	1.42	1.44	1.44	1.37	1.37	smaller th	
Du	ity cycle [%]	-	-	100	100	100	100	100	100	100	100	100	100		
Duty	scaled factor	-	-	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		

Note: UL Japan's SAR Work Procedures No.13-EM-W0429 and 13-EM-W0430. No addition, deviation nor exclusion has been made from standards

Test outline: Where the EUT is built into a new platform, it was verified whether multi-platform conditions can be suited in according with section 2) of 5.2.2 in KDB447498 D01 (v06).

Consideration of	The highest reported SAR of this platform (1) was kept; ≤ 1.2 W/kg (SAR(1g)), ≤ 3 W/kg (SAR(10g))
the test results:	Since highest reported SAR (1g,10g) on this EUT's platform obtained in accordance with KDB447498 D01 (v06) was kept under 1.2 W/kg
	(SAR(1g)), kept under 3 W/kg (SAR(10g)), this EUT was approved to operate multi-platform.

This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg for partial body, 4 W/kg for hands) specified in FCC 47 CFR part 2 (2.1093) and had been tested in accordance with the measurement methods and procedures specified in FCC KDB publications and IEEE 1528-2013.

Telephone: +81 463 50 6400 / Facsimile: +81 463 50 6401

^{*1.} SAR value indicated the big one of either antenna 2 or antenna 1 in table and in each operation band.

^{*.} A transmission is performed from one of antenna 2 or antenna 1 (diversity). A transmission of WLAN(2.4GHz) and BT-LE is time-division-processing. Therefore, simultaneously transmitted SAR was only considered for the WLAN(5GHz) and BT-LE.

^{*. (}Calculating formula) Scaled SAR to tune-up limit power (W/kg) = (Measured SAR (W/kg)) × (Duty scaled factor) × (Power scaled factor) where; Power scaled factor [-] = $1/(10^{\circ})$ (' Δ max (tune-up limit power - burst average power), dB"/10)), Duty scaled factor [-] = $1/(10^{\circ})$ (' Δ max (tune-up limit power - burst average power), dB"/10)), Duty scaled factor [-] = $1/(10^{\circ})$ (' Δ max (tune-up limit power) average power), dB"/10)), Duty scaled factor [-] = $1/(10^{\circ})$ (' Δ max (tune-up limit power) average power), dB"/10)), Duty scaled factor [-] = $1/(10^{\circ})$ (' Δ max (tune-up limit power) average power), dB"/10)), Duty scaled factor [-] = $1/(10^{\circ})$ (' Δ max (tune-up limit power) average power), dB"/10)), Duty scaled factor [-] = $1/(10^{\circ})$ (' Δ max (tune-up limit power) average power), dB"/10)), Duty scaled factor [-] = $1/(10^{\circ})$ (' Δ max (tune-up limit power) average power), dB"/10)), Duty scaled factor [-] = $1/(10^{\circ})$ (' Δ max (tune-up limit power) average power), dB"/10)), Duty scaled factor [-] = $1/(10^{\circ})$ (' Δ max (tune-up limit power) average power), dB"/10)), Duty scaled factor [-] = $1/(10^{\circ})$ (' Δ max (tune-up limit power) average power), dB"/10)), Duty scaled factor [-] = $1/(10^{\circ})$ (' Δ max (tune-up limit power) average power), dB"/10)), Duty scaled factor [-] = $1/(10^{\circ})$ (' Δ max (tune-up limit power) average power), dB"/10)), Duty scaled factor [-] = $1/(10^{\circ})$ (' Δ max (tune-up limit power) average power), dB"/10)), Duty scaled factor [-] = $1/(10^{\circ})$ (' Δ max (tune-up limit power) average power), dB"/10)), Duty scaled factor [-] = $1/(10^{\circ})$ (' Δ max (tune-up limit power) average power), dB"/10)), Duty scaled factor [-] = $1/(10^{\circ})$ (' Δ max (tune-up limit power) average power), dB"/10)), Duty scaled factor [-] = $1/(10^{\circ})$ (' Δ max (tune-up limit power) average power) average

^{*.} n/a: Not applicable; (mode) b: IEEE 802.11b,n40: IEEE 802.11n(40HT).

^{*. &}quot;yellow marker" in the table; The highest reported SAR(1g) and SAR(10g) of each band (DTS, U-NII) is shaded with yellow marker.

Test report No. : 14033664S-A-R1

Page : 8 of 76

Issued date : December 24, 2021

FCC ID : AZDWM01B

3.6 SAR measurement procedure

Normal SAR measurement procedure

Step 1: Confirmation before SAR testing

Before SAR test, the RF wiring for the sample had been switched to the antenna conducted power measurement line from the antenna line and the average power was measured. The SAR test reference power measurement and the SAR test were proceeded with the lowest data rate (which has the higher time-based average power typically) on each operation mode. Therefore, the average output power was measured on the lower, middle (or near middle), upper and specified channels with the lowest data rate of each operation mode. The power of other data rate was also measured to confirm the time-base average power and when if it's required. The power measurement result is shown in Section 5

The EUT transmission power was verified that it was within 2dB lower than the maximum tune-up tolerance limit when it was set the rated power. (Clause 4.1, KDB447498 D01 (v06))

Step 2: Power reference measurement

Measurement of the E-field at a fixed location above the central position of flat phantom (or/and furthermore an interpolated peak SAR location of area scan in step 2) was used as a reference value for assessing the power drop.

Step 3: Area Scan (Area scan parameters: KDB 865664 D01 (v01r04).)

The SAR distribution at the exposed side of head or body position was measured at a distance of each device from the inner surface of the shell. The area covered the entire dimension of the antenna of EUT and suitable horizontal grid spacing of EUT. Based on these data, the area of the maximum absorption was determined by splines interpolation.

	≤ 3 GHz	> 3 GHz
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	5 ± 1 mm	$V_2 \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$
Maximum probe angle from probe axis to phantom surface normal at the measurement location	30° ± 1°	20° ± 1°
	\leq 2 GHz: \leq 15 mm 2 - 3 GHz: \leq 12 mm	$\begin{array}{c} 3-4 \text{ GHz:} \leq 12 \text{ mm} \\ 4-6 \text{ GHz:} \leq 10 \text{ mm} \end{array}$
Maximum area scan spatial resolution: ΔX_{Area} , ΔY_{Area}	When the x or y dimension of measurement plane orientation the measurement resolution is x or y dimension of the test of measurement point on the test.	on, is smaller than the above, must be ≤ the corresponding device with at least one

Step 4: Zoom Scan and post-processing (Zoom scan parameters: KDB 865664 D01 (v01r04).)

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures points (refer to table below) within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure.

A volume of 30 mm (X) \times 30 mm (Y) \times 30 mm (Z) (or more) was assessed by measuring $7 \times 7 \times 7$ points (or more), \leq 3GHz.

A volume of 28 mm (X) \times 28 mm (Y) \times 24mm (Z) (or more) was assessed by measuring 8×8×7 points (or more) (by "Ratio step" method (*1)), > 3 GHz. When the SAR of the highest peak is within 2 dB of the SAR limit, additional zoom scans are proceeded for other peaks within 2 dB of the highest peak that have not been included in any zoom scan to ensure there is no increase in SAR. If the zoom scan measured as defined above complies with both of the following criteria. or if the peak spatial-

average SAR is below 0.1 W/kg, no additional measurements are needed.

*. The smallest horizontal distance from the local SAR peaks to all points 3 dB below the SAR peak shall be larger than the horizontal grid steps in both x and y directions and recorded.

*. The ratio of the SAR at the second measured point to the SAR at the closest measured point at the x-y location of the measured maximum SAR value shall be at least 30 % and recorded.

				f≤3GHz	3 GHz < f ≤ 6 GHz		
1	Maximum zo resolution: Δ			≤ 2 GHz: ≤ 8 mm 2 – 3 GHz: ≤ 5 mm*	3 – 4 GHz: ≤ 5 mm* 4 – 6 GHz: ≤ 4 mm*		
2			grid: $\Delta z_{Zoom}(n)$	≤ 5 mm	3 – 4 GHz: ≤ 4 mm 4 – 5 GHz: ≤ 3 mm 5 – 6 GHz: ≤ 2 mm		
3	Maximum zoom scan spatial resolution, normal to	graded graded graded		≤ 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm		
4	phantom surface	grid	Δz _{Zoom} (n>1): between subsequent points	≤ 1.5 ·∆z _{Zo}	izoom(n-1) mm		
5	Minimum zoom scan volume	linimum pom scan		3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm			

Step 5: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 2. It was checked that the power drift is within ±5% in the evaluation procedure of SAR testing. The verification of power drift during the SAR test is that DASY system calculates the power drift by measuring the e-filed at the same location at beginning and the end of the scan measurement for each test position. The result is shown in SAR plot data of APPENDIX 2

DASY system calculation Power drift value[dB] =20log(Ea)/(Eb) (where, Before SAR testing: Eb[V/m] / After SAR testing: Ea[V/m]) Limit of power drift[W] = $\pm 5\%$; Power drift limit (X) [dB] = $10\log(P_drift) = 10\log(1.05/1) = 10\log(1.05) - 10\log(1) = 0.21dB$ from E-filed relations with power; $S=E\times H=E^2/\eta=P/(4\times\pi\times r^2)$ (η : Space impedance) $\rightarrow P=(E^2\times 4\times\pi\times r^2)/\eta$ Therefore, The correlation of power and the E-filed
Power drift limit (X) dB=10log(P_drift) = 10log(E_drift)^2=20log(E_drift)

From the above mentioned, the calculated power drift of DASY system must be the less than (±) 0.21dB.

The Z Scan measures points along a vertical straight line. The line runs along the Z-axis of a one-dimensional grid. In order to get a reasonable extrapolation the extrapolated distance should not be larger than the step size in Z-direction.

- The all SAR tests were conservatively performed with test separation distance 0 mm. The phantom bottom thickness is approx. 2mm. Typical distance from probe tip to dipole centers is 1mm. The distance between the SAR probe tip to the surface of test device which is touched the bottom surface of the phantom is approx. 3 mm for 2.4GHz band and 2.4 mm for 5GHz band.
- "Ratio step" method parameters used; the first measurement point: "1.4mm" from the phantom surface, the initial z grid separation: "1.4mm", subsequent graded grid ratio: "1.4". These parameters comply with the requirement of KDB 865664 D01 and recommended by Schmid & Partner Engineering AG (DASY5 manual).

UL Japan, Inc. Shonan EMC Lab.

Test report No. : 14033664S-A-R1 Page : 9 of 76

Issued date : December 24, 2021

FCC ID : AZDWM01B

SECTION 4: Operation of EUT during testing

4.1 Operating modes for SAR testing

The EUT has BT LE and IEEE 802.11b, g, a, n(20HT), n(40HT), ac(20VHT), ac(40VHT) and ac(80VHT) continuous transmitting modes. The frequency and the modulation used in the SAR testing are shown as a following.

	BTLE						•	_				_						
Operation mode	BT	LE	b	g	n20	n40	a	n20	ac20	n40	ac40	ac80	a	n20	ac20	n40	ac40	ac80
band		2.	4GHz ba	nd					U-NI	[-1 (*4)					U-NI	I-2A		
Tx band [MHz]	2402~2480		24	112~246	2	2422~ 2452	5	180~52	40	5190, 5230		5210	52	260~532	20	5270,	5310	5290
Antenna # (*1)	2 or 1		2 or 1	2 or 1	2 or 1	2 or 1	2 or 1	2 or 1	2 or 1	2 or 1	2 or 1	2 or 1	2 or 1	2 or 1	2 or 1	2 or 1	2 or 1	2 or 1
Bandwidth [MHz]	1		20	20	20	40	20	20	20	40	40	80	20	20	20	40	40	80
Max.power [dBm]	5		14	14	14	13	13	13	13	13	13	10.5	13	13	13	13	13	10.5
Modulation	GFS	SK	DSSS	OFDM	OFDM	OFDM	OFDM	OFDM	OFDM	OFDM	OFDM	OFDM	OFDM	OFDM	OFDM	OFDM	OFDM	OFDM
D/R [Mbps, MCS#]	1	2	1	6	MCS0	MCS0	6	MCS0	MCS0	MCS0	MCS0	MCS0	6	MCS0	MCS0	MCS0	MCS0	MCS0
Frequency tested [MHz]	n/a (*2)	n/a (*2)	2412, 2437, 2462	n/a (*3)	n/a (*3)	n/a (*3)	n/a (*6)	n/a (*6)	n/a (*6)	5190, 5230	n/a (*6)	n/a (*5)	n/a (*6)	n/a (*6)	n/a (*6)	5270, 5310	n/a (*6)	n/a (*5)

Operation mode	a	n20	ac20	n40	ac40	ac80	a	n20	ac20	n40	ac40	ac80
band			U-N	VII-2C					U-l	NII-3		
Tx band [MHz]		500~558 660~57		5510,55	50,5670	5530	5	745~58	25	5755	, 5795	5775
Antenna # (*1)	2 or 1	2 or 1	2 or 1	2 or 1 2 or 1		2 or 1	2 or 1 2 or		2 or 1 2 or 1		2 or 1	2 or 1
Bandwidth [MHz]	20	20	20	40	40	80	20	20	20	40	40	80
Max.power [dBm]	13	13	13	13	13	10.5	13	13	13	13	13	10.5
Modulation	OFDM	OFDM	OFDM	OFDM	OFDM	OFDM	OFDM	OFDM	OFDM	OFDM	OFDM	OFDM
D/R [Mbps, MCS#]	6	MCS0	MCS0	MCS0	MCS0	MCS0	6	MCS0	MCS0	MCS0	MCS0	MCS0
Frequency tested [MHz]	n/a (*6)	n/a (*6)	n/a (*6)	5510, 5550, 5670	n/a (*6)	n/a (*5)	n/a (*6)	n/a (*6)	n/a (*6)	5755, 5795	n/a	n/a (*5)

Controlled	Test name	Software name	Version	Date	Storage location / Remarks
	Power measurement	labtool Operation	Ver.1.0 (FW Ver.41)	2021/03/25	*. Memory of platform (firmware)
software	SAR test	labtool Operation	Ver.1.0 (FW Ver.42)	2021/06/08	*. Memory of platform (firmware)

^{*.} Max.power: Maximum power (tune-up limit power), D/R: Data rate, n/a: SAR test was not applied.

4.2 RF exposure conditions

After considering the outline of platform the SAR test was applied to the platform surface in follows.

	Explanation of SAR test setup plan	Antenn	a 1 (switch side)	Anteni	na 2 (bottom side)	SAR
Setup	(*. Refer to Appendix 1 for test setup photographs which had been tested.)	D [mm]	SAR Tested /Reduced	D [mm]	SAR Tested /Reduced	type
Front	A front surface (patient side) of platform was touched to the Flat phantom.	7.79	Tested	7.79	Tested	
Side (Right) (Antenna 1)	A right side surface (switch, antenna 1 side) of platform was touched to the Flat phantom.	21.3	Tested	68.5	Reduced (*7)	Partial-
Side (Left)	A left side surface of platform was touched to the Flat phantom.	356.7	Reduced (>200 mm)	265.5	Reduced (>200 mm)	body
Тор	A top side edge surface of platform was touched to the Flat phantom.	304.5	Reduced (>200 mm)	435.7	Reduced (>200 mm)	toden
Bottom	A bottom side surface (Antenna 2 side) of platform was touched to the Flat phantom.	105.5	Reduced (*7)	18.3	Tested	
Back	A back surface (operator handling, etc.) of platform was touched to the Flat phantom.	4.21	Tested	4.21	Tested	Hands hold

^{*.} D: Antenna separation distance. It is the distance from the antenna inside platform the outer surface of platform which user may touch.

^{*. (}mode) BT LE: Bluetooth Low Energy, b: IEEE 802.11b, g: IEEE 802.11g, a: IEEE 802.11a, n20: ÎEEE 802.11n(20HT), n40: IEEE 802.11n(40HT), ac20: IEEE 802.11ac(20VHT), ac40: IEEE 802.11n(40VHT), ac80: IEEE 802.11ac(80VHT)

^{*1.} A transmission is performed from one of antenna 2 or antenna 1 (diversity). A transmission of WLAN(2.4GHz) and BT-LE is time-division-processing. Therefore, simultaneously transmitted SAR was only considered for the WLAN(5GHz) and BT-LE.

^{*2.} Since BT LE is enough lower power, SAR test is exempted. (refer to clause 4.3).

^{*3. (}KDB 248227 D01) Since reported SAR (1g, 10g) of DSSS mode which had highest output power was enough small, SAR test was only applied DSSS mode.

^{*4.} SAR test of U-NII-1 band was also applied for the reference purpose, even though the reported SAR(1g) and SAR(10g) of U-NII-2A band were enough low.

^{*5.} Since the maximum output power was lower than other mode, the SAR test was reduced.

^{*6. (}KDB 248227 D01) Initial SAR test was applied to the operation mode which has higher bandwidth with the highest tune-up power and lowest data rate (lowest modulation).

^{*.} Size of platform: $384 \times 460 \times 15.5$ (thickness) [mm] (*. Size of EUT: 28 (W) $\times 32$ (D) $\times 3$ (thickness) [mm])

^{*7.} Refer to clause 4.3 "SAR test exclusion considerations accordance to KDB 447498 D01.

Test report No. : 14033664S-A-R1
Page : 10 of 76
Issued date : December 24, 2021

FCC ID : AZDWM01B

4.3 SAR test exclusion considerations accordance to KDB 447498 D01

The following is based on KDB447498D01.

Step 1) The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:

[(max.power of channel, including tune-up tolerance, mW)/(min.test separation distance, mm)] \times [$\sqrt{f(GHz)} \le 3.0 \text{ (for SAR(1g))}, 7.5 \text{(for SAR(10g))} \cdots$ formula (1) If power is calculated from the upper formula (1);

 $[SAR(1g) \ test \ exclusion \ thresholds, \ mW] = 3 \times [test \ separation \ distance, \ mm] / [\sqrt{f} \ (GHz)] - (GHz) - (GHz)$

- The upper frequency of the frequency band was used in order to calculate standalone SAR test exclusion considerations.
- 2. Power and distance are rounded to the nearest mW and mm before calculation
- 3. The result is rounded to one decimal place for comparison
- 4. The test exclusions are applicable only when the minimum test separation distance is ≤50 mm and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is <5 mm, a distance of 5 mm is applied to determine SAR test exclusion.</p>

When the calculated threshold value by a numerical formula above-mentioned in the following table is \leq 3.0 (SAR1g), \leq 7.5 (SAR10g), SAR test can be excluded.

Step 2) At 1500 MHz to 6 GHz and for test separation distances > 50 mm, the SAR test exclusion threshold is determined according to the following, [test exclusion thresholds, mW] = [(Power allowed at numeric threshold for 50mm in formula (1))] + [(test separation distance, mm) - (50mm)] × 10 · · formula (3)

The upper frequency of the frequency band was used in order to calculate standalone SAR test exclusion considerations.

2. Power and distance are rounded to the nearest mW and mm before calculation

When output power is less than the calculated threshold value by a numerical formula above-mentioned in the following table, SAR test is excluded.

[SAR exclusion calculations for step 1) antenna ≤50mm from the user, and for step 2) antenna >50mm from the user.]

				•			•	Calcu	lated thresho	old value					
	1	Anten	na #:		Antenna 1			Antenna 2		Ante	nna 1		Ante	nna 2	
		S	etup:	Back	Front	Right	Back	Front	Bottom	Bottom	Top	Left	Right	Left	Top
Antenna separ	ation dist	ance	mm]:	≤5 (4.21)	8	21	≤5 (4.21)	8	18	>50 (106)	>200 (305)	>200 (357)	>50 (69)	>200 (266)	>200 (436)
		SAR	type	10g	1g	1g	10g	1g	1g	1g	1g	1g	1g	1g	1g
Judge by S	SAR exclus	ion cal	culation	≤7.5	≤3.0	≤3.0	≤7.5	≤3.0	≤3.0	-	-	-	-	-	-
Mode	Higher Tx Frequency [GHz]	po (cond	up limit wer lucted) [mW]	Jud	lge: 'Exempt'	"when ≤ 3.0	(SAR (1g)), s	≤50mm from ≤ 7.5 (SAR (1 g)), >7.5 (SA	g));	Judge: "Exempt" v			value.	alculated t	hreshold
BTLE	2.48	5	3	3 0.9, Exempt 0.6, Exempt 0.2, Exempt 0.9, Exempt 0.6, Exempt 0.3, Exempt 95mW@50mm, Exempt Exempt								95mW@50mm, Exempt			
b,g,n20	2.462	14	25	7.8, Test			7.8, Test		2.2, Exempt	96mW@50mm,			96mW@50mm,		
n40	2.462	13	20	6.3, Exempt	3.9, Test	1.5, Exempt	6.3, Exempt		1.7, Exempt	Exempt	1		Exempt		
a,n20,ac20	5.24	13	20	9.2, Test		2.2, Exempt	9.2, Test	5.7, Test	2.5, Exempt	65mW@50mm.			65mW@50mm.		
n40,ac40	5.23	13	20	9.1, Test		2.2, Exempt	9.1, Test	5.7, Test	2.5, Exempt	Exempt	<i>'</i>		Exempt	Since	roor to
ac80	5.21	10.5	11	5.0, Exempt	3.1, Test		5.0, Exempt	3.1, Test	1.4, Exempt	Literispe	Since	user to	Zienipi	anten	
a,n20,ac20	5.32	13	20	9.2, Test	5.8, Test	2.2, Exempt	9.2, Test	5.8, Test	2.6, Exempt	65mW@50mm,		nna is	65mW@50mm.	>200mr	
n40,ac40	5.31	13	20	9.2, Test	5.8, Test	2.2, Exempt	9.2, Test	5.8, Test	2.6, Exempt	Exempt		m, SAR	Exempt	test is	,
ac80	5.29	10.5	11	5.1, Exempt	3.2, Test		5.1, Exempt	3.2, Test	1.4, Exempt		test is no	t required.		requi	
a,n20,ac20	5.7	13	20	9.5, Test	6.0, Test	2.3, Exempt	9.5, Test	6.0, Test	2.7, Exempt	63mW@50mm.			63mW@50mm.	•	
n40,ac40	5.67	13	20	9.5, Test	6.0, Test	2.3, Exempt	9.5, Test	6.0, Test	2.6, Exempt	Exempt			Exempt		
ac80	5.53	10.5	11	5.2, Exempt	3.2, Test	1.2, Exempt	5.2, Exempt	3.2, Test	1.4, Exempt						
a,n20,ac20	5.825	13	20	9.7, Test	6.0, Test	2.3, Exempt	9.7, Test	6.0, Test	2.7, Exempt	62mW@50mm,			62mW@50mm.		
n40,ac40 ac80	5.795 5.775	13 10.5	20 11				9.6, Test 5.3, Exempt	6.0, Test 3.3, Test	2.7, Exempt	Exempt			Exempt		
acou	3.113	10.5	11	J.J, Exempt	ડાડ, 1681	1.5, Exempt	J.J, Exempt	J.J., 168t	1.5, Exempt	L					

^{*} The table shows the upper frequency which has the maximum power (as "Tune-up limit") in each operation band, in mode and on the single antenna transmission.

Notes: 1. Power and distance are rounded to the nearest mW and mm before calculation.

<Conclusion for consideration for SAR test reduction>

- 1) The all SAR tests were conservatively performed with test separation distance 0mm.
- For WLAN operation, "Back" and "Front" setup are applied the SAR test. "Right" setup for antenna 1 and "Bottom" setup for antenna 2 are also applied the SAR test because of an antenna radiated slit is existed on these surface.

The SAR test of other SAR test setup including "Top" and "Side (Left)" setup are reduced, because there have enough antenna separation distance and the SAR test exclusion judge was "test can be reduced".

3) For BT LE operation, the SAR test was exempted, because the power of BT LE was enough small and the SAR test exclusion judge was "test can be reduced".

By the determined test setup shown above, the SAR test was applied in the following procedures.

Step 1	(KDB 248227 D01) On 2.4GHz band, worst SAR search by DSSS mode with a highest measurement output power channel.
Step 1	Add SAR test for OFDM mode at the worst SAR condition of DSSS mode, if it is required.
	(KDB 248227 D01) On 5GHz band, Worst SAR search by largest channel bandwidth mode with a highest measurement output
Step 2	power channel. Add test for another bandwidth mode, if it is required.
~Step 4	Repeat same test procedure in above for U-NII-2A band (Step 2a), U-NII-2C band (Step 3) and U-NII-3 band (Step 4).
	Repeat same test procedure for U-NII-1 band (Step 2b), if it is required.
* D .	GAD 4 4 4 11 4 1 1 1 1 1 1 1 G 4 A 1

^{*.} During SAR test, the radiated power is always monitored by Spectrum Analyzer.

^{*. (}mode) b: IEEE 802.11b, g: ÎEEE 802.11g, a: IEEE 802.11a, n20: IEEE 802.11n(20HT), n40: IEEE 802.11n(40HT), ac20: IEEE 802.11ac(20VHT), ac40: IEEE 802.11n(40VHT), ac80: IEEE 802.11ac(80VHT).

Test report No. : 14033664S-A-R1
Page : 11 of 76
Issued date : December 24, 2021

FCC ID : AZDWM01B

SECTION 5: Confirmation before testing

${\bf 5.1} \qquad {\bf SAR}\ reference\ power\ measurement}\ ({\bf antenna}\ terminal\ conducted\ average\ power\ of\ EUT})$

					JOWEI I.																	
	Doto mto			Pov	ver spec.	D	uty cyc	de	Ante	nna 2 (-c	livsw "0	") powe	r (WLAI	N or Blue	etooth)	An	tenna 1 (-c	divsw"1	") power	r (WLAN	or Blueto	ooth)
Mode	Data rate [Mbps]	Frequ	ency	Tunical	Tune-up	Duty	Duty	Scaled	Setting	Burst a	verage	Δfrom	Tune-up	Time	vorace	Setting	Rureto	versee	Δ from	Tune-up	Time	versoe
WIOGC	or Index#			Typical	limit (Max.)	cycle	factor	factor	power	Duista	verage	Max.	factor	Time a	verage	power	Burst a	verage	Max.	factor	Time a	verage
	OI HREAN	[MHz]	CH	[dBm]	[dBm]	[%]	[dB]	[-]	[-]	[dBm]	[mW]	[dB]	[-]	[dBm]	[mW]	[-]	[dBm]	[mW]	[dB]	[-]	[dBm]	[mW]
	PHY1	2402	0	3		63.9	1.94	1.56	3	3.66	2.32	-1.34	1.36	1.74	1.49	3	3.72	2.36	-1.28	1.34	1.80	1.51
	PHY1	2440	19	3	5 5 5	63.9	1.94	1.56	3	3.59	2.29	-1.41	1.38	1.67	1.47	3	3.64	2.31	-1.36	1.37	1.72	1.49
	PHY1	2480	39			63.9	1.94	1.56	$-\frac{3}{3}$	3.38	2.18	-1.62	1.45	1.46	1.40	3	3.43	2.20	-1.57	1.44	1.51	1.42
BTLE		2402	0			34.5	4.62	2.90		3.60		-1.40		-1.02	0.79	3		2.32	-1.35	1.36	-0.97	
	PHY2			3	5				3		2.29		1.38				3.65					0.80
	PHY2	2440	19	3	5 5	34.5	4.62	2.90	$-\frac{3}{3}$	3.51	2.24	-1.49	1.41	-1.11	0.77	3	3.57	2.28	-1.43	1.39	-1.05	0.79
	PHY2	2480	39			34.5	4.62	2.90		3.31	2.14	-1.69	1.48	-1.31	0.74	3	3.37	2.17	-1.63	1.46	-1.25	0.75
	1	2412	1	12	14	100	0.00	1.00	12	12.29	16.94	-1.71	1.48	12.29	16.94	12	12.37	17.26	-1.63	1.46	12.37	17.26
b	1	2437	6	12	14	100	0.00	1.00	12	12.51	17.82	-1.49	1.41	12.51	17.82	12	12.60	18.20	-1.40	1.38	12.60	18.20
	1	2462	11	12	14	100	0.00	1.00	12	12.68	18.54	-1.32	1.36	12.68	18.54	12	12.78	18.97	-1.22	1.32	12.78	18.97
	6	2412	1	12	14	100	0.00	1.00	12	12.26	16.83	-1.74	1.49	12.26	16.83	12	12.35	17.18	-1.65	1.46	12.35	17.18
σ.	6	2437	6	12 12	14	100	0.00	1.00	12	12.48	17.70	-1.52	1.42	12.48	17.70	-12 12	12.57	18.07	-1.43	1.39	12.57	18.07
g	6	2462	11	12	14	100	0.00	1.00	12	12.65	18.41	-1.35	1.36	12.65	18.41	12	12.74	18.79	-1.26	1.34	12.74	18.79
-																						
20	MCS0	2412	1	12	14	100	0.00	1.00	11	12.43	17.50	-1.57	1.44	12.43	17.50	- 11	12.53	17.91	-1.47	1.40	12.53	17.91
n20	MCS0	2437	6	12	14	100	0.00	1.00	11	12.66	18.45	-1.34	1.36	12.66	18.45	11	12.73	18.75	-1.27	1.34	12.73	18.75
	MCS0	2462	11	12	14	100	0.00	1.00	11	12.81	19.10	-1.19	1.32	12.81	19.10	11	12.91	19.54	-1.09	1.29	12.91	19.54
	MCS0	2422	3	11	13	100	0.00	1.00	11	11.49	14.09	-1.51	1.42	11.49	14.09	11	11.57	14.35	-1.43	1.39	11.57	14.35
n40	MCS0	2437	6	11	13	100	0.00	1.00	11	11.61	14.49	-1.39	1.38	11.61	14.49	11	11.70	14.79	-1.30	1.35	11.70	14.79
	MCS0	2452	9	11	13	100	0.00	1.00	11	11.72	14.86	-1.28	1.34	11.72	14.86	11	11.80	15.14	-1.20	1.32	11.80	15.14
	6	5180	36	11	13	100	0.00	1.00	12	11.37	13.71	-1.63	1.46	11.37	13.71	12	11.40	13.80	-1.60	1.45	11.40	13.80
	6	5200	40	<u>11</u>	13	100	0.00	1.00	12	11.37	13.71	-1.63	1.46	11.37	13.71	15-	11.40	13.80	-1.60	1.45	11.40	13.80
		5220				100		1.00	12	11.37			1.44			12 12	11.40	14.09	-1.51	1.43	11.40	
	6		44	11	13		0.00		12		13.84	-1.59		11.41	13.84	- 12 -						14.09 13.84
	6	5240	48	11	13 13	100	0.00	1.00	12 12	11.35	13.65	-1.65	1.46	11.35	13.65	12	11.41	13.84	-1.59	1.44	11.41	
	6	5260	52	11		100	0.00	1.00	12	11.31	13.52	-1.69	1.48	11.31	13.52	12 12 12	11.39	13.77	-1.61	1.45	11.39	13.77
	6	5280	56	11	13	100	0.00	1.00	12	11.19	13.15	-1.81	1.52	11.19	13.15	12	11.27	13.40	-1.73	1.49	11.27	13.40
	6	5300	60	11	13	100	0.00	1.00	12	11.48	14.06	-1.52	1.42	11.48	14.06	12	11.59	14.42	-1.41	1.38	11.59	14.42
a	6	5320	64	11	13 13	100	0.00	1.00	12	11.34	13.61	-1.66	1.47	11.34	13.61	12	11.44	13.93	-1.56	1.43	11.44	13.93
	6	5500	100	11	13	100	0.00	1.00	11	11.13	12.97	-1.87	1.54	11.13	12.97	11	11.18	13.12	-1.82	1.52	11.18	13.12
	6	5580	116	11	13	100	0.00	1.00	11	11.22	13.24	-1.78	1.51	11.22	13.24	11	11.20	13.18	-1.80	1.51	11.20	13.18
	F					100	0.00		11	11.32	13.55			11.32	13.55		11.20	13.21	-1.79		11.20	
	- 6	5700	140	11	13 13 13			1.00				-1.68	1.47			-11				1.51		13.21
	6	5745	149	11	13	100	0.00	1.00	11	11.45	13.96	-1.55	1.43	11.45	13.96	11	11.35	13.65	-1.65	1.46	11.35	13.65
	6	5785	157	11	13	100	0.00	1.00	11	11.58	14.39	-1.42	1.39	11.58	14.39	11	11.45	13.96	-1.55	1.43	11.45	13.96
	6	5825	165	11	13	100	0.00	1.00	11	11.74	14.93	-1.26	1.34	11.74	14.93	11	11.59	14.42	-1.41	1.38	11.59	14.42
	MCS0	5180	36	11	13 13 13	100	0.00	1.00	12 12	11.54	14.26	-1.46	1.40	11.54	14.26	12	11.57	14.35	-1.43	1.39	11.57	14.35
	MCS0	5200	40	11	13	100	0.00	1.00	12	11.53	14.22	-1.47	1.40	11.53	14.22	12 12	11.56	14.32	-1.44	1.39	11.56	14.32
	MCS0	5220	44	11	13	100	0.00	1.00	12	11.59	14.42	-1.41	1.38	11.59	14.42	12	11.66	14.66	-1.34	1.36	11.66	14.66
	MCS0	5240	48	11	13	100	0.00	1.00	12	11.52	14.19	-1.48	1.41	11.52	14.19	12 12	11.58	14.39	-1.42	1.39	11.58	14.39
	MCS0	5260		11	13	100	0.00	1.00	12	11.48	14.06	-1.52	1.42	11.48	14.06	12	11.54	14.26	-1.46	1.40	11.54	14.26
	MCS0	5280	52 56	11	13	100	0.00	1.00	12	11.35	13.65	-1.65	1.46	11.35	13.65	12	11.42	13.87	-1.58	1.44	11.42	13.87
20				<u>11</u>	13 13 13				12							12-						
n20	MCS0	5300	60		13	100	0.00	1.00		11.65	14.62	-1.35	1.36	11.65	14.62		11.74	14.93	-1.26	1.34	11.74	14.93
(20HT)	MCS0	5320	64	11	13	100	0.00	1.00	12	11.51	14.16	-1.49	1.41	11.51	14.16	12	11.61	14.49	-1.39	1.38	11.61	14.49
	MCS0	5500	100	11	13	100	0.00	1.00	11	11.32	13.55	-1.68	1.47	11.32	13.55	11	11.38	13.74	-1.62	1.45	11.38	13.74
	MCS0	5580	116	11	13 13	100	0.00	1.00	11	11.41	13.84	-1.59	1.44	11.41	13.84	11	11.40	13.80	-1.60	1.45	11.40	13.80
	MCS0	5700	140	11	13	100	0.00	1.00	11	11.49	14.09	-1.51	1.42	11.49	14.09	11	11.37	13.71	-1.63	1.46	11.37	13.71
	MCS0	5745	149	11	13	100	0.00	1.00	11	11.62	14.52	-1.38	1.37	11.62	14.52	11	11.49	14.09	-1.51	1.42	11.49	14.09
	MCS0	5785	157	11		100	0.00	1.00	11	11.75	14.96	-1.25	1.33	11.75	14.96	11	11.61	14.49	-1.39	1.38	11.61	14.49
	MCS0	5825	165	11	13 13	100	0.00	1.00	11	11.91	15.52	-1.09	1.29	11.91	15.52	11	11.76	15.00	-1.24	1.33	11.76	15.00
	MCS0	5180	36	11	13	100	0.00	1.00	12	11.54	14.26	-1.46	1.40	11.54	14.26	12	11.56	14.32	-1.44	1.39	11.56	14.32
	MCS0	5200	40	11	13	100	0.00	1.00	12	11.53	14.22	-1.47	1.40	11.53	14.22	12	11.56	14.32	-1.44	1.39	11.56	14.32
	MCS0		44	11		100	0.00	1.00	12	11.59	14.42	-1.47	1.38		14.42	12		14.52	-1.36	1.37		14.52
					13									11.59			11.64				11.64	
	MCS0		48	11	13	100	0.00	1.00	12	11.51	14.16		1.41	11.51	14.16	12	11.57	14.35	-1.43		11.57	14.35
	MCS0		52	11	13	100	0.00	1.00	12	11.48	14.06		1.42		14.06	12	11.54	14.26	-1.46	1.40	11.54	14.26
	MCS0		56	11	13	100	0.00	1.00	12	11.37	13.71	-1.63	1.46		13.71	12	11.43	13.90	-1.57	1.44	11.43	13.90
ac20	MCS0	5300	60	11	13 13	100	0.00	1.00	12	11.65	14.62	-1.35	1.36	11.65	14.62	12	11.74	14.93	-1.26	1.34	11.74	14.93
	MCS0		64	11	13	100	0.00	1.00	12	11.51		-1.49	1.41	11.51	14.16	12	11.61	14.49	-1.39	1.38	11.61	14.49
1	MCS0			11	13	100	0.00	1.00	11	11.31	13.52	-1.69	1.48	11.31	13.52	11	11.39	13.77	-1.61	1.45	11.39	13.77
	MCS0		116	11	13	100	0.00	1.00	11	11.41	13.84	-1.59	1.44	11.41	13.84	11	11.41	13.84	-1.59	1.44	11.41	13.84
	MCS0			11	13	100	0.00	1.00	11	11.49	14.09	-1.51	1.42	11.49	14.09	11	11.39	13.77	-1.61	1.45	11.39	13.77
	MCS0		149	<u>11</u>	12	100	0.00	1.00	11	11.63	14.55	-1.31	1.42	11.63	14.55	11	11.39	14.09	-1.51	1.43	11.49	14.09
					13 13																	
1	MCS0		157	11	13	100	0.00	1.00	11	11.75	14.96	-1.25	1.33		14.96	- 11	11.59	14.42	-1.41	1.38	11.59	14.42
<u> </u>	MCS0		165	11	13	100	0.00	1.00	11	11.91	15.52	-1.09	1.29	11.91	15.52	11	11.76	15.00	-1.24	1.33	11.76	15.00
	MCS0		38	11	13	100	0.00	1.00	12	11.51	14.16	-1.49	1.41	11.51	14.16	12	11.55	14.29	-1.45	1.40	11.55	14.29
1	MCS0	5230	46	11	13 13 13	100	0.00	1.00	12 12 12	11.52	14.19	-1.48	1.41	11.52	14.19	12	11.60	14.45	-1.40	1.38	11.60	14.45
1	MCS0		54	11	13	100	0.00	1.00	12	11.39	13.77	-1.61	1.45	11.39	13.77	12	11.47	14.03	-1.53	1.42	11.47	14.03
	MCS0	5310	62	11	13	100	0.00	1.00	12	11.56	14.32	-1.44	1.39		14.32	12	11.67	14.69	-1.33	1.36	11.67	14.69
n40	MCS0	5510	102	11	13	100	0.00	1.00	11	11.30	13.49	-1.70	1.48	11.30	13.49	11	11.36	13.68	-1.64	1.46	11.36	13.68
(40HT)	MCS0			11	12	100	0.00	1.00	11	11.36	13.49	-1.64	1.46		13.68	11	11.40	13.80	-1.60	1.45	11.40	13.80
					13 13 13																	
	MCS0		134	11	13	100	0.00	1.00	11	11.54	14.26	-1.46	1.40		14.26	11.	11.43	13.90	-1.57	1.44	11.43	13.90
	MCS0			11		100	0.00	1.00	11	11.64	14.59	-1.36	1.37	11.64		11	11.50	14.13	-1.50	1.41	11.50	14.13
	MCS0	5795	159	11	13	100	0.00	1.00	11	11.78	15.07	-1.22	1.32	11.78	15.07	11	11.62	14.52	-1.38	1.37	11.62	14.52
																						(cont'd)

Test report No. : 14033664S-A-R1 Page : 12 of 76

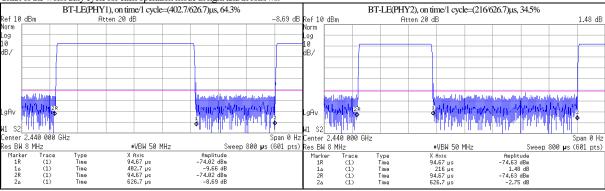
Issued date : December 24, 2021

FCC ID : AZDWM01B

(cont'd)	1																					
	D-44-				er spec.	D	uty cyc	de	Ante	nna 2 (-d	ivsw"(") powe	er (WLA	N or Blu	etooth)	An	tenna 1 (-	divsw"1	") power	(WLAI	N or Bluet	ooth)
Mode	Data rate [Mbps] or Index#	Frequ	ency	Typical	Tune-up limit(Max.)	Duty cycle	Duty factor	Scaled factor	Setting power	Burst a	verage	Δ from Max.	Tune-up factor	Time a	verage	Setting power	Burst a	verage	Δ from Max.	Tune-up factor	Time a	verage
		[MHz]		[dBm]	[dBm]	[%]	[dB]	[-]	[-]	[dBm]	[mW]	[dB]	[-]	[dBm]	[mW]	[-]	[dBm]	[mW]	[dB]	[-]	[dBm]	[mW]
	MCS0	5190	38	11	13	100	0.00	1.00	12	11.52	14.19	-1.48	1.41	11.52	14.19	12	11.53	14.22	-1.47	1.40	11.53	14.22
	MCS0	5230	46	11	13	100	0.00	1.00	12	11.51	14.16	-1.49	1.41	11.51	14.16	12	11.60	14.45	-1.40	1.38	11.60	14.45
		5270	54	11	13	100	0.00	1.00	12	11.40	13.80	-1.60	1.45	11.40	13.80	12	11.53	14.22	-1.47	1.40	11.53	14.22
0040	MCS0	5310	62	11	13	100	0.00	1.00	12	11.56	14.32	-1.44	1.39	11.56	14.32	12	11.66	14.66	-1.34	1.36	11.66	14.66
ac40 (40VHT)	MCS0	5510	102	11	13	100	0.00	1.00	11	11.29	13.46	-1.71	1.48	11.29	13.46	11	11.37	13.71	-1.63	1.46	11.37	13.71
(40VIII)	MCS0	5550	110	11	13	100	0.00	1.00	11	11.35	13.65	-1.65	1.46	11.35	13.65	11	11.39	13.77	-1.61	1.45	11.39	13.77
	MCS0	5670	134	11	13	100	0.00	1.00	11	11.37	13.71	-1.63	1.46	11.37	13.71	11	11.43	13.90	-1.57	1.44	11.43	13.90
	MCS0	5755	151	11	13	100	0.00	1.00	11	11.65	14.62	-1.35	1.36	11.65	14.62	11	11.49	14.09	-1.51	1.42	11.49	14.09
	MCS0	5795	159	11	13	100	0.00	1.00	11	11.78	15.07	-1.22	1.32	11.78	15.07	11	11.62	14.52	-1.38	1.37	11.62	14.52
	MCS0	5210	42	8.5	10.5	100	0.00	1.00	9	9.01	7.96	-1.49	1.41	9.01	7.96	9	9.05	8.04	-1.45	1.40	9.05	8.04
ac80	MCS0	5290	58	8.5	10.5	100	0.00	1.00	9	8.80	7.59	-1.70	1.48	8.80	7.59	9	8.88	7.73	-1.62	1.45	8.88	7.73
(80VHT)		5530	106	8.5	10.5	100	0.00	1.00	8	8.74	7.48	-1.76	1.50	8.74	7.48	8	8.81	7.60	-1.69		8.81	7.60
	MCS0	5775	155	8.5	10.5	100	0.00	1.00	8	9.25	8.41	-1.25	1.33	9.25	8.41	8	9.10	8.13	-1.40	1.38	9.10	8.13

- *. The SAR test powers by setting power were not more than 2dB lower than maximum tune-up power (KDB 447498 D01 (v06) requirement).
- *. CH: Channel; Max: Maximum; n/a: not applied; (mode) BT-LE: Bluetooth Low Energy; b: IEEE 802.11b, g: IEEE 802.11g, a: IEEE 802.11a, n20: IEEE 802.11n(20HT), n40: IEEE 802.11n(40HT), ac20: IEEE 802.11ac(20VHT), ac40: IEEE 802.11n(40VHT), ac80: IEEE 802.11ac(80VHT).
- *. Calculating formula: Burst power (dBm) = (P/M Reading, dBm)+(Cable loss, dB)+(Attenuator, dB)+(duty factor, dB)

 Time average power (dBm) = (P/M Reading, dBm)+(Cable loss, dB)+(Attenuator, dB)


 Duty cycle: (duty cycle, %) = (Tx on time, ms) / (1 cycle time, ms) × 100, where Duty factor (dBm) = 10 × log (100/(duty cycle, %))

 Duty cycle scaled factor: Duty cycle correction factor for obtained SAR value, Duty scaled factor [-] = 100(%)/(duty cycle, %)

 A from max. (Deviation form maximum power, dB) = (Burst power measured (average, dBm)) (Max.tune-up limit power (average, dBm))

 Power scaled factor [-] = 1/(10 ^ ("A from max., dB"/10))
- *. Date measured: May 10~11, 2021 / Measured by: H. Naka/ Place: Preparation room of No. 7 shield room. (23 deg.C./ (45~60) %RH)
- *. Uncertainty of antenna port conducted test (Average power); 0.91 dB (BW80MHz) / Uncertainty of Duty cycle and time measurement: 0.27 %

*. Chart of the worst duty cycle for each operation mode in right and in follows

Test report No. : 14033664S-A-R1 Page : 13 of 76

Issued date : December 24, 2021

FCC ID : AZDWM01B

SECTION 6: SAR Measurement results

6.1 SAR test reduction consideration

(KDB 447498 D01, General RF Exposure Guidance) Testing of other required channels within the operating mode of a frequency band is not required when the reported 1g or 10g SAR for the mid-band or highest output power channel is:

- (1) \leq 0.8 W/kg or 2.0 W/kg, for 1g or 10g respectively, when the transmission band is \leq 100 MHz
- (2) ≤0.6 W/kg or 1.5 W/kg, for 1g or 10g respectively, when the transmission band is between 100 MHz and 200 MHz
- (3) \leq 0.4 W/kg or 1.0 W/kg, for 1g or 10g respectively, when the transmission band is \geq 200 MHz

The SAR has been measured with highest transmission duty factor supported by the test mode tool for WLAN and/or Bluetooth. When the transmission duty factor could not be 100%, the reported SAR will be scaled to 100% transmission duty factor to determine compliance. The scaling factor for the duty factor is defined as (100% / (transmission duty cycle (%))).

When SAR is not measured at the maximum power level allowed for production unit, the measured SAR will be scaled to the maximum tune-up tolerance limit to determine compliance. The scaling factor for the tune-up power is defined as "(maximum tune-up limit (mW))/(measured conducted power (mW))".

*. The reported SAR (scaled SAR) would be calculated by "(measured SAR) × (duty cycle scaling factor) × (tune-up power scaling factor)".

(KDB 248227 D01, SAR Guidance for WLAN Transmitters)

When the reported SAR of the initial test configuration is > 0.8 W/kg, SAR measurement is required for subsequent next highest measured output power channel(s) in the initial test configuration until reported SAR is ≤ 1.2 W/kg or all required channels are tested.

For 2.4GHz band, the highest measured maximum output power channel of DSSS was selected for SAR measurement, When the reported SAR is \leq 0.8 W/kg, no further SAR test is required in this exposure configuration. Otherwise, SAR is required for that exposure configuration using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel. For OFDM modes (802.11g/n), SAR is not required when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is \leq 1.2 W/kg.

For 5GHz band, the initial test configuration was selected accordance to the transmission mode with the highest maximum output power. When the reported SAR is > 0.8 W/kg, SAR is required for the subsequent highest measured output power channel until the reported SRA result is ≤ 1.2 W/kg or all required channels are measured. For other transmission modes, SAR is not required when the highest reported SAR for initial test configuration is adjusted by the ratio of subsequent test configuration to initial test configuration specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.

Test report No. : 14033664S-A-R1 Page : 14 of 76

Issued date : December 24, 2021

FCC ID : AZDWM01B

6.2 Tissue simulating liquid measurement

6.2.1 Target of tissue simulating liquid

Nominal dielectric values of the tissue simulating liquids in the phantom are listed in the following table. (Appendix A, KDB 865664 v01r04)

Target Frequency	Не	ead	В	ody
(MHz)	$\epsilon_{\rm r}$	σ(S/m)	$\epsilon_{\rm r}$	σ(S/m)
1800~2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95

onowing more. (1 appen	CIATI, IDD	05001101101)		
Target Frequency	He	ead	В	ody
(MHz)	$\epsilon_{\rm r}$	σ(S/m)	$\epsilon_{\rm r}$	σ(S/m)
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00

6.2.2 Liquid measurement (Liquid verification)

							Liq	uid pa	rameters	(*a)						ΔSA	R Coef	ficients(*b)	
Emananar	T invited	T 114	Liquid		Per	mittivi	ity (Er)[-]			Con	ductiv	ity [S	/m]		ΔS	AR	Correction	
Frequency [MHz]	type	Temn	depth of			Meas	ured		Δend,	Target		Meas	ured			(1g)	(10g)		
[IVII IZ]		[deg.C.]	phantom	value	Value			Limit	>40HS	value	Value			Limit	>48hrs	[%]	(10g) [%]	(*c)	
			[111111]			[%]	lated	[%]	[%] (*1)			[%]	lated	[%]	[%] (*1)			(0)	
2412	Head	22.5	151	39.27	39.77	1.3		10	begin	1.766	1.838	4.1	\checkmark	10	begin	1.7	0.9	not required.	
2437				39.22	39.72	1.3		10	begin	1.788	1.857	3.9	\checkmark	10	begin	1.6	0.8	not required.	October 4,, 2021
2462				39.18	39.66	1.2		10	begin	1.803	1.877	3.5	\checkmark	10	begin	1.4	0.7	not required.	
5510	Head	22.5	151	35.63	34.67	-2.7		10	begin	4.973	4.790	-3.7		10	begin	0.7	0.9	not required.	
5550				35.59	34.58	-2.8		10	begin	5.014	4.850	-3.3		10	begin	0.7	0.9	not required.	October 5,, 2021
5670				35.45	34.39	-3.0		10	begin	5.137	4.971	-3.2		10	begin	0.7	0.9	not required.	
5755	Head	22.5	151	35.35	34.25	-3.1		10	begin	5.224	5.073	-2.9	$ \overline{\mathbf{V}} $	10	begin	0.7	0.9	not required.	October 6,, 2021
5795				35.31	34.20	-3.1		10	begin	5.265	5.123	-2.7	$ \overline{\mathbf{V}} $	10	begin	0.7	0.9	not required.	October 6,. 2021
5190	Head	22.5	151	36.00	35.22	-2.2		10	<48hrs	4.645	4.454	-4.1		10	<48hrs	0.5	0.8	not required.	
5230				35.95	35.13	-2.3		10	<48hrs	4.686	4.492	-4.1		10	<48hrs	0.6	0.8	not required.	October 7~8., 2021
5270				35.91	35.07	-2.3		10	<48hrs	4.727	4.541	-3.9		10	<48hrs	0.6		not required.	OCIODEI /~8,, 2021
5310				35.86	34.99	-2.4		10	<48hrs	4.768	4.587	-3.8		10	<48hrs	0.6	0.8	not required.	

^{*1. &}quot;begin": SAR test has ended within 24 hours from the liquid parameter measurement, "< 48 hrs": Since SAR test has ended within 48 hours (2 days) from the liquid parameter measurement and a change in the liquid temperature was within 1 degree, liquid parameters measured on first day were used on next day continuously, "value (%)": Since the SAR test series took longer than 48 hours, the liquid parameters were measured on every 48 hours period and on the date which was end of test series. Since the difference of liquid parameters between the beginning and next measurement was smaller than 5%, the liquid parameters measured in beginning were used until end of each test series. Calculating formula: "Δend(>48 hrs) (%)"" = {(dielectric properties, end of test series)/(dielectric properties, beginning of test series)-1} × 100

*b. The coefficients in below are parameters defined in IEEE Std.1528-2013.

Calculating formula: $\Delta SAR(1g) = Car \times \Delta ar + C\sigma \times \Delta \sigma, Car = 7.854E + 4x^3 + 9.402E - 3x^2 - 2.742E - 2x^4 - 0.2026 / C\sigma = 9.804E - 3x^3 - 8.661E - 2x^2 + 2.981E - 2x^4 + 0.7829$ Calculating formula: $\Delta SAR(10g) = Car \times \Delta ar + C\sigma \times \Delta \sigma, Car = 3.456 \times 10^{-3} x^3 - 3.531 \times 10^{-2} x^2 + 7.675 \times 10^{-2} x^4 - 0.1860 / C\sigma = 4.479 \times 10^{-3} x^3 - 1.586 \times 10^{-2} x^2 - 0.1972 x^4 + 0.7717$ Since the calculated ΔSAR values of the tested liquid had shown positive correction, the measured SAR was not converted by ΔSAR corrected SAR (W/kg) = (Measured SAR (W/kg)) × (100 - ($\Delta SAR(\%)$) / 100

*. Calibration frequency of the SAR measurement probe (and used conversion factors for each frequency.)

The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Liquid	SAR test frequency	Probe calibration frequency	Validity	Conversion factor	Uncertainty
Head	(2412, 2437, 2462) MHz	2450 MHz	within ± 5 0MHz of calibration frequency	7.35	± 12.0 %
Head	(5190, 5230, 5270, 5310) MHz	5250 MHz	within ± 110 MHz of calibration frequency	5.14	± 13.1 %
Head	(5510, 5550, 5670) MHz	5600 MHz	within ± 110 MHz of calibration frequency	4.56	± 13.1 %
Head	(5755, 5795) MHz	5800 MHz	within ± 110 MHz of calibration frequency	4.60	± 13.1 %

^{*}a. The target values of (2000, 2450, 3000, 5800) MHz are parameters defined in Appendix A of KDB 865664 D01. For other frequencies, the target nominal dielectric values shall be obtained by linear interpolation between the higher and lower tabulated figures. Above 5800MHz were obtained using linear extrapolation.

Test report No. : 14033664S-A-R1 Page : 15 of 76 Issued date

FCC ID

: December 24, 2021

: AZDWM01B

6.3 **SAR** results

	Test setu	р		Mode and F	requenc	y (*2)	Duty	cycle	Pow	er correct	ion	S	AR res	ults [W/k	σl			SAR	Setup	
			Source	Mode (D/R)	[MHz]	СН	D :	Duty	Max. tune-	Measured	Power			of multi-p	O-	SAR	SAR	plot#in	photo	D
ANT #	Test position	Gap [mm]	power:	Mark with	*"is the i	nitial	Duty [%]	scaled	up limit	conducted	scaled	M	ΔSAR	ΔSAR	Scaled	type	Limit [W/kg]	Appx.	# in Appx.	Remarks
			Battery ID	mode &	frequenc	y.	[/0]	factor	[dBm]	[dBm]	factor	Measured	[%]	corrected	(*b)		[WAS]	2-2	1-3	
	GHz Band (*1	_																		
2	Back	0	Battery 2	b (1Mbps)*	2462*	11	100	1.00	14	12.68	1.36	0.209	Positive	n/a (*a)	0.284	10g	4	-	P1	-
2	Back	0	Battery 2	b (1Mbps)*	2437	6	100	1.00	14	12.51	1.41	0.228	Positive	n/a (*a)	0.321	10g	4	- 1	P1	-
2	Back	0	Battery 1	b (1Mbps)*	2412	1 11	100	1.00	14	12.29	1.48	0.222	Positive	n/a (*a)	0.329 0.224	10g	4	1a-1	Pl	Wide area scan
1	Back Back	0	Battery 1	b (1Mbps)* b (1Mbps)*	2462* 2437	6	100	1.00	14 14	12.78 12.60	1.32	0.170	Positive Positive	n/a (*a)	0.224	10g 10g	4	- 1a-2	P1 P1	F
1	Back	0	Battery 1	b (1Mbps)*	2412	1	100	1.00	14	12.37	1.46	0.100	Positive	n/a (*a) n/a (*a)	0.210	10g	4	1a-2	P1	Wide area scan
2	Front	0	Battery 1	b (1Mbps)*	2462*	11	100	1.00	14	12.68	1.36	0.00423	Positive	n/a (*a)	0.006	1g	1.6	1b-3	P2	Wide area scan
1	Front	0	Battery 1	b (1Mbps)*	2462*	11	100	1.00	14	12.78	1.32	0.040	Positive	n/a (*a)	0.053	1g	1.6	1b-4	P2	Wide area scan
2	Bottom (ant.2)	0	Battery 1	b (1Mbps)*	2462*	11	100	1.00	14	12.68	1.36	0.00906	Positive	n/a (*a)	0.012	1g	1.6	-	P3	-
2	Bottom (ant.2)	0	Battery 1	b (1Mbps)*	2437	6	100	1.00	14	12.51	1.41	0.0096	Positive	n/a (*a)	0.014	1g	1.6	1b-2	P3	-
2	Bottom (ant.2)	0	Battery 1	b (1Mbps)*	2412	1	100	1.00	14	12.29	1.48	0.00719	Positive	n/a (*a)	0.011	1g	1.6	1b-5	P3	Wide area scan
1	Side (ant.1)	0	Battery 2	b (1Mbps)*	2462*	11	100	1.00	14	12.78	1.32	0.165	Positive	n/a (*a)	0.218	1g	1.6	-	P4	-
1	Side (ant.1)	0	Battery 2	b (1Mbps)*	2437	6	100	1.00	14	12.60	1.38	0.198	Positive	n/a (*a)	0.273	1g	1.6	-	P4	_
1	Side (ant.1)	0	Battery 2	b (1Mbps)*	2412	1	100	1.00	14	12.37	1.46	0.203	Positive	n/a (*a)	0.296	1g	1.6	1b-1	P4	Wide area scan
	NII-2A (5.3GI	Iz) (a	nd U-NI		-//															
2	Back	0	Battery2	n40(MCS0)*		62	100	1.00	13	11.56	1.39	0.238	Positive	n/a (*a)	0.331	10g	4	2a-3	P1	Wide area scan
2	Back	0	Battery1	n40(MCS0)*	5270	54	100	1.00	13	11.39	1.45	0.234	Positive	n/a (*a)	0.339	10g	4	2a-2	P1	<u> </u>
1	Back	0	Battery2	n40(MCS0)*	5310*	62	100	1.00	13	11.67	1.36	0.255	Positive	n/a (*a)	0.347	10g	4	2a-4	P1	Wide area scan
1	Back	0	Battery2	n40(MCS0)*	5270	54	100	1.00	13	11.47	1.42	0.249	Positive	n/a (*a)	0.354	10g	4	2a-1	P1	-
2	Front	0	Battery2	n40(MCS0)*	5310*	62	100	1.00	13	11.56	1.39	0.0057	Positive	n/a (*a)	0.008	1g	1.6	2b-3	P2	Wide area scan
1	Front	0	Battery2	n40(MCS0)*	5310*	62	100	1.00	13	11.67	1.36	0.024	Positive	n/a (*a)	0.033	1g	1.6	2b-4	P2	Wide area scan
2	Bottom (ant.2)	0	Battery1	n40(MCS0)*	5310	62	100	1.00	13	11.56	1.39	0.020	Positive	n/a (*a)	0.028	1g	1.6	2b-2	P3	Wide area scan
1	Side (ant.1)	0	Battery2	n40(MCS0)*	5310*	62	100	1.00	13	11.67	1.36	0.270	Positive	n/a (*a)	0.367	1g	1.6	2b-5	P4	Wide area scan
1	Side (ant.1)	0	Battery2	n40(MCS0)*	5270	54	100	1.00	13	11.47	1.42	0.264	Positive	n/a (*a)	0.375	1g	1.6	2b-1	P4	
2	Back	0	Battery 1	n40(MCS0)*	5230*	46	100	1.00	13	11.52	1.41	0.251	Positive	n/a (*a)	0.354	10g	4	-	P1	<u> </u>
2	Back	0	Battery 1	n40(MCS0)*	5190	38	100	1.00	13	11.51	1.41	0.293	Positive	n/a (*a)	0.413	10g	4	2c-2	P1	-
1	Back	0	Battery 1	n40(MCS0)*	5230*	46 38	100	1.00	13 13	11.60	1.38	0.234	Positive	n/a (*a)	0.323	10g	4	2-1	P1	
2	Back Bottom (ant.2)	0	Battery 1	n40(MCS0)* n40(MCS0)*	5190 5230*	46	100	1.00	13	11.55 11.60	1.40	0.307	Positive Positive	n/a (*a)	0.430	10g 1g	1.6	2c-1 2d-2	P1 P3	F
1	Side (ant.1)	0	Battery1 Battery 2	n40(MCS0)*	5230*	46	100	1.00	13	11.60	1.38	0.013	Positive	n/a (*a) n/a (*a)	0.301	1g	1.6	2d-2	P4	
1	Side (ant.1)	0	Battery 2	n40(MCS0)*	5190	38	100	1.00	13	11.55	1.40	0.216	Positive	n/a (*a)	0.288	1g	1.6	2U-1	P4	
	NII-2C (5.6GI			II+O(NC30)	3170	50	100	1.00	13	11.55	1.70	0.200	1 Ositive	17a (a)	0.200	15	1.0		17	Γ
2	Back	0		n40(MCS0)*	5670*	134	100	1.00	13	11.54	1.40	0.237	Positive	n/a (*a)	0.332	10g	4	-	P1	L
2	Back	0	Battery 1	n40(MCS0)*	5550	110	100	1.00	13	11.36	1.46	0.250	Positive	n/a (*a)	0.365	10g	4	_	Pl	-
2	Back	0	Battery 1	n40(MCS0)*	5510	102	100	1.00	13	11.31	1.48	0.254	Positive	n/a (*a)	0.376	10g	4	3a-2	P1	-
1	Back	0	Battery 1	n40(MCS0)*	5670*	134	100	1.00	13	11.43	1.44	0.268	Positive	n/a (*a)	0.386	10g	4	3a-1	Pl	<u> </u>
1	Back	0	Battery 1	n40(MCS0)*	5550	110	100	1.00	13	11.40	1.45	0.244	Positive	n/a (*a)	0.354	10g	4	-	P1	
1	Back	0	Battery 1	n40(MCS0)*	5510	102	100	1.00	13	11.36	1.46	0.242	Positive	n/a (*a)	0.353	10g	4	-	P1	-
2	Front	0	Battery 1	n40(MCS0)*	5670*	134	100	1.00	13	11.54	1.40	0.011	Positive	n/a (*a)	0.015	1g	1.6	-	P2	-
1	Front	0	Battery 2	n40(MCS0)*	5670*	134	100	1.00	13	11.43	1.44	0.015	Positive	n/a (*a)	0.022	1g	1.6	-	P2	-
2	Bottom (ant.2)	0	Battery 1	n40(MCS0)*	5670*	134	100	1.00	13	11.54	1.40	0.022	Positive	n/a (*a)	0.031	1g	1.6	3b-2	P3	-
1	Side (ant.1)	0	Battery 1	n40(MCS0)*	5670*	134	100	1.00	13	11.43	1.44	0.280	Positive	n/a (*a)	0.403	1g	1.6	3b-1	P4	-
1	Side (ant.1)	0		n40(MCS0)*	5550	110	100	1.00	13	11.40	1.45	0.262	Positive	n/a (*a)	0.380	1g	1.6	-	P4	-
1	Side (ant.1)	0		n40(MCS0)*	5510	102	100	1.00	13	11.36	1.46	0.272	Positive	n/a (*a)	0.397	1g	1.6	-	P4	<u> </u>
	NII-3 (5.8GHz	_		40	Lenc-	450	100			144 = 01		0.515			0.000			1		
2	Back	0		n40(MCS0)*				1.00	13	11.78		0.212	Positive	n/a (*a)	0.280	10g	4	4a-2	P1	<u> </u>
2	Back	0		n40(MCS0)*		151	100	1.00	13	11.64	1.37	0.197	Positive	. ,	0.270	10g	4	-	P1	<u> </u>
1	Back	0		n40(MCS0)*		159	100	1.00	13	11.62			Positive	n/a (*a)	0.370	10g	4	4a-1	P1	<u> </u>
1	Back	0		n40(MCS0)*		151	100	1.00	13	11.50		0.227	Positive	n/a (*a)	0.320	10g	4	-	P1	<u> </u>
2	Front	0		n40(MCS0)*		159	100	1.00	13	11.78		0.012	Positive		0.016	1g	1.6	-	P2	<u> </u>
1	Front	0		n40(MCS0)*		159	100	1.00	13	11.62		0.018	Positive		0.025	1g	1.6	- 41- 2	P2	
2	Bottom (ant.2)	0		n40(MCS0)*				1.00	13	11.78 11.62		0.017	Positive	n/a (*a)	0.022	1g	1.6	4b-2	P3	<u> </u>
1	Side (ant.1)	0		n40(MCS0)*				1.00	13 13	11.50		0.287	Positive	n/a (*a)	0.393	1g	1.6	4b-1	P4	[
1	Side (ant.1)	-	,	n40(MCS0)*				1.00					Positive	n/a (*a)	0.337	1g	1.6	-	P4	<u> </u>

Notes: *. The higher scaled (reported) SAR in each operation band is marked (shaded yellow marker).

Appendix, ant: antenna; (mode) b: IEEE 802.11b, n40: IEEE 802.11n(40HT); Max.: maximum.; n/a: not applied. Gap: It is the separation distance between the platform surface and the bottom outer surface of phantom; Battery ID: Refer to Appendix 1. During test, the EUT was operated with full charged battery and connected an IF cable (except "Side (ant 1)" setup).

^{*}a. Since the calculated Δ SAR values of the tested liquid had shown positive correction, the measured SAR was not converted by Δ SAR correction. Calculating formula: \triangle SAR corrected SAR (W/kg) = (Measured SAR (W/kg)) × (100 - (\triangle SAR(%)) / 100

Calculating formula: Scaled SAR (W/kg) = (Measured SAR (W/kg)) \times (Duty scaled factor) \times (Power scaled factor) where, Duty scaled factor [-] = 100%)/(duty cycle, %), Power scaled factor [-] = $10^{((Max.tune-up limit, dBm)-(Measured conducted, dBm))/10}$) *b. Calculating formula:

Test report No. : 14033664S-A-R1
Page : 16 of 76
Issued date : December 24, 2021

FCC ID : AZDWM01B

*1. (KDB 248227 D01) When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is <1.2 W/kg, SAR test of OFDM mode was reduced.

OFDM mode	Ι	imum tune-u DSSS [mW] (a)	О	FDM	OFDM scaled factor [-] (b)/(a)×100	SAR type	OSSS worst repo	orted SAR val	ue [W/kg]	Estimated SAR value: OFDM [W/kg]	Exclusion limit [W/kg]	Standalone SAR test of OFDM mode require?
g	14.0	25	14.0	25	1.00	10g	Back	Antenna 2	0.329	0.33	≤ 1.2	No
n20	14.0	25	14.0	25	1.00	10g	Back	Antenna 2	0.329	0.33	<u>≤</u> 1.2	No
n40	14.0	25	13.0	20	0.80	10g	Back	Antenna 2	0.329	0.26	≤ 1.2	No
g	14.0	25	14.0	25	1.00	1g	Side (ant.1)	Antenna 1	0.296	0.30	≤ 1.2	No
n20	14.0	25	14.0	25	1.00	1g	Side (ant.1)	Antenna 1	0.296	0.30	≤ 1.2	No
n40	14.0	25	13.0	20	0.80	1g	Side (ant.1)	Antenna 1	0.296	0.24	≤ 1.2	No

^{*. (}mode) b: IEEE 802.11b, g: IEEE 802.11g, n20: IEEE 802.11n(20HT), n40: IEEE 802.11n(40HT).

6.4 Simultaneous transmission evaluation

Result: Simultaneous transmission SAR measurement (Volume Scan) was not required because the sum of the estimated SAR(1g) was within 1.6 W/kg (as SAR (1g) limit), SAR (10g) was .within 4 W/kg (as SAR (10g) limit).

According to KDB447498 D01; when standalone SAR test exclusion applies to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to following to determine simultaneous transmission SAR test exclusion:

[(max. power of channel, including tune-up tolerance, mW)/(minimum test separation distance, mm)]·[$\sqrt{f(GHz)x}$] W/kg

- *. for test separation distances \leq 50 mm; where x = 7.5 for 1-g SAR and x = 18.75 for 10g SAR
- *. 0.4 W/kg for 1-g SAR and 1.0 W/kg for 10g SAR, when the test separation distances is > 50 mm.
- *. When the minimum separation distance is < 5mm, the distance is used 5mm to determine SAR test exclusion.

	Possible of	Up	per	Tune-up li	mit power					Estimat	ed SAI	R value	[W/kg]						Esti	mated	ΣSAR	value	
SISO/	"Simultaneous	Frequ		(condi		Back	Front	Right	Bottom	Left	Top	Back	Front	Right	Bottom	Left	Top	Back	Front	Right	Bottom	Left	Top
MIMO	transmission"	[GI	·Iz]	(m ^v	W)		Α	ntenna	2: BT L	Е			Anten	na 2: W	LAN(5	Ghz)		liı	mit: 1.6	W/kg (1g), 4 W	V/kg (10)g)
	condition (*1)	BTLE	WLAN	BTLE	WLAN	10g	1g	1g	1g	1g	1g	10g	1g	1g	1g	1g	1g	10g	1g	1g	1g	1g	1g
SISO	BT LE+5.2GHzWLAN	2.48	5.24	3	20	0.05	80.0	0.03	(0.4)	(0.4)	(0.4)	0.49	0.76	0.34	(0.4)	(0.4)	(0.4)	0.54	0.84	0.37	(0.8)	(0.8)	(0.8)
SISO	BT LE+5.3GHzWLAN	2.48	5.32	3	20	0.05	0.08	0.03	(0.4)	(0.4)	(0.4)	0.49	0.77	0.34	(0.4)	(0.4)	(0.4)	0.54	0.85	0.37	(0.8)	(0.8)	(0.8)
SISO	BT LE+5.6GHzWLAN	2.48	5.7	3	20	0.05	0.08	0.03	(0.4)	(0.4)	(0.4)	0.51	0.80	0.35	(0.4)	(0.4)	(0.4)	0.56	0.88	0.38	(0.8)	(0.8)	(0.8)
SISO	BT LE+5.8GHzWLAN	2.48	5.825	3	20	0.05	0.08	0.03	(0.4)	(0.4)	(0.4)	0.52	0.81	0.36	(0.4)	(0.4)	(0.4)	0.57	0.89	0.39	(0.8)	(0.8)	(0.8)
	D0: antenna 2 separ	ation di	stance f	irom surfa	æ [mm]	≤5	8	18	69	266	436	≤5	8	18	69	266	436						
							Α	ıntenna	1: BT L	E			Anten	na 1:WI	LAN (5	GHz)							
SISO	BT LE+5.2GHzWLAN	2.48	5.24	3	20	0.05	0.08	0.03	(0.4)	(0.4)	(0.4)	0.49	0.76	0.29	(0.4)	(0.4)	(0.4)	0.54	0.84	0.32	(0.8)	(0.8)	(0.8)
SISO	BT LE+5.3GHzWLAN	2.48	5.32	3	20	0.05	80.0	0.03	(0.4)	(0.4)	(0.4)	0.49	0.77	0.29	(0.4)	(0.4)	(0.4)	0.54	0.85	0.32	(0.8)	(0.8)	(0.8)
SISO	BT LE+5.6GHzWLAN	2.48	5.7	3	20	0.05	0.08	0.03	(0.4)	(0.4)	(0.4)	0.51	0.80	0.30	(0.4)	(0.4)	(0)		0.00	0.33	(0.0)	(0.8)	(0.8)
SISO	BT LE+5.8GHzWLAN	2.48	5.825	3	20	0.05	0.08	0.03	(0.4)	(0.4)	(0.4)	0.51	0.80	0.31	(0.4)	(0.4)	(0.4)	0.56	0.88	0.34	(0.8)	(0.8)	(0.8)
	D1: antenna 1 separ	ation di	stance f	irom surfa	ce [mm]	≤5	8	21	106	305	357	≤5	8	21	106	305	357						

^{*1.} A transmission is performed from one of antenna 2 or antenna 1 (diversity). A transmission of WLAN(2.4GHz) and BT-LE is time-division-processing. Therefore, simultaneously transmitted SAR was only considered for the WLAN(5GHz) and BT-LE.

Notes: 1. Power and distance are rounded to the nearest mW and mm before calculation.

- 2. The upper frequency of the frequency band had maximum output power and was used in order to calculate standalone SAR test exclusion considerations.
- 3. The estimated Σ SAR 1g value is calculated based on the same configuration and the same test position.
- 4. The estimated results (SAR value, SPLSR value) are rounded to two decimal place for comparison.
- 5. When standalone SAR testing is not required, an estimated SAR can be applied to determine simultaneous transmission SAR test exclusion.
- 6. (Calculating formula) Per KDB447498 D01(v06), SPLSR = (SAR1 + SAR2)^1.5 / (minimum antenna separation distance, mm) where; the minimum antenna separation distance is determined by the closest physical separation of the antennas, according to geometric center of the antennas.

<SAR Summation Analysis>

Simultaneous transmission SAR test exclusion is determined for each operating configuration and exposure condition according to reported standalone SAR of each applicable simultaneous transmitting antenna. When the sum of SAR of all simultaneous transmitting antennas in an operating mode and exposure condition is within the SAR limit (SAR(1g): $1.6 \, \text{W/kg}$, SAR(10g): $4 \, \text{W/kg}$, the simultaneous transmission SAR is not required. When the sum of SAR is greater than the SAR limit (SAR(1g): $1.6 \, \text{W/kg}$, SAR(10g): $4 \, \text{W/kg}$, SAR test exclusion is determined by the SPLSR.

6.5 SAR Measurement Variability (Repeated measurement requirement)

In accordance with published RF Exposure KDB procedure 865664 D01 (v01r04) SAR measurement 100 MHz to 6 GHz. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

- 1) Repeated measurement is not required when the original highest measured SAR(1g) is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥0.80 W/kg, repeat that measurement once.
- Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Since all the measured SAR are less than 0.8 W/kg (SAR(1g), 2 W/kg (SAR(10g)), the repeated measurement is not required.

6.6 Device holder perturbation verification

When the highest reported SAR of an antenna is > 1.2 W/kg, holder perturbation verification (by Urethane form alone) is required by using the highest SAR configuration among all applicable frequency bands.

Since all the reported (scaled) SAR are less than 1.2 W/kg (SAR(1g), 3 W/kg (SAR(10g)), the "device holder perturbation verification" measurement is not performed.

UL Japan, Inc. Shonan EMC Lab.

Test report No. : 14033664S-A-R1
Page : 22 of 76

Issued date : December 24, 2021

FCC ID : AZDWM01B

APPENDIX 2: SAR Measurement data

Appendix 2-1: Worst Scaled (Reported) SAR Plot

Plot 1a-1: 2.4GHz band, SAR(10g), Antenna 2; Back & touch / 11b (1Mbps) / 2412 MHz

EUT: Built-in Wireless Module with BT/Flat Panel Detector; Type: WM01B/WM5B04; Serial: f4:a9:97:ff;d0:bc/20MED-0062

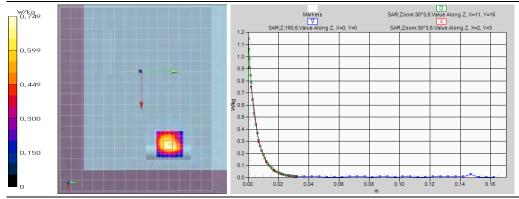
Mode: 11b(1Mbps, DBPSK/DSSS) (UID: 0, Wi-fi_2.4GHz (0), Frame Length in ms: 0; PAR: 0; PMF: 1); Frequency: 2412 MHz; Crest Factor: 1.0 Medium: HSL5GHz(v6.2110; Medium parameters used (interpolated): f = 2412 MHz; $\sigma = 1.838$ mho/m; $\epsilon_r = 39.77$; $\rho = 1000$ kg/m³

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration: -Electronics: DAE4 Sn626; Calibrated: 2020/11/17 / -Phantom: ELI v4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section -DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474) / -Probe: EX3DV4 - SN3907; ConvF(7.35, 7.35, 7.35) @ 2472 MHz; Calibrated: 2021/04/21 -Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0, 161.0

touch,back,h24a/24h9;2412,ant0,Rear&d0,b(1m)/

Area:204x168,12 (18x15x1): Measurement grid: dx=12mm, dy=12mm; Maximum value of SAR (measured) = 0.766 W/kg


Area:204x168,12 (171x141x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm; Maximum value of SAR (interpolated) = 0.874 W/kg

Z;160,5 (1x1x33): Measurement grid: dx=20mm, dy=20mm, dz=5mm; Maximum value of SAR (measured) = 0.746 W/kg

Zoom:30^3,5 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm;

 $Reference\ Value = 19.369\ V/m;\ Power\ Drift = -0.14\ dB;\ Maximum\ value\ of\ SAR\ (measured) = 0.749\ W/kg;\ Peak\ SAR\ (extrapolated) = 1.147\ mW/g$

 $SAR(1\ g) = 0.475\ mW/g; SAR(10\ g) = 0.222\ mW/g \ (*Smallest distance from peaks to all points 3 dB below = 6 mm; Ratio of SAR at M2 to SAR at M1 = 38.8\%)$

Remarks: *. Date tested: 2021/10/4; Tested by: Hiroshi Naka; Tested place: No.7 shielded room,

- *. liquid depth: 151 mm; Position: distance of EUT to phantom: 0 mm (2 mm to liquid); ambient: (22~24) deg.C./(60~75) % RH,
- *. liquid temperature: 22.3(start) 22.4(end) 22.5(in check) deg.C.; *.White cubic: zoom scan area, Red cubic: big=SAR(10g)/small=SAR(1g)

Plot 1b-1: 2.4GHz band, SAR(1g), Antenna 1; Side(antenna 1) & touch / 11b (1Mbps) / 2412 MHz

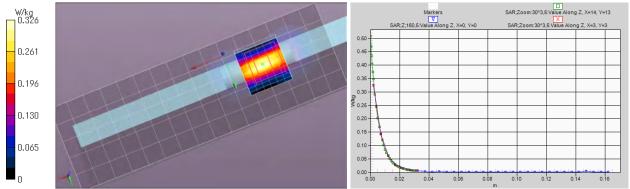
EUT: Built-in Wireless Module with BT/Flat Panel Detector; Type: WM01B/WM5B04; Serial: f4:a9:97:ff:d0:bc/20MED-0062

Mode: 11b(1Mbps, DBPSK/DSSS) (UID: 0, Wi-fi_2.4GHz (0), Frame Length in ms: 0; PAR: 0; PMF: 1); Frequency: 2412 MHz; Crest Factor: 1.0 Medium: HSL5GHz(v6.2110; Medium parameters used (interpolated): f = 2412 MHz; $\sigma = 1.838$ S/m; $\epsilon_r = 39.77$; $\rho = 1000$ kg/m³ Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration: -Electronics: DAE4 Sn626; Calibrated: 2020/11/17 / -Phantom: ELI v4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section -DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474) / -Probe: EX3DV4 - SN3907; ConvF(7.35, 7.35, 7.35) @ 2412 MHz; Calibrated: 2021/04/21 -Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0, 161.0

touch,side1a/o24h24;2412,ant1,side(1)&d0,b(1m)/

Area:192x60,12 (17x6x1): Measurement grid: dx=12mm, dy=12mm; Maximum value of SAR (measured) = 0.323 W/kg


Area:192x60,12 (161x51x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm; Maximum value of SAR (interpolated) = 0.332 W/kg

Z;160,5 (1x1x33): Measurement grid: dx=20mm, dy=20mm, dz=5mm; Maximum value of SAR (measured) = 0.324 W/kg

Zoom:30^3,5 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm;

Reference Value = 13.78 V/m; Power Drift = 0.02 dB; Maximum value of SAR (measured) = 0.326 W/kg; Peak SAR (extrapolated) = 0.508 W/kg

SAR(1 g) = 0.203 W/kg; SAR(10 g) = 0.083 W/kg (*. Smallest distance from peaks to all points 3 dB below = 6 mm; Ratio of SAR at M2 to SAR at M1 = 43.4%)

Remarks:

- *. Date tested: 2021/10/4; Tested by: Hiroshi Naka; Tested place: No.7 shielded room,
- *. liquid depth: 151 mm; Position: distance of EUT to phantom: 0 mm (2 mm to liquid); ambient: (22~24) deg.C. / (60~75) %RH,
- *. liquid temperature: 22.4(start) 22.4(end) 22.5(in check) deg.C.; *. White cubic: zoom scan area, Red cubic: big=SAR(10g)/small=SAR(1g)

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Telephone: +81 463 50 6400 / Facsimile: +81 463 50 6401

Test report No. : 14033664S-A-R1
Page : 23 of 76

Issued date : December 24, 2021

FCC ID : AZDWM01B

APPENDIX 2: SAR Measurement data / Appendix 2-1: Worst Scaled (Reported) SAR Plot (cont'd)

Plot 2a-1: 5.3GHz band, SAR(10g), Antenna 1; Back & touch / 11n(40HT) (MCS0) / 5270 MHz

EUT: Built-in Wireless Module with BT/Flat Panel Detector; Type: WM01B/WM5B04; Serial: f4:a9:97:ff;d0:bc/20MED-0062

Mode: n40(MCS0, BPSK/OFDM) (UID: 0, Wi-fi_5GHz (0), Frame Length in ms: 0; PAR: 0; PMF: 1); Frequency: 5270 MHz; Crest Factor: 1.0

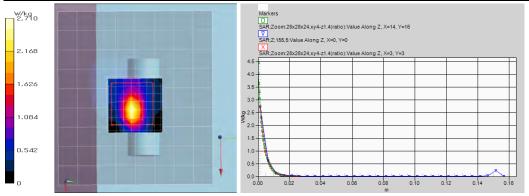
Medium: HSL5GHz(v6.2110; Medium parameters used: f = 5270 MHz; $\sigma = 4.541$ S/m; $\epsilon_r = 35.07$; $\rho = 1000$ kg/m³

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration: -Electronics: DAE4 Sn626; Calibrated: 2020/11/17 /-Phantom: ELI v4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section -DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474) /-Probe: EX3DV4 - SN3907; ConvF(5.14, 5.14, 5.14) @ 5270 MHz; Calibrated: 2021/04/21 -Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 25.0, 156.0

touch,back0,h5a/5h12.53.4,ant1,5270,Rear&d0,n40(m0)/

Area:90x80,stp10 (10x9x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 2.44 W/kg


 $\textbf{Area: 90x80,stp10 (91x81x1):} \ Interpolated \ grid: \ dx=1.000 \ mm, \ dy=1.000 \ mm; \ Maximum \ value \ of \ SAR \ (interpolated) = 2.45 \ W/kg$

Z;155,5 (1x1x32): Measurement grid: dx=20mm, dy=20mm, dz=5mm; Maximum value of SAR (measured) = 2.70 W/kg

Zoom:28x28x24,xy4-z1.4(ratio) (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm;

 $Reference\ Value=25.40\ V/m; Power\ Drift=-0.06\ dB; Maximum\ value\ of\ SAR\ (measured)=2.71\ W/kg; Peak\ SAR\ (extrapolated)=4.44\ W/kg$

SAR(1 g) = 0.976 W/kg; SAR(10 g) = 0.249 W/kg (*Smallest distance from peaks to all points 3 dB below = 4.8 mm; Ratio of SAR at M2 to SAR at M1 = 64.8%)

Remarks:

- *. Date tested: 2021/10/7; Tested by: Hiroshi Naka; Tested place: No.7 shielded room,
- *. liquid depth: 151 mm; Position: distance of EUT to phantom: 0 mm (2 mm to liquid); ambient: (22~24) deg.C. / (60~75) %RH,
- *. liquid temperature: 22.6(start)/22.6(end)/22.5(in check) deg.C.; *.White cubic: zoom scan area, Red cubic: big=SAR(10g)/small=SAR(1g)

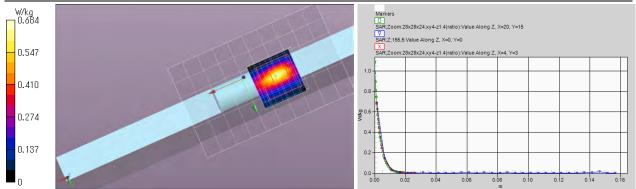
Plot 2b-1: 5.3GHz band, SAR(1g), Antenna 1; Side(antenna 1) & touch / 11n(40HT) (MCS0) / 5270 MHz EUT: Built-in Wireless Module with BT/Flat Panel Detector; Type: WM01B/WM5B04; Serial: f4:a9:97:ff:d0:bc/20MED-0062 Mode: n40(MCS0, BPSK/OFDM) (UID: 0, Wi-fi_5GHz (0), Frame Length in ms: 0; PAR: 0; PMF: 1); Frequency: 5270 MHz; Crest Factor: 1.0

 $\label{eq:medium:hslsghz} \begin{tabular}{ll} Medium: HSL5GHz (v6.2110; Medium parameters used: $f=5270$ MHz; $\sigma=4.541$ S/m; $\epsilon_r=35.07$; $\rho=1000$ kg/m³ Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) \\ \end{tabular}$

DASY Configuration: -Electronics: DAE4 Sn626; Calibrated: 2020/11/17 / -Phantom: ELI v4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section -DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474) / -Probe: EX3DV4 - SN3907; ConvF(5.14, 5.14, 5.14) @ 5270 MHz; Calibrated: 2021/04/21 -Sensor-Surface: 2mm (Mechanical Surface Detection), Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 25.0, 156.0

touch,side1a/o5h52.53.14,5270,ant1,side(1)&d0,n40(m0)/

Area:100x60,10 (11x7x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 0.542 W/kg


Area:100x60,10 (101x61x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm; Maximum value of SAR (interpolated) = 0.574 W/kg

Z;155,5 (1x1x32): Measurement grid: dx=20mm, dy=20mm, dz=5mm; Maximum value of SAR (measured) = 0.687 W/kg

Zoom:28x28x24,xy4-z1.4(ratio) (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm;

Reference Value = 13.40 V/m; Power Drift = -0.01 dB; Maximum value of SAR (measured) = 0.684 W/kg; Peak SAR (extrapolated) = 1.09 W/kg

 $SAR(1\ g) = 0.264\ W/kg; SAR(10\ g) = 0.078\ W/kg \ (*Smallest distance from peaks to all points 3\ dB below = 5.4\ mm; Ratio of SAR at M2 to SAR at M1 = 65.5\%)$

Remarks:

- *. Date tested: 2021/10/8; Tested by: Hiroshi Naka; Tested place: No.7 shielded room,
- *. liquid depth: 151 mm; Position: distance of EUT to phantom: 0 mm (2 mm to liquid); ambient: (22~24) deg.C./(60~75) %RH,
- *. liquid temperature: 22.4(start)/22.5(end)/22.5(in check) deg.C.; *. White cubic: zoom scan area, Red cubic: big=SAR(10g)/small=SAR(1g)

UL Japan, Inc. Shonan EMC Lab.

Telephone: +81 463 50 6400 / Facsimile: +81 463 50 6401

Test report No. : 14033664S-A-R1 Page : 24 of 76 : December 24. 2021 Issued date

: AZDWM01B FCC ID

APPENDIX 2: SAR Measurement data / Appendix 2-1: Worst Scaled (Reported) SAR Plot (cont'd)

Plot 2c-1: 5.2GHz band, SAR(10g), Antenna 1; Back & touch / 11n(40HT) (MCS0) / 5190 MHz

EUT: Built-in Wireless Module with BT/Flat Panel Detector; Type: WM01B/WM5B04; Serial: f4:a9:97:ff:d0:bc/20MED-0062

Mode: n40(MCS0, BPSK/OFDM) (UID: 0, Wi-fi_5GHz (0), Frame Length in ms: 0; PAR: 0; PMF: 1); Frequency: 5190 MHz; Crest Factor: 1.0

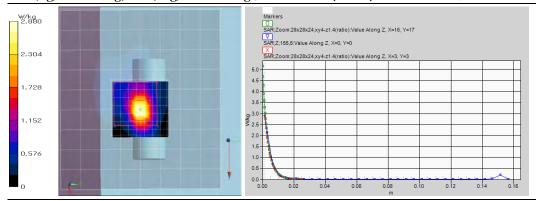
Medium: HSL5GHz(v6.2110; Medium parameters used: f = 5190 MHz; $\sigma = 4.454$ S/m; $\epsilon_r = 35.22$; $\rho = 1000$ kg/m³

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration: -Electronics: DAE4 Sn626; Calibrated: 2020/11/17 / -Phantom: ELI v4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section -DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474)/-Probe: EX3DV4 - SN3907; ConvF(5.14, 5.14, 6.14) @ 5190 MHz; Calibrated: 2021/04/21 -Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 25.0, 156.0

touch,back1,h5b/5h14.52.4,ant1,5190,Rear&d0,n40(m0)/

Area:90x80,stp10 (10x9x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 2.92 W/kg


 $\textbf{Area: 90x80,stp10 (91x81x1):} \ Interpolated \ grid: \ dx=1.000 \ mm, \ dy=1.000 \ mm; \ Maximum \ value \ of \ SAR \ (interpolated) = 2.92 \ W/kg$

Z;155,5 (1x1x32): Measurement grid: dx=20mm, dy=20mm, dz=5mm; Maximum value of SAR (measured) = 2.89 W/kg

Zoom:28x28x24,xy4-z1.4(ratio) (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm;

Reference Value = 29.84 V/m; Power Drift = -0.11 dB; Maximum value of SAR (measured) = 2.88 W/kg; Peak SAR (extrapolated) = 5.16 W/kg

SAR(1 g) = 1.18 W/kg; SAR(10 g) = 0.307 W/kg (*Smallest distance from peaks to all points 3 dB below = 4.7 mm; Ratio of SAR at M2 to SAR at M1 = 66.1%)

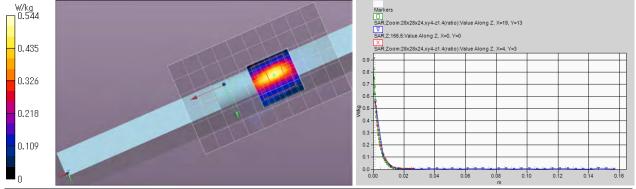
- Remarks:
- *. Date tested: 2021/10/7; Tested by: Hiroshi Naka; Tested place: No.7 shielded room,
- *. liquid depth: 151 mm; Position: distance of EUT to phantom: 0 mm (2 mm to liquid); ambient: (22~24) deg.C. / (60~75) %RH,
- *. liquid temperature: 22.4(start) 22.4(end) 22.5(in check) deg.C.; *. White cubic: zoom scan area, Red cubic: big=SAR(10g)/small=SAR(1g)

Plot 2d-1: 5.2GHz band, SAR(1g), Antenna 1; Side (antenna 1) & touch / 11n(40HT) (MCS0) / 5230 MHz EUT: Built-in Wireless Module with BT/Flat Panel Detector; Type: WM01B/WM5B04; Serial: f4:a9:97:ff;d0:bc/20MED-0062 Mode: n40(MCS0, BPSK/OFDM) (UID: 0, Wi-fi_5GHz (0), Frame Length in ms: 0; PAR: 0; PMF: 1); Frequency: 5230 MHz; Crest Factor: 1.0 Medium: HSL5GHz(v6.2110; Medium parameters used: f = 5230 MHz; $\sigma = 4.492 \text{ S/m}$; $\epsilon_r = 35.13$; $\rho = 1000 \text{ kg/m}^3$ Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration: -Electronics: DAE4 Sn626; Calibrated: 2020/11/17 / -Phantom: ELI v4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section -DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474)/-Probe: EX3DV4 - SN3907; ConvF(5.14, 5.14, 5.14) @ 5230 MHz; Calibrated: 2021/04/21 -Sensor-Surface: 2mm (Mechanical Surface Detection), Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 25.0, 156.0

touch,side1a/o5h53.52.8,5230,ant1,side(1)&d0,n40(m0)/

Area:100x60,10 (11x7x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 0.458 W/kg


Area:100x60,10 (101x61x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm; Maximum value of SAR (interpolated) = 0.487 W/kg

Z;155,5 (1x1x32): Measurement grid: dx=20mm, dy=20mm, dz=5mm; Maximum value of SAR (measured) = 0.552 W/kg

Zoom:28x28x24,xy4-z1.4(ratio) (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm;

Reference Value = 12.13 V/m; Power Drift = 0.03 dB; Maximum value of SAR (measured) = 0.544 W/kg; Peak SAR (extrapolated) = 0.912 W/kg

SAR(1 g) = 0.218 W/kg; SAR(10 g) = 0.068 W/kg (*Smallest distance from peaks to all points 3 dB below = 4.8 mm; Ratio of SAR at M2 to SAR at M1 = 65.3%)

- Remarks:
- *. Date tested: 2021/10/8; Tested by: Hiroshi Naka; Tested place: No.7 shielded room,
 - liquid depth: 151 mm; Position: distance of EUT to phantom: 0 mm (2 mm to liquid); ambient: (22~24) deg.C. / (60~75) %RH,
 - *. liquid temperature: 22.5(start) 22.5(end) 22.5(in check) deg.C.; *.White cubic: zoom scan area, Red cubic: big=SAR(10g)/small=SAR(1g)

UL Japan, Inc. Shonan EMC Lab.

Test report No. : 14033664S-A-R1
Page : 25 of 76
Issued date : December 24, 2021

FCC ID : AZDWM01B

APPENDIX 2: SAR Measurement data / Appendix 2-1: Worst Scaled (Reported) SAR Plot (cont'd)

Plot 3a-1: 5.6GHz band, SAR(10g), Antenna 1; Back & touch / 11n(40HT) (MCS0) / 5670 MHz

EUT: Built-in Wireless Module with BT/Flat Panel Detector; Type: WM01B/WM5B04; Serial: f4:a9:97:ff;d0:bc/20MED-0062

Mode: n40(MCS0, BPSK/OFDM) (UID: 0, Wi-fi_5GHz (0), Frame Length in ms: 0; PAR: 0; PMF: 1); Frequency: 5670 MHz; Crest Factor: 1.0

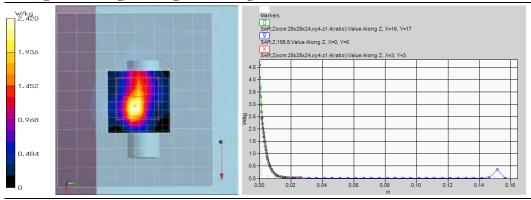
Medium: HSL5GHz(v6.2110; Medium parameters used: f = 5670 MHz; $\sigma = 4.971$ S/m; $\epsilon_r = 34.39$; $\rho = 1000$ kg/m³

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration: -Electronics: DAE4 Sn626; Calibrated: 2020/11/17 /-Phantom: ELI v4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section -DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474) /-Probe: EX3DV4 - SN3907; ConvF(4.56, 4.56, 4.56) @ 5670 MHz; Calibrated: 2021/04/21 -Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 25.0, 156.0

touch,back1,h5b/5h15.56.5,ant1,5670,Rear&d0,n40(m0)/

Area:90x80,stp10 (10x9x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 2.39 W/kg


 $\textbf{Area: 90x80,stp10 (91x81x1):} \ Interpolated \ grid: \ dx=1.000 \ mm, \ dy=1.000 \ mm; \ Maximum \ value \ of \ SAR \ (interpolated) = 2.50 \ W/kg$

Z;155,5 (1x1x32): Measurement grid: dx=20mm, dy=20mm, dz=5mm; Maximum value of SAR (measured) = 2.43 W/kg

Zoom:28x28x24,xy4-z1.4(ratio) (9x9x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm;

Reference Value = 25.45 V/m; Power Drift = -0.12 dB; Maximum value of SAR (measured) = 2.42 W/kg; Peak SAR (extrapolated) = 4.58 W/kg

SAR(1 g) = 0.950 W/kg; SAR(10 g) = 0.268 W/kg (*Smallest distance from peaks to all points 3 dB below = 4.8 mm; Ratio of SAR at M2 to SAR at M1 = 62.5%)

Remarks:

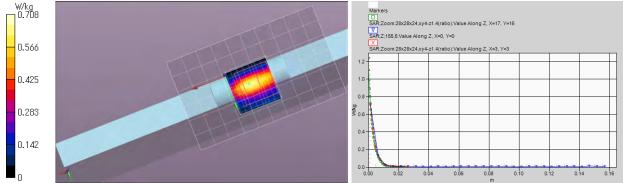
- *. Date tested: 2021/10/5; Tested by: Hiroshi Naka; Tested place: No.7 shielded room,
- *. liquid depth: 151 mm; Position: distance of EUT to phantom: 0 mm (2 mm to liquid); ambient: (22-24) deg.C. / (60-75) %RH,
- *. liquid temperature: 22.4(start)/22.4(end)/22.5(in check) deg.C.; *.White cubic: zoom scan area, Red cubic: big=SAR(10g)/small=SAR(1g)

Plot 3b-1: 5.6GHz band, SAR(1g), Antenna 1; Side (antenna 1) & touch / 11n(40HT) (MCS0) / 5670 MHz EUT: Built-in Wireless Module with BT/Flat Panel Detector; Type: WM01B/WM5B04; Serial: 6700 Hz; 6700 Hz; 6700 MHz; 6700 Mode: 6700 MHz; 6700 M

DASY Configuration: -Electronics: DAE4 Sn626; Calibrated: 2020/11/17 /-Phantom: ELI v4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section -DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474) /-Probe: EX3DV4 - SN3907; ConvF(4.56, 4.56, 4.56) @ 5670 MHz; Calibrated: 2021/04/21 -Sensor-Surface: 2mm (Mechanical Surface Detection), Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 25.0, 156.0

touch,side1a/5h55.56.20,5670,ant1,side(1)&d0,n40(m0)/

 $\textbf{Area:} \textbf{100x60,10} \ (\textbf{11x7x1}) \textbf{:} \ \textbf{Measurement grid:} \ dx = 10 \text{mm}, \ dy = 10 \text{mm}; \ \textbf{Maximum value of SAR (measured)} = 0.468 \ \textbf{W/kg}$


Area:100x60,10 (101x61x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm; Maximum value of SAR (interpolated) = 0.593 W/kg

Z;155,5 (1x1x32): Measurement grid: dx=20mm, dy=20mm, dz=5mm; Maximum value of SAR (measured) = 0.713 W/kg

Zoom:28x28x24,xy4-z1.4(ratio) (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm;

 $Reference\ Value = 13.25\ V/m; Power\ Drift = 0.04\ dB; Maximum\ value\ of\ SAR\ (measured) = 0.708\ W/kg; Peak\ SAR\ (extrapolated) = 1.24\ W/kg$

SAR(1 g) = 0.280 W/kg; SAR(10 g) = 0.087 W/kg (*.Smallest distance from peaks to all points 3 dB below = 5.8 mm; Ratio of SAR at M1 = 61.6%)

Remarks:

- *. Date tested: 2021/10/5; Tested by: Hiroshi Naka; Tested place: No.7 shielded room,
- *. liquid depth: 151 mm; Position: distance of EUT to phantom: 0 mm (2 mm to liquid); ambient: (22~24) deg.C./(60~75) %RH,
- *. liquid temperature: 22.5(start)/22.5(end)/22.5(in check) deg.C.; *.White cubic: zoom scan area, Red cubic: big=SAR(10g)/small=SAR(1g)

UL Japan, Inc. Shonan EMC Lab.

Test report No. : 14033664S-A-R1
Page : 26 of 76
Issued date : December 24, 2021

FCC ID : AZDWM01B

APPENDIX 2: SAR Measurement data / Appendix 2-1: Worst Scaled (Reported) SAR Plot (cont'd)

Plot 4a-1: 5.8GHz band, SAR(10g), Antenna 1; Back & touch / 11n(40HT) (MCS0) / 5795 MHz

EUT: Built-in Wireless Module with BT/Flat Panel Detector; Type: WM01B/WM5B04; Serial: f4:a9:97:ff;d0:bc/20MED-0062

Mode: n40(MCS0, BPSK/OFDM) (UID: 0, Wi-fi_5GHz (0), Frame Length in ms: 0, PAR: 0, PMF: 1); Frequency: 5795 MHz; Crest Factor: 1.0 Medium: HSL5GHz(v6.2110; Medium parameters used (interpolated): f = 5795 MHz; $\sigma = 5.123$ S/m; $\varepsilon_T = 34.2$; $\rho = 1000$ kg/m³

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration: -Electronics: DAE4 Sn626; Calibrated: 2020/11/17 / -Phantom: ELI v4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section -DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474) / -Probe: EX3DV4 - SN3907; ConvF(4.6, 4.6, 4.6) @ 5795 MHz; Calibrated: 2021/04/21 -Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 25.0, 156.0

touch,back1,h5b/5h19.58.3,ant1,5795,Rear&d0,n40(m0)/

Area:90x80,stp10 (10x9x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 2.39 W/kg


Area:90x80,stp10 (91x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm; Maximum value of SAR (interpolated) = 2.52 W/kg

Z;155,5 (1x1x32): Measurement grid: dx=20mm, dy=20mm, dz=5mm; Maximum value of SAR (measured) = 2.72 W/kg

Zoom:28x28x24,xy4-z1.4(ratio) (9x9x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm;

Reference Value = 25.17 V/m; Power Drift = -0.07 dB; Maximum value of SAR (measured) = 2.70 W/kg; Peak SAR (extrapolated) = 4.76 W/kg

SAR(1 g) = 0.964 W/kg; SAR(10 g) = 0.270 W/kg (*.Smallest distance from peaks to all points 3 dB below = 4.7 mm; Ratio of SAR at M1 = 61.6%)

Remarks:

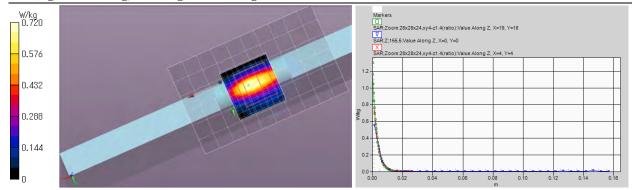
- *. Date tested: 2021/10/6; Tested by: Hiroshi Naka; Tested place: No.7 shielded room,
- *. liquid depth: 151 mm; Position: distance of EUT to phantom: 0 mm (2 mm to liquid); ambient: (22~24) deg.C./(60~75) %RH,
- *. liquid temperature: 22.5(start)/22.5(end)/22.5(in check) deg.C.; *.White cubic: zoom scan area, Red cubic: big=SAR(10g)/small=SAR(1g)

Plot 4b-1: 5.8GHz band, SAR(1g), Antenna 1; Side (antenna 1) & touch / 11n(40HT) (MCS0) / 5795 MHz EUT: Built-in Wireless Module with BT/Flat Panel Detector; Type: WM01B/WM5B04; Serial: f4:a9:97:ffi:d0:bc/20MED-0062 Mode: n40(MCS0, BPSK/OFDM) (UID: 0, Wi-fi_5GHz (0), Frame Length in ms: 0; PAR: 0; PMF: 1); Frequency: 5795 MHz; Crest Factor: 1.0 Medium: HSL5GHz(v6.2110; Medium parameters used (interpolated): f = 5795 MHz; $\sigma = 5.123$ S/m; $\varepsilon_r = 34.2$; $\rho = 1000$ kg/m³ Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration: -Electronics: DAE4 Sn626; Calibrated: 2020/11/17 / -Phantom: ELI v4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section -DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474) / -Probe: EX3DV4 - SN3907; ConvF(4.6, 4.6, 4.6) @ 5795 MHz

- Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 25.0, 156.0

touch,side1a/5h59.58.14,5795,ant1,side(1)&d0,n40(m0)/


Area:100x60,10 (11x7x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 0.701 W/kg

Z;155,5 (1x1x32): Measurement grid: dx=20mm, dy=20mm, dz=5mm; Maximum value of SAR (measured) = 0.730 W/kg

Zoom:28x28x24,xy4-z1.4(ratio) (9x9x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm;

Reference Value = 13.42 V/m; Power Drift = -0.01 dB; Maximum value of SAR (measured) = 0.720 W/kg; Peak SAR (extrapolated) = 1.95 W/kg

SAR(1 g) = 0.287 W/kg; SAR(10 g) = 0.087 W/kg (*.Smallest distance from peaks to all points 3 dB below = 5.6 mm; Ratio of SAR at M2 to SAR at M1 = 61.8%)

Remarks:

- *. Date tested: 2021/10/6; Tested by: Hiroshi Naka; Tested place: No.7 shielded room,
- *. liquid depth: 151 mm; Position: distance of EUT to phantom: 0 mm (2 mm to liquid); ambient: (22~24) deg.C./(60~75) %RH,
- *. liquid temperature: 22.5(start)/22.5(end)/22.5(in check) deg.C.; *. White cubic: zoom scan area, Red cubic: big=SAR(10g)/small=SAR(1g)

UL Japan, Inc. Shonan EMC Lab.

Test report No. : 14033664S-A-R1
Page : 27 of 76
Issued date : December 24, 2021

FCC ID : AZDWM01B

Appendix 2: SAR measurement data (cont'd)

Appendix 2-2: Other SAR Plots

Plot 1a-2: 2.4GHz band, SAR(10g), Antenna 1; Back & touch / 11b (1Mbps) / 2437 MHz

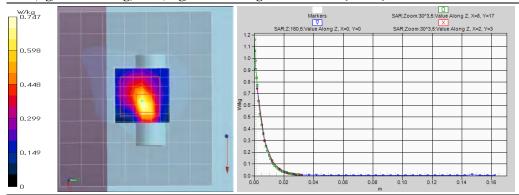
EUT: Built-in Wireless Module with BT/Flat Panel Detector; Type: WM01B/WM5B04; Serial: f4:a9:97:ff;d0:bc/20MED-0062

Mode: 11b(1Mbps, DBPSK/DSSS) (UID: 0, Wi-fi_2.4GHz (0), Frame Length in ms: 0; PAR: 0; PMF: 1); Frequency: 2437 MHz; Crest Factor: 1.0 Medium: HSL5GHz(v6.2110; Medium parameters used (interpolated): f = 2437 MHz; $\sigma = 1.857$ mho/m; $\epsilon_r = 39.72$; $\rho = 1000$ kg/m³ Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration: -Electronics: DAE4 Sn626; Calibrated: 2020/11/17 / -Phantom: ELI v4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section -DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474) / -Probe: EX3DV4 - SN3907; ConvF(7.35, 7.35, 7.35) @ 2437 MHz; Calibrated: 2021/04/21 -Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0, 161.0

touch,back,h24b/o24h12,2437,ant1,Rear&d0,b(1m)/

Area:96x84,12 (9x8x1): Measurement grid: dx=12mm, dy=12mm; Maximum value of SAR (measured) = 0.650 W/kg


Area:96x84,12 (81x71x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm, Maximum value of SAR (interpolated) = 0.668 W/kg

 $\textbf{Z;} \textbf{160,5} \textbf{(1x1x33):} \ \text{Measurement grid:} \ dx = 20 \text{mm,} \ dy = 20 \text{mm,} \ dz = 5 \text{mm;} \ \text{Maximum value of SAR (measured)} = 0.739 \ \text{W/kg}$

Zoom:30^3,5 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm;

Reference Value = 20.125 V/m; Power Drift = 0.06 dB; Maximum value of SAR (measured) = 0.747 W/kg; Peak SAR (extrapolated) = 1.160 mW/g

SAR(1 g) = 0.416 mW/g; SAR(10 g) = 0.166 mW/g (*.Smallest distance from peaks to all points 3 dB below = 5.1 mm; Ratio of SAR at M2 to SAR at M1 = 40%)

Remarks: *. Date tested: 2021/10/4; Tested by: Hiroshi Naka; Tested place: No.7 shielded room,

- *. liquid depth: 151 mm; Position: distance of EUT to phantom: 0 mm (2 mm to liquid); ambient: (22~24) deg.C./(60~75) %RH,
- *. liquid temperature: 22.5(start)/22.5(end)/22.5(in check) deg.C.; *.White cubic: zoom scan area, Red cubic: big=SAR(10g)/small=SAR(1g)

<u>Plot 1a-3: 2.4GHz band, SAR(10g), Antenna 1; Back & touch / 11b (1Mbps) / 2412 MHz</u>

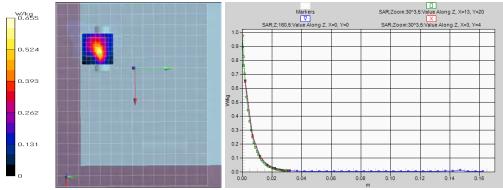
EUT: Built-in Wireless Module with BT/Flat Panel Detector; Type: WM01B/WM5B04; Serial: f4:a9:97:ff:d0:bc/20MED-0062

Mode: 11b(1Mbps, DBPSK/DSSS) (UID: 0, Wi-fi_2.4GHz (0), Frame Length in ms: 0; PAR: 0; PMF: 1); Frequency: 2412 MHz; Crest Factor: 1.0 Medium: HSL5GHz(v6.2110; Medium parameters used (interpolated): f = 2412 MHz; $\sigma = 1.838$ mho/m; $\epsilon_r = 39.77$; $\rho = 1000$ kg/m³ Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration: -Electronics: DAE4 Sn626; Calibrated: 2020/11/17 / -Phantom: ELI v4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section -DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474) / -Probe: EX3DV4 - SN3907; ConvF(7.35, 7.35, 7.35) @ 2472 MHz; Calibrated: 2021/04/21 -Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0, 161.0

touch,back,h24a/24h10,2412,ant1,Rear&d0,b(1m)/

Area:204x168,12 (18x15x1): Measurement grid: dx=12mm, dy=12mm; Maximum value of SAR (measured) = 0.534 W/kg


Area:204x168,12 (171x141x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm; Maximum value of SAR (interpolated) = 0.623 W/kg

Z;160,5 (1x1x33): Measurement grid: dx=20mm, dy=20mm, dz=5mm; Maximum value of SAR (measured) = 0.653 W/kg

Zoom:30^3,5 (8x8x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm;

Reference Value = 19.360 V/m; Power Drift = 0.05 dB; Maximum value of SAR (measured) = 0.655 W/kg; Peak SAR (extrapolated) = 0.976 mW/g

SAR(1 g) = 0.352 mW/g; SAR(10 g) = 0.144 mW/g (*Smallest distance from peaks to all points 3 dB below = 5.7 mm; Ratio of SAR at M2 to SAR at M1 = 39.3%)

Remarks:

- *. Date tested: 2021/10/4; Tested by: Hiroshi Naka; Tested place: No.7 shielded room,
- *. liquid depth: 151 mm; Position: distance of EUT to phantom: 0 mm (2 mm to liquid); ambient: (22~24) deg.C./(60~75) %RH,
- $*. \ liquid temperature: 22.4(start) \\ 22.5(end) \\ 22.5(end) \\ 22.5(in check) \\ deg.C.; \\ *. White cubic: zoom scan area, Red cubic: big=SAR(10g) \\ *small=SAR(1g) \\ *small=SA$

UL Japan, Inc. Shonan EMC Lab.

Test report No. : 14033664S-A-R1 Page : 28 of 76 Issued date : December 24, 2021

: AZDWM01B FCC ID

Appendix 2: SAR measurement data / Appendix 2-2: Other SAR Plots (cont'd)

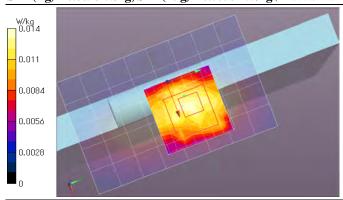
Plot 1b-2: 2.4GHz band, SAR(1g), Antenna 2; Bottom (antenna 2) & touch / 11b (1Mbps) / 2437 MHz

EUT: Built-in Wireless Module with BT/Flat Panel Detector; Type: WM01B/WM5B04; Serial: f4:a9:97:ff;d0:bc/20MED-0062

Mode: 11b(1Mbps, DBPSK/DSSS) (UID: 0, Wi-fi_2.4GHz (0), Frame Length in ms: 0; PAR: 0; PMF: 1); Frequency: 2437 MHz; Crest Factor: 1.0 Medium: HSL5GHz(v6.2110; Medium parameters used (interpolated): f = 2437 MHz; $\sigma = 1.857$ S/m; $\epsilon_r = 39.72$; $\rho = 1000$ kg/m³ Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration: -Electronics: DAE4 Sn626; Calibrated: 2020/11/17 / -Phantom: ELI v4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section -DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474) / -Probe: EX3DV4 - SN3907; ConvF(7.35, 7.35, 7.35) @ 2437 MHz; Calibrated: 2021/04/21 -Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0

touch,side0a/o24h21;2437,ant0,side(0)&d0,b(1m)/


Area:60x96,12 (6x9x1): Measurement grid: dx=12mm, dy=12mm; Maximum value of SAR (measured) = 0.0137 W/kg

Area:60x96,12 (51x81x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm; Maximum value of SAR (interpolated) = 0.0188 W/kg

Zoom:30^3,5 (8x8x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm;

Reference Value = 2.626 V/m; Power Drift = 0.15 dB; Maximum value of SAR (measured) = 0.0140 W/kg; Peak SAR (extrapolated) = 0.0180 W/kg

SAR(1 g) = 0.0096 W/kg; SAR(10 g) = 0.00567 W/kg (*. Ratio of SAR at M2 to SAR at M1 = 54.7%)

Remarks:

- *. Date tested: 2021/10/4; Tested by: Hiroshi Naka; Tested place: No.7 shielded room,
- liquid depth: 151 mm; Position: distance of EUT to phantom: 0 mm (2 mm to liquid); ambient: (22~24) deg.C. / (60~75) %RH,
- *. liquid temperature: 22.4(start)/22.3(end)/22.5(in check) deg.C.; *.White cubic: zoom scan area, Red cubic: big=SAR(10g)/small=SAR(1g)

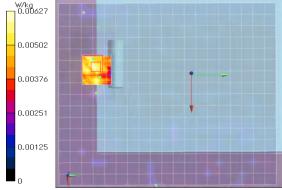
Plot 1b-3: 2.4GHz band, SAR(1g), Antenna 2; Front & touch / 11b (1Mbps) / 2462 MHz

EUT: Built-in Wireless Module with BT/Flat Panel Detector; Type: WM01B/WM5B04; Serial: f4:a9:97:ff:d0:bc/20MED-0062

Mode: 11b(1Mbps, DBPSK/DSSS) (UID: 0, Wi-fi_2.4GHz (0), Frame Length in ms: 0; PAR: 0; PMF: 1); Frequency: 2462 MHz; Crest Factor: 1.0 Medium: HSL5GHz(v6.2110; Medium parameters used (interpolated): f = 2462 MHz; $\sigma = 1.876$ S/m; $\epsilon_r = 39.66$; $\rho = 1000$ kg/m³ Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration: -Electronics: DAE4 Sn626; Calibrated: 2020/11/17 / -Phantom: ELI v4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section -DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474)/-Probe: EX3DV4 - SN3907; ConvF(7.35, 7.35, 7.35) @ 2462 MHz; Calibrated: 2021/04/21 -Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0

touch,front/24h32;2462,ant0,front&d0,b(1m)/


Area:192x228,12 (17x20x1): Measurement grid: dx=12mm, dy=12mm; Maximum value of SAR (measured) = 0.00572 W/kg

 $\textbf{Area: 192x228,12 (161x191x1):} \ \textbf{Interpolated grid:} \ dx=1.200 \ mm, \ dy=1.200 \ mm; \ \textbf{Maximum value of SAR (interpolated)} = 0.00829 \ \textbf{W/kg}$

Zoom:30^3,5 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm;

Reference Value = 1.421 V/m; Power Drift = -0.20 dB; Maximum value of SAR (measured) = 0.00627 W/kg; Peak SAR (extrapolated) = 0.00869 W/kg

SAR(1 g) = 0.00423 W/kg; SAR(10 g) = 0.00268 W/kg (*. Ratio of SAR at M2 to SAR at M1 = 56.4%)

Remarks:

- *. Date tested: 2021/10/4; Tested by: Hiroshi Naka; Tested place: No.7 shielded room,
- *. liquid depth: 151 mm; Position: distance of EUT to phantom: 0 mm (2 mm to liquid); ambient: (22~24) deg.C. / (60~75) %RH, *. liquid temperature: 22.5(start) 22.5(end) /22.5(in check) deg.C.; *.White cubic: zoom scan area, Red cubic: big=SAR(10g) /small=SAR(1g)

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Telephone: +81 463 50 6400 / Facsimile: +81 463 50 6401

Test report No. : 14033664S-A-R1 Page : 29 of 76 Issued date : December 24, 2021

FCC ID : AZDWM01B

Appendix 2: SAR measurement data / Appendix 2-2: Other SAR Plots (cont'd)

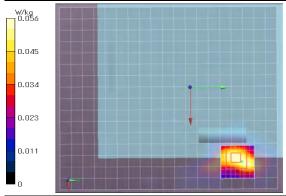
Plot 1b-4: 2.4GHz band, SAR(1g), Antenna 1; Front & touch / 11b (1Mbps) / 2462 MHz

EUT: Built-in Wireless Module with BT/Flat Panel Detector; Type: WM01B/WM5B04; Serial: f4:a9:97:ff;d0:bc/20MED-0062

Mode: 11b(1Mbps, DBPSK/DSSS) (UID: 0, Wi-fi_2.4GHz (0), Frame Length in ms: 0; PAR: 0; PMF: 1); Frequency: 2462 MHz; Crest Factor: 1.0 Medium: HSL5GHz(v6.2110; Medium parameters used (interpolated): f = 2462 MHz; $\sigma = 1.876$ S/m; $\epsilon_r = 39.66$; $\rho = 1000$ kg/m³ Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration: -Electronics: DAE4 Sn626; Calibrated: 2020/11/17 / -Phantom: ELI v4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section -DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474) / -Probe: EX3DV4 - SN3907; ConvF(7.35, 7.35, 7.35) @ 2462 MHz; Calibrated: 2021/04/21 -Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0

touch,front/24h30;2462,ant1,front&d0,b(1m)/


Area:192x228,12 (17x20x1): Measurement grid: dx=12mm, dy=12mm; Maximum value of SAR (measured) = 0.0543 W/kg

Area:192x228,12 (161x191x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm; Maximum value of SAR (interpolated) = 0.0878 W/kg

Zoom:30^3,5 (8x8x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm;

Reference Value = 5.579 V/m; Power Drift = 0.07 dB; Maximum value of SAR (measured) = 0.0564 W/kg; Peak SAR (extrapolated) = 0.0770 W/kg

SAR(1 g) = 0.040 W/kg; SAR(10 g) = 0.021 W/kg (*. Ratio of SAR at M2 to SAR at M1 = 51.5%)

Remarks:

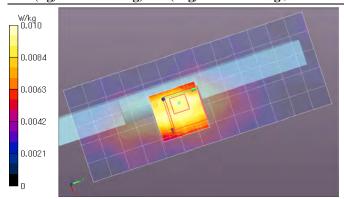
- *. Date tested: 2021/10/4; Tested by: Hiroshi Naka; Tested place: No.7 shielded room,
- liquid depth: 151 mm; Position: distance of EUT to phantom: 0 mm (2 mm to liquid); ambient: (22~24) deg.C. / (60~75) %RH,
- *. liquid temperature: 22.3(start)/22.5(end)/22.5(in check) deg.C.; *.White cubic: zoom scan area, Red cubic: big=SAR(10g)/small=SAR(1g)

Plot 1b-5: 2.4GHz band, SAR(1g), Antenna 2; Bottom (antenna 2) & touch / 11b (1Mbps) / 2412 MHz EUT: Built-in Wireless Module with BT/Flat Panel Detector; Type: WM01B/WM5B04; Serial: f4:a9:97:ff:d0:bc/20MED-0062

Mode: 11b(1Mbps, DBPSK/DSSS) (UID: 0, Wi-fi_2.4GHz (0), Frame Length in ms: 0; PAR: 0; PMF: 1); Frequency: 2412 MHz; Crest Factor: 1.0 Medium: HSL5GHz(v6.2110; Medium parameters used (interpolated): f = 2412 MHz; $\sigma = 1.838$ S/m; $\epsilon_r = 39.77$; $\rho = 1000$ kg/m³ Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration: -Electronics: DAE4 Sn626; Calibrated: 2020/11/17 / -Phantom: ELI v4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section -DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474)/-Probe: EX3DV4 - SN3907; ConvF(7.35, 7.35, 7.35) @ 2412 MHz; Calibrated: 2021/04/21 -Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0

touch,side0a/24h19;2412,ant0,side(0)&d0,b(1m/


Area:60x156,12 (6x14x1): Measurement grid: dx=12mm, dy=12mm; Maximum value of SAR (measured) = 0.0111 W/kg

 $\textbf{Area:60x156,12 (51x131x1):} \ \text{Interpolated grid:} \ \text{dx=1.200 mm, dy=1.200 mm;} \ \text{Maximum value of SAR (interpolated)} = 0.0125 \ \text{W/kg}$

Zoom:30^3,5 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm;

Reference Value = 2.372 V/m; Power Drift = 0.20 dB; Maximum value of SAR (measured) = 0.0105 W/kg; Peak SAR (extrapolated) = 0.0130 W/kg

SAR(1 g) = 0.00719 W/kg; SAR(10 g) = 0.00383 W/kg (*. Ratio of SAR at M2 to SAR at M1 = 60.2%)

Remarks:

- *. Date tested: 2021/10/4; Tested by: Hiroshi Naka; Tested place: No.7 shielded room,
- *. liquid depth: 151 mm; Position: distance of EUT to phantom: 0 mm (2 mm to liquid); ambient: (22~24) deg.C. / (60~75) %RH, *. liquid temperature: 22.4(start) 22.4(end) /22.5(in check) deg.C.; *.White cubic: zoom scan area, Red cubic: big=SAR(10g) /small=SAR(1g)

UL Japan, Inc. Shonan EMC Lab.

Test report No. : 14033664S-A-R1 Page : 30 of 76 Issued date : December 24, 2021

FCC ID : AZDWM01B

Appendix 2: SAR measurement data / Appendix 2-2: Other SAR Plots (cont'd)

Plot 2a-2: 5.3GHz band, SAR(10g), Antenna 2; Back & touch / 11n(40HT) (MCS0) / 5270 MHz

EUT: Built-in Wireless Module with BT/Flat Panel Detector; Type: WM01B/WM5B04; Serial: f4:a9:97:ff:d0:bc/20MED-0062

Mode: n40(MCS0, BPSK/OFDM) (UID: 0, Wi-fi_5GHz (0), Frame Length in ms: 0, PAR: 0, PMF: 1); Frequency: 5270 MHz; Crest Factor: 1.0

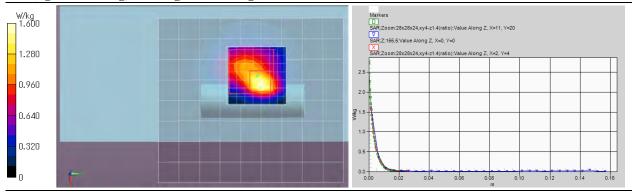
Medium: HSL5GHz(v6.2110; Medium parameters used: f = 5270 MHz; $\sigma = 4.541 \text{ S/m}$; $\epsilon_r = 35.07$; $\rho = 1000 \text{ kg/m}^3$

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration: -Electronics: DAE4 Sn626; Calibrated: 2020/11/17 / -Phantom: ELI v4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section -DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474)/-Probe: EX3DV4-SN3907; ConvF(5.14, 5.14, 5.14) @ 5270 MHz; Calibrated: 2021/04/21 -Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 25.0, 156.0

touch,back0,h5a/5h1.53.1,ant0,5270,Rear&d0,n40(m0)/

Area:80x90,xp10 (9x10x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 1.53 W/kg


Area:80x90,stp10 (81x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm; Maximum value of SAR (interpolated) = 1.70 W/kg

Z;155,5 (1x1x2): Measurement grid: dx=20mm, dy=20mm, dz=5mm; Maximum value of SAR (measured) = 1.61 W/kg

Zoom:28x28x24xy4-z1.4(ratio) (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm;

Reference Value = 18.95 V/m; Power Drift = -0.20 dB; Maximum value of SAR (measured) = 1.60 W/kg; Peak SAR (extrapolated) = 2.74 W/kg

SAR(1 g) = 0.664 W/kg; SAR(10 g) = 0.234 W/kg (*Smallest distance from peaks to all points 3 dB below = 4.8 mm; Ratio of SAR at M2 to SAR at M1 = 64.7%)

Remarks:

- *. Date tested: 2021/10/7; Tested by: Hiroshi Naka; Tested place: No.7 shielded room,
- *. liquid depth: 151 mm; Position: distance of EUT to phantom: 0 mm (2 mm to liquid); ambient: (22-24) deg.C. / (60-75) %RH,
- *. liquid temperature: 22.3(start) 22.3(end) 22.5(in check) deg.C.; *.White cubic: zoom scan area, Red cubic: big=SAR(10g)/small=SAR(1g)

Plot 2a-3: 5.3GHz band, SAR(10g), Antenna 2; Back & touch / 11n(40HT) (MCS0) / 5310 MHz

EUT: Built-in Wireless Module with BT/Flat Panel Detector; Type: WM01B/WM5B04; Serial: f4:a9:97:ff:d0:bc/20MED-0062

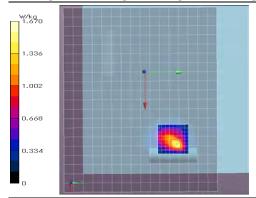
Mode: n40(MCS0, BPSK/OFDM) (UID: 0, Wi-fi_5GHz (0), Frame Length in ms: 0, PAR: 0, PMF: 1); Frequency: 5310 MHz; Crest Factor: 1.0

Medium: HSL5GHz(v6.2110; Medium parameters used: f = 5310 MHz; $\sigma = 4.587$ S/m; $\varepsilon_r = 34.99$; $\rho = 1000$ kg/m³

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration: -Electronics: DAE4 Sn626; Calibrated: 2020/11/17 / -Phantom: ELI v4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section -DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474)/-Probe: EX3DV4 - SN3907; ConvF(5.14, 5.14, 5.14) @ 5310 MHz; Calibrated: 2021/04/21 -Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 25.0

touch,back0,b5a/5b10,53,1,ant0,5310,Rear&d0,n40(m0)/


Area:200x160.stp10 (21x17x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 1.59 W/kg

Area:200x160,stp10 (201x161x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm; Maximum value of SAR (interpolated) = 1.90 W/kg

Zoom:28x28x24,xy4-z1.4(ratio) (9x9x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm;

Reference Value = 20.24 V/m; Power Drift = -0.12 dB; Maximum value of SAR (measured) = 1.67 W/kg; Peak SAR (extrapolated) = 2.76 W/kg

SAR(1 g) = 0.672 W/kg; SAR(10 g) = 0.238 W/kg (*Smallest distance from peaks to all points 3 dB below = 4.9 mm; Ratio of SAR at M1 = 65.1%)

Remarks:

- *. Date tested: 2021/10/7; Tested by: Hiroshi Naka; Tested place: No.7 shielded room,
- *. liquid depth: 151 mm; Position: distance of EUT to phantom: 0 mm (2 mm to liquid); ambient: (22-24) deg.C. / (60-75) %RH, *. liquid temperature: 22.5(start) 22.5(end) /22.5(in check) deg.C.; *.White cubic: zoom scan area, Red cubic: big=SAR(10g)/small=SAR(1g)

UL Japan, Inc. Shonan EMC Lab.

Test report No. : 14033664S-A-R1 Page : 31 of 76 Issued date : December 24, 2021

: AZDWM01B FCC ID

Appendix 2: SAR measurement data / Appendix 2-2: Other SAR Plots (cont'd)

Plot 2a-4: 5.3GHz band, SAR(10g), Antenna 1; Back & touch / 11n(40HT) (MCS0) / 5310 MHz

EUT: Built-in Wireless Module with BT/Flat Panel Detector; Type: WM01B/WM5B04; Serial: f4:a9:97:ff;d0:bc/20MED-0062

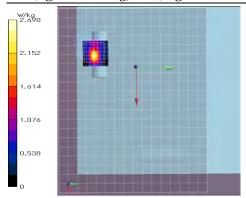
Mode: n40(MCS0, BPSK/OFDM) (UID: 0, Wi-fi_5GHz (0), Frame Length in ms: 0, PAR: 0, PMF: 1); Frequency: 5310 MHz; Crest Factor: 1.0

Medium: HSL5GHz(v6,2110; Medium parameters used: f = 5310 MHz; $\sigma = 4.587 \text{ S/m}$; $\epsilon_r = 34.99$; $\rho = 1000 \text{ kg/m}^3$

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration: -Electronics: DAE4 Sn626; Calibrated: 2020/11/17 / -Phantom: ELI v4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section -DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474)/-Probe: EX3DV4-SN3907; ConvF(5.14, 5.14, 5.14) @ 5310 MHz; Calibrated: 2021/04/21 -Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 25.0

touch,back0,h5a/5h11.53.3,ant1,5310,Rear&d0,n40(m0)/


Area: 200x160, stp10 (21x17x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 2.49 W/kg

Area: 200x160, stp10 (201x161x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm; Maximum value of SAR (interpolated) = 2.50 W/kg

Zoom:28x28x24,xy4-z1.4(ratio) (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm;

Reference Value = 25.14 V/m; Power Drift = -0.20 dB; Maximum value of SAR (measured) = 2.69 W/kg; Peak SAR (extrapolated) = 4.43 W/kg

 $SAR(1\ g) = 0.971\ W/kg; SAR(10\ g) = 0.255\ W/kg \ (*Smallest distance from peaks to all points 3 dB below = 4.8 \ mm; Ratio of SAR at M2 to SAR at M1 = 64.6\%)$

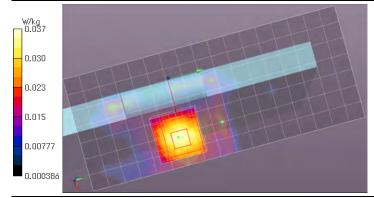
Remarks:

- *. Date tested: 2021/10/7; Tested by: Hiroshi Naka; Tested place: No.7 shielded room,
- *. liquid depth: 151 mm; Position: distance of EUT to phantom: 0 mm (2 mm to liquid); ambient: (22~24) deg.C. / (60~75) %RH, *. liquid temperature: 22.5(start)/22.6(end)/22.5(in check) deg.C.; *.White cubic: zoom scan area, Red cubic: big=SAR(10g)/small=SAR(1g)

Plot 2b-2: 5.3GHz band, SAR(1g), Antenna 2; Bottom (antenna 2) & touch / 11n(40HT) (MCS0) / 5310 MHz EUT: Built-in Wireless Module with BT/Flat Panel Detector; Type: WM01B/WM5B04; Serial: f4:a9:97:ff:d0:bc/20MED-0062 Mode: n40(MCS0, BPSK/OFDM) (UID: 0, Wi-fi_5GHz (0), Frame Length in ms: 0, PAR: 0, PMF: 1); Frequency: 5310 MHz; Crest Factor: 1.0 Medium: HSL5GHz(v6.2110; Medium parameters used: f = 5310 MHz; $\sigma = 4.587$ S/m; $\epsilon_r = 34.99$; $\rho = 1000$ kg/m³ Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration: -Electronics: DAE4 Sn626; Calibrated: 2020/11/17 / -Phantom: ELI v4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section -DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474)/-Probe: EX3DV4 - SN3907; ConvF(5.14, 5.14, 5.14) @ 5310 MHz; Calibrated: 2021/04/21 -Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 25.0

touch,side0a/5h47.53.11,5310,ant0,side(0)&d0,n40(m0)/


Area:70x170,10 (8x18x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 0.0346 W/kg

Area:70x170,10 (71x171x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm; Maximum value of SAR (interpolated) = 0.0352 W/kg

Zoom:28x28x24.xy4-z1.4(ratio) (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm;

 $Reference\ Value = 3.098\ V/m; Power\ Drift = -0.20\ dB; Maximum\ value\ of\ SAR\ (measured) = 0.0373\ W/kg; Peak\ SAR\ (extrapolated) = 0.0650\ W/kg$

SAR(1 g) = 0.020 W/kg; SAR(10 g) = 0.00943 W/kg (*Ratio of SAR at M2 to SAR at M1 = 68.2%)

Remarks:

- *. Date tested: 2021/10/8; Tested by: Hiroshi Naka; Tested place: No.7 shielded room,
- *. liquid depth: 151 mm; Position: distance of EUT to phantom: 0 mm (2 mm to liquid); ambient: (22~24) deg.C./(60~75) %RH,
- *. liquid temperature: 22.4(start)/22.4(end)/22.5(in check) deg.C.; *.White cubic: zoom scan area, Red cubic: big=SAR(10g)/small=SAR(1g)

UL Japan, Inc. Shonan EMC Lab.

Test report No. : 14033664S-A-R1 Page : 32 of 76 Issued date : December 24, 2021

: AZDWM01B FCC ID

Appendix 2: SAR measurement data / Appendix 2-2: Other SAR Plots (cont'd)

Plot 2b-3: 5.3GHz band, SAR(1g), Antenna 2; Front & touch / 11n(40HT) (MCS0) / 5310 MHz

EUT: Built-in Wireless Module with BT/Flat Panel Detector; Type: WM01B/WM5B04; Serial: f4:a9:97:ff;d0:bc/20MED-0062

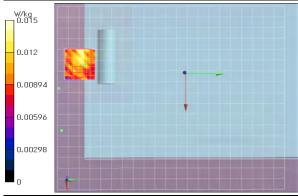
Mode: n40(MCS0, BPSK/OFDM) (UID: 0, Wi-fi_5GHz (0), Frame Length in ms: 0, PAR: 0, PMF: 1); Frequency: 5310 MHz; Crest Factor: 1.0

Medium: HSL5GHz(v6.2110; Medium parameters used: f = 5310 MHz; $\sigma = 4.587 \text{ S/m}$; $\epsilon_r = 34.99$; $\rho = 1000 \text{ kg/m}^3$

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration: -Electronics: DAE4 Sn626; Calibrated: 2020/11/17 / -Phantom: ELI v4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section -DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474)/-Probe: EX3DV4-SN3907; ConvF(5.14, 5.14, 5.14) @ 5310 MHz; Calibrated: 2021/04/21 -Sensor-Surface: 2mm (Mechanical Surface Detection), Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 25.0

touch,front2/5h43.53.9,5310,ant0,front&d0,n40(m0)/


Area:170x210,10 (18x22x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 0.0120 W/kg

 $\textbf{Area:170x210,10} \ (171x211x1): \ Interpolated \ grid: \ dx=1.000 \ mm, \ dy=1.000 \ mm; \ Maximum \ value \ of \ SAR \ (interpolated) = 0.0188 \ W/kg \ M/kg \$

Zoom:28x28x24,xy4-z1.4(ratio) (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm;

Reference Value = 1.322 V/m; Power Drift = -0.20 dB; Maximum value of SAR (measured) = 0.0149 W/kg; Peak SAR (extrapolated) = 0.0580 W/kg

SAR(1 g) = 0.0057 W/kg; SAR(10 g) = 0.00426 W/kg (*Ratio of SAR at M2 to SAR at M1 = 66.4%)

Remarks:

- *. Date tested: 2021/10/8; Tested by: Hiroshi Naka; Tested place: No.7 shielded room,
- *. liquid depth: 151 mm; Position: distance of EUT to phantom: 0 mm (2 mm to liquid); ambient: (22~24) deg.C. / (60~75) %RH, *. liquid temperature: 22.4(start)/22.5(end)/22.5(in check) deg.C.; *.White cubic: zoom scan area, Red cubic: big=SAR(10g)/small=SAR(1g)

Plot 2b-4: 5.3GHz band, SAR(1g), Antenna 1; Front & touch / 11n(40HT) (MCS0) / 5310 MHz

EUT: Built-in Wireless Module with BT/Flat Panel Detector; Type: WM01B/WM5B04; Serial: f4:a9:97:ff:d0:bc/20MED-0062

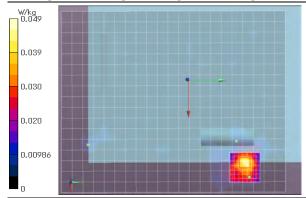
Mode: n40(MCS0, BPSK/OFDM) (UID: 0, Wi-fi_5GHz (0), Frame Length in ms: 0, PAR: 0, PMF: 1); Frequency: 5310 MHz; Crest Factor: 1.0

Medium: HSL5GHz(v6.2110; Medium parameters used: f = 5310 MHz; $\sigma = 4.587 \text{ S/m}$; $\epsilon_r = 34.99$; $\rho = 1000 \text{ kg/m}^3$

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration: -Electronics: DAE4 Sn626; Calibrated: 2020/11/17 / -Phantom: ELI v4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section -DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474)/-Probe: EX3DV4 - SN3907; ConvF(5.14, 5.14, 5.14) @ 5310 MHz; Calibrated: 2021/04/21 -Sensor-Surface: 2mm (Mechanical Surface Detection), Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 25.0

touch.front2/5h44.53.10.5310,ant1,front&d0,n40(m0)/


Area:170x210,10 (18x22x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 0.0365 W/kg

Area:170x210,10 (171x211x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm; Maximum value of SAR (interpolated) = 0.0494 W/kg

Zoom:28x28x24,xy4-z1.4(ratio) (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm;

Reference Value = 2.570 V/m; Power Drift = 0.02 dB; Maximum value of SAR (measured) = 0.0493 W/kg; Peak SAR (extrapolated) = 0.0770 W/kg

SAR(1 g) = 0.024 W/kg; SAR(10 g) = 0.011 W/kg (*Ratio of SAR at M2 to SAR at M1 = 62.6%)

Remarks:

- *. Date tested: 2021/10/8; Tested by: Hiroshi Naka; Tested place: No.7 shielded room,
- *. liquid depth: 151 mm; Position: distance of EUT to phantom: 0 mm (2 mm to liquid); ambient: $(22\sim24)$ deg.C. / $(60\sim75)$ %RH,
- *. liquid temperature: 22.5(start) 22.6(end) 22.5(in check) deg.C.; *.White cubic: zoom scan area, Red cubic: big=SAR(10g)/small=SAR(1g)

UL Japan, Inc. Shonan EMC Lab.

Test report No. : 14033664S-A-R1 Page : 33 of 76 Issued date : December 24, 2021

: AZDWM01B FCC ID

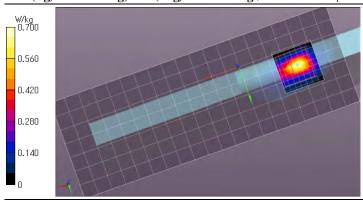
Appendix 2: SAR measurement data / Appendix 2-2: Other SAR Plots (cont'd)

Plot 2b-5: 5.3GHz band, SAR(1g), Antenna 1; Side (antenna 1) & touch / 11n(40HT) (MCS0) / 5310 MHz EUT: Built-in Wireless Module with BT/Flat Panel Detector; Type: WM01B/WM5B04; Serial: f4:a9:97:ff;d0:bc/20MED-0062 Mode: n40(MCS0, BPSK/OFDM) (UID: 0, Wi-fi_5GHz (0), Frame Length in ms: 0, PAR: 0, PMF: 1); Frequency: 5310 MHz; Crest Factor: 1.0 Medium: HSL5GHz(v6,2110; Medium parameters used: f = 5310 MHz; $\sigma = 4.587 \text{ S/m}$; $\epsilon_r = 34.99$; $\rho = 1000 \text{ kg/m}^3$

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration: -Electronics: DAE4 Sn626; Calibrated: 2020/11/17 / -Phantom: ELI v4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section -DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474)/-Probe: EX3DV4-SN3907; ConvF(5.14, 5.14, 5.14) @ 5310 MHz; Calibrated: 2021/04/21 -Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 25.0

touch,side1a/5h51.53.13,5310,ant1,side(1)&d0,n40(m0)/


 $\textbf{Area:200x70,10 (21x8x1):} \ \text{Measurement grid: } dx = 10 \text{mm, } dy = 10 \text{mm;} \ \text{Maximum value of SAR (measured)} = 0.584 \ \text{W/kg}$

Area:200x70,10 (201x71x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm; Maximum value of SAR (interpolated) = 0.708 W/kg

Zoom:28x28x24,xy4-z1.4(ratio) (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm;

Reference Value = 13.65 V/m; Power Drift = -0.02 dB; Maximum value of SAR (measured) = 0.700 W/kg; Peak SAR (extrapolated) = 1.16 W/kg

 $SAR(1\ g) = 0.270\ W/kg; SAR(10\ g) = 0.076\ W/kg \ (*Smallest distance from peaks to all points 3 dB below = 5.6 \, mm; Ratio of SAR at M2 to SAR at M1 = 64.4\%)$

Remarks:

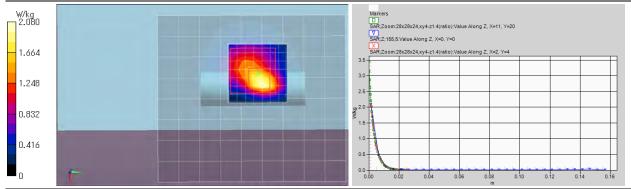
- *. Date tested: 2021/10/8; Tested by: Hiroshi Naka; Tested place: No.7 shielded room,
- *. liquid depth: 151 mm; Position: distance of EUT to phantom: 0 mm (2 mm to liquid); ambient: (22~24) deg.C. / (60~75) %RH, *. liquid temperature: 22.3(start)/22.4(end)/22.5(in check) deg.C.; *.White cubic: zoom scan area, Red cubic: big=SAR(10g)/small=SAR(1g)

Plot 2c-2: 5.2GHz band, SAR(1g), Antenna 2; Back & touch / 11n(40HT) (MCS0) / 5190 MHz

EUT: Built-in Wireless Module with BT/Flat Panel Detector; Type: WM01B/WM5B04; Serial: f4:a9:97:ff:d0:bc/20MED-0062 Mode: n40(MCS0, BPSK/OFDM) (UID: 0, Wi-fi_5GHz (0), Frame Length in ms: 0; PAR: 0; PMF: 1); Frequency: 5190 MHz; Crest Factor: 1.0 Medium: HSL5GHz(v6.2110; Medium parameters used: f = 5190 MHz; $\sigma = 4.454 \text{ S/m}$; $\epsilon_r = 35.22$; $\rho = 1000 \text{ kg/m}^3$ Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration: -Electronics: DAE4 Sn626; Calibrated: 2020/11/17 / -Phantom: ELI v4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section -DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474)/-Probe: EX3DV4 - SN3907; ConvF(5.14, 5.14, 5.14) @ 5190 MHz; Calibrated: 2021/04/21 -Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 25.0, 156.0

touch.back0.h5a/5h3.52.2.ant0.5190.Rear&d0.n40(m0)/


Area:80x90,stp10 2 (9x10x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 1.77 W/kg Area: 80x90, xp102 (81x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm; Maximum value of SAR (interpolated) = 1.93 W/kg

 \mathbf{Z} ;155,5 ($\mathbf{1x1x32}$): Measurement grid: \mathbf{dx} =20mm, \mathbf{dy} =20mm, \mathbf{dz} =5mm; Maximum value of SAR (measured) = 2.09 W/kg

Zoom:28x28x24,xy4-z1.4(ratio) (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm;

Reference Value = 21.00 V/m; Power Drift = -0.14 dB; Maximum value of SAR (measured) = 2.08 W/kg; Peak SAR (extrapolated) = 3.46 W/kg

SAR(1 g) = 0.852 W/kg; SAR(10 g) = 0.293 W/kg (*Smallest distance from peaks to all points 3 dB below = 4.3 mm; Ratio of SAR at M2 to SAR at M1 = 65.7%)

Remarks:

- *. Date tested: 2021/10/7; Tested by: Hiroshi Naka; Tested place: No.7 shielded room,
- *. liquid depth: 151 mm; Position: distance of EUT to phantom: 0 mm (2 mm to liquid); ambient: $(22 \sim 24) \text{ deg.C.} / (60 \sim 75) \text{ %RH}$,
- *. liquid temperature: 22.2(start)/22.2(end)/22.5(in check) deg.C.; *.White cubic: zoom scan area, Red cubic: big=SAR(10g)/small=SAR(1g)

UL Japan, Inc. Shonan EMC Lab.

Test report No. : 14033664S-A-R1 Page : 34 of 76

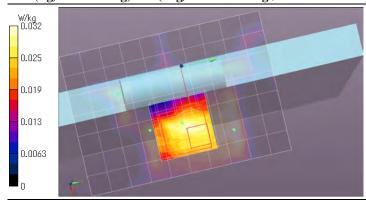
Issued date : December 24, 2021

FCC ID : AZDWM01B

Appendix 2: SAR measurement data / Appendix 2-2: Other SAR Plots (cont'd)

Plot 2d-2: 5.2GHz band, SAR(1g), Antenna 2; Bottom (antenna 2) & touch / 11n(40HT) (MCS0) / 5230 MHz EUT: Built-in Wireless Module with BT/Flat Panel Detector; Type: WM01B/WM5B04; Serial: f4:a9:97:ff:d0:bc/20MED-0062 Mode: n40(MCS0, BPSK/OFDM) (UID: 0, Wi-fi_5GHz (0), Frame Length in ms: 0, PAR: 0, PMF: 1); Frequency: 5230 MHz; Crest Factor: 1.0 Medium: HSL5GHz(v6.2110; Medium parameters used: f = 5230 MHz; $\sigma = 4.492$ S/m; $\epsilon_r = 35.13$; $\rho = 1000$ kg/m³ Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration: -Electronics: DAE4 Sn626; Calibrated: 2020/11/17 / -Phantom: ELI v4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section -DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474)/-Probe: EX3DV4-SN3907; ConvF(5.14, 5.14, 5.14) @ 5230 MHz; Calibrated: 2021/04/21 -Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 25.0


touch,side0a/5h48.52.7,5230,ant0,side(0)&d0,n40(m0)/

 $\textbf{Area:} \textbf{70x100,10 (8x11x1):} \ \textbf{Measurement grid:} \ dx = 10 \text{mm,} \ dy = 10 \text{mm;} \ \textbf{Maximum value of SAR (measured)} = 0.0289 \ \textbf{W/kg} \ \textbf{W/kg}$ $\textbf{Area: 70x100,10 (71x101x1):} \ \textbf{Interpolated grid:} \ dx = 1.000 \ \text{mm}, \ dy = 1.000 \ \text{mm}; \ \textbf{Maximum value of SAR (interpolated)} = 0.0366 \ \textbf{W/kg}$

Zoom:28x28x24,xy4-z1.4(ratio) (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm;

Reference Value = 2.651 V/m; Power Drift = -0.20 dB; Maximum value of SAR (measured) = 0.0315 W/kg; Peak SAR (extrapolated) = 0.0710 W/kg

SAR(1 g) = 0.015 W/kg; SAR(10 g) = 0.00712 W/kg (*Ratio of SAR at M2 to SAR at M1 = 63.2%)

Remarks:

- *. Date tested: 2021/10/8; Tested by: Hiroshi Naka; Tested place: No.7 shielded room,
- *. liquid depth: $151 \, \text{mm}$; Position: distance of EUT to phantom: $0 \, \text{mm}$ ($2 \, \text{mm}$ to liquid); ambient: $(22 24) \, \text{deg.C.} / (60 75) \, \% \, \text{RH}$, *. liquid temperature: $22.4 \, \text{(start)} / 22.3 \, \text{(end)} / 22.5 \, \text{(in check)} \, \text{deg.C.}$; *. White cubic: zoom scan area, Red cubic: big=SAR(10g)/small=SAR(1g)

Test report No. : 14033664S-A-R1
Page : 35 of 76
Issued date : December 24, 2021

FCC ID : AZDWM01B

Appendix 2: SAR measurement data / Appendix 2-2: Other SAR Plots (cont'd)

Plot 3a-2: 5.6GHz band, SAR(10g), Antenna 2; Back & touch / 11n(40HT) (MCS0) / 5510 MHz

EUT: Built-in Wireless Module with BT/Flat Panel Detector; Type: WM01B/WM5B04; Serial: f4:a9:97:ff:d0:bc/20MED-0062

Mode: n40(MCS0, BPSK/OFDM) (UID: 0, Wi-fi_5GHz (0), Frame Length in ms: 0; PAR: 0; PMF: 1); Frequency: 5510 MHz; Crest Factor: 1.0

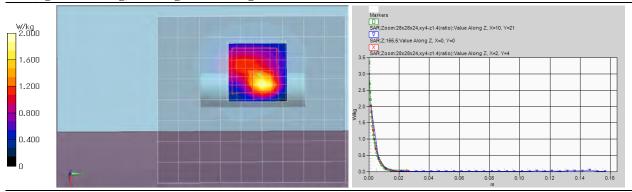
Medium: HSL5GHz(v6.2110; Medium parameters used: f = 5510 MHz; $\sigma = 4.79$ S/m; $\epsilon_r = 34.67$; $\rho = 1000$ kg/m³

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration: -Electronics: DAE4 Sn626; Calibrated: 2020/11/17 / -Phantom: ELI v4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section -DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474) / -Probe: EX3DV4 - SN3907; ConvF(4.56, 4.56, 4.56) @ 5510 MHz; Calibrated: 2021/04/21 -Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 25.0, 156.0

touch,back0,h5a/5h6.56.3,ant0,5510,Rear&d0,n40(m0)/

Area:80x90,stp10 (9x10x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 1.59 W/kg


Area:80x90.stp10 (81x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm; Maximum value of SAR (interpolated) = 1.68 W/kg

Z;155,5 (1x1x32): Measurement grid: dx=20mm, dy=20mm, dz=5mm; Maximum value of SAR (measured) = 2.03 W/kg

Zoom:28x28x24xy4-z1.4(ratio) (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm;

 $Reference\ Value = 18.75\ V/m; Power\ Drift = -0.18\ dB; Maximum\ value\ of\ SAR\ (measured) = 2.00\ W/kg; Peak\ SAR\ (extrapolated) = 3.35\ W/kg$

SAR(1 g) = 0.745 W/kg; SAR(10 g) = 0.254 W/kg (*Smallest distance from peaks to all points 3 dB below = 5.8 mm; Ratio of SAR at M2 to SAR at M1 = 63.3%)

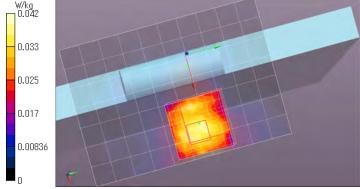
Remarks:

- *. Date tested: 2021/10/5; Tested by: Hiroshi Naka; Tested place: No.7 shielded room,
- *. liquid depth: 151 mm; Position: distance of EUT to phantom: 0 mm (2 mm to liquid); ambient: (22-24) deg.C./(60-75) %RH,
- *. liquid temperature: 22.4(start)/22.4(end)/22.5(in check) deg.C.; *.White cubic: zoom scan area, Red cubic: big=SAR(10g)/small=SAR(1g)

Plot 3b-2: 5.6GHz band, SAR(1g), Antenna 2; Bottom (antenna 2) & touch / 11n(40HT) (MCS0) / 5670 MHz EUT: Built-in Wireless Module with BT/Flat Panel Detector; Type: WM01B/WM5B04; Serial: f4:a9:97:ff:d0:bc/20MED-0062 Mode: n40(MCS0, BPSK/OFDM) (UID: 0, Wi-fi_5GHz (0), Frame Length in ms: 0; PAR: 0; PMF: 1); Frequency: 5670 MHz; Crest Factor: 1.0 Medium: HSL5GHz(v6.2110; Medium parameters used: f = 5670 MHz; $\sigma = 4.971$ S/m; $\epsilon_r = 34.39$; $\rho = 1000$ kg/m³ Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration: -Electronics: DAE4 Sn626; Calibrated: 2020/11/17 / -Phantom: ELI v4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section -DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474) / -Probe: EX3DV4 - SN3907; ConvF(4.56, 4.56, 4.56) @ 5670 MHz; Calibrated: 2021/04/21 -Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 25.0

touch,side0a/o5h49.56.19,5670,ant0,side(0)&d0,n40(m0)/


Area:70x100,10 (8x11x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 0.0343 W/kg

Area:70x100,10 (71x101x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm; Maximum value of SAR (interpolated) = 0.0367 W/kg

Zoom:28x28x24,xy4-z1.4(ratio) (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm;

Reference Value = 3.111 V/m; Power Drift = -0.20 dB; Maximum value of SAR (measured) = 0.0418 W/kg; Peak SAR (extrapolated) = 0.126 W/kg

SAR(1 g) = 0.022 W/kg; SAR(10 g) = 0.012 W/kg (*.Ratio of SAR at M2 to SAR at M1 = 66.6%)

Remarks:

- *. Date tested: 2021/10/5; Tested by: Hiroshi Naka; Tested place: No.7 shielded room,
- *. liquid depth: 151 mm; Position: distance of EUT to phantom: 0 mm (2 mm to liquid); ambient: (22~24) deg.C./(60~75) %RH,
- *. liquid temperature: 22.3(start)/22.3(end)/22.5(in check) deg.C.; *.White cubic: zoom scan area, Red cubic: big=SAR(10g)/small=SAR(1g)

UL Japan, Inc. Shonan EMC Lab.

Test report No. : 14033664S-A-R1
Page : 36 of 76
Issued date : December 24, 2021

FCC ID : AZDWM01B

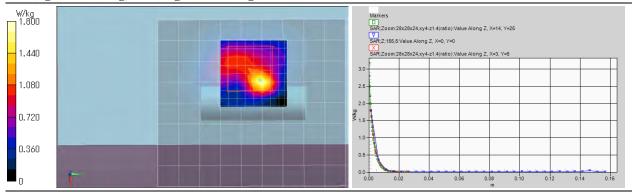
Appendix 2: SAR measurement data / Appendix 2-2: Other SAR Plots (cont'd)

Plot 4a-2: 5.8GHz band, SAR(10g), Antenna 2; Back & touch / 11n(40HT) (MCS0) / 5795 MHz

EUT: Built-in Wireless Module with BT/Flat Panel Detector; Type: WM01B/WM5B04; Serial: f4:a9:97:ff;d0:bc/20MED-0062

Mode: n40(MCS0, BPSK/OFDM) (UID: 0, Wi-fi_5GHz (0), Frame Length in ms: 0; PAR: 0; PMF: 1); Frequency: 5795 MHz; Crest Factor: 1.0 Medium: HSL5GHz(v6.2110; Medium parameters used (interpolated): f = 5795 MHz; $\sigma = 5.123$ S/m; $\varepsilon_r = 34.2$; $\rho = 1000$ kg/m³ Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration: -Electronics: DAE4 Sn626; Calibrated: 2020/11/17 / -Phantom: ELI v4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section -DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474) / -Probe: EX3DV4 - SN3907; ConvF(4.6, 4.6, 4.6) @ 5795 MHz; Calibrated: 2021/04/21 -Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 25.0, 156.0


touch,back0,h5a/5h8.58.1,ant0,5795,Rear&d0,n40(m0)/

 $\textbf{Area:80x90,stp10 (9x10x1):} \ Measurement \ grid: \ dx=10mm, \ dy=10mm; \ Maximum \ value \ of SAR \ (measured)=1.81 \ W/kg \ \textbf{Area:80x90,stp10 (81x91x1):} \ Interpolated \ grid: \ dx=1.000 \ mm, \ dy=1.000 \ mm; \ Maximum \ value \ of SAR \ (interpolated)=1.93 \ W/kg \ \textbf{Z;155,5 (1x1x32):} \ Measurement \ grid: \ dx=20mm, \ dy=20mm, \ dz=5mm; \ Maximum \ value \ of SAR \ (measured)=1.79 \ W/kg$

Zoom:28x28x24,xy4-z1.4(ratio) (9x9x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm;

Reference Value = 20.24 V/m; Power Drift = -0.20 dB; Maximum value of SAR (measured) = 1.80 W/kg; Peak SAR (extrapolated) = 3.17 W/kg

SAR(1 g) = 0.638 W/kg; SAR(10 g) = 0.212 W/kg (*Smallest distance from peaks to all points 3 dB below = 5.6 mm; Ratio of SAR at M2 to SAR at M1 = 61.1%)

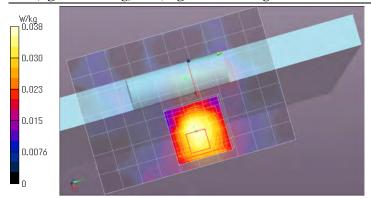
Remarks:

- *. Date tested: 2021/10/6; Tested by: Hiroshi Naka; Tested place: No.7 shielded room,
- *. liquid depth: 151 mm; Position: distance of EUT to phantom: 0 mm (2 mm to liquid); ambient: (22~24) deg.C./(60~75) %RH,
- *. liquid temperature: 22.5(start)/22.5(end)/22.5(in check) deg.C.; *. White cubic: zoom scan area, Red cubic: big=SAR(10g)/small=SAR(1g)

Plot 4b-2: 5.8GHz band, SAR(1g), Antenna 2; Bottom (antenna 2) & touch / 11n(40HT) (MCS0) / 5795 MHz EUT: Built-in Wireless Module with BT/Flat Panel Detector; Type: WM01B/WM5B04; Serial: 61-39:97:ff:60:bc/20MED-0062 Mode: 610(MCS0, BPSK/OFDM) (UID: 0, Wi-fi_5GHz (0), Frame Length in ms: 0, PAR: 0, PMF: 1); Frequency: 610 MHz; Crest Factor: 610 Medium: HSL5GHz(v6.2110; Medium parameters used (interpolated): 611 S MHz; 612 S MHz; 613 S MHz; 613 S MHz; 614 S MHz; 614 S MHz; 615 S

DASY Configuration: -Electronics: DAE4 Sn626; Calibrated: 2020/11/17 / -Phantom: ELI v4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section -DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474) / -Probe: EX3DV4 - SN3907; ConvF(4.6, 4.6, 4.6) @ 5795 MHz; Calibrated: 2021/04/21 -Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 25.0

touch,side0a/o5h50.58.13,5795,ant0,side(0)&d0,n40(m0)/


 $\textbf{Area:70x100,10 (8x11x1):} \ Measurement \ grid: \ dx=10mm, \ dy=10mm; \ Maximum \ value \ of \ SAR \ (measured)=0.0383 \ W/kg$

Area:70x100,10 (71x101x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm; Maximum value of SAR (interpolated) = 0.0415 W/kg

 $\textbf{Zoom:28x28x24,xy4-z1.4(ratio) (8x8x7)/Cube 0:} \ \ \text{Measurement grid: } \ \text{dx=4mm, dy=4mm, dz=1.4mm;}$

Reference Value = 2.846 V/m; Power Drift = 0.20 dB; Maximum value of SAR (measured) = 0.0380 W/kg; Peak SAR (extrapolated) = 0.178 W/kg

SAR(1 g) = 0.017 W/kg; SAR(10 g) = 0.00766 W/kg (*.Ratio of SAR at M2 to SAR at M1 = 68%)

Remarks:

- *. Date tested: 2021/10/6; Tested by: Hiroshi Naka; Tested place: No.7 shielded room,
- *. liquid depth: 151 mm; Position: distance of EUT to phantom: 0 mm (2 mm to liquid); ambient: (22~24) deg.C./(60~75) %RH,
- *. liquid temperature: 22.3(start)/22.3(end)/22.5(in check) deg.C.; *. White cubic: zoom scan area, Red cubic: big=SAR(10g)/small=SAR(1g)

UL Japan, Inc. Shonan EMC Lab.

Test report No. : 14033664S-A-R1 Page : 37 of 76

Issued date : December 24, 2021

FCC ID : AZDWM01B

APPENDIX 3: Test instruments

Appendix 3-1: Equipment used

Test							Calibrat	ion
Name	Local ID	LIMS ID	Description	Manufacturer	Model	Serial	Last Date	Interval (Month)
AT	KSA-08	145089	Spectrum Analyzer	Keysight Technologies Inc	E4446A	MY46180525	2020/11/24	12
AT	SAT10-SARP1	160520	Attenuator	Weinschel - API Technologies Corp	4M-10		2020/12/11	12
AT	SPM-13	169910	Power Meter	Keysight Technologies Inc	8990B	MY51000448	2021/01/25	12
AT	SPSS-06	169911	Power sensor	Keysight Technologies Inc	N1923A	MY57270004	2021/01/25	12
AT	SOS-26	191844	Humidity Indicator	CUSTOM. Inc	CTH-201		2020/09/30	12

*. AT (antenna terminal conducted power measurement) was measured May 10~11, 2021. (Refer to Section 5 in this report.)

4							Calibra	tion
Test Name	Local ID	LIMS ID	Description	Manufacturer	Model	Serial	Last Date	Interval (Month
SAR	COTS-SSAR-02	144885	DASY52 software	Schmid&Partner Engineering AG	DASY5 PRO	Ver.52.10.3.1513	-	
SAR	COTS-SSEP-02	144886	Dielectric assessment software	Schmid&Partner Engineering AG	DAK	Ver.DAK1.10.317.11		5-5
SAR	KAT10-P1	144882	Attenuator	Weinschel - API Technologies Corp	24-10-34	BY5927	2020/12/11	12
SAR	KCPL-07	146100	Directional Coupler	Pulsar Microwave Corp.	CCS30-B26	621		- 1
SAR	KDAE-01	144944	Data Acquisition Electronics	Schmid&Partner Engineering AG	DAE4	626	2020/11/17	12
SAR	KIU-08	145059	Power sensor	Rohde & Schwarz	NRV-Z4	100372	2021/09/18	12
SAR	KIU-09	145099	Power sensor	Rohde & Schwarz	NRV-Z4	100371	2021/09/18	12
SAR	KOS-14	144986	Thermo-Hygrometer data logger	SATO KEIRYOKI	SK-L200THIIa/SK-LTHIIa-2	015246/08169	2020/10/02	12
SAR	KPA-12	145359	RF Power Amplifier	Milmega	AS2560-50	1018582	2	- 1
SAR	KPFL-01	145560	Flat Phantom	Schmid&Partner Engineering AG	Oval flat phantom ELI 4.0	1059	2021/08/18	12
SAR	KPM-05	144988	Power meter	Keysight Technologies Inc	E4417A	GB41290718	2021/04/09	12
SAR	KPM-06	144989	Power Meter	Rohde & Schwarz	NRVD	101599	2021/09/18	12
SAR	KPSS-01	144990	Power sensor	Keysight Technologies Inc	E9327A	US40440544	2021/04/09	12
SAR	KRU-03	145107	Ruler(150mm,caliper)	Niigata Seiki	SK-M150	806164	2021/03/31	12
SAR	KRU-04	145086	Ruler(300mm)	SHINWA	13134	-	2021/02/10	12
SAR	KSDA-01	145090	Dipole Antenna	Schmid&Partner Engineering AG	D2450V2	822	2020/11/10	12
SAR	KSDA-02	145091	Dipole Antenna	Schmid&Partner Engineering AG	D5GHzV2	1070	2021/04/20	12
SAR	KSDH-01	145596	Device holder	Schmid&Partner Engineering AG	Mounting device for transmitter	-	2021/09/14	12
SAR	KSG-08	145109	Signal Generator	Rohde & Schwarz	SMT06	100763	2021/09/19	12
SAR	SALC-01	146112	Primepure Ethanol	Kanto Chemical Co., Inc.	14032-79	-	2	1
SAR	SAT20-SARP1	160521	Attenuator	Weinschel - API Technologies Corp	4M-20	- 1	2020/12/11	12
SAR	SAT6-SAR1	145160	Attenuator	Huber+Suhner	6806.17.A	766429-1	2020/12/11	12
SAR	SCC-SAR2	145405	Coaxial Cable	Huber+Suhner	SF104A/11PC3542/11N451/4M	MY699/4A	2020/12/11	12
SAR	SEPP-02	145500	Dielectric probe	Schmid&Partner Engineering AG	DAK3.5	1129	2021/04/14	12
SAR	SOS-26	191844	Humidity Indicator	CUSTOM. Inc	CTH-201	2	2021/08/02	12
SAR	SOS-SAR2	201967	Digital thermomoter	HANNA	Checktemp-4	A01440226111	2020/10/02	12
SAR	SOS-SAR3	201968	Digital thermomoter	HANNA	Checktemp-4	A01310946111	2020/10/02	12
SAR	SPB-02	146235	Dosimetric E-Field Probe	Schmid&Partner Engineering AG	EX3DV4	3907	2021/04/21	12
SAR	SRU-06	150560	Measuring Tool, Ruler	SHINWA	14001	-	2021/02/10	12
SAR	SSA-04	146176	Spectrum Analyzer	ADVANTEST	R3272	101100994	2	-
SAR	SSAR-02	146177	SAR measurement system	Schmid&Partner Engineering AG	DASY5	1324	-	200
SAR	SSDH-02	145723	Laptop holder	Schmid&Partner Engineering AG	SM LH1 001 C	-	-	-
SAR	SSLHV6-01		Head Tissue Simulating Liquid	Schmid&Partner Engineering AG	HBBL600-10000V6	SL AAH U16 BC	-	6 L
SAR	SSNA-01	146258	Network Analyzer	Keysight Technologies Inc	8753ES	US39171777	2020/11/09	12
SAR	SSRBT-02	145621	SAR robot	Schmid&Partner Engineering AG	TX60 Lspeag	F12/5L2QA1/A/01	2021/09/14	12
SAR	SWTR-03		DI water	MonotaRo	34557433	-	-	2.7

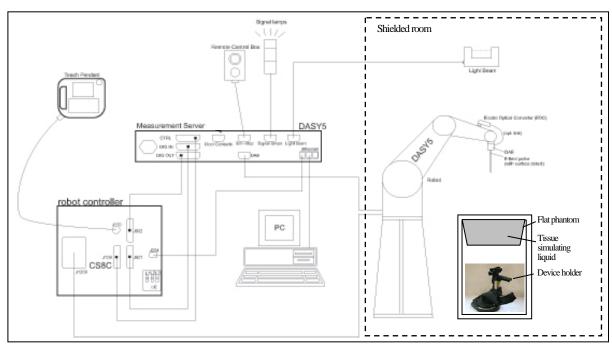
^{*.} Local ID: SALC-01, the parameters of primepure Ethanol (as reference liquid) used for the simulated tissue parameter confirmation was defined the NPL Report MAT23 (http://www.npl.co.uk/content/conpublication/4295)

[Test Item] SAR: Specific Absorption Rate, AT: Antenna terminal conducted power

The expiration date of calibration is the end of the expired month.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chain of calibrations.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.


^{*.} Hyphens for Last Calibration Date and Cal Int (month) are instruments that Calibration is not required (e.g. software), or instruments checked in advance before use.

Test report No. : 14033664S-A-R1
Page : 38 of 76
Issued date : December 24, 2021

FCC ID : AZDWM01B

Appendix 3-2: Configuration and peripherals

These measurements were performed with the automated near-field scanning system DASY5 from Schmid & Partner Engineering AG (SPEAG). The system is based on a high precision robot), which positions the probes with a positional repeatability of better than ± 0.02 mm. Special E- and H-field probes have been developed for measurements close to material discontinuity, the sensors of which are directly loaded with a Schottky diode and connected via highly resistive lines to the data acquisition unit. The SAR measurements were conducted with the dosimetry probes EX3DV4 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation.

The DASY5 system for performing compliance tests consist of the following items:

- A standard high precision 6-axis robot (Stäubli TX/RX family) with controller, teach pendant and software.
- An arm extension for accommodating the data acquisition electronics (DAE).
- 2 An isotropic field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements,
- 3 mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- 6 The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- 7 A computer running Win7 professional operating system and the DASY5 software.
- 8 R Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- 9 The phantom.
- 10 The device holder for EUT. (low-loss dielectric palette) (*. when it was used.)
- 11 Tissue simulating liquid mixed according to the given recipes.
- 12 Validation dipole kits allowing to validate the proper functioning of the system.

Test report No. : 14033664S-A-R1
Page : 39 of 76
Issued date : December 24, 2021

FCC ID : AZDWM01B

Appendix 3-3: Test system specification

TX60 Lsepag robot/CS8Csepag-TX60 robot controller

•Number of Axes : 6 •Repeatability : ±0.02 mm

•Manufacture : Stäubli Unimation Corp.

DASY5 Measurement server

• Features : The DASY5 measurement server is based on a PC/104 CPU board with a 400MHz intel

ULV Celeron, 128MB chip-disk and 128MB RAM. The necessary circuits for communication with the DAE4 electronics box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY5 I/O board, which

is directly connected to the PC/104 bus of the CPU board.

Calibration : No calibration required.

•Manufacture : Schmid & Partner Engineering AG

Data Acquisition Electronic (DAE)

• Features : Signal amplifier, multiplexer, A/D converter and control logic.

Serial optical link for communication with DASY5 embedded system (fully remote controlled). 2 step probe touch detector for mechanical surface detection and emergency

robot stop (not in -R version)

•Measurement Range : $1 \mu V$ to $> 200 \, \text{mV}$ (16bit resolution and 2 range settings: $4 \, \text{mV}$, $400 \, \text{mV}$)

•Input Offset voltage : $< 1 \mu V$ (with auto zero)

•Input Resistance : $200 \,\mathrm{M}\Omega$

•Battery Power : > 10 hrs. of operation (with two 9 V battery)
•Manufacture : Schmid & Partner Engineering AG

Electro-Optical Converter (EOC61)

•Manufacture : Schmid & Partner Engineering AG

Light Beam Switch (LB5/80)

•Manufacture : Schmid & Partner Engineering AG

SAR measurement software

Item
 Dosimetric Assessment System DASY5
 Software version
 Manufacture
 Dosimetric Assessment System DASY5
 Refer to Appendix 3-1 (Equipment used)
 Schmid & Partner Engineering AG

E-Field Probe

Model : EX3DV4 (serial number: 3907)
 Construction : Symmetrical design with triangular core.

Built-in shielding against static charges.

PEEK enclosure material (resistant to organic solvents, e.g., DGBE).

•Frequency : 10MHz to 6GHz, Linearity: ±0.2 dB (30MHz to 6GHz)

•Conversion Factors (CF) : Head: (2.45, 5.25, 5.6, 5.8) GHz : Body: (2.45, 5.25, 5.6, 5.75) GHz

•Directivity : ± 0.3 dB in HSL (rotation around probe axis)

±0.5 dB in tissue material (rotation normal to probe axis)

•Dynamic Range : $10\mu \text{W/g}$ to > 100 mW/g; Linearity: $\pm 0.2 \text{ dB}$ (noise: typically < $1 \mu \text{W/g}$)

•Dimension : Overall length: 330 mm (Tip: 20 mm)

Tip diameter: 2.5 mm (Body: 12 mm)

Typical distance from probe tip to dipole centers: 1mm

• Application : High precision dosimetric measurement in any exposure scenario (e.g., very strong

gradient fields). Only probe which enables compliance testing for frequencies up to 6GHz

with precision of better 30%.

•Manufacture : Schmid & Partner Engineering AG

Phantom

•Model Number : <u>ELI 4.0 oval flat phantom</u>

•Shell Material : Fiberglass •Shell Thickness : Bottom plate: 2 ±0.2 mm •Dimensions : Bottom elliptical: 600×400 mm, Depth: 190 mm (Volume: Approx. 30 liters)

•Manufacture : Schmid & Partner Engineering AG

Device Holder

□ Urethane foam

KSDH-01: In combination with the ELI4, the Mounting Device enables the rotation of the mounted transmitter device in spherical coordinates. Transmitter devices can be easily and accurately positioned. The low-loss dielectric urethane foam was used for the mounting section of device holder.

●Material : Polyoxymethylene (POM)
●Manufacture : Schmid & Partner Engineering AG

SSDH-02: A simple but effective and easy-to-use extension for the Mounting Device; facilitates testing of larger devices (e.g., laptops, cameras, etc.) according to IEC 62209-2.

•Material : Polyoxymethylene (POM), PET-G, Foam

•Manufacture: Schmid & Partner Engineering AG

DAE TX60L Probe Light beam switch

UL Japan, Inc. Shonan EMC Lab.

Test report No. : 14033664S-A-R1 Page : 40 of 76

Issued date : December 24, 2021

FCC ID : AZDWM01B

Data storage and evaluation (postprocessing)

The DASY5 software stores the measured voltage acquired by the Data Acquisition Electronics (DAE) as raw data together with all the necessary software parameters for the data evaluation (probe calibration data, liquid parameters and communication system parameters) in measurement files with the extension ".da5x". The postprocessing software evaluates the data every time the data is visualized or exported.

The fields and SAR are calculated from the measured voltage (probe voltage acquired by the DAE) and the following parameters:

Probe parameters:	- Sensitivity	normi, ai0, ai1, ai2
	- Conversion Factor	convFi
	- Diode Compression Point	dcpi
	- Probe Modulation Response Factors	ai, bi, ci, d
Device parameters:	- Frequency	f
_	- Crest factor	cf
Media parameters:	- Conductivity	$\overset{\circ}{\sigma}$
=	- Relative Permittivity	ρ

This parameters are stored in the DASY5 V52 measurement file.

These parameters must be correctly set in the DASY5 V52 software setup. They are available as configuration file and can be imported into the measurement file. The values displayed in the multimeter window are assessed using the parameters of the actual system setup. In the scan visualization and export modes, the parameters stored in the measurement file are used.

The measured voltage is not proportional to the exciting. It must be first linearized.

Approximated Probe Response Linearization using Crest Factor;

This linearization method is enabled when a custom defined communication system is measured. The compensation applied is a function of the measured voltage, the detector diode compression point and the crest factor of the measured signal.

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$
 with V_i = linearized voltage of channel i in μV (i = x,y,z)
 U_i = measured voltage of channel i in μV (i = x,y,z)
 cf = crest factor of exciting field (DASY parameter)
 dcp_i = diode compression point of channel i in μV (Probe parameter, i = x,y,z)

The resulting linearized voltage is only approximated because the probe is not calibrated to this specific signal.

Field and SAR Calculation

The primary field data for each channel are calculated using the linearized voltage:

		E – fieldprobes : $E_i = \sqrt{\frac{V_i}{Norm_i \cdot Cons}}$	vF	
with	V_i	= linearized voltage of channel i in μV		= x,y,z)
	Normi	= sensor sensitivity of channel i in $\mu V/(V/m)^2$ for E-field Probes	(i	= x,y,z
	ConvF	= sensitivity enhancement in solution		
	E_i	= electric field strength of channel i in V/m	(i	= x,y,z)
The I	RMS value of the field	components gives the total field strength (Hermitian magnitude):		

 $E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1'000}$$

with SAR = local specific absorption rate in mW/g

Etot = total field strength in V/m σ = conductivity in [mho/m] or [Siemens/m] ρ = equivalent tissue density in g/cm^3

Test report No. : 14033664S-A-R1
Page : 41 of 76
Issued date : December 24, 2021

FCC ID : AZDWM01B

Appendix 3-4: Simulated tissue composition and parameter confirmation

Liquid type	Head	Control No.	SSLHV6-01	Model No. / Product No.	HBBL600-10000V6/SL AAH U16 BC					
Ingredient: Mixture [%]	Wa	$Water: > 77, Ethanediol: < 5.2, Sodium petroleum sulfonate: < 2.9, Hexylene Glycol: < 2.9, alkoxylated alcohol (> C_{16}): < 2.0, alk$								
Tolerance specification		±10%								
Temperature gradients [% / deg.C]		permittivity: -(0.19 / conductivity: -0	0.57 (at 2.6 GHz), permittivity: $+0.31$ / c	onductivity: -1.43 (at 5.5 GHz) (*1)					
Manufacture	Schmid &	Schmid & Partner Engineering AG Note: *1. speag_920-SLAAxyy-E_1.12.15CL (Maintenance of tissue simulating liquid)								

*. The dielectric parameters were checked prior to assessment using the DAK3.5 dielectric probe kit.

			Ambient/		y · · · · ·	Liquid	Liquid parameters (*a)										ΔSA	R (*b)
Date measured	Frequency	Liquid	AIII	Dienv	Liquid	depth of		Pern	nittivity (er) [-]			Cond	luctivity	[S/m]		1~	10~
Date measureu	[MHz]	type	[d., C]	[%RH]	temp. [deg.C.]	nhantom	Target	Measured			Δend,	Toward				Δend,	lg	10g
			[deg.C.]					Meas.	∆er [%]	Limit	>48hrs	Target	Meas.	Δσ[%]	Limit	>48hrs	[%]	[%]
October 4, 2021	2450	Head	23	60~70	22.5	151	39.2	39.68	1.2	10%	-	1.80	1.866	3.7	10%	-	1.5	0.8
October 5, 2021	5600	Head	23	60~70	22.5	151	35.53	34.52	-2.8	10%	-	5.065	4.899	-3.3	10%	-	0.7	0.9
October 6, 2021	5800	Head	23	60~70	22.5	151	35.3	34.20	-3.1	10%	-	5.27	5.126	-2.7	10%	-	0.7	0.9
October 7~8, 2021	5250	Head	23	60~70	22.5	151	35.93	35.12	-2.3	10%	-	4.706	4.519	-4.0	10%	-	0.6	0.8

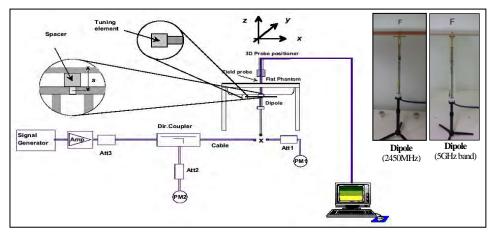
^{*.} Calculating formula: Δ end(>48 hrs) (%) = {(dielectric properties, end of test series)/(dielectric properties, beginning of test series)-1} × 100

*a. The target values of (2000, 2450, 3000 and 5800) MHz are parameters defined in Appendix A of KDB 865664 D01. For other frequencies, the target nominal dielectric values shall be obtained by linear interpolation between the higher and lower tabulated figures.

					Standa	ard				Interpolated & Extrapolated												
ſ	f (MHz)	Head	Head Tissue Body Tis		Tissue	f	f Head Tissue Body Tissue		Tissue	f	Head Tissue		Body Tissue		f	Head Tissue		Body Tissue				
	I (MHZ)	εr	σ [S/m]	εr	σ[S/m]	(MHz)	εr	σ [S/m]	εr	σ [S/m]	(MHz)	εr	σ[S/m]	εr	σ[S/m]	(MHz)	εr	σ[S/m]	εr	σ[S/m]		
ſ	(1800-)2000	40.0	1.40	53.3	1.52	3000	38.5	2.40	52.0	2.73	5250	35.93	4.706	48.95	5.358	5750	35.36	5.219	48.27	5.942		
ſ	2450	39.2	1.80	52.7	1.95	5800	35.3	5.27	48.2	6.00	5600	35.53	5.065	48.47	5.766							

^{*}b. The coefficients are parameters defined in IEEE Std. 1528-2013.

 $\Delta SAR(1g) = Cer \times \Delta er + C\sigma \times \Delta \sigma, Cer = 7.854E + xt^3 + 9.402E + 3xt^2 - 2.742E + 2xt^6 + 0.2026 / C\sigma = 9.804E + 3xt^3 - 8.661E + 2xt^2 + 2.981E + 2xt + 0.7829$ $\Delta SAR(10g) = Cer \times \Delta er + C\sigma \times \Delta \sigma, Cer = 3.456 \times 10^{-3} \times t^3 - 3.531 \times 10^{-2} \times t^2 + 7.675 \times 10^{-2} \times t^6 - 1.860 / C\sigma = 4.479 \times 10^{-3} \times t^3 - 1.586 \times 10^{-2} \times t^2 - 0.1972 \times t^4 - 0.7717$


Appendix 3-5: Daily check results

*. Prior to the SAR assessment of EUT, the Daily check was performed to test whether the SAR system was operating within its target of ±10%. The Daily check results are in the table below.

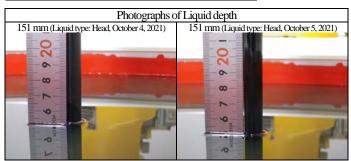
Date		ΔSAR				Daily check results (*. Meas.: Measured, Cal.: Calibration value, STD: Standard value)																		
	Emananar				SAR (1g) [W/kg] (*d)										SAR (10g) [W/kg] (*d)									
	Frequency [MHz]	Liquid	1α	10g		ASAR- correct		Target		Deviation		Limit Pass		s Moos	ASAD	1W	Ta	Target		Deviation		Pass		
	[IVII IZ]		1g [%]					Cal.	STD	Cal.	STD	[%]	9		correct	scaled	Cal.	STD	Cal.	STD	[%]	9		
		••		[/0]				(*e)	(*f)	[%]	[%]	[,0]	•	(0)			(*e)	(*f)	[%]	[%] [%]		•		
October 4, 2021	2450	Head	1.5	0.8	13.3	13.1	52.4	53.6	52.4	-2.2	0.0	±10	Pass	6.18	6.13	24.52	24.9	24	-1.5	2.2	±10	Pass		
October 5, 2021	5600	Head	0.7	0.9	8.45	8.39	83.9	82.4	n/a	1.8	1	±10	Pass	2.41	2.39	23.9	23.4	n/a	2.1	ı	±10	Pass		
October 6, 2021	5800	Head	0.7	0.9	8.04	7.98	79.8	80.1	78	-0.4	2.3	±10	Pass	2.29	2.27	22.7	22.5	21.9	0.9	3.7	±10	Pass		
October 7, 2021	5250	Head	0.6	0.8	7.79	7.74	77.4	78.8	n/a	-1.8	1	±10	Pass	2.25	2.23	22.3	22.6	n/a	-1.3	-	±10	Pass		
October 8, 2021	5250	Head	0.6	0.8	7.78	7.73	77.3	78.8	n/a	-1.9	-	±10	Pass	2.25	2.23	22.3	22.6	n/a	-1.3	-	±10	Pass		

^{*.} Calculating formula: $\triangle SAR$ corrected SAR (1g,10g) (W/kg) = (Measured SAR(1g,10g) (W/kg)) × (100 - ($\triangle SAR$ (%)) / 100

^{*}f. The target value (normalized to 1W) is defined in IEEE Std.1528.

Test setup for the system performance check

^{*}c. The "Meas. (Measured)" SAR value is obtained at 250 mW for 2450MHz, 100 mW for (5250, 5600, 5800) MHz


^{*}d. The measured SAR value of Daily check was compensated for tissue dielectric deviations (ΔSAR) and scaled to 1W of output power in order to compare with the manufacture's calibration target value which was normalized.

^{*}e. The target value is a parameter defined in the calibration data sheet of D2450V2 (sn:822) and D5GHZV2 (sn:1070) dipole calibrated by Schmid & Partner Engineering AG (Certification No. D2450V2-822_Nov20 and D5GHzV2-1070_Apr21, the data sheet was filed in this report).

Test report No. : 14033664S-A-R1 Page : 42 of 76 Issued date : December 24. 2021

FCC ID : AZDWM01B

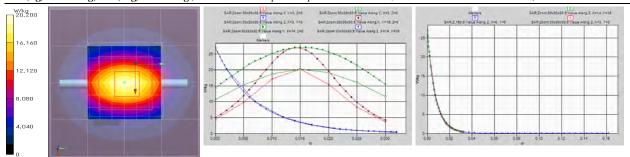
Appendix 3-6: Daily check measurement data

EUT: Dipole(2.45GHz); Type: D2450V2; Serial: SN822; Forward conducted power: 250mW
Communication System: CW (0) (*.UID: 0, Frame Length in ms: 0; Communication System PAR: 0; PMF: 1); Frequency: 2450 MHz; Crest Factor: 1.0 Medium: HSL5GHz(v6.2110; Medium parameters used: f = 2450 MHz; $\sigma = 1.866$ S/m; $\epsilon_r = 39.68$; $\rho = 1000$ kg/m²

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration: -Electronics: DAE4 Sn626; Calibrated: 2020/11/17/-Phantom: ELI v4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section -DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474)/-Probe: EX3DV4 - SN3907; ConvF(7.35, 7.35, 7.35) @ 2450 MHz; Calibrated: 2021/04/21 -Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0, 161.0

Area:60x60,15 (5x5x1): Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 20.0 W/kg


Area:60x60,15 (41x41x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm; Maximum value of SAR (interpolated) = 20.0 W/kg

Z;160,5 (1x1x33): Measurement grid: dx=20mm, dy=20mm, dz=5mm; Maximum value of SAR (measured) = 20.4 W/kg

Zoom:30x30x30,5 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm;

Reference Value = 105.3 V/m; Power Drift = 0.03 dB; Maximum value of SAR (measured) = 20.2 W/kg; Peak SAR (extrapolated) = 27.0 W/kg

SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6.18 W/kg (*.Smallest distance from peaks to all points 3 dB below = 9 mm; Ratio of SAR at M2 to SAR at M1 = 49.5%)

Remarks:

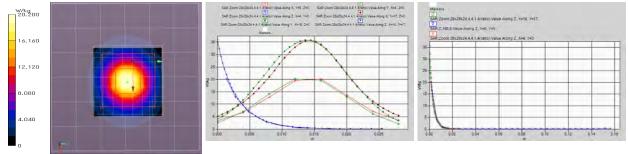
- *. Date tested: 2021/10/4; Tested by: Hiroshi Naka; Tested place: No.7 shielded room,
- . liquid depth: 150 mm; Position: distance of dipole to phantom: 8mm (10mm to liquid); ambient: 23 deg.C./(50~60) %RH,
- *. liquid temperature: 22.4(start)/22.3(end)/22.5(in check) deg.C.; *.White cubic: zoom scan area, Red cubic: big=SAR(10g /small=SAR(1g)

EUT: Dipole(5GHz); Type: D5GHzV2; Serial: 1070; Forward conducted power: 100mW

Communication System: CW (0) (*.UID: 0, Frame Length in ms: 0; Communication System PAR: 0; PMF: 1); Frequency: 5600 MHz; Crest Factor: 1.0 Medium: HSL5GHz(v6.2110; Medium parameters used: f = 5600 MHz; $\sigma = 4.899$ Š/m; $\epsilon_r = 34.52$; $\rho = 1000$ kg/m² Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration: -Electronics: DAE4 Sn626; Calibrated: 2020/11/17 / -Phantom: ELI v4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section -DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474) / -Probe: EX3DV4 - SN3907; ConvF(4.56, 4.56, 4.56) @ 5600 MHz; Calibrated: 2021/04/21 -Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 25.0, 156.0

Area:60x60,10 (7x7x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 20.6 W/kg

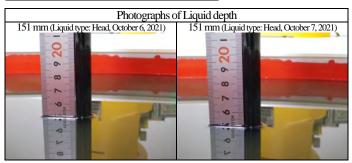

Area: 60x60,10 (61x61x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm; Maximum value of SAR (interpolated) = 21.5 W/kg

Z;155,5 (1x1x32): Measurement grid: dx=20mm, dy=20mm, dz=5mm; Maximum value of SAR (measured) = 20.1 W/kg

Zoom:28x28x24,4,4,1.4(ratio) (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm;

Reference Value = 71.74 V/m; Power Drift = -0.05 dB; Maximum value of SAR (measured) = 20.2 W/kg; Peak SAR (extrapolated) = 35.7 W/kg

SAR(1g) = 8.45 W/kg; SAR(10g) = 2.41 W/kg (*Smallest distance from peaks to all points 3 dB below = 7.2 mm; Ratio of SAR at M2 to SAR at M1 = 63.5%)


- *. Date tested: 2021/10/5; Tested by: Hiroshi Naka; Tested place: No.7 shielded room,
- Liquid depth: 150 mm; Position: distance of dipole to phantom: 8mm (10mm to liquid); ambient: 23 deg.C./(50~60) %RH,
- *. liquid temperature: 22.4(start) 22.3(end) 22.5(in check) deg.C.; *.White cubic: zoom scan area, Red cubic: big=SAR(10g)/small=SAR(1g)

UL Japan, Inc. Shonan EMC Lab.

Test report No. : 14033664S-A-R1 Page : 43 of 76 Issued date : December 24. 2021

FCC ID : AZDWM01B

Appendix 3-6: Daily check measurement data (cont'd)

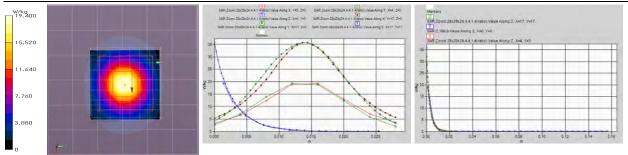
EUT: Dipole(5GHz); Type: D5GHzV2; Serial: 1070; Forward conducted power: 100mW

Communication System: CW (0) (*.UID: 0, Frame Length in ms. 0; Communication System PAR: 0; PMF: 1); Frequency: 5800 MHz; Crest Factor: 1.0 Medium: HSL5GHz(v6.2110; Medium parameters used: f = 5800 MHz; $\sigma = 5.126$ S/m; $\varepsilon_r = 34.20$; $\rho = 1000$ kg/m²

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration: -Electronics: DAE4 Sn626; Calibrated: 2020/11/17 / -Phantom: ELI v4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section -DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474) / -Probe: EX3DV4 - SN3907; ConvF(4.6, 4.6, 4.6) @ 5800 MHz; Calibrated: 2021/04/21 -Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 25.0, 156.0

Area:60x60,10 (7x7x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 19.8 W/kg


Area:60x60,10 (61x61x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm; Maximum value of SAR (interpolated) = 20.5 W/kg

 \mathbf{Z} ;155,5 (1x1x32): Measurement grid: dx=20mm, dy=20mm, dz=5mm; Maximum value of SAR (measured) = 18.4 W/kg

Zoom:28x28x24,4,4,1.4(ratio) (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm;

Reference Value = 68.88 V/m; Power Drift = -0.10 dB; Maximum value of SAR (measured) = 19.4 W/kg; Peak SAR (extrapolated) = 35.7 W/kg

SAR(1g) = 8.04 W/kg; SAR(10g) = 2.29 W/kg (*.Smallest distance from peaks to all points 3 dB below = 7.4 mm; Ratio of SAR at M2 to SAR at M1 = 62.3%)

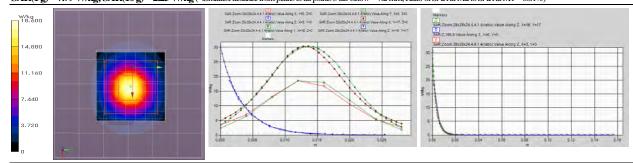
Remarks:

- *. Date tested: 2021/10/6; Tested by: Hiroshi Naka; Tested place: No.7 shielded room,
- Liquid depth: 150 mm; Position: distance of dipole to phantom: 8mm (10mm to liquid); ambient: 23 deg.C./(50~60) %RH,
- *. liquid temperature: 22.4(start)/22.3(end)/22.5(in check) deg.C.; *.White cubic: zoom scan area, Red cubic: big=SAR(10g)/small=SAR(1g)

EUT: Dipole(5GHz); Type: D5GHzV2; Serial: 1070; Forward conducted power: 100mW

Communication System: CW (0) (* UID: 0, Frame Length in ms: 0; Communication System PAR: 0; PMF: 1); Frequency: 5250 MHz; Crest Factor: 1.0 Medium: HSL5GHz(v6.2110; Medium parameters used: f = 5250 MHz; $\sigma = 4.519$ S/m; $\epsilon_r = 35.12$; $\rho = 1000$ kg/m³ Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration: -Electronics: DAE4 Sn626; Calibrated: 2020/11/17 / -Phantom: ELI v4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section -DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474) / -Probe: EX3DV4 - SN3907; ConvF(5.14, 5.14, 5.14) @ 5250 MHz; Calibrated: 2021/04/21 -Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 25.0, 156.0


Area:60x60,10 (7x7x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 18.4 W/kg

Area:60x60,10 (61x61x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm; Maximum value of SAR (interpolated) = 18.8 W/kg

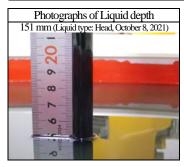
Z;155,5 (1x1x32): Measurement grid: dx=20mm, dy=20mm, dz=5mm; Maximum value of SAR (measured) = 18.3 W/kg

Zoom:28x28x24,4,4,1.4(ratio) (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm;

Reference Value = 70.25 V/m; Power Drift = 0.04 dB; Maximum value of SAR (measured) = 18.6 W/kg; Peak SAR (extrapolated) = 30.4 W/kg SAR(1 g) = 7.79 W/kg; SAR(10 g) = 2.25 W/kg (* Smallest distance from peaks to all points 3 dB below = 7.2 mm; Ratio of SAR at M2 to SAR at M1 = 66.1%)

Remarks:

- *. Date tested: 2021/10/7: Tested by: Hiroshi Naka: Tested place: No.7 shielded room.
- *. liquid depth: 150 mm; Position: distance of dipole to phantom: 8mm (10mm to liquid); ambient: 23 deg.C. / (50~60) %RH, *. liquid temperature: 22.4(start)/22.3(end)/22.5(in check) deg.C.; *.White cubic: zoom scan area, Red cubic: big=SAR(10g)/small=SAR(1g)


UL Japan, Inc. Shonan EMC Lab.

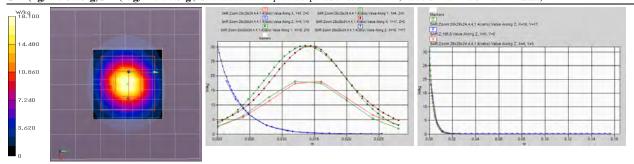
Test report No. : 14033664S-A-R1 Page : 44 of 76

Issued date : December 24, 2021

FCC ID : AZDWM01B

Appendix 3-6: Daily check measurement data (cont'd)

EUT: Dipole(5GHz); Type: D5GHzV2; Serial: 1070; Forward conducted power: 100mW


Communication System: CW (0) (* UID: 0, Frame Length in ms: 0; Communication System PAR: 0; PMF: 1); Frequency: 5250 MHz; Crest Factor: 1.0 Medium: HSL5GHz(v6.2110; Medium parameters used: f = 5250 MHz; σ = 4.519 S/m; ϵ_r = 35.12; ρ = 1000 kg/m³ Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration: -Electronics: DAE4 Sn626; Calibrated: 2020/11/17/-Phantom: ELI v4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section -DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474)/-Probe: EX3DV4 - SN3907; ConvF(5.14, 5.14, 5.14) @ 5250 MHz; Calibrated: 2021/04/21 -Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 25.0, 156.0

 $\textbf{Area:60x60,10 (7x7x1):} \ Measurement \ grid: \ dx=10mm, \ dy=10mm; \ Maximum \ value \ of \ SAR \ (measured)=19.3 \ W/kg$ Area:60x60,10 (61x61x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm; Maximum value of SAR (interpolated) = 19.4 W/kg Z;155,5 (1x1x32): Measurement grid: dx=20mm, dy=20mm, dz=5mm; Maximum value of SAR (measured) = 18.3 W/kg

Zoom:28x28x24,4,4,1.4(ratio) (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm;

Reference Value = 72.25 V/m; Power Drift = 0.03 dB; Maximum value of SAR (measured) = 18.1 W/kg; Peak SAR (extrapolated) = 30.4 W/kg SAR(1 g) = 7.78 W/kg; SAR(10 g) = 2.25 W/kg (* Smallest distance from peaks to all points 3 dB below = 7.4 mm; Ratio of SAR at M2 to SAR at M1 = 65.8%)

Remarks: *. Date tested: 2021/10/8; Tested by: Hiroshi Naka; Tested place: No.7 shielded room,

*. liquid depth: 150 mm; Position: distance of dipole to phantom: 8mm (10mm to liquid); ambient: 23 deg.C. / (50-60) %RH,
*. liquid temperature: 22.3(start) 22.3(end) 22.5(in check) deg.C.; *.White cubic: zoom scan area, Red cubic: big=SAR(10g)/small=SAR(1g)

Test report No. : 14033664S-A-R1
Page : 45 of 76
Issued date : December 24, 2021

FCC ID : AZDWM01B

Appendix 3-7: Uncertainty Assessment (SAR measurement/Daily check)

*. Although this standard determines only the limit value of uncertainty, there is no applicable rule of uncertainty in this. Therefore, the following results are derived depending on whether or not laboratory uncertainty is applied.

U	Incertainty of SAR measurement (2.40	GHz~6GHz) (*.	v6h,ε&σ: 10%, DAK3.5,	Tx:≈100%	duty cycle)	(v09r02)	1g SAR		SAR
	Combined measurement un						± 13.2 %	± 13	1 %
	Expan	ded uncertainty ((k=2)				± 26.4 %		2 %
	Error Description (2.4-6GHz)	Uncertainty Value	Probability distribution	Divisor	ci (1g)	ci (10g)	ui (1g)	ui (10g)	Vi, veff
A	Measurement System (DASY5)	•	•				(std. uncertainty)	(std. uncertainty)	
1	Probe Calibration Error	±7.0 %	Normal	1	1	1	±7.0 %	±7.0 %	8
2	Axial isotropy Error	±4.7 %	Rectangular	√3	0.71	0.71	±1.9 %	±1.9 %	∞
3	Hemispherical isotropy Error	±9.6 %	Rectangular	√3	0.71	0.71	±3.9 %	±3.9 %	oc
4	Linearity Error	±4.7 %	Rectangular	√3	1	1	±2.7 %	±2.7 %	∞
5	Probe modulation response (v09)	±5.5 %	Rectangular	√3	1	1	±3.2 %	±3.2 %	8
6	Sensitivity Error (detection limit)	±1.0 %	Rectangular	√3	1	1	±0.6 %	±0.6 %	oc
7	Boundary effects Error	±4.3%	Rectangular	√3	1	1	±2.5 %	±2.5 %	∞
8	Readout Electronics Error(DAE)	±0.3 %	Rectangular	√3	1	1	±0.3 %	±0.3 %	× ×
9	Response Time Error	±0.8 %	Normal	1	1	1	±0.5 %	±0.5 %	∞
10	Integration Time Error (≈100% duty cycle)	±0 %	Rectangular	√3	1	1	0 %	0 %	8
	RF ambient conditions-noise (v09)	±1.0 %	Rectangular	√3	1	1	±0.6 %	±0.6 %	× ×
12	RF ambient conditions-reflections	±3.0 %	Rectangular	√3	1	1	±1.7 %	±1.7 %	∞
13	Probe positioner mechanical tolerance	±3.3 %	Rectangular	√3	1	1	±1.9 %	±1.9 %	× ×
14	Probe Positioning with respect to phantom shell	±6.7 %	Rectangular	√3	1	1	±3.9 %	±3.9 %	× ×
15	Max. SAR evaluation (Post-processing)	±4.0 %	Rectangular	√3	1	1	±2.3 %	±2.3 %	∞
В	Test Sample Related								
16	Device Holder or Positioner Tolerance (v09)	±3.2 %	Normal	1	1	1	±3.2 %	±3.2 %	5
17	Test Sample Positioning Error (v09)	±2.1 %	Normal	1	1	1	±2.1 %	±2.1 %	10
18	Power scaling	±0 %	Rectangular	√3	1	1	±0 %	±0 %	8
19	Drift of output power (measured, <0.2dB)	±5.0 %	Rectangular	√3	1	1	±2.9 %	±2.9 %	× ×
C	Phantom and Setup								
20	Phantom uncertainty (shape, thickness tolerances)	±7.5 %	Rectangular	√3	1	1	±4.3 %	±4.3 %	8
21	Algorithm for correcting SAR (e', o: 10%)	±1.9 %	Normal	1	1	0.84	±1.9 %	±1.6 %	× ×
22	Measurement Liquid Conductivity Error (DAK3.5)	±3.0 %	Normal	1	0.78	0.71	±2.3 %	±2.1 %	7
23	Measurement Liquid Permittivity Error (DAK3.5)	±3.1 %	Normal	1	0.23	0.26	±0.7 %	±0.8 %	7
24	Liquid Conductivity-temp.uncertainty (≤2deg.C.v6h)	±3.0 %	Rectangular	√3	0.78	0.71	±1.4 %	±1.2 %	∞
25	Liquid Permittivity-temp.uncertainty (≤2deg.C.v6h)	±1.0 %	Rectangular	√3	0.23	0.26	±0.1 %	±0.2 %	∞
	Combined Standard Uncertainty (v09r02)		-				± 13.2 %	± 13.1 %	945
	Expanded Uncertainty (k=2) (v09r02)						± 26.4 %	± 26.2 %	
*	This massurament uncortainty hydrot is suggested by	TEEE C44 1500/0010	N 1 1-4 11 C-	1	down Post	A.C	DACKE II.	- 4- '- (- D- 1()	D IZDD

^{*.} This measurement uncertainty budget is suggested by IEEE Std.1528(2013) and determined by Schmid & Partner Engineering AG (DASY5 Uncertainty Budget). Per KDB 865664 D01 (v01r04) SAR Measurement 100 MHz to 6 GHz, Section 2.8.1., when the highest measured SAR(1g) within a frequency band is < 1.5W/kg, the extensive SAR measurement uncertainty analysis described in IEEE Std.1528 (2013) is not required in SAR reports submitted for equipment approval.

Expanded uncertainty (k=2) ± 10.8 % ± 10.7 %		Uncertainty of daily check (2.4-	1g SAR	10g S	SAR					
Error Description (2.4-6GHz) Uncertainty Value Probability distribution Divisor ci (1g) ci (10g) ui (1g) ui (10g) Vi, vel		Combined measurement un	certainty of the n	neasurement system	(k=1)			± 10.8 %	± 10	.7 %
A Measurement System (DASY5) (std uncertainty) (std uncertainty) 1 Probe Calibration Error ±7.0 % Normal 1 1 1 ±7.0 % ±7.0 % ∞ 2 Axial isotropy error ±4.7 % Rectangular √3 0.71 0.71 ±1.9 % ±1.9 % ∞ 4 Probe linearity ±4.7 % Rectangular √3 1 1 ±2.7 % ±2.7 % ∞ 5 Probe modulation response (CW) ±0.0 % Rectangular √3 1 1 ±0.6 % ±2.7 % ∞ 5 Probe modulation response (CW) ±0.0 % Rectangular √3 1 1 ±0.6 % ∞ 5 System detection limit ±1.0 % Rectangular √3 1 1 ±0.6 % ∞ 6 System detection limit ±1.0 % Rectangular √3 1 1 ±0.6 % ∞ 7 Boundary effects ±4.3 % Rectangular √3 1 <		Expand	± 21.6 %	± 21	<i>4</i> %					
Probe Calibration Error		Error Description (2.4-6GHz)	Uncertainty Value	Probability distribution	Divisor	ci (1g)	ci (10g)	ui (1g)	ui (10g)	Vi, veff
2 Axial isotropy error	A	Measurement System (DASY5)						(std. uncertainty)	(std. uncertainty)	
3 Hemispherical isotropy error ±9.6 % Rectangular √3 0 0 0 % 0 % ∞	1	Probe Calibration Error	±7.0 %	Normal	1	1	1	±7.0 %	±7.0 %	∞
4 Probe linearity ±4.7 % Rectangular √3 1 1 ±2.7 % ±2.7 % ∞ 5 Probe modulation response (CW) ±0.0 % Rectangular √3 1 1 0 % 0 % ∞ 6 System detection limit ±1.0 % Rectangular √3 1 1 ±0.6 % ±0.6 % ∞ 7 Boundary effects ±4.3 % Rectangular √3 1 1 ±2.5 % ±2.5 % ∞ 8 System readout electronics (DAE) ±0.3 % Normal 1 1 1 ±0.3 % ±0.3 % ±0.3 % ±0.0 %<	2	Axial isotropy error	±4.7 %	Rectangular	√3	0.71	0.71	±1.9 %	±1.9 %	∞
5 Probe modulation response (CW) ±0.0% Rectangular √3 1 1 0% 0% ∞ 6 System detection limit ±1.0% Rectangular √3 1 1 ±0.6% ±0.6% ∞ 7 Boundary effects ±4.3% Rectangular √3 1 1 ±2.5% ±2.5% ∞ 8 System readout electronics (DAE) ±0.3% Normal 1 1 1 ±0.3% ±0.3% ∞ 9 Response Time Error (<5ms/100ns wait)	3	Hemispherical isotropy error	±9.6 %	Rectangular	√3	0	0	0 %	0 %	∞
System detection limit	4	Probe linearity	±4.7 %	Rectangular		1	1	±2.7 %	±2.7 %	∞
7 Boundary effects ±4.3 % Rectangular √3 1 1 ±2.5 % ±2.5 % ∞ 8 System readout electronics (DAE) ±0.3 % Normal 1 1 1 ±0.3 % ±0.3 % ∞ 9 Response Time Error (<5ms/100ms wait) ±0.0 % Rectangular √3 1 1 0 % 0 % ∞ 10 Integration Time Error (CW) ±0.0 % Rectangular √3 1 1 0 % 0 % ∞ 11 RF ambient conditions-noise ±3.0 % Rectangular √3 1 1 ±1.7 % ±1.7 % ∞ 12 RF ambient conditions-reflections ±3.0 % Rectangular √3 1 1 ±1.7 % ±1.7 % ∞ 13 Probe positioner mechanical tolerance ±3.3 % Rectangular √3 1 1 ±1.9 % ±1.9 % ∞ 14 Probe positioning with respect to phantom shell ±6.7 % Rectangular √3 1 1 ±3.9 % ±3.9 % ∞ 15 Max. SAR evaluation (Post-processing) ±4.0 % Rectangular √3 1 1 ±2.3 % ±2.3 % ∞ 16 Deviation of the experimental source ±1.9 % Normal 1 1 ±1.9 % ±1.9 % ∞ 17 Dipole to liquid distance (10mm±0.2mm,<2deg.) ±2.0 % Rectangular √3 1 1 ±1.2 % ±1.2 % ∞ 18 Drift of output power (measured, <0.1dB) ±2.3 % Rectangular √3 1 1 ±1.2 % ±1.3 % ±1.3 % ∞ 19 Phantom uncertainty ±2.0 % Rectangular √3 1 1 ±1.2 % ±1.2 % ∞	5	Probe modulation response (CW)	±0.0 %	Rectangular	√3	1	1	0 %	0 %	∞
8 System readout electronics (DAE)	6	System detection limit	±1.0 %	Rectangular		1	1	±0.6 %	±0.6 %	∞
9 Response Time Error (<5ms/100ms wait) ±0.0 % Rectangular √3 1 1 0 % 0 % ∞ 10 Integration Time Error (CW) ±0.0 % Rectangular √3 1 1 0 % 0 % ∞ 11 RF ambient conditions-noise ±3.0 % Rectangular √3 1 1 ±1.7 % ±1.7 % ∞ 12 RF ambient conditions-reflections ±3.0 % Rectangular √3 1 1 ±1.7 % ±1.7 % ∞ 13 Probe positioner mechanical tolerance ±3.3 % Rectangular √3 1 1 ±1.9 % ±1.9 % ∞ 14 Probe positioning with respect to phantom shell ±6.7 % Rectangular √3 1 1 ±3.9 % ±3.9 % ±3.9 % ∞ 15 Max. SAR evaluation (Post-processing) ±4.0 % Rectangular √3 1 1 ±2.3 % ±2.3 % ∞ 16 Deviation of the experimental source ±1.9 % Normal 1 1 ±1.9 % ±1.9 % ∞ 17 Dipole to liquid distance (10mm±0.2mm,<2deg.) ±2.0 % Rectangular √3 1 ±1.2 % ±1.2 % ∞ 18 Drift of output power (measured, <0.1dB) ±2.3 % Rectangular √3 1 ±1.3 % ±1.3 % ∞ 19 Phantom uncertainty ±2.0 % Rectangular √3 1 ±1.2 % ±1.2 % ∞	7	Boundary effects	±4.3 %	Rectangular	√3	1	1	±2.5 %	±2.5 %	∞
10 Integration Time Error (CW)	8	System readout electronics (DAE)	±0.3 %	Normal	1	1	1	±0.3 %	±0.3 %	∞
11 RF ambient conditions-noise	9	Response Time Error (<5ms/100ms wait)	±0.0 %	Rectangular	√3	1	1	0 %	0 %	∞
12 RF ambient conditions-reflections	10	Integration Time Error (CW)	±0.0 %	Rectangular	√3	1	1	0 %	0 %	∞
13 Probe positioner mechanical tolerance	11	RF ambient conditions-noise	±3.0 %	Rectangular	√3	1	1	±1.7 %	±1.7 %	∞
14 Probe positioning with respect to phantom shell ±6.7 % Rectangular √3 1 1 ±3.9 % ±3.9 % ∞ 15 Max. SAR evaluation (Post-processing) ±4.0 % Rectangular √3 1 1 ±2.3 % ±2.3 % ∞ B Test Sample Related B Deviation of the experimental source ±1.9 % Normal 1 1 1 ±1.9 % ±1.9 % ∞ 17 Dipole to liquid distance (10mm±0.2mm,<2deg.)	12	RF ambient conditions-reflections	±3.0 %	Rectangular	√3	1	1	±1.7 %	±1.7 %	∞
15 Max. SAR evaluation (Post-processing)	13	Probe positioner mechanical tolerance	±3.3 %	Rectangular	√3	1	1	±1.9 %	±1.9 %	∞
B Test Sample Related Section of the experimental source ±1.9 % Normal 1 1 1 ±1.9 % ±1.9 % ∞ 17 Dipole to liquid distance (10mm±0.2mm,<2deg.)	14	Probe positioning with respect to phantom shell	±6.7 %	Rectangular	√3	1	1	±3.9 %	±3.9 %	∞
16 Deviation of the experimental source ±1.9 % Normal 1 1 1 ±1.9 % ±1.9 % ∞ 17 Dipole to liquid distance (10mm±0.2mm,<2deg.)	15	Max. SAR evaluation (Post-processing)	±4.0 %	Rectangular	√3	1	1	±2.3 %	±2.3 %	∞
17 Dipole to liquid distance (10mm±0.2mm, 2deg.) ±2.0 % Rectangular √3 1 1 ±1.2 % ±1.2 % ∞ 18 Drift of output power (measured, <0.1dB)	В	Test Sample Related								
18 Drift of output power (measured, <0.1dB)	16	Deviation of the experimental source	±1.9 %	Normal	1	1	1	±1.9 %	±1.9 %	∞
C Phantom and Setup $\pm 2.0\%$ Rectangular $\sqrt{3}$ 1 1 $\pm 1.2\%$ $\pm 1.2\%$ ∞	17	Dipole to liquid distance (10mm±0.2mm,<2deg.)	±2.0 %	Rectangular	√3	1	1	±1.2 %	±1.2 %	∞
19 Phantom uncertainty $\pm 2.0\%$ Rectangular $\sqrt{3}$ 1 1 $\pm 1.2\%$ $\pm 1.2\%$ ∞	18	Drift of output power (measured, <0.1dB)	±2.3 %	Rectangular	√3	1	1	±1.3 %	±1.3 %	∞
	C	Phantom and Setup								
20 Algorithm for correcting SAR (e', □: 10%) ±1.9 % Normal 1 1 0.84 ±1.9 % ±1.6 % ∞	19	Phantom uncertainty	±2.0 %	Rectangular	√3	1	1	±1.2 %	±1.2%	∞
	20	Algorithm for correcting SAR (e', σ : 10%)	±1.9 %	Normal	1	1	0.84	±1.9 %	±1.6 %	∞
21 Liquid conductivity (meas.) (DAK3.5) ±3.0 % Normal 1 0.78 0.71 ±2.3 % ±2.1 % ∞	21	Liquid conductivity (meas.) (DAK3.5)	±3.0 %	Normal	1	0.78	0.71	±2.3 %	±2.1 %	∞
22 Liquid permittivity (meas.) (DAK3.5) ±3.1 % Normal 1 0.23 0.26 ±0.7 % ±0.8 % ∞	22	Liquid permittivity (meas.) (DAK3.5)	±3.1 %	Normal	1	0.23	0.26	±0.7 %	±0.8 %	∞
23 Liquid Conductivity-tempuncertainty (\leq 2deg.C.v6h) \pm 3.0 % Rectangular $\sqrt{3}$ 0.78 0.71 \pm 1.4 % \pm 1.2 % ∞	23	Liquid Conductivity-temp.uncertainty (≤2deg.C.v6h)	±3.0 %	Rectangular	√3	0.78	0.71	±1.4 %	±1.2 %	∞
24 Liquid Permittivity-temp.uncertainty (\leq 2deg.C.v6h) ± 1.0 % Rectangular $\sqrt{3}$ 0.23 0.26 ± 0.1 % ± 0.2 % ∞	24	Liquid Permittivity-temp.uncertainty (≤2deg.C.v6h)	±1.0 %	Rectangular	√3	0.23	0.26	±0.1 %	±0.2 %	∞
Combined Standard Uncertainty (v09r02) ±10.8 % ±10.7 %		Combined Standard Uncertainty (v09r02)						±10.8 %	±10.7 %	
Expanded Uncertainty (k=2) (v09r02) ±21.6 % ±21.4 %								±21.6 %	±21.4 %	1

^{*} This measurement uncertainty budget is suggested by IEEE Std. 1528(2013) and determined by Schmid & Partner Engineering AG (DASY5 Uncertainty Budget).

UL Japan, Inc. Shonan EMC Lab.

^{*.} Table of uncertainties are listed for ISO/IEC 17025.

Test report No. : 14033664S-A-R1 Page : 46 of 76

Issued date : December 24, 2021

FCC ID : AZDWM01B

Appendix 3-8: Calibration certificate: E-Field Probe (EX3DV4)

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service sulsse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

UL Japan (RCC)

Certificate No: EX3-3907 Apr21

CALIBRATION CERTIFICATE

Object

EX3DV4 - SN:3907

Calibration procedure(s)

QA CAL-01.v9, QA CAL-14.v6, QA CAL-23.v5, QA CAL-25.v7

Calibration procedure for dosimetric E-field probes

Calibration date:

April 21, 2021

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	09-Apr-21 (No. 217-03291/03292)	Apr-22
Power sensor NRP-Z91	SN: 103244	09-Apr-21 (No. 217-03291)	Apr-22
Power sensor NRP-Z91	SN: 103245	09-Apr-21 (No. 217-03292)	Apr-22
Reference 20 dB Attenuator	SN: CC2552 (20x)	09-Apr-21 (No. 217-03343)	Apr-22
DAE4	SN: 660	23-Dec-20 (No. DAE4-660 Dec20)	Dec-21
Reference Probe ES3DV2	SN: 3013	30-Dec-20 (No. ES3-3013_Dec20)	Dec-21
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-20)	In house check: Jun-22
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-20)	In house check: Jun-22
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-20)	In house check: Jun-22
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-20)	In house check: Jun-22
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-20)	In house check: Oct-21

Calibrated by:

Name
Function
Signature
Laboratory Technician

Approved by:

Katja Pokovic
Technical Manager

Issued: April 24, 2021

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: EX3-3907_Apr21

Page 1 of 10

Test report No. : 14033664S-A-R1 Page : 47 of 76

: December 24. 2021 Issued date

: AZDWM01B FCC ID

Appendix 3-8: Calibration certificate: E-Field Probe (EX3DV4) (cont'd)

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters

Polarization ϕ φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016

IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010

d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E2-field uncertainty inside TSL (see below ConvF).
- $NORM(f)x,y,z = NORMx,y,z * frequency_response$ (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: EX3-3907_Apr21 Page 2 of 10

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN Telephone: +81 463 50 6400 / Facsimile: +81 463 50 6401

Test report No. : 14033664S-A-R1 Page : 48 of 76

Issued date : December 24, 2021

FCC ID : AZDWM01B

Appendix 3-8: Calibration certificate: E-Field Probe (EX3DV4) (cont'd)

EX3DV4 - SN:3907 April 21, 2021

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3907

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.45	0.58	0.54	± 10.1 %
DCP (mV) ^B	102.7	97.5	99.0	- 1011 70

Calibration Results for Modulation Response

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Max dev.	Unc ^E (k=2)
0	CW	X	0.0	.0 0.0	1.0	0.00	134.6	± 3.5 %	± 4.7 %
	Y	Y	0.0	0.0	1.0		129.4		
		Z	0.0	0.0	1.0		129.5		

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: EX3-3907_Apr21

A The uncertainties of Norm X,Y,Z do not affect the E2-field uncertainty inside TSL (see Pages 5 and 6).

Numerical linearization parameter: uncertainty not required.

Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the

Test report No. : 14033664S-A-R1 Page : 49 of 76

Issued date : December 24, 2021

FCC ID : AZDWM01B

Appendix 3-8: Calibration certificate: E-Field Probe (EX3DV4) (cont'd)

EX3DV4- SN:3907 April 21, 2021

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3907

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-143.3
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job.

Certificate No: EX3-3907_Apr21 Page 4 of 10

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN Telephone: +81 463 50 6400 / Facsimile: +81 463 50 6401

Test report No. : 14033664S-A-R1 Page : 50 of 76

Issued date : December 24, 2021

FCC ID : AZDWM01B

Appendix 3-8: Calibration certificate: E-Field Probe (EX3DV4) (cont'd)

EX3DV4-SN:3907 April 21, 2021

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3907

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
2450	39.2	1.80	7.35	7.35	7.35	0.41	0.90	± 12.0 %
5250	35.9	4.71	5.14	5.14	5.14	0.40	1.80	± 13.1 %
5600	35.5	5.07	4.56	4.56	4.56	0.40	1.80	± 13.1 %
5800	35.3	5.27	4.60	4.60	4.60	0.40	1.80	± 13.1 %

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.

At frequencies below 3 GHz, the validity of tissue parameters (a and σ) can be relaxed to ± 10% if liquid compensation formula is applied to recognize a decrease of the convergence of the procedure of the PSO of the procedure of the page 150 minutes and 150 minutes and 150 minutes and 150 minutes are procedured to ± 10% if liquid compensation formula is applied to the page 150 minutes and 150 minutes and 150 minutes are procedured to ± 10% if liquid compensation formula is applied to the page 150 minutes and 150 minutes are procedured to ± 100 minutes and 150 minutes are procedured to ± 100 minutes and 150 minutes are procedured to ± 100 minutes and 150 minutes are procedured to ± 100 minutes and 150 minutes are procedured to ± 100 minutes and 150 minutes are procedured to ± 100 minutes and 150 minutes are procedured to ± 150 minutes are procedured to ± 100 minutes and 150 minutes are procedured to ± 100 minutes are procedured to ± 100 minutes and 150 minutes are procedured to ± 100 minutes are pro

Certificate No: EX3-3907 Apr21 Page 5 of 10

At frequencies below 3 GHz, the validity of tissue parameters (£ and o) can be retaked to ± 10% in riguid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (£ and o) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for Indicated target tissue parameters.

Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip dispatce from the boundary. diameter from the boundary.

Test report No. : 14033664S-A-R1 Page

: 51 of 76 Issued date : December 24, 2021

FCC ID : AZDWM01B

Appendix 3-8: Calibration certificate: E-Field Probe (EX3DV4) (cont'd)

EX3DV4-SN:3907 April 21, 2021

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3907

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
2450	52.7	1.95	7.44	7.44	7.44	0.36	0.95	± 12.0 %
5250	48.9	5.36	4.49	4.49	4.49	0.50	1.90	± 13.1 %
5600	48.5	5.77	3.96	3.96	3.96	0.50	1.90	± 13.1 %
5750	48.3	5.94	4.07	4.07	4.07	0.50	1.90	± 13.1 %

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.

F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

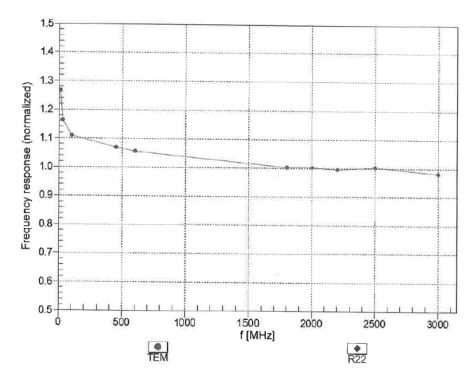
Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: EX3-3907_Apr21 Page 6 of 10

diameter from the boundary.

Test report No. : 14033664S-A-R1 Page : 52 of 76

: December 24, 2021


FCC ID : AZDWM01B

Issued date

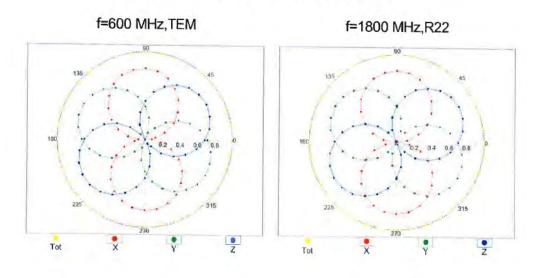
Appendix 3-8: Calibration certificate: E-Field Probe (EX3DV4) (cont'd)

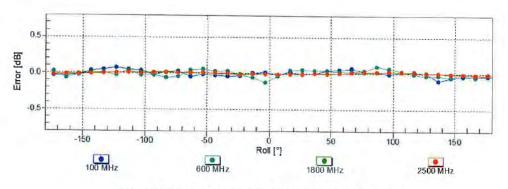
EX3DV4-SN:3907 April 21, 2021

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: EX3-3907_Apr21 Page 7 of 10


Test report No. : 14033664S-A-R1
Page : 53 of 76
Issued date : December 24, 2021

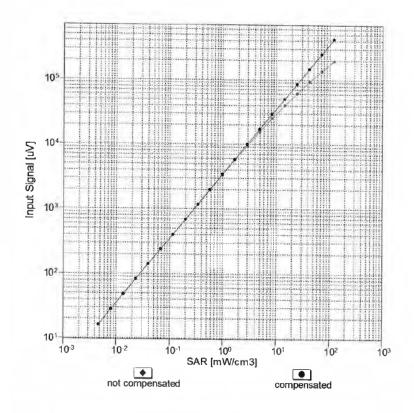

FCC ID : AZDWM01B

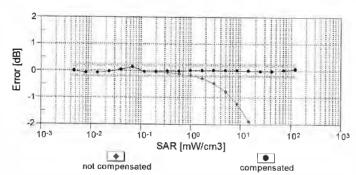
Appendix 3-8: Calibration certificate: E-Field Probe (EX3DV4) (cont'd)

EX3DV4- SN:3907 April 21, 2021

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


Test report No. : 14033664S-A-R1
Page : 54 of 76
Issued date : December 24, 2021


FCC ID : AZDWM01B

Appendix 3-8: Calibration certificate: E-Field Probe (EX3DV4) (cont'd)

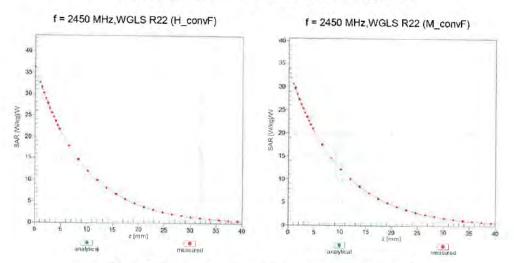
EX3DV4- SN:3907 April 21, 2021

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

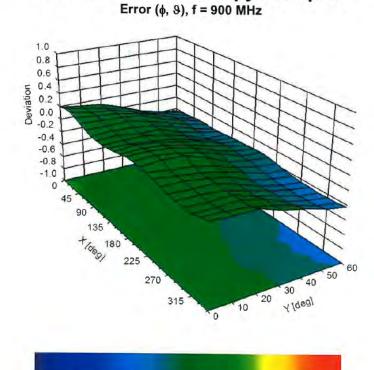
Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: EX3-3907_Apr21

Page 9 of 10


Test report No. : 14033664S-A-R1
Page : 55 of 76
Issued date : December 24, 2021

FCC ID : AZDWM01B


Appendix 3-8: Calibration certificate: E-Field Probe (EX3DV4) (cont'd)

EX3DV4- SN:3907 April 21, 2021

Conversion Factor Assessment

Deviation from Isotropy in Liquid

0.6

0.2

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

0.4

Certificate No: EX3-3907_Apr21 Page 10 of 10

-1.0 -0.8 -0.6 -0.4 -0.2 0.0

Test report No. : 14033664S-A-R1 Page : 56 of 76

Issued date : December 24, 2021

FCC ID : AZDWM01B

Appendix 3-9: Calibration certificate: Dipole (D2450V2)

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

C

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

an .	Dougolfo Otto	200	
Object	D2450V2 - SN:8	22	
Calibration procedure(s)	QA CAL-05.v11 Calibration Proce	edure for SAR Validation Sources	s between 0.7-3 GHz
Calibration date:	November 10, 20	020	
		ional standards, which realize the physical un robability are given on the following pages ar	
All calibrations have been conduct Calibration Equipment used (M&Ti		ry facility; environment temperature (22 ± 3)*(C and humidity < 70%
	and a summittee of		
	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Primary Standards	A	Cal Date (Certificate No.) 01-Apr-20 (No. 217-03100/03101)	Scheduled Calibration Apr-21
Primary Standards Power meter NRP	ID #		- Company of American Company
Primary Standards Power meter NRP Power sensor NRP-Z91	ID # SN: 104778	01-Apr-20 (No. 217-03100/03101)	Apr-21
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91	ID # SN: 104778 SN: 103244	01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100)	Apr-21 Apr-21
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 d8 Attenualor	ID # SN: 104778 SN: 103244 SN: 103245	01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101)	Apr-21 Apr-21 Apr-21
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination	ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k)	01-Apr-20 (No. 217-05100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03106)	Apr-21 Apr-21 Apr-21 Apr-21
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4	ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327	01-Apr-20 (No. 217-05100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03106) 31-Mar-20 (No. 217-03104)	Apr-21 Apr-21 Apr-21 Apr-21 Apr-21
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4	ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7405	01-Apr-20 (No. 217-05100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03106) 31-Mar-20 (No. 217-03104) 29-Jun-20 (No. EX3-7405_Jun20)	Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Jun-21
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B	ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7405 SN: 601	01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03106) 31-Mar-20 (No. 217-03104) 29-Jun-20 (No. EX3-7405_Jun20) 02-Nov-20 (No. DAE4-601_Nov20)	Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Jun-21 Nov-21
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A	ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7405 SN: 601 ID # SN: GB39512475 SN: US37292783	01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03106) 31-Mar-20 (No. 217-03104) 29-Jur-20 (No. EX3-7405_Jun20) 02-Nov-20 (No. DAE4-601_Nov20) Check Date (In house)	Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Jun-21 Nov-21
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A	ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7405 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41092317	01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03106) 31-Mar-20 (No. 217-03104) 29-Jur-20 (No. EX3-7405_Jun20) 02-Nov-20 (No. DAE4-601_Nov20) Check Date (In house) 30-Oct-14 (in house check Oct-20)	Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Jun-21 Nov-21 Scheduled Check In house check: Oct-22
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A RF generator R&S SMT-06	ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7405 SN: 601 ID # SN: GB39512475 SN: US37292783	01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03106) 31-Mar-20 (No. 217-03104) 29-Jun-20 (No. EX3-7405_Jun20) 02-Nov-20 (No. DAE4-601_Nov20) Check Date (In house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20)	Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Jun-21 Nov-21 Scheduled Check In house check: Oct-22 In house check: Oct-22
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A RF generator R&S SMT-06	ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7405 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41092317	01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03106) 31-Mar-20 (No. 217-03104) 29-Jun-20 (No. EX3-7405_Jun20) 02-Nov-20 (No. DAE4-601_Nov20) Check Date (In house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20)	Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Jun-21 Nov-21 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A	ID # SN: 104778 SN: 103244 SN: 103245 SN: 8H9594 (20k) SN: 310982 / 06327 SN: 7405 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41092317 SN: 100972	01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03106) 31-Mar-20 (No. 217-03104) 29-Jur-20 (No. EX3-7405_Jun20) 02-Nov-20 (No. DAE4-601_Nov20) Check Date (In house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20)	Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Jun-21 Nov-21 Scheduled Check In house check: Oct-22
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A RF generator R&S SMT-06	ID # SN: 104778 SN: 103244 SN: 103245 SN: 8H9394 (20k) SN: 310982 / 06327 SN: 7405 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41060477	01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03106) 31-Mar-20 (No. 217-03104) 29-Jun-20 (No. EX3-7405_Jun-20) 02-Nov-20 (No. DAE4-601_Nov20) Check Date (In house)	Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Jun-21 Nov-21 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-21

Certificate No: D2450V2-822_Nov20 Page 1 of 8

Test report No. : 14033664S-A-R1 Page : 57 of 76

Issued date : December 24, 2021

FCC ID : AZDWM01B

Appendix 3-9: Calibration certificate: Dipole (D2450V2) (cont'd)

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS):

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORM x,y,z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2450V2-822_Nov20

Page 2 of 8

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN Telephone: +81 463 50 6400 / Facsimile: +81 463 50 6401

Test report No. : 14033664S-A-R1
Page : 58 of 76
Issued date : December 24, 2021

FCC ID : AZDWM01B

Appendix 3-9: Calibration certificate: Dipole (D2450V2) (cont'd)

Measurement Conditions

DASY system configuration, as far as not given on page 1

DASY Version	DASY5	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.1 ± 6 %	1.86 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	(init)	

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.7 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	53.6 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.30 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.9 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.8 ± 6 %	2.03 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	ware	

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.3 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	52.0 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.16 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	24.3 W/kg ± 16.5 % (k=2)

Certificate No: D2450V2-822_Nov20

Test report No. : 14033664S-A-R1 Page : 59 of 76

Issued date : December 24, 2021

FCC ID : AZDWM01B

Appendix 3-9: Calibration certificate: Dipole (D2450V2) (cont'd)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.3 Ω + 5.5 jΩ	
Return Loss	- 24.1 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$50.5 \Omega + 6.7 j\Omega$	
Return Loss	- 23.5 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.160 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
-----------------	-------

Certificate No: D2450V2-822_Nov20

Page 4 of 8

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN Telephone: +81 463 50 6400 / Facsimile: +81 463 50 6401

Test report No. : 14033664S-A-R1
Page : 60 of 76
Issued date : December 24, 2021

FCC ID : AZDWM01B

Appendix 3-9: Calibration certificate: Dipole (D2450V2) (cont'd)

DASY5 Validation Report for Head TSL

Date: 10.11,2020

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:822

Communication System: UID 0 - CW; Frequency: 2450 MHz.

Medium parameters used: f = 2450 MHz; $\sigma = 1.86$ S/m; $\epsilon_r = 38.1$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63,19-2011)

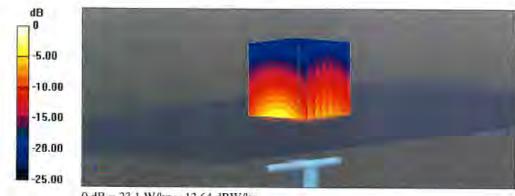
DASY52 Configuration:

- Probe: EX3DV4 SN7405; ConvF(7.81, 7.81, 7.81) @ 2450 MHz; Calibrated: 29.06.2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.11.2020
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 116.9 V/m; Power Drift = 0.04 dB


Peak SAR (extrapolated) = 28.4 W/kg

SAR(1 g) = 13.7 W/kg; SAR(10 g) = 6.3 W/kg

Smallest distance from peaks to all points 3 dB below = 9 mm

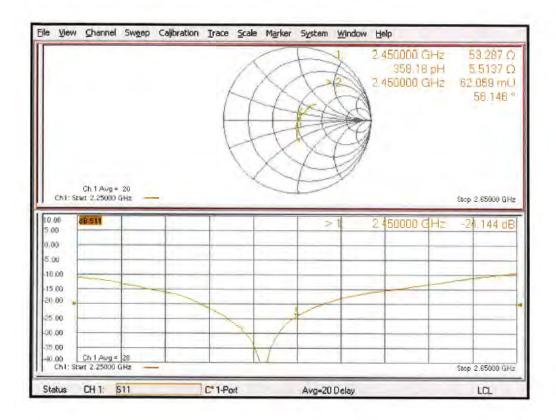
Ratio of SAR at M2 to SAR at M1 = 48.4%

Maximum value of SAR (measured) = 23.1 W/kg

0 dB = 23.1 W/kg = 13.64 dBW/kg

Certificate No: D2450V2-822_Nov20

Page 5 of 8


Test report No. : 14033664S-A-R1 Page : 61 of 76

Issued date : December 24, 2021

FCC ID : AZDWM01B

Appendix 3-9: Calibration certificate: Dipole (D2450V2) (cont'd)

Impedance Measurement Plot for Head TSL

Test report No. : 14033664S-A-R1
Page : 62 of 76
Issued date : December 24, 2021

FCC ID : AZDWM01B

Appendix 3-9: Calibration certificate: Dipole (D2450V2) (cont'd)

DASY5 Validation Report for Body TSL

Date: 10.11.2020

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:822

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 2.03$ S/m; $\epsilon_r = 51.8$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

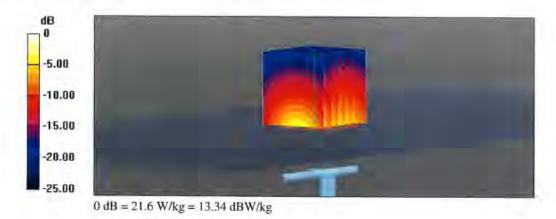
DASY52 Configuration:

- Probe: EX3DV4 SN7405; ConvF(7.75, 7.75, 7.75) @ 2450 MHz; Calibrated: 29.06.2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.11.2020
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 108.1 V/m; Power Drift = -0.07 dB


Peak SAR (extrapolated) = 27.4 W/kg

SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6.16 W/kg

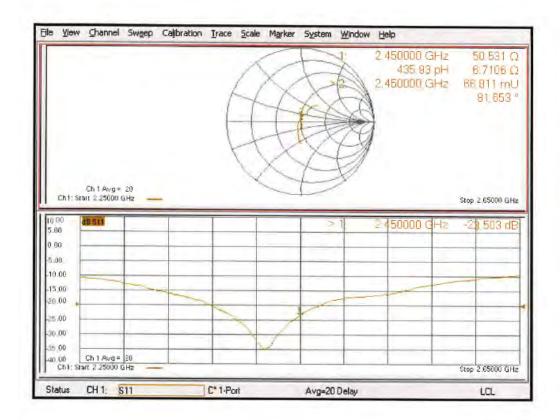
Smallest distance from peaks to all points 3 dB below = 8.2 mm

Ratio of SAR at M2 to SAR at M1 = 50%

Maximum value of SAR (measured) = 21.6 W/kg

Certificate No: D2450V2-822 Nov20

Page 7 of 8


Test report No. : 14033664S-A-R1 Page : 63 of 76

Issued date : December 24, 2021

FCC ID : AZDWM01B

Appendix 3-9: Calibration certificate: Dipole (D2450V2) (cont'd)

Impedance Measurement Plot for Body TSL

Test report No. : 14033664S-A-R1 Page : 64 of 76 : December 24, 2021 Issued date

FCC ID : AZDWM01B

Appendix 3-10: Calibration certificate: Dipole (D5GHzV2)

Calibration Laboratory of

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client **UL Japan (RCC)** Certificate No: D5GHzV2-1070 Apr21

CALIBRATION CERTIFICATE Object D5GHzV2 - SN:1070 QA CAL-22.v6 Calibration procedure(s) Calibration Procedure for SAR Validation Sources between 3-10 GHz April 20, 2021 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID# Cal Date (Certificate No.) Scheduled Calibration Power meter NRP SN: 104778 09-Apr-21 (No. 217-03291/03292) Apr-22 Power sensor NRP-791 SN: 103244 09-Apr-21 (No. 217-03291) Apr-22 Power sensor NRP-Z91 SN: 103245 09-Apr-21 (No. 217-03292) Apr-22 SN: BH9394 (20k) Reference 20 dB Attenuator 09-Apr-21 (No. 217-03343) Apr-22 Type-N mismatch combination SN: 310982 / 06327 09-Apr-21 (No. 217-03344) Apr-22 Reference Probe EX3DV4 SN: 3503 30-Dec-20 (No. EX3-3503 Dec20) Dec-21 DAE4 SN: 601 02-Nov-20 (No. DAE4-601_Nov20) Nov-21 Secondary Standards ID# Check Date (in house) Scheduled Check Power meter E4419B SN: GB39512475 30-Oct-14 (in house check Oct-20) In house check: Oct-22 Power sensor HP 8481A SN: US37292783 07-Oct-15 (in house check Oct-20) In house check: Oct-22 Power sensor HP 8481A SN: MY41092317 07-Oct-15 (in house check Oct-20) In house check: Oct-22 RF generator R&S SMT-06 SN: 100972 15-Jun-15 (in house check Oct-20) In house check: Oct-22 Network Analyzer Agilent E8358A SN: US41080477 31-Mar-14 (in house check Oct-20) In house check: Oct-21 Function Calibrated by: Michael Weber Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: April 20, 2021 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D5GHzV2-1070_Apr21 Page 1 of 13

Test report No. : 14033664S-A-R1
Page : 65 of 76
Issued date : December 24, 2021

FCC ID : AZDWM01B

Appendix 3-10: Calibration certificate: Dipole (D5GHzV2) (cont'd)

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D5GHzV2-1070_Apr21 Page 2 of 13

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN Telephone: +81 463 50 6400 / Facsimile: +81 463 50 6401

Test report No. : 14033664S-A-R1 Page : 66 of 76

Issued date : December 24, 2021

FCC ID : AZDWM01B

Appendix 3-10: Calibration certificate: Dipole (D5GHzV2) (cont'd)

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5250 MHz ± 1 MHz 5600 MHz ± 1 MHz 5750 MHz ± 1 MHz 5800 MHz ± 1 MHz	

Head TSL parameters at 5250 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.71 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.9 ± 6 %	4.57 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	****	***

SAR result with Head TSL at 5250 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.93 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	78.8 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.28 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.6 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1070_Apr21

Page 3 of 13

 $Test\ report\ No. \quad :\ 14033664S\text{-}A\text{-}R1$

Page : 67 of 76 Issued date : December 24, 2021

FCC ID : AZDWM01B

Appendix 3-10: Calibration certificate: Dipole (D5GHzV2) (cont'd)

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.4 ± 6 %	4.93 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	****	3-44,

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.30 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	82.4 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.36 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.4 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.3	5.27 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.1 ± 6 %	5.14 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	in many	

SAR result with Head TSL at 5800 MHz

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.08 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	80.1 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.27 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.5 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1070_Apr21

Test report No. : 14033664S-A-R1 Page : 68 of 76

Issued date : December 24, 2021

FCC ID : AZDWM01B

Appendix 3-10: Calibration certificate: Dipole (D5GHzV2) (cont'd)

Body TSL parameters at 5250 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.9	5.36 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	48.7 ± 6 %	5.51 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	(Asset)	(8688)

SAR result with Body TSL at 5250 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.50 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	75.0 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.08 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.8 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	48.1 ± 6 %	6.00 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.96 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	79.6 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.18 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.8 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1070_Apr21 Page 5 of 13

Test report No. : 14033664S-A-R1

Page : 69 of 76 Issued date : December 24, 2021

FCC ID : AZDWM01B

Appendix 3-10: Calibration certificate: Dipole (D5GHzV2) (cont'd)

Body TSL parameters at 5750 MHz

The following parameters and calculations were applied.

×	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.3	5.94 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.8 ± 6 %	6.21 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	####U	

SAR result with Body TSL at 5750 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.53 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	75.3 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.09 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.9 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1070_Apr21

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN Telephone: +81 463 50 6400 / Facsimile: +81 463 50 6401

Test report No. : 14033664S-A-R1 Page : 70 of 76

Issued date : December 24, 2021

FCC ID : AZDWM01B

Appendix 3-10: Calibration certificate: Dipole (D5GHzV2) (cont'd)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 5250 MHz

Impedance, transformed to feed point	51.4 Ω - 8.8 jΩ	
Return Loss	- 21.1 dB	

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	54.9 Ω - 7.8 jΩ
Return Loss	- 21.1 dB

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	51.9 Ω - 1.6 jΩ	
Return Loss	- 32.2 dB	

Antenna Parameters with Body TSL at 5250 MHz

Impedance, transformed to feed point	53.6 Ω - 6.9 jΩ
Return Loss	- 22.5 dB

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	58.1 Ω - 6.6 jΩ
Return Loss	- 20.3 dB

Antenna Parameters with Body TSL at 5750 MHz

Impedance, transformed to feed point	58.4 Ω - 1.5 jΩ	
Return Loss	- 22.1 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.202 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: D5GHzV2-1070_Apr21

Page 7 of 13

Test report No. : 14033664S-A-R1
Page : 71 of 76
Issued date : December 24, 2021

FCC ID : AZDWM01B

Appendix 3-10: Calibration certificate: Dipole (D5GHzV2) (cont'd)

DASY5 Validation Report for Head TSL

Date: 20.04.2021

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1070

Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz

Medium parameters used: f=5250 MHz; $\sigma=4.57$ S/m; $\epsilon_r=34.9;$ $\rho=1000$ kg/m³ , Medium parameters used: f=5600 MHz; $\sigma=4.93$ S/m; $\epsilon_r=34.4;$ $\rho=1000$ kg/m³ , Medium parameters used: f=5800 MHz; $\sigma=5.14$ S/m; $\epsilon_r=34.1;$ $\rho=1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.5, 5.5, 5.5) @ 5250 MHz, ConvF(5.1, 5.1, 5.1) @ 5600 MHz, ConvF(5.01, 5.01, 5.01) @ 5800 MHz; Calibrated: 30.12.2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.11.2020
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 74.78 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 27.3 W/kg

SAR(1 g) = 7.93 W/kg; SAR(10 g) = 2.28 W/kg

Smallest distance from peaks to all points 3 dB below = 6.8 mm

Ratio of SAR at M2 to SAR at M1 = 69.9%

Maximum value of SAR (measured) = 18.2 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 75.33 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 30.7 W/kg

SAR(1 g) = 8.30 W/kg; SAR(10 g) = 2.36 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

Ratio of SAR at M2 to SAR at M1 = 68.7%

Maximum value of SAR (measured) = 19.6 W/kg

Certificate No: D5GHzV2-1070_Apr21 Page 8 of 13

Telephone: +81 463 50 6400 / Facsimile: +81 463 50 6401

Test report No. : 14033664S-A-R1 Page : 72 of 76

Issued date : December 24, 2021

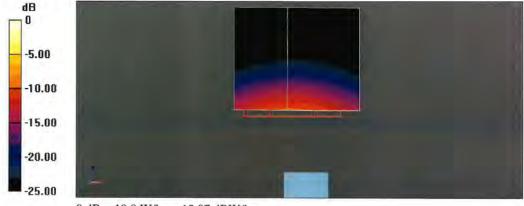
FCC ID : AZDWM01B

Appendix 3-10: Calibration certificate: Dipole (D5GHzV2) (cont'd)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 73.25 V/m; Power Drift = 0.09 dB


Peak SAR (extrapolated) = 31.8 W/kg

SAR(1 g) = 8.08 W/kg; SAR(10 g) = 2.27 W/kg

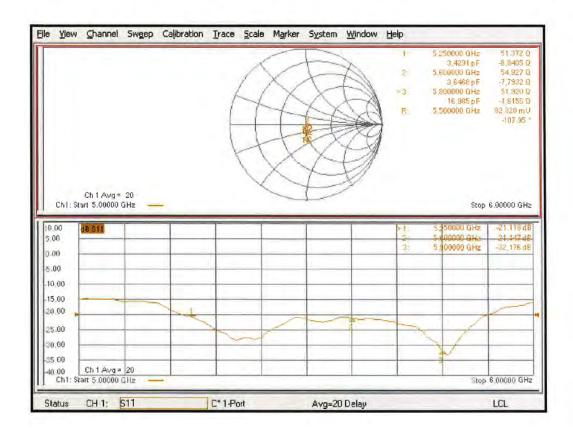
Smallest distance from peaks to all points 3 dB below = 7.4 mm

Ratio of SAR at M2 to SAR at M1 = 66.5%

Maximum value of SAR (measured) = 19.8 W/kg

0 dB = 19.8 W/kg = 12.97 dBW/kg

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN Telephone: +81 463 50 6400 / Facsimile: +81 463 50 6401


Test report No. : 14033664S-A-R1 Page : 73 of 76

Issued date : December 24, 2021

FCC ID : AZDWM01B

Appendix 3-10: Calibration certificate: Dipole (D5GHzV2) (cont'd)

Impedance Measurement Plot for Head TSL

Certificate No: D5GHzV2-1070_Apr21

Page 10 of 13

Test report No. : 14033664S-A-R1
Page : 74 of 76
Issued date : December 24, 2021

FCC ID : AZDWM01B

Appendix 3-10: Calibration certificate: Dipole (D5GHzV2) (cont'd)

DASY5 Validation Report for Body TSL

Date: 19.04.202

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1070

Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz

Medium parameters used: f=5250 MHz; $\sigma=5.51$ S/m; $\epsilon_r=48.7;$ $\rho=1000$ kg/m 3 , Medium parameters used: f=5600 MHz; $\sigma=6$ S/m; $\epsilon_r=48.1;$ $\rho=1000$ kg/m 3 , Medium parameters used: f=5750 MHz; $\sigma=6.21$ S/m; $\epsilon_r=47.8;$ $\rho=1000$ kg/m 3

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.26, 5.26, 5.26) @ 5250 MHz, ConvF(4.79, 4.79, 4.79) @ 5600 MHz, ConvF(4.66, 4.66, 4.66) @ 5750 MHz; Calibrated: 30.12.2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.11.2020
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 67.14 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 28.9 W/kg

SAR(1 g) = 7.50 W/kg; SAR(10 g) = 2.08 W/kg

Smallest distance from peaks to all points 3 dB below = 6.9 mm

Ratio of SAR at M2 to SAR at M1 = 66.1%

Maximum value of SAR (measured) = 17.2 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 67.13 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 34.0 W/kg

SAR(1 g) = 7.96 W/kg; SAR(10 g) = 2.18 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

Ratio of SAR at M2 to SAR at M1 = 63.2%

Maximum value of SAR (measured) = 19.0 W/kg

Certificate No: D5GHzV2-1070_Apr21

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Telephone: +81 463 50 6400 / Facsimile: +81 463 50 6401

Test report No. : 14033664S-A-R1 Page : 75 of 76

Issued date : December 24, 2021

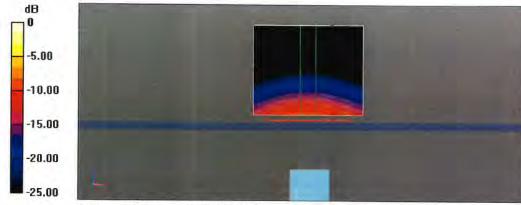
FCC ID : AZDWM01B

Appendix 3-10: Calibration certificate: Dipole (D5GHzV2) (cont'd)

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 65.86 V/m; Power Drift = -0.04 dB


Peak SAR (extrapolated) = 34.0 W/kg

SAR(1 g) = 7.53 W/kg; SAR(10 g) = 2.09 W/kg

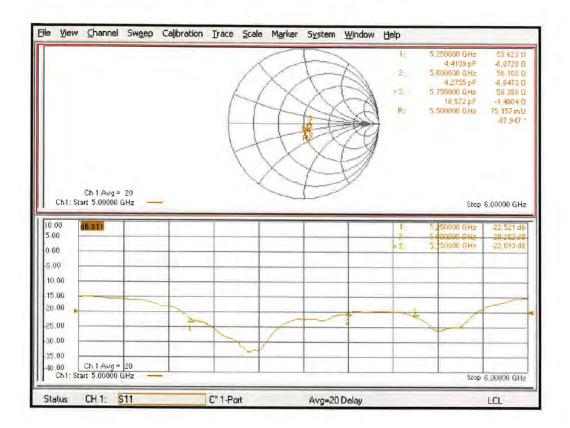
Smallest distance from peaks to all points 3 dB below = 6.8 mm

Ratio of SAR at M2 to SAR at M1 = 62.6%

Maximum value of SAR (measured) = 18.6 W/kg

0 dB = 19.0 W/kg = 12.78 dBW/kg

Test report No. : 14033664S-A-R1


Page : 76 of 76 (End of Report)

Issued date : December 24, 2021

FCC ID : AZDWM01B

Appendix 3-10: Calibration certificate: Dipole (D5GHzV2) (cont'd)

Impedance Measurement Plot for Body TSL

Certificate No: D5GHzV2-1070_Apr21

Page 13 of 13