

RADIO TEST REPORT

Test Report No. : 11259492S-D-R1

Applicant	:	Canon Inc.
Type of Equipment	:	Wireless LAN Module
Model No.	:	K30374
FCC ID	:	AZDK30374
Test regulation	:	FCC Part 15 Subpart E: 2016 Section 15.407(DFS test only)
Test Result	:	Complied

1. This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.

- 2. The results in this report apply only to the sample tested.
- 3. This sample tested is in compliance with the limits of the above regulation.
- 4. The test results in this test report are traceable to the national or international standards.
- 5. This test report must not be used by the customer to claim product certification, approval, or endorsement by any agency of the Federal Government.
- 6. The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan has been accredited.
- 7. This test report covers Radio technical requirements.
- It does not cover administrative issues such as Manual or non-Radio test related Requirements. (if applicable) 8. This report is a revised version of 11259492S-D. 11259492S-D is replaced with this report.

Date of test :

Representative test engineer:

August 24, 2016 Λ

Yosuke Ishikawa Engineer Consumer Technology Division

Approved by :

Akio Hayashi Leader Consumer Technology Division

The testing in which "Non-accreditation" is displayed is outside the accreditation scopes in UL Japan. There is no testing item of "Non-accreditation".

UL Japan, Inc. Shonan EMC Lab. 1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN Telephone: +81 463 50 6400 Facsimile: +81 463 50 6401

13-EM-F0429

REVISION HISTORY

Original Test Report No.: 11259492S-D

Revision	Test report No.	Date	Page revised	Contents
- (Original) 1	11259492S-D	October 19, 2016	-	-
1	11259492S-D-R1	November 4, 2016	4	Correction of Section 2.2

CONTENTS

PAGE

SECTION 1: Customer information	4
SECTION 2: Equipment under test (E.U.T.)	4
SECTION 3: Scope of Report	5
SECTION 4: Test specification, procedures & results	5
SECTION 5: Operation of E.U.T. during testing	
SECTION 6: In-Service Monitoring for Channel Move Time, Channel Closing Trans Time	
SECTION 7: In-Service Monitoring for Non-Occupancy Period	17
APPENDIX 2: Test instruments	19
APPENDIX 3: Photographs of test setup	

 Test report No.
 : 11259492S-D-R1

 Page
 : 4 of 20

 Issued date
 : November 4, 2016

 FCC ID
 : AZDK30374

SECTION 1: Customer information

Company Name :	Canon Inc.
Address :	3-451 Tsukakoshi, Saiwai-ku, Kawasaki, kanagawa 212-8530 Japan
Telephone Number :	+81-3-3758-2111
Contact Person :	Haruyuki Yanagi

SECTION 2: Equipment under test (E.U.T.)

2.1 Identification of E.U.T.

Type of Equipment	:	Wireless LAN Module
Model Number	:	K30374
Serial Number	:	Refer to Section 5.2
Rating	:	DC 3.3 V
Country of Mass-production	:	Thailand
Condition of EUT		Engineering prototype
	•	(Not for Sale: This sample is equivalent to mass-produced items.)
Receipt Date of Sample	:	July 30, 2016
Modification of EUT	:	No modification by the test lab.

2.2 **Product description**

Model: K30374 (referred to as the EUT in this report) is a Wireless LAN Module.

Clock frequency(ies) in the system	:	40 MHz,
<radio part=""></radio>		

< R adio part>	
Equipment type	: Transceiver

Radio Specification

Type of radio	IEEE802.11b	IEEE802.11g	IEEE802.11a	IEEE802.11n	IEEE802.11n
				(20 M band)	(40 M band)
Frequency	2412 MHz - 2462 MHz	2412 MHz - 2462 MHz	5180 MHz - 5240 MHz	2412 MHz - 2462 MHz	2422 MHz - 2452 MHz
of operation			5260 MHz - 5320 MHz	5180 MHz - 5240 MHz	5510 MHz - 5670 MHz
			5500 MHz - 5700 MHz	5260 MHz - 5320 MHz	5755 MHz - 5795 MHz
			5745 MHz - 5825 MHz	5500 MHz - 5700 MHz	5755 MHz - 5825 MHz
				5745 MHz - 5825 MHz	
Type of	DSSS	OFDM-CCK	OFDM		
modulation	(CCK, DQPSK,	(64QAM, 16QAM,	(64QAM, 16QAM, QPSF	K, BPSK)	
	DBPSK)	QPSK, BPSK)			
Channel spacing	5 MHz		20 MHz	2.4 GHz band	2.4 GHz band
				5 MHz	5 MHz
				5 GHz band	5 GHz band
				20 MHz	40 MHz
Antenna Gain	-1.69 dBi (2.4 GHz),				
	-3.73 dBi (5 GHz) (W52,W53)				
	-2.22 dBi (5 GH2) (W56,W58)				
Antenna type	Inverted-L antenna				

FCC Part 15.31 (e)

The host device provides stable voltage (DC 3.3 V) constantly to RF Module regardless of input voltage. Therefore, this EUT complies with the requirement.

FCC Part 15.203/212 Antenna requirement

The antenna is not removable from the EUT. Therefore, the equipment complies with the antenna requirement of Section 15.203.

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN Telephone: +81 463 50 6400 Facsimile: +81 463 50 6401

SECTION 3: Scope of Report

The EUT has the channels from 5180 MHz to 5320 MHz, 5500 MHz to 5700MHz and 5745 MHz to 5825 MHz. This report only covers DFS requirement subject to 5250 MHz to 5350 MHz and 5500 MHz to 5700 MHz bands, as specified by the following referenced procedures.

SECTION 4: Test specification, procedures & results

4.1 Test Specification

Test specification	:	FCC Part 15 Subpart E: 2016, final revised on April 6, 2016
Title	:	FCC 47CFR Part15 Radio Frequency Device Subpart E Unlicensed National Information Infrastructure Devices Section 15.407 General technical requirements
Test Specification Title	:	KDB 905462 D02 v02 COMPLIANCE MEASUREMENT PROCEDURES FOR UNILICENSED -NATIONAL INFORMATION INFRASTRUCTURE DEVICES OPERATING IN THE 5250 - 5350 MHz AND 5470 - 5725 MHz BANDS INCORPORATING DYNAMIC FREQUENCY SELECTION

4.2 Procedures and results

Requirement	Operating Mode Client without Radar Detection	Test Procedures & Limits	Deviation	Results
U-NII Detection Bandwidth	Not required	FCC, KDB 905462 D02 Section 7.8.1	N/A	N/A
Initial Channel Availability Check Time	Not required	FCC15.407 (h)(2) FCC, KDB 905462 D02 Section 7.8.2.1	N/A	N/A
		RSS-210 A9.3		
Radar Burst at the Beginning of the Channel Availability Check Time	Not required	FCC15.407 (h)(2) FCC, KDB 905462 D02 Section 7.8.2.2 RSS-210 A9.3	N/A	N/A
Radar Burst at the End of the Channel Availability Check Time	Not required	FCC15.407 (h)(2) FCC, KDB 905462 D02 Section 7.8.2.3 RSS-210 A9.3	N/A	N/A
In-Service Monitoring for Channel Move Time, Channel Closing Transmission Time	Yes	FCC15.407 (h)(2) FCC, KDB 905462 D02 Section 7.8.3 RSS-210 A9.3	N/A	Complied
In-Service Monitoring for Non-Occupancy period	Yes *	FCC15.407 (h)(2) FCC, KDB 905462 D02 Section 7.8.3 RSS-210 A9.3	N/A	Complied
Statistical Performance Check	Not required	FCC15.407 (h)(2) FCC, KDB 905462 D02 Section 7.8.4	N/A	N/A

Table 2: Applicability of DFS Requirements

*Although this test was not required in FCC, KDB 905462 D02, it was performed as additional test.

Table 3: DFS Detection Thresholds for Master Devices and Client Devices With Radar

Maximum Transmit Power	Value (See Notes 1, 2 and 3)				
$E.I.R.P. \ge 200 \text{ milliwatt}$	-64 dBm				
E.I.R.P. < 200 milliwatt and	-62 dBm				
power spectral density < 10dBm/MHz					
E.I.R.P. < 200 milliwatt that do not meet the power	-64 dBm				
spectral density requirement					
Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna.					
Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test					
transmission waveforms to account for variations in measurement equipment. This will ensure that the test					
signal is at or above the detection threshold level to trigger a DFS response.					
Note 3: E.I.R.P. is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911					
D01.					

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN Telephone: +81 463 50 6400 Facsimile: +81 463 50 6401

Table 4: DFS Response Requirement Values

Parameter	Value
Non-occupancy period	Minimum 30 minutes
Channel Availability Check Time	60 seconds
Channel Move Time	10 seconds
	See Note 1
Channel Closing Transmission Time	200 milliseconds + an aggregate of 60
	milliseconds over remaining 10 second period.
	See Notes 1 and 2
U-NII Detection Bandwidth	Minimum 100 % of the U-NII 99 % transmission
	power bandwidth
	See Note 3
Note 1: The Channel Move Time and the Channel	el Closing Transmission Time should be performed with
Radar Type 0. The measurement timing begins a	t the end of the Radar Type () burst

Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst. **Note 2:** The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signal will not count quiet periods in between transmissions.

Note 3: During the U-NII Detection Bandwidth detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

Table 5 Short Pulse Radar Test Waveform

Radar Type	Pulse Width [µs]	PRI [µs]	Number of Pulses	Minimum Percentage of Successful Detection	Minimum Number of Traials
0	1	1428	18	See Note 1	See Note 1
1	1	Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5aTest B: 15 unique PRI values randomly selected within the range of 518 - 3066 micro sec., with a minimum increment of 1 micro sec., excluding PRI values selected in Test A	Roundup ((1 / 360) x ((19 x 10^6) / PRI [micro sec.]))	60 %	30
2	1 - 5	150 - 230	23 - 29	60 %	30
3	6 - 10	200 - 500	16 - 18	60 %	30
4	11 - 20	200 - 500	12 - 16	60 %	30
Aggregate (Rade	Types 1-4)			80 %	120

Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth test, channel move time, and channel closing time tests.

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN Telephone: +81 463 50 6400 Facsimile: +81 463 50 6401

Pulse Repetition Frequency Number	Pulse Repetition Frequency (Pulses Per Second)	Pulse Repetition Interval (Micro seconds)
1	1930.5	518
2	1858.7	538
3	1792.1	558
4	1730.1	578
5	1672.2	598
6	1618.1	618
7	1567.4	638
8	1519.8	658
9	1474.9	678
10	1432.7	698
11	1392.8	718
12	1355	738
13	1319.3	758
14	1285.3	778
15	1253.1	798
16	1222.5	818
17	1193.3	838
18	1165.6	858
19	1139	878
20	1113.6	898
21	1089.3	918
22	1066.1	938
23	326.2	3066

Table 5a Pulse Repetition Interval Values for Test A

Table 6 Long Pulse Radar Test Waveform

Radar Type	Pulse Width [µs]	Chip Width [MHz]	PRI [µs]	Number of Pulses per <i>Burst</i>	Number of <i>Burst</i>	Minimum Percentage of Successful Detection	Minimum Number of Trials
5	50 - 100	5 - 20	1000 - 2000	1 - 3	8 - 20	80 %	30

Table 7 Frequency Hopping Radar Test Waveform

Radar Type	Pulse Width [µs]	PRI [µs]	Pulse per Hop [kHz]	Hopping Rate [kHz]	Hopping Sequence Length [ms]	Minimum Percentage of Successful Detection	Minimum Number of Trials
6	1	333	9	0.333	300	70 %	30

4.3 Test Location

UL Japan, Inc. Shonan EMC Lab.				
1-22-3, Megumigaoka, Hiratsuka-shi, Kanagawa-ken 259-1220 JAPAN				
Telephone number	:	+81 463 50 6400		
Facsimile number	:	+81 463 50 6401		
JAB Accreditation No.	:	RTL02610		

	IC Registration No.	Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	Maximum measurement distance
□ No.1 Semi-anechoic chamber	2973D-1	20.6 x 11.3 x 7.65	20.6 x 11.3	10 m
□ No.2 Semi-anechoic chamber	2973D-2	20.6 x 11.3 x 7.65	20.6 x 11.3	10 m
□ No.3 Semi-anechoic chamber	2973D-3	12.7 x 7.7 x 5.35	12.7 x 7.7	5 m
□ No.4 Semi-anechoic chamber	-	8.1 x 5.1 x 3.55	8.1 x 5.1	-
□ No.1 Shielded room	-	6.8 x 4.1 x 2.7	6.8 x 4.1	-
□ No.2 Shielded room	-	6.8 x 4.1 x 2.7	6.8 x 4.1	-
□ No.3 Shielded room	-	6.3 x 4.7 x 2.7	6.3 x 4.7	-
□ No.4 Shielded room	-	4.4 x 4.7 x 2.7	4.4 x 4.7	-
☑ No.5 Shielded room	-	7.8 x 6.4 x 2.7	7.8 x 6.4	-
□ No.6 Shielded room	-	7.8 x 6.4 x 2.7	7.8 x 6.4	-
□ No.8 shielded room	-	3.45 x 5.5 x 2.4	3.45 x 5.5	-
□ No.1 Measurement room	-	2.55 x 4.1 x 2.5	-	-

4.4 Uncertainty

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor k = 2.

Time Measurement uncertainty for this test was: (±) 0.012 %

4.5 Test set up, Data of DFS test, and Test instruments of DFS

Refer to APPENDIX.

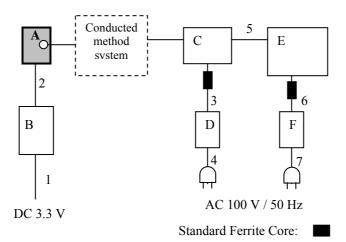
Test report No.	: 11259492S-D-R1
Page	: 10 of 20
Issued date	: November 4, 2016
FCC ID	: AZDK30374

SECTION 5: Operation of E.U.T. during testing

5.1 Operating Modes

The EUT, which is a Client Device without Radar detection capability, operates over the 5260 MHz - 5320 MHz and 5500 MHz - 5700 MHz.

The EUT uses one transmitter connected to a 50 ohm coaxial antenna ports. The antenna port is connected to the test system.


WLAN traffic is generated by transmitting random ping from the Master to the Client. (Channel loading was over 17%)

The EUT utilizes the 802.11a and 802.11n architecture, with a nominal channel bandwidth. The EUT had used IEEE 802.11n (HT40) (widest mode) and IEEE 802.11a.

The FCC ID for the Master Device used with EUT for DFS testing is LDK102073.

The rated output power of the Master unit is > 200 mW(23 dBm). Therefore the required interference threshold level is -64 dBm. After correction for antenna gain and procedural adjustments, the required conducted threshold at the antenna port is -64 + 1 + 3.5 = -59.5 dBm (threshold level + additional 1 dB + antenna gain).

5.2 Configuration and peripherals

Description of EUT and Support equipment

No.	Item	Model number	Serial number	Manufacturer	Remarks
А	WLAN Module	K30374	A135	Canon Inc,	EUT
В	Jig board	-	-	Canon Inc,	-
С	Wireless LAN access point (Master Device)	AIR-AP1262N-A-K9	FTX1619E5EZ	Cisco Systems	FCC ID: LDK102073
D	AC Adapter	EADP-18MB	DAB1528MANP	Cisco Systems	-
Е	Personal Computer	DELL LATITUDE D530 (PP17L)	29090510205	CN-0HP728-48643- 83R-0675	-
F	AC Adapter	FA65NS0-00	CN-0YT886 73245-83R-2744	Dell	-

List of cables used

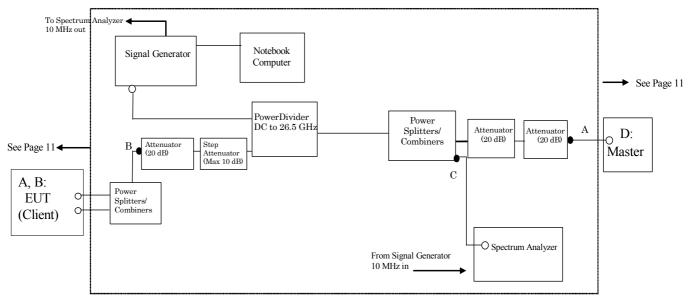
No.	Cable Name	Length (m)	Shield	
			Cable	Connector
1	DC cable	0.5	Unshielded	Unshielded
2	Flat cable	0.2	Unshielded	Unshielded
3	Access Point DC Power	1.8	Unshielded	Unshielded
4	Access Point AC Power	2.0	Unshielded	Unshielded
5	LAN	3.0	Unshielded	Unshielded
6	DELL PC DC Power	1.8	Unshielded	Unshielded
7	DELL PC AC Power	0.7	Unshielded	Unshielded

5.3 Test and Measurement System

SYSTEM OVERVIEW

The measurement system is based on a conducted test method.

The software selects waveform parameters from within the bounds of the signal type on a random basis using uniform distribution. The short pulse types 2, 3, and 4, the long pulse type 5, and the frequency hopping type 6 parameters are randomized at run-time.


The signal monitoring equipment consists of a spectrum analyzer with the capacity to display 8001 bins on the horizontal axis. A time-domain resolution of 2 ms/bin is achievable with a 16 seconds sweep time, meeting the 10 seconds short pulse reporting criteria. The aggregate ON time is calculated by multiplying the number of bins above a threshold during a particular observation period by the dwell time per bin, with the analyzer set to peak detection. A time-domain resolution of 3 ms/bin is achievable with a 24 seconds sweep time, meeting the 22 seconds long pulse reporting criteria and allowing a minimum of 10 seconds after the end of the long pulse waveform.

FREQUENCY HOPPING RADAR WAVEFORM GENERATING SUBSYSTEM

The first 100 frequencies are selected out of the hopping sequence of the randomized 475 hop frequencies. Only a *Burst* that has the frequency falling within the receiver bandwidth of the tested U-NII device is selected among those frequencies. (Frequency-domain simulation). The radar waveform generated at the start time of the selected *Burst* (Time-domain simulation) is download to the Signal Generator.

If all of the randomly selected 100 frequencies do not fall within the receiver bandwidth of the U-NII device, the radar waveform is not used for the test.

CONDUCTED METHODS SYSTEM BLOCK DIAGRM

MEASUREMENT SYSTEM FREQUENCY REFERENCE

Lock the signal generator and the spectrum analyzer to the same reference sources as follows: Connect the 10 MHz OUT on the signal generator to the 10 MHz IN on the spectrum analyzer and set the spectrum analyzer 10 MHz In to On.

SYSTEM CALIBRATION

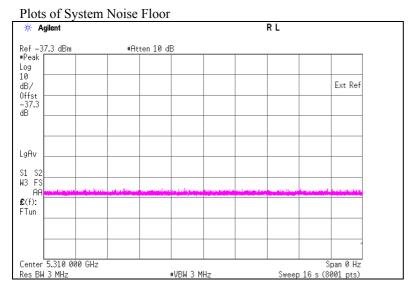
Step 1: Set the system as shown in Figure 3 of FCC 06-96 7.2.1.

Step 2: Adjust each attenuator to fulfill the following three conditions:

- WLAN can be communicated, and
 - Rader detection threshold level is bigger than Client Device traffic level on the spectrum analyzer, and
 - Master Device traffic level is not displayed on the spectrum analyzer.

Step 3: Terminate 50 ohm at B and C points, and connect the spectrum analyzer to the point A.

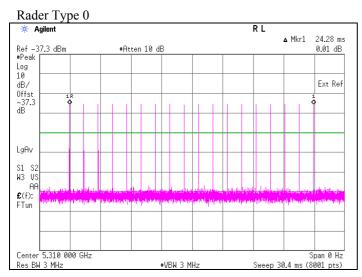
(See the figure on page 12)

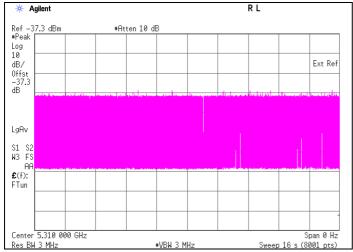

At the point A, adjust the signal generator and spectrum analyzer to the center frequency of the channel to be measured. Download the applicable radar waveforms to the signal generator. Select the radar waveform, trigger a burst manually and measure the amplitude on the spectrum analyzer. Readjust the amplitude of the signal generator as required so that the peak level of the waveform is at a displayed level equal to the required or desired interference detection threshold. Separate signal generator amplitude settings are determined as required for each radar type.

Step 4: Without changing any of the instrument settings, restore the system setting to Step 2 and adjust the Reference Level Offset of the spectrum analyzer to the level at Step 3.

By taking the above steps 1 to 4, the spectrum analyzer displays the level of the signal generator as received at the antenna ports of the Master Device.

See Clause 5.4 for Plots of Noise, Rader Waveforms, and WLAN signals.


5.4 Plots of Noise, Rader Waveforms, and WLAN signals


It was confirmed that the EUT did not transmit before having received appropriate control signals from a Master Device.

Test report No.	: 11259492S-D-R1
Page	: 14 of 20
Issued date	: November 4, 2016
FCC ID	: AZDK30374

Plots of Radar Waveforms

Plots of WLAN Traffic

Test report No. Page Issued date FCC ID	: 11259492S-D-R1 : 15 of 20 : November 4, 2016 : AZDK30374

<u>SECTION 6:</u> In-Service Monitoring for Channel Move Time, Channel Closing Transmission <u>Time</u>

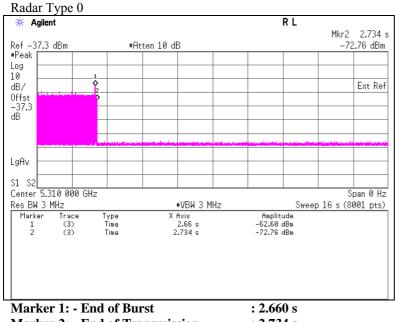
6.1 Operating environment

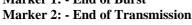
Test place	: No.5 Shielded room
Temperature	: 26 deg.C
Humidity	: 42 %RH

6.2 Test Procedure

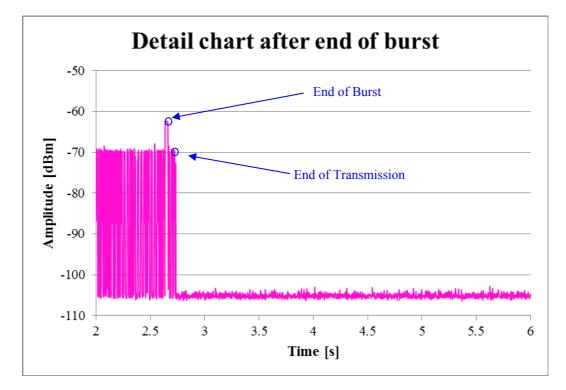
Transfer files from the Master Device to the Client Device on the tested channel during the entire period of the test. The Radar Waveform generator sends a Burst of pulses for one of the Short Pulse Radar Types 1 - 4 at levels defined, on the Operating Channel. An additional 1 dB is added to the radar test signal to ensure it is at or above the DFS Detection Threshold, accounting for equipment variations/errors.

Observe the transmissions of the EUT at the end of the radar Burst on the Operating Channel for duration greater than 10 seconds.


6.3 Test data


Test Item	Unit	Measurement Time	Limit	Results
Channel Move Time *1)	[s]	0.074	10.000	Pass
Channel Closing				
Transmission Time *2)	[ms]	0	60	Pass

*1) Channel Move Time is calculated as follows: (Channel Move Time) = (End of Transmission) - (End of Burst) = 2.734 - 2.660


*2) Channel Closing Transmission Time is calculated from (End of Burst + 200 ms) to (End of Burst + 10 s) (Channel Closing Transmission Time) = (Number of analyzer bins showing transmission) x (dwell time per bin) = 0 x 2 [ms]

Test report No.	: 11259492S-D-R1
Page	: 16 of 20
Issued date	: November 4, 2016
FCC ID	: AZDK30374

: 2.734 s

6.4 Test result

Test result: Pass

Date : August 24, 2016 Test engineer : Yosuke Ishikawa

UL Japan, Inc. Shonan EMC Lab. 1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN Telephone: +81 463 50 6400 Facsimile: +81 463 50 6401

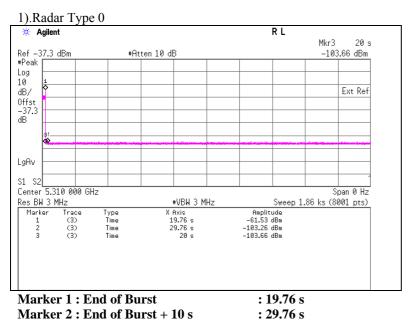
: 11259492S-D-R1
: 17 of 20
: November 4, 2016
: AZDK30374

SECTION 7: In-Service Monitoring for Non-Occupancy Period

7.1 Operating environment

Test place	: No.5 Shielded room
Temperature	: 26 deg.C
Humidity	: 42 %RH

7.2 Test Procedure


The following two tests are performed:

1). Transfer files from the Master Device to the Client Device on the tested channel during the entire period of the test. The Radar Waveform generator sends a Burst of pulses for one of the Radar Types 1 - 6 at levels defined on the Operating Channel. An additional 1 dB is added to the radar test signal to ensure it is at or above the DFS Detection Threshold, accounting for equipment variations/errors.

Observe the transmissions of the EUT after the Channel Move Time on the Operating Channel for duration greater than 30 minutes.

2). Transfer files from the Master Device to the Client Device on the tested channel during the entire period of the test. Observe the transmissions of the EUT on the Operating Channel for duration greater than 30 minutes after the Master Device is shut off.

7.3 Test data

* Measurement non-occupancy period: 30.46 minutes or more (1860 [s] - 29.76 [s] = 1830.24 [s] = 30.504 [minutes])

Test report No.	: 11259492S-D-R1
Page	: 18 of 20
Issued date	: November 4, 2016
FCC ID	: AZDK30374

2).Master is shut off * Agilent R L Ref -37.3 dBm *Atten 10 dB **Peak Log 10 dB/ Offst dB LgAv \$1 \$2 \$3 \$2 \$4 \$5 AA C(f): FTun Center 5.310 000 GHz Res BW 3 MHz *VBW 3 MHz \$2 \$9 \$000 GHz \$2 \$9 \$000 GHz

* Non-occupancy period is above 30 [minutes]

7.4 Test result

Test result: Pass

Date : August 24, 2016

Test engineer : Yosuke Ishikawa

: 11259492S-D-R1
: 19 of 20
: November 4, 2016
: AZDK30374

APPENDIX 2: Test instruments

EMI Test Equipment

Control No.	Instrument	Manufacturer	Model No	Serial No	Test Item	Calibration Date * Interval(month)
SSA-02	Spectrum Analyzer	Agilent	E4448A	MY48250106	DFS	2016/03/23 * 12
SSG-01	Signal Generator	Agilent	E4438C	MY47271584	DFS	2016/03/24 * 12
SAT10-06	Attenuator	Agilent	8493C-010	74865	DFS	2015/11/04 * 12
SAT20-03	Attenuator	Agilent	8493C-020	74891	DFS	2016/03/08 * 12
SAT20-05	Attenuator	Weinschel Corp.	54A-20	Y5649	DFS	2015/11/04 * 12
SAT10-S1	Step Attenuator	TAGAWA ELECTRONICS CO., LTD.	SRA-0110A	3010974	DFS	2016/08/02 * 12
SCC-G11	Coaxial Cable	Suhner	SUCOFLEX 102	31595/2	DFS	2016/03/23 * 12
SCC-G12	Coaxial Cable	Suhner	SUCOFLEX 102	30790/2	DFS	2016/03/23 * 12
SCC-G13	Coaxial Cable	Suhner	SUCOFLEX 102	31599/2	DFS	2016/03/23 * 12
SCC-G31	Coaxial Cable	Junkosha	MWX241-01000KM SKMS	OCT-08-13-04 6	DFS	2016/04/18 * 12
SPSC-02	Power Splitters/Combiners	Mini-Circuits	ZFSC-2-10G+	-	DFS	2016/04/18 * 12
SPD-01	Power Divider	Agilent	11636B	56998	DFS	2016/04/18 * 12
STM-G3	Terminator	Weinschel	M1459A	U6569	DFS	2016/07/27 * 12
STM-G4	Terminator	Weinschel	M1459A	U6592	DFS	2016/07/27 * 12
STM-G5	Terminator	Weinschel	M1459A	U6594	DFS	2016/07/27 * 12
SOS-09	Humidity Indicator	A&D	AD-5681	4061484	DFS	2015/12/07 * 12

The expiration date of the calibration is the end of the expired month.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

Test Item:

DFS: Dynamic Frequency Selection