RF Exposure / MPE Calculation

No.	14615663 S
Customer	Canon Inc.
Description of EUT	Wireless LAN Module
Model Number of EUT	FM3-L998
FCC ID	AZDFM3L998

Canon Inc. declares that Model: FM3-L998 complies with FCC radiation exposure requirement specified in the FCC Rule 2.1091 (for mobile).

RF Exposure Calculations:

The following information provides the minimum separation distance for the highest gain antenna provided with the "FM3-L998" as calculated from (B) Limits for General Population / Uncontrolled Exposure of TABLE 1- LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE) of § 1.1310 Radiofrequency radiation exposure limits.

[WLAN 2.4 GHz band part]

This calculation is based on the highest EIRP possible from the system, considering maximum power and antenna gain, and considering a $1 \mathrm{~mW} / \mathrm{cm}^{\wedge} 2$ uncontrolled exposure limit. The Friis formula used was:

Where $\quad S=\frac{P \times G}{4 \times \pi \times r^{2}}$
$P=\quad 23.15 \mathrm{~mW}$ (Maximum average output power)
\square Time average was used for the above value in consideration of 6-minutes time-averaging
\square Burst power average was used for the above value in consideration of worst condition.
$G=\quad 1.782$ Numerical Antenna gain; equal to 2.51 dBi
$r=\quad 20 \mathrm{~cm}$ (Separation distance)

Power Density Result $S=0.00821 \mathrm{~mW} / \mathrm{cm}^{2}$

[WLAN 5 GHz band part]

This calculation is based on the highest EIRP possible from the system, considering maximum power and antenna gain, and considering a $1 \mathrm{~mW} / \mathrm{cm}^{\wedge} 2$ uncontrolled exposure limit. The Friis formula used was:

$$
S=\frac{P \times G}{4 \times \pi \times r^{2}}
$$

Where
$P=\quad 25.72 \mathrm{~mW}$ (Maximum average output power)
$\square \quad$ average was used for the above value in consideration of 6-minutes time-ave
\square
$G=$
power average was used for the above value in
$r=$
$r=\quad 20 \mathrm{~cm}$ (Separation distance)

Power Density Result $S=0.01377 \mathbf{m W} / \mathrm{cm}^{2}$

