

Test report No. : 10005570S-A
Page : 1 of 42
Issued date : May 27, 2013
Revised date : June 6, 2013 (-R01)

FCC ID : AZD401

SAR TEST REPORT

Test Report No.: 10005570S-A

Applicant : Canon Inc.

Type of Equipment : Wireless Module

Model No. : RF401 (*. Installed into the RF401's platform (1))

FCC ID : AZD401

Test Standard : FCC 47CFR §2.1093,

Supplement C (Edition 01-01) to OET Bulletin 65

Test Result : Complied

Highest Reported SAR(1g) Value	Platform#	Platform type	Platform model	Remarks
< 0.1 W/kg	Platform (1)	Digital Video Camcorder (1)	ID0032	(DTS) 2437MHz, IEEE 802.11n(40HT), (MCS0, BPSK/OFDM)) *. Highest measured SAR(1g) value: 0.042 W/kg

*. Highest reported SAR (1g) across exposure conditions for a platform (1) = "<0.1 W/kg" = grant listing.

- *. Since highest reported SAR (1g) on the platform (1) which obtained in accordance with KDB447498 (v05) was under 0.8 W/kg, this EUT was approved to operate on multi-platform.
- 1. This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- 2. The results in this report apply only to the sample tested.
- 3. This sample tested is in compliance with the limits of the above regulation.
- 4. The test results in this test report are traceable to the national or international standards.
- This test report must not be used by the customer to claim product certification, approval, or endorsement by any agency of the Federal Government.
- The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan has been accredited.

Date of test: May 16, 2013

Test engineer: 74. hakar.

Hiroshi Naka

Engineer of WiSE Japan, UL Verification Service

Approved by: \(\) \(\int \) mamura

Toyokazu Imamura

Leader of WiSE Japan, UL Verification Service

The testing in which "Non-accreditation" is displayed is outside the accreditation scopes in UL Japan.

There is no testing item of "Non-accreditation"

Test report No. : 10005570S-A
Page : 2 of 42
Issued date : May 27, 2013
Revised date : June 6, 2013 (-R01)

FCC ID : AZD401

REVISION HISTORY

Revision	Test report No.	Date	Page revised	Contents
Original	10005570S-A	May 27, 2013	-	-
-R01	10005570S-A	June 6, 2013	1,2,11,12	(P11) Antenna separation distance was illustrated. (P1,2,12) Related change of P11.

*. By issue of new revision report, the report of an old revision becomes invalid.

CONTENTS		PAGE
REVISION HISTO	RY	2 (-R01)
CONTENTS		
SECTION 1:	Customer information	3
SECTION 2:	Equipment under test (EUT)	
2.1	Identification of EUT	3
2.2	Product Description.	
2.3	Tx output power specification (antenna port terminal conducted)	
2.4	Maximum output power which may possible	
SECTION 3:	Test specification, procedures and results	5
3.1	Test specification.	
3.2	Exposure limit	
3.3	Procedure and result	5
3.4	Test location	5
3.5	Confirmation before SAR testing	
3.6	Confirmation after SAR testing.	
3.7	Test setup of EUT and SAR measurement procedure	
SECTION 4:	Operation of EUT during testing	7
SECTION 5:	Uncertainty assessment (SAR measurement)	8
SECTION 6:	Confirmation before testing	9
6.1	Assessment for the conducted power of EUT	9
SECTION 7:	Measurement results	
7.1	SAR test results of Platform (1)	
Contents of app	pendixes	
APPENDIX 1:	Photographs of test setup	11
Appendix 1-1	Photograph of Platform (1)	
Appendix 1-2	EUT and support equipment	12(-R01
Appendix 1-3	Photograph of test setup / Platform (1)	
APPENDIX 2:	SAR Measurement data	
Appendix 2-1	Evaluation procedure	
Appendix 2-2	Measurement data / Platform (1)	16
APPENDIX 3:	Test instruments	
Appendix 3-1	Equipment used	
Appendix 3-2	Configuration and peripherals	20
Appendix 3-3	Test system specification	
Appendix 3-4	Simulated tissues composition and parameter confirmation	22
Appendix 3-5	Daily check data	22
Appendix 3-6	Daily check measurement data	23
Appendix 3-7	Daily check uncertainty	23
Appendix 3-8	Calibration certificate: E-Field Probe (EX3DV4)	
Appendix 3-9	Calibration certificate: Dipole (D2450V2)	35

Test report No. : 10005570S-A Page : 3 of 42 Issued date : May 27, 2013

FCC ID : AZD401

SECTION 1: Customer information

Company Name	Canon Inc.
Brand Name	Canon
Address	30-2, Shimomaruko 3-chome, Ohta-ku, Tokyo 146-8501 Japan
Telephone Number	+81-3-5482-8070
Facsimile Number	+81-3-3757-8431
Contact Person	Yasushi Sasaki

SECTION 2: Equipment under test (EUT)

2.1 Identification of EUT

Type of Equipment	Wireless Module
Model Number	RF401
Serial Number	E80357
Condition of EUT	RF401: Production prototype (*. Not for sale: This sample is equivalent to mass-produced items.) *. Used platform (Platform (1): Digital video camcorder (1), model: ID0032): Production prototype (*. Not for sale: This sample is equivalent to mass-produced items.)
Receipt Date of Sample	May 5, 2013 (*. EUT for the power measurement.)
	May 16, 2013 (*. EUT for the SAR test. The EUT that had been measured the power of SAR test reference, was installed into the Platform (1)-Digital video camcorder (1) from the beginning.) *. After power measurement, the EUT was returned to the customer, and the RF wiring was changed to the original antenna line form the antenna conducted power measurement line of the SAR test. The EUT was installed into a Platform (1) which SAR tested, by the customer. *. No modification by the Lab.
Country of Mass-production	RF401: Philippines (*. Used platform (1): China)
Category Identified	Portable device *. Since EUT may contact and/or very close to a human body during Wi-Fi operation, the partial-body SAR (1g) shall be observed.
Rating	DC3.3V supplied form the platform equipment. *. The EUT is installed to the specified platform that was operated by either the re-chargeable Li-ion battery or ac adaptor. Since the battery operation showed smaller SAR, the platform which had built-in EUT was operated by an ac adaptor.
Feature of EUT	The EUT is a Wireless Module which installs into the multi-platform.
SAR Accessory	None

2.2 Product Description (Wireless module: RF401)

Equipment type	Transceiver								
Frequency of operation	2412-2462MHz (11b,11g,,11n(20HT)), 2422-24	52MHz (11n(40HT))							
Channel spacing	5MHz								
Bandwidth	20MHz(11b,11g,,11n(20HT)), 40MHz(11n(40H	TT))							
ITU code	G1D, D1D								
Type of modulation	DSSS(11b): CCK, DQPSK, DBPSK								
	OFDM(11g,11n(20HT),11n(40HT)): 64QAM, 1	6QAM, QPSK, BPSK							
Q'ty of Antenna	1 pc.								
Antenna type	Monopole type chip antenna								
Antenna gain (peak)	-0.94dBi								
	11b: 12dBm ±2.5dBm	11g: 12dBm ±2.5dBm							
Transmit power and tolerance	11n(20HT): 12dBm ±2.5dBm	11n(40HT): 12dBm ±2.5dBm							
(Manufacture variation)	*. Refer to clause 2.3 for more detail.								
	*. The measured Tx output power (conducted)	refers to section 6 in this report.							
M : 1:1	11b: 14.5dBm	11g: 14.5dBm							
Maximum output power which	11n(20HT): 14.5dBm	11n(40HT): 14.5dBm							
may possible	*. Refer to clause 2.4 for more detail.								
Power supply	DC 3.3V (*. The power of DC3.3V is supplied fr	rom the platform via constant voltage circuit.)							
Operation temperature range	-20 to +85 deg.C								

^{*.} The EUT do not use the special transmitting technique such as "beam-forming" and "time-space code diversity."

Test report No. : 10005570S-A Page : 4 of 42 Issued date : May 27, 2013

FCC ID : AZD401

2.3 Tx output power specification (antenna port terminal conducted)

		_									_			_								-							
											Targ	get P	ower	(Tx o	utput	powe	r spec	ificati	on) [d	Bm] (avera	ge)							
			1	1b					1	lg											11n(2	OHT)							
[MHz]	CH	1	2	5.5	11	6	9	12	18	24	36	48	54	MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7	MCS8	MCS9	MCS10	MCS11	MCS12	MCS13	MCS14	MCS15
2412	1	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	-	-	-	-	-	-	-	-
2417	2	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	i				[-			
2422	3	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	i		-	-	[-	Ī - ·		
2427	4	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	i		-	-	[-	Ī - ·		
2432	5	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	i				Γ	T - '	-	[7
2437	6	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12						- 1	-	
2442	7	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12						- 1	-	
2447	8	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12						1	-	
2452	9	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12				-		1	-	
2457	10	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12				-		1	-	
2462	11	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12								

				Target Power (Tx output power specification) [dBm] (average)														
				11n(40HT)														
[N	(IHz	CH	MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7	MCS8	MCS9	MCS10	MCS11	MCS12	MCS13	MCS14	MCS15
24	422	3	12	12	12	12	12	12	12	12	-				-	-		-
2	427	4	12	12	12	12	12	12	12	12					- 1]	- 1
2	432	5	12	12	12	12	12	12	12	12					- 1]	- 1
2	437	6	12	12	12	12	12	12	12	12					- 1]	- 1
2	442	7	12	12	12	12	12	12	12	12					- 1]	
2	447	8	12	12	12	12	12	12	12	12					- 1]	
2	452	9	12	12	12	12	12	12	12	12						F	1	

2.4. Maximum output power which may possible

					•	•																							
											Max	aimu	m ou	tput p	ower	which	n may	possi	ble [dl	Bm] (a	averaș	ge)							
			11	lb					11	lg											11n(2	OHT)							
[MHz]	CH	1	2	5.5	11	6	9	12	18	24	36	48	54	MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7	MCS8	MCS9	MCS10	MCS11	MCS12	MCS13	MCS14	MCS15
2412	1	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5					-			
2417	2	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5] -]				
2422	3	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5] -]				
2427	4	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5			-	- 1	-	-		
2432	5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5			-	- 1	-	-		
2437	6	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5			-	- 1	-	-		
2442	7	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5] -]				
2447	8	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5] [-] [I		[[:]
2452	9	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5] -]				
2457	10	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5			-] -		-		
2462	11	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	-	-	-	-	-	-	-	-

				Maximum output power which may possible [dBm] (average)														
				11n(40HT)														
[MI	Iz]	CH	MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7	MCS8	MCS9	MCS10	MCS11	MCS12	MCS13	MCS14	MCS15
242	22	3	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	-							
242	27	4	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5								
243	32	5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5								
243	37	6	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5]	
244	12	7	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5]	
244	17	8	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5								
245	52	9	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	-	-	-	-	-	-	-	-

Test report No. : 10005570S-A Page : 5 of 42 Issued date : May 27, 2013

FCC ID : AZD401

SECTION 3: Test specification, procedures and results

Requirements for compliance testing defined by the FCC / Test specification 3.1

The US Federal Communications Commission has released the report and order "Guidelines for Evaluating the Environmental Effects of RF Radiation", ET Docket No. 93-62 in August 1996. The order requires routine SAR evaluation prior to equipment authorization of portable transmitter devices, including portable telephones. For consumer products, the applicable limit is 1.6 mW/g for an uncontrolled environment and 8.0 mW/g for an occupational/controlled environment as recommended by the ANSI/IEEE standard C95.1-1992. According to the Supplement C of OET Bulletin 65 "Evaluating Compliance with FCC Guide-lines for Human Exposure to Radio frequency Electromagnetic Fields", released on Jun 29, 2001 by the FCC, the device should be evaluated at maximum output power (radiated from the antenna) under "worst-case" conditions for normal or intended use, incorporating normal antenna operating positions, device peak performance frequencies and positions for maximum RF energy coupling.

- Specific Absorption Rate (SAR) is a measure of the rate of energy absorption due to exposure to an RF transmitting source (wireless portable device).
- IEEE/ANSI Std. C95.1-1992 limits are used to determine compliance with FCC ET Docket 93-62.

Supplement C (Edition 01-01) to OET Bulletin 65 (Edition 97-01):

Supplement C (Edition 01-01) - Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions

OET Bulletin 65 (Edition 97-01) - Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields

IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques Supplement C

KDB 447498 D01 (v05): General RF exposure guidance In additions;

KDB 865664 D01 (v01): SAR measurement 100MHz to 6GHz

KDB 865664 D01 (v01): SAR measurement procedures for 802.11a/b/g transmitters

SAR measurement procedures for 802.11a/b/g transmitters

In this report, IEC 62209-1:2005 and IEC 62209-2:2010-03 are also considered as reference. The comment is attached to the portion to which IEC 62209-1 and IEC 62209-2 were referred to specially.

3.2 **Exposure limit**

Environments of exposure limit	Whole-Body (averaged over the entire body)	Partial-Body (averaged over any 1g of tissue)	Hands, Wrists, Feet and Ankles (averaged over any 10g of tissue)
(A) Limits for Occupational /Controlled Exposure (W/kg)	0.4	8.0	20.0
(B) Limits for General population /Uncontrolled Exposure (W/kg)	0.08	1.6	4.0

^{*.}Occupational/Controlled Environments: are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

The limit applied in this test report is;

General population / uncontrolled exposure, Partial-Body (averaged over any 1g of tissue) limit: 1.6 W/kg

3.3 **Procedures and Results**

	Wi-Fi (DTS) / in Platform (1)
Test Procedure	FCC OET Bulletin 65, Supplement C
Test i focedure	SAR
Category	FCC 47CFR §2.1093
Results (SAR(1g))	Complied
Reported SAR value (*. Scaled)	< 0.1 W/kg
Measured SAR value	0.040 W/kg
Operation mode	11n(40HT), MCS0, BPSK/OFDM, 2437 MHz (6ch)
Output power (scaled factor)	13.49 dBm (×1.26)

Note: UL Japan's SAR Work Procedures No.13-EM-W0429 and 13-EM-W0430. No addition, deviation nor exclusion has been made from standards

Where this product is built into a new platform, it was verified whether multiplatform conditions can be suited in according with section 2) of 5.2.22 in KDB447498 D01 (v05).

Consideration of the test results: The highest reported SAR (1g) of Platform (1) was kept \leq 0.8W/kg.

Since highest reported SAR (1g) on the platform (1) which obtained in accordance with KDB447498 (v05) was under 0.8 W/kg, this EUT was approved to operate on multi-platform.

3.4 **Test Location**

No.7 shielded room (2.76m (Width) × 3.76m (Depth) × 2.4m (Height)) for SAR testing.

UL Japan, Inc., Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken 259-1220 JAPAN

Telephone number: +81 463 50 6400 / Facsimile number: +81 463 50 6401

UL Japan, Inc. Shonan EMC Lab.

^{*.}General Population/Uncontrolled Environments: are defined as locations where there is the exposure of individuals who have no knowledge or control of their

Test report No. : 10005570S-A Page : 6 of 42 Issued date : May 27, 2013

FCC ID : AZD401

3.5 Confirmation before SAR testing

3.5.1 Correlation of Output Power between EMC and SAR tests

It was checked that the antenna port power was correlated within $0\sim+5\%$ (FCC requirements). The result is shown in Section 6.

Test	Remarks	Serial number
SAR	Before SAR test, the RF wiring for the sample that was actually used for the SAR test, had been switched to the antenna conducted power measurement line from the antenna line, and then the output power was measured. The average and peak power of specified operation mode(s) were measured at default channel. After power measurement, the EUT was returned to the customer. Then, the EUT was installed in a Platform (1) which SAR tested, by the customer. * The power was measured by the calibrated power sensor and power meter (65MHz measurement bandwidth).	E80357
EMC	Before SAR test, the peak power of EUT was measured in order to satisfy an EMC test requirement. The average power that was reference of SAR test was also measured additionally.	E80357

3.5.2 Average power for SAR tests

Step.1 Data rate check

The EUT supported the following data rate in each operation mode.

The output powers related with all data rate were measured for all operation mode at a middle channel.

11b		11g			11n(20	HT)		11n(40	HT)
Modulation	Data rate [Mbps]	Modulation	Data rate [Mbps]	MCS Index	Spatial Stream	Modulation	MCS Index	Spatial Stream	Modulation
DBPSK/DSSS	1	BPSK/OFDM	6	MCS0	1	BPSK/OFDM	MCS0	1	BPSK/OFDM
DQPSK/DSSS	2	BPSK/OFDM	9	MCS1	1	QPSK/OFDM	MCS1	1	QPSK/OFDM
CCK/DSSS	5.5	QPSK/OFDM	12	MCS2	1	QPSK/OFDM	MCS2	1	QPSK/OFDM
CCK/DSSS	11	QPSK/OFDM	18	MCS3	1	16QAM/OFDM	MCS3	1	16QAM/OFDM
		16QAM/OFDM	24	MCS4	1	16QAM/OFDM	MCS4	1	16QAM/OFDM
		16QAM/OFDM	36	MCS5	1	64QAM/OFDM	MCS5	1	64QAM/OFDM
		64QAM/OFDM	48	MCS6	1	64QAM/OFDM	MCS6	1	64QAM/OFDM
		64QAM/OFDM	54	MCS7	1	64QAM/OFDM	MCS7	1	64QAM/OFDM

Step.2 Decision of SAR test channel

The following operation mode, data rate and channels were determined by the SAR reference power measured.

Mode	MHz	Channal	default		SAR te	sted channe	1	Remarks
Mode	NIHZ	Channel	11b/g/n(20HT)	11b	11g	11n(20HT) 11n(40HT)		Kemarks
	2412	1 (*1)	\checkmark	n/a (*3)	n/a (*2)	n/a (*2)		*3. SAR test was only applied to a highest output channel of 11b and
000.44	2422	3						11n(40HT), because the reported SAR (1g) value were less than
802.11	2437	6	\checkmark	#	n/a (*2)	n/a (*2)		0.05W/kg and the peak SAR were less than 0.1W/kg. (KDB248227) *.Since the average powers of higher data rate were less than
b/g/n	2452	9						0.25dB higher than the lowest data rate, SAR test was only applied
	2462	11 (*1)	1	n/a (*3)	n/a (*2)	n/a (*2)		to the lowest data rate. (KDB248227)

 $[\]sqrt{}$ = "default test channels of requested by KDB248227", n/a: SAR test was not applied, # = SAR test was applied.

3.6 Confirmation after SAR testing

It was checked that the power drift [W] is within $\pm 5\%$ in the evaluation procedure of SAR testing. The verification of power drift during the SAR test is that DASY5 system calculates the power drift by measuring the e-filed at the same location at beginning and the end of the scan measurement for each test position.

The result is shown in APPENDIX 2.

*. DASY5 system calculation Power drift value[dB] =20log(Ea)/(Eb) (where, Before SAR testing: Eb[V/m] / After SAR testing: Ea[V/m]) Limit of power drift[W] = ±5%

Power drift limit (X) [dB] = $10\log(P_drift)=10\log(1.05/1)=10\log(1.05)-10\log(1)=0.21dB$ from E-filed relations with power.

S=E×H=E²/ η =P/(4× π ×r²) (η : Space impedance) \rightarrow P=(E²×4× π ×r²)/ η

Therefore, The correlation of power and the E-filed

Power drift limit (X) dB=10log(P_drift)=10log(E_drift)^2=20log(E_drift)

From the above mentioned, the calculated power drift of DASY5 system must be the less than ± 0.21 dB.

^{*1.} Any output power reducing for channel 1 and 11 to meet restricted band requirements was not observed. Therefore channel 1 and 11 was selected for the default channels and SAR test was applied.

^{*2.} Since the target average power of 11g and 11n(20HT) were less than 0.25dB higher than the corresponded 11b power, SAR test was not applied to the 11g and 11n(20HT) mode. (KDB248227)

Test report No. : 10005570S-A Page : 7 of 42 Issued date : May 27, 2013

FCC ID : AZD401

3.7 Test setup of EUT and SAR measurement procedure

After considering the outline of EUT, the SAR test was carried out on the following setup conditions.

*. Refer to Appendix 1 for test setup photographs.

Setup	Explanation of EUT setup position	Antenna to user distance	Applied SAR test?	SAR type
Bottom	The bottom surface of EUT was touched to the Flat phantom.	5.6mm	applied	
Тор	The top surface (LCD side) of EUT was touched to the Flat phantom.	15.6mm	applied	
Left	The left hand grip portion of EUT was touched to the Flat phantom.	15.4mm	applied	Body
Right	The right hand grip portion of EUT was touched to the Flat phantom.	59.6mm	applied	(touch)
Front (Lens)	The left portion on front section (lens side) of EUT was touched to the Flat phantom.	15.3mm	applied	
Rear	The rear surface of EUT was touched to the Flat phantom.	80.3mm	applied	

^{*.} Antenna to user distance: this means the distance from the antenna which is located inside a product to the surface of the product which an operator touches.

By the determined test setup shown above, the SAR test was applied in the following procedures.

ſ	Step 1	Change the positions.
	Step 2	Change the operation mode. (at the worst position.)

^{*.} During SAR test, the radiated power is always monitored by Spectrum Analyzer.

SECTION 4: Operation of EUT during testing

4.1 Operating modes for SAR testing

This EUT has IEEE.802.11b, 11g, 11n(20HT) and 11n(40HT) continuous transmitting modes. The frequency and the modulation used in the SAR testing are shown as a following.

Operation mode	11b (*1)	11g	11n(20HT)	11n(40HT)						
Tx frequency band		2412-2462MHz	2422-2452MHz							
Tested frequency	2412MHz (*1)	- (*2)	- (*2)	2437MHz (*1)						
Modulation	DBPSK/DSSS	- (*2)	- (*2)	BPSK/OFDM						
Data rate	1Mbps (*3)	- (*2)	- (*2)	MCS0 (*3)						
Crest factor	1.0 (100% duty cycle)	- (*2)	- (*2)	1.0 (100% duty cycle)						
Controlled software	During SAR test, the outp	Software title: 168R2151.APP (Version 1.0) During SAR test, the output condition of the transmitter of the EUT was controlled by operation of LCD of the EUT with the exclusive used 168R2151.APP software installed in the EUT.								

^{*1.} SAR test was only applied to a highest output channel of 11b and 11n(40HT), because the reported SAR (1g) value were less than 0.05W/kg and the peak SAR were less than 0.1W/kg. (KDB248227)

^{*.} The LCD of platform was closed position for all setup described in above.

^{*.} Size of EUT: 76 mm (width) × 96 mm (depth) × 22 mm (height) (manufacture's specification, when LCD and stands were closed.)

^{*2.} Since the target average power of 11g and 11n(20HT) were less than 0.25dB higher than the corresponded 11b power, SAR test was not applied to the 11g and 11n(20HT) mode. (KDB248227)

^{*3.} Since the average powers of higher data rate were less than 0.25dB higher than the lowest data rate, SAR test was only applied to the lowest data rate. (KDB248227)

Test report No. : 10005570S-A Page : 8 of 42 Issued date : May 27, 2013

FCC ID : AZD401

SECTION 5: Uncertainty Assessment (SAR measurement)

Uncertainty of SAR measurement(v06)	Under 3	3 GHz
(*. Body tissue, ε & σ tolerance: ≤±5%, Tx:≈100% duty cycle)	1g SAR	10g SAR
Combined measurement uncertainty of the measurement system (k=1)	± 12.5%	± 12.2%
Expanded uncertainty (k=2)	± 25.0%	± 24.4%

	Error Description (Under 3GHz) (v06)	Uncertainty Value	Probability distribution	Divisor	ci (1g)	ci (10g)	ui (1g)	ui (10g)	Vi, veff
Α	Measurement System (DASY5)	, mac	distribution		(15)	(105)	(std. uncertainty)	(std. uncertainty)	
1	Probe Calibration Error	±6.0%	Normal	1	1	1	±6.0 %	±6.0 %	œ
2	Axial isotropy Error	±4.7%	Rectangular	√3	0.7	0.7	±1.9 %	±1.9 %	œ
3	Hemispherical isotropy Error (<5deg, flat phantom)	±9.6%	Rectangular	√3	0.7	0.7	±3.9 %	±3.9 %	œ
4	Boundary effects Error	±1.4%	Rectangular	√3	1	1	±0.8 %	±0.8 %	œ
5	Linearity Error	±4.7%	Rectangular	√3	1	1	±2.7 %	±2.7 %	00
6	Probe modulation response (CW)	±0.0%	Rectangular	√3	1	1	±0.0 %	±0.0 %	∞
7	Sensitivity Error (detection limit)	±1.0%	Rectangular	√3	1	1	±0.6 %	±0.6 %	00
8	Response Time Error (<5ms/100ms wait)	±0.0%	Normal	1	1	1	±0.0 %	±0.0 %	œ
9	Integration Time Error (100% duty cycle)	±0.0%	Rectangular	√3	1	1	±0.0 %	±0.0 %	00
10	Readout Electronics Error(DAE)	±0.3 %	Rectangular	√3	1	1	±0.3 %	±0.3 %	00
11	RF ambient conditions-noise	±3.0%	Rectangular	√3	1	1	±1.7 %	±1.7 %	00
12	RF ambient conditions-reflections	±3.0%	Rectangular	√3	1	1	±1.7 %	±1.7 %	00
13	Probe positioner mechanical tolerance	±1.1%	Rectangular	√3	1	1	±0.6 %	±0.6 %	00
14	Probe Positioning with respect to phantom shell	±2.9 %	Rectangular	√3	1	1	±1.7 %	±1.7 %	00
15	Errors: Extrapol., Interpol. & Integration Algorithms	±1.0%	Rectangular	√3	1	1	±0.6 %	±0.6 %	00
В	Test Sample Related								
16	Test Sample Positioning Error	±5.0%	Normal	1	1	1	±5.0 %	±5.0 %	145
17	Device Holder or Positioner Tolerance	±3.6%	Normal	1	1	1	±3.6 %	±3.6 %	5
18	Test Sample Output Power Drift Error	±5.0%	Rectangular	√3	1	1	±2.9 %	±2.9 %	00
C	Phantom and Setup								
19	Phantom uncertainty (shape, thickness tolerances)	±7.5 %	Rectangular	√3	1	1	±4.3 %	±4.3 %	00
20	Target Liquid Conductivity Tolerance (≤5%)	±5.0%	Rectangular	√3	0.64	0.43	±1.8 %	±1.2 %	8
21	Measurement Liquid Conductivity Error	±2.9 %	Normal	1	0.64	0.43	±1.9 %	±1.2 %	3
22	Target Liquid Permittivity Tolerance (≤5%)	±5.0%	Rectangular	√3	0.6	0.49	±1.7 %	±1.4 %	8
23	Measurement Liquid Permittivity Error	±2.9 %	Normal	1	0.6	0.49	±1.7 %	±1.4 %	3
24	Liquid Conductivity-temp.uncertainty (≤2deg.C.)	±5.2 %	Rectangular	√3	0.78	0.71	±2.3 %	±2.1 %	00
25	Liquid Permittivity-temp.uncertainty (≤2deg.C.)	±0.8 %	Rectangular	√3	0.23	0.26	±0.1 %	±0.1 %	8
	Combined Standard Uncertainty						±12.5%	±12.2 %	479
	Expanded Uncertainty (k=2)						±25.0 %	±24.4 %	

^{*.} This measurement uncertainty budget is suggested by IEEE 1528, IEC 62209-2 and determined by Schmid & Partner Engineering AG (DASY5 Uncertainty Budget).

Test report No. : 10005570S-A : 9 of 42 Page Issued date : May 27, 2013

FCC ID : AZD401

SECTION 6: Confirmation before testing

Assessment for the conducted power of EUT 6.1

6.1.1 SAR reference power data: worst data rate / worst channel determination and Comparison with EMC data

						Av	erage pov	ver		Power	tolerance &	correction		Apply		ower of	
Mode	Freq.	D/R	Cable Loss	Att.	D/F	P/M	Re	sult	PAR	Target &	Deviation	Scaled	≤2 P2	SAR test?		C test 3)	Remarks
WIOGC	[MHz]	[Mbps]	[dB]	[dB]	[dB]	Reading				tolerance	from max	Factor	dB? (Y:	(Y:	Aver.	ΔSAR	Remarks
						[dBm]	[dBm]	[mW]	[dB]	[dBm]	[dB]	[-]	yes)	yes)	[dBm]	[dB]	
	2437	1 1	0.67	10.02	0.00	2.60	13.29	21.3	2.63	12.0 ± 2.5	-1.21	x1.32	Y	- (*1)	13.09	0.20	
1.11	2437 2437	L 	0.67	10.02 10.02	0.00	2.62 2.61	13.31	21.4	2.63	12.0 ± 2.5	-1.19	x1.32 x1.32	Y	- (*2)	13.14	0.17 0.18	
11b	2437	5.5 11	0.67	10.02	0.00	2.59	13.30 13.28	21.4 21.3	2.03	12.0 ± 2.5 12.0 ± 2.5	-1.20 -1.22	x1.32 x1.32	Y Y		13.12 13.08	0.18	
(Pwr.	2412	1	0.67	10.02	0.00	2.89	13.58	22.8	2.62	12.0 ± 2.5 12.0 ± 2.5	-0.92	x1.32	Y	- Y (*1)	13.06	-	Highest ch.(11b)
Setting	2462	1	0.67	10.02	0.00	2.69	13.38	21.8	2.82	12.0 ± 2.5 12.0 ± 2.5	-1.12	x1.24 x1.29	Y	- (*1)	-	-	riignest cn.(116)
=12)	2402	2	0.67	10.02	0.00	2.09	13.58	22.9	2.82	12.0 ± 2.5 12.0 ± 2.5	-0.90	x1.29	Y	-(*1)	13.40	0.20	(vs. EMC data)
	2462	2	0.67	10.02	0.00	2.63	13.32	21.5	2.88	12.0 ± 2.5 12.0 ± 2.5	-1.18	x1.23	Y	-	13.13	0.20	(vs. EMC data)
-	2437	6	0.67	10.02	0.00	2.35	13.04	20.1	9.05	12.0 ± 2.5	-1.16	x1.40	Y	- (*3)	12.90	0.17	(vs. Elvic data)
	2437	9	0.67	10.02	0.00	2.21	12.90	19.5	8.64	12.0 ± 2.5	-1.60	x1.45	Y	-(-)2	12.73	0.17	
11g	2437	12	0.67	10.02	0.00	2.32	13.01	20.0	8.86	12.0 ± 2.5	-1.49	x1.41	Y		12.83	0.18	
(*1)	2437	18	0.67	10.02	0.00	2.32	13.01	20.0	8.44	12.0 ± 2.5	-1.49	x1.41	Y		12.81	0.20	-
(1)	2437	24	0.67	10.02	0.00	2.32	13.01	20.0	9.05	12.0 ± 2.5	-1.49	x1.41	Y		12.84	0.17	-
(Pwr.	2437	36	0.67	10.02	0.00	2.22	12.91	19.5	8.99	12.0 ± 2.5	-1.59	x1.44	Y		12.78	0.13	-
Setting	2437	48	0.67	10.02	0.00	2.27	12.96	19.8	8.75	12.0 ± 2.5	-1.54	x1.43	Y		12.84	0.12	
=12)	2437	56	0.67	10.02	0.00	2.22	12.91	19.5	8.88	12.0 ± 2.5	-1.59	x1.44	Y	-	12.79	0.12	-
	2412	6	0.67	10.02	0.00	2.62	13.31	21.4	8.96	12.0 ± 2.5	-1.19	x1.32	Y	- (*3)	13.13		Highest ch.(11g)
	2462	6	0.67	10.02	0.00	2.38	13.07	20.3	9.10	12.0 ± 2.5	-1.43	x1.39	Y	- (*3)	12.89	0.18	-
	2437	MCS0	0.67	10.02	0.00	2.38	13.07	20.3	8.39	12.0 ± 2.5	-1.43	x1.39	Y	- (*3)	12.94	0.13	
11	2437	MCS1	0.67	10.02	0.00	2.32 2.34	13.01	20.0	8.44	12.0 ± 2.5	-1.49	x1.41	Y		12.83	0.18	
11n (20HT)	2437	MCS2	0.67	10.02	0.00		13.03	20.1	8.42	12.0 ± 2.5	-1.47	x1.40	Y		12.91	0.12	
(*1)	2437 2437	MCS3 MCS4	0.67	10.02 10.02	0.00	2.32	13.01 13.04	20.0 20.1	8.45 8.39	12.0 ± 2.5 12.0 ± 2.5	-1.49 -1.46	x1.41 x1.40	- <u>Y</u> - <u>Y</u>		12.89 12.86	0.12	
, ,	2437	MCS4 MCS5	0.67	10.02	0.00	2.33	13.04	20.1	8.25	12.0 ± 2.5 12.0 ± 2.5	-1.46	x1.40 x1.40	- <u>Y</u>		12.89	0.18	
(Pwr.	2437	MCS6	0.67	10.02	0.00	2.34	13.03	20.1	8.28	12.0 ± 2.5 12.0 ± 2.5	-1.47	x1.40	- <u>-</u> Y		12.88	0.14	
Setting =12)	2437	MCS7	0.67	10.02	0.00	2.33	13.02	20.0	8.40	12.0 ± 2.5 12.0 ± 2.5	-1.48	x1.40	Y		12.91	0.13	[
-12)	2412	MCS0	0.67	10.02	0.00	2.65	13.34	21.6	8.26	12.0 ± 2.5	-1.16	x1.31	Y	- (*3)	13.14		Highest ch.(11n(20))
	2462	MCS0	0.67	10.02	0.00	2.42	13.11	20.5	8.44	12.0±2.5	-1.39	x1.38	Y	- (*3)	12.91	0.20	-
	2437	MCS0	0.67	10.02	0.00	2.80	13.49		8.36	12.0 ± 2.5	-1.01	x1.26	Y	Y (*1)	13.37		Highest ch.(11n(40))
	2437	MCS1	0.67	10.02	0.00	2.78	13.47	22.3 22.2	8.24	12.0 ± 2.5	-1.03	x1.27	Y		13.32	0.15	-
11n	2437	MCS2	0.67	10.02	0.00	2.79	13.48	22.3	8.70	12.0 ± 2.5	-1.02	x1.26	Y		13.35	0.13	
(40HT)	2437	MCS3	0.67	10.02	0.00	2.78	13.47	22.2	8.81	12.0 ± 2.5	-1.03	x1.27	Y		13.33	0.14	
(' /	2437	MCS4	0.67	10.02	0.00	2.79	13.48	22.3	8.66	12.0 ± 2.5	-1.02	x1.26	Y		13.32	0.16	
(Pwr.	2437	MCS5	0.67	10.02	0.00	2.74	13.43	22.0	8.81	12.0 ± 2.5	-1.07	x1.28	Y		13.28	0.15	
Setting	2437	MCS6	0.67	10.02	0.00	2.59	13.28	21.3	8.82	12.0 ± 2.5	-1.22	x1.32	Y		13.11	0.17	
=12)	2437	MCS7	0.67	10.02	0.00	2.57	13.26	21.2	8.47	12.0 ± 2.5	-1.24	x1.33	Y	-	13.08	0.18	-
	2412	MCS0	0.67	10.02	0.00	2.70	13.39	21.8	8.37	12.0 ± 2.5	-1.11	x1.29	Y	-(*1)	13.20	0.19	-
	2462	MCS0	0.67	10.02	0.00	2.24	12.93	19.6	8.58	12.0 ± 2.5	-1.57	x1.44	Y	-(*1)	12.74	0.19	-

EUT serial number: "E80357" for SAR test and SAR reference power measurement / "E80357" for EMC test. The difference between the SAR reference power and the power of EMC test was not less than 0dB and not higher than 0.21dB. Therefore it was judged that EUT condition that was used for SAR test was equivalent to the EMC test.

- Freq.: Frequency, D/R: Data Rate, Att.: Attenuator loss, D/F: Duty Factor (0dB=100% duty cycle), n/a: not applied, PAR: Peak average ratio.

 Calculating formula: Results (Ave) = ["P/M Reading"]+["Cable loss"]+["Attenuator"]+["duty factor"], PAR (dBm) = [Peak power (dBm)] [Average power (dBm)] Deviation form max.: Power deviation (Deviation [dB] = "results power (average)" "Max-specification output power (average)")

 Scaled Factor: Power scaled factor for obtained SAR value, Scaled Factor [-] = 1 / (10 ^ ("Deviation from max." / 10))
- *1. SAR test was only applied to a highest output channel of 11b and 11n(40HT), because the reported SAR (1g) value that had been SAR tested were less than 0.05W/kg and the peak SAR were less than 0.1W/kg. (KDB248227)
- *2. Since the average powers of higher data rate were less than 0.25dB higher than the lowest data rate, SAR test was only applied to the lowest data rate. (KDB248227)
- *3. Since the target average power of 11g and 11n(20HT) were less than 0.25dB higher than the corresponded 11b power, SAR test was not applied to the 11g and 11n(20HT) mode. (KDB248227)
- Uncertainty of antenna port conducted test; Power measurement uncertainty above 1GHz for this test was: (±) 1.5dB
- SAR reference; Date measured: May 13, 2013 / Measured by: Hiroshi Naka / Place: preparation room of No. 7 shielded room. (25 deg.C. / 52 %RH) "Power of EMC test"; this reference is described in the test report of 1005569S-A.

Test report No. : 10005570S-A Page : 10 of 42 Issued date : May 27, 2013

FCC ID : AZD401

SECTION 7: Measurement results

7.1 SAR test results of Platform (1)-Digital video camcorder (1) (model: ID0032)

Measurement date: May 16, 2013 Measurement by: Hiroshi Naka

[Liquid measurement (Body simulated tissue)]

Target			oefficients	Remarks					
Frequency	Perm	ittivity (er) [-]	Cond	uctivity [S/m]	Temp.	Depth	ΔSAR	Correction	/Environment
[MHz]	Target	Measured (Δεr)	Target	Measured (Δσ)	[deg.C.]	[mm]	(1g) [%]	required?	/ Environment
2450	52.7	50.25 -4.7%	1.95	2.016 +3.4%			(+2.67)(*1)	not required.	May 16, 2013,
2412 (1)	52.75	50.45 -4.4%	1.914	1.958 +2.3%	23.3	154	(+2.10)(*1)	not required.	before SAR test
2437 (6)	52.72	50.33 -4.5%	1.938	1.996 +3.0%	1		(+2.47)(*1)	not required.	/ambient; 24.2 deg.C., 49%RH

- *. The target value is a parameter defined in OET65 Supplement C. In the current standards (e.g., IEEE 1528, OET 65 Supplement C), the dielectric parameters suggested for head and body tissue simulating liquid are given at 1800-2000, 2450, and 3000MHz. As an intermediate solution, dielectric parameters for the frequencies between 2000 to 3000 MHz were obtained using linear interpolation. (Refer to Appendix 3-4)
- *1. The number of ΔSAR(1g) of body simulated tissue was reference purpose only. ΔSAR coefficients are parameters defined in Annex F, IEC 62209-2:2010 (head tissue). In accordance with clause 6.1.1 of IEC62209-2; "If the correction ΔSAR has a negative sign, the measured SAR results shall not be corrected", the calculated ΔSAR values of the tested liquid had shown negative correction. Therefore the measured SAR was not required ΔSAR correction.
 ΔSAR(1g)= Csr ×Δsr + Cσ ×Δσ, Csr=7.854E-4×f³+9.402E-3×f²-2.742E-2×f-0.2026 / Cσ=9.804E-3×f³-8.661E-2×f²+2.981E-2×f²+0.7829

[SAR measurement results (Partial-Body)]

			SAR meas	uremei	nt results ((Body s	imulate	d tissue	e)				Repor	ted SAR	
		Modulation	EUT setu	p cond			l temp.	Power		(1g) [W/kg]		Data#	SAR (1g) [W/kg]		
Mode	[MHz]	/Data rate / Crest factor	Position	Gap	Battery /AC	[deg	;.C.]	drift	maximum v	alue of multi-peak		***	`	8/11/1 81	Remarks
	(CH)		(*1)	[mm]	adaptor (*3)	Before		[dB]	Observed	ASAR [%]	ΔSAR corrected	Appendix 2-2	Scaled factor	tune-up SAR	
Step 1:	Change t	he positions													
			Bottom	0		23.3	23.3	-0.17	0.037	-	-	Step 1-1	×1.24	0.05	=
	2412(1)	BPSK&DSSS /1Mbps/1.0	Top (LCD)	0		23.5	23.5	-	(0.014)	*. Fast S	SAR (*2)	-	-	-	*.Polynomial-fit
11b			Left	0	AC adaptor	23.5	23.5	-	(0.014)	*. Fast S	SAR (*2)	-	-	-	*.Polynomial-fit
110	2412(1)		Front (Lens)	0		23.5	23.5	-	(0.00437)	*. Fast S	SAR (*2)	-	-	-	*.Polynomial-fit
			Rear	0		23.5	23.4	-	(0.00138)	*. Fast S	SAR (*2)	-	-	-	*.Polynomial-fit
			Right	0	Battery	23.4	23.4	-	(0.00253)	*. Fast S	SAR (*2)	-	-	-	*.Polynomial-fit
Step 2:	Changed	the operation m	ode.												
11n (40HT)	2437(6)	BPSK&OFDM /1Mbps/1.0	Bottom	0	AC adaptor	23.3	23.3	-0.11	0.042	-	1	Step 2-1	×1.26	0.05	>Highest SAR. *Reported SAR(1g): < 0.1W/kg
(.0111)		/11.10ps/1.0			Battery	23.3	23.3	-0.88	0.034		•	Step 2-2	×1.26	<mark>0.04</mark>	(*3)

Notes:

- *. Gap: It is the separation distance between the nearest position of EUT outer surface and the bottom outer surface of phantom; n/a: not applied.
- *1. The LCD of platform was closed position for all setup described in above test setup.
- *2. Fast SAR algorithm; Douglas, M.G., Chou, C-K.; Accurate and Fast Estimation of Volumetric SAR from Planner Scans from 30 MHz to 6 GHz," Bioelectromagnetics Society 29th Annual Meeting, June 2007.
- *3. The platform (1) (digital video camcorder) was operated by either the re-chargeable Li-ion battery or ac adaptor. Since the battery operation showed smaller SAR than AC adaptor operation and showed the higher power drift, the platform (1) (digital video camcorder) was operated by an ac adaptor.
- *. During test, the platform (1) (digital video camcorder) was operated without all signal interface cables.
- *. SAR test was only applied to a highest output channel of 11b and 11n(40HT), because the reported SAR (1g) value that had been SAR tested were less than 0.05W/kg and the peak SAR were less than 0.1W/kg. (KDB248227)
- 0.05W/kg and the peak SAR were less than 0.1W/kg. (KDB248227)
 *. Since the average powers of higher data rate were less than 0.25dB higher than the lowest data rate, SAR test was only applied to the lowest data rate. (KDB248227)
- *. Since the target average power of 11g and 11n(20HT) were less than 0.25dB higher than the corresponded 11b power, SAR test was not applied to the 11g and 11n(20HT) mode. (KDB248227)
- *. Calibration frequency of the SAR measurement probe (and used conversion factors)

SAR test frequency	Probe calibration frequency	Validity [MHz]	Used conversion factor	Uncertainty
2412 MHz	2450 MHz	-38MHz, within ±50 of calibration frequency	6.77	±12.0%
2437 MHz	2450 MHz	-13MHz, within ±50 of calibration frequency	6.77	±12.0%

^{*.} The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.