

RADIO TEST REPORT

Test Report No. 14577969S-C-R1

Customer	CANON INC.
Description of EUT	Wireless Microphone
Model Number of EUT	DS586233
FCC ID	AZD250
Test Regulation	FCC Part 15 Subpart C
Test Result	Complied
Issue Date	May 27, 2024
Remarks	-

Representative Test Engineer	Approved By
K. Adachi	T.Amamura
Kenichi Adachi Engineer	Toyokazu Imamura Engineer
	IAC-MRA ACCREDITED
	CERTIFICATE 1266.03
The testing in which "Non-accreditation" is displayed	is outside the accreditation scopes in UL Japan, Inc.
There is no testing item of "Non-accreditation".	

Report Cover Page - Form-ULID-003532 (DCS:13-EM-F0429) Issue# 23.0

Test Report No. 14577969S-C-R1 Page 2 of 36

ANNOUNCEMENT

- This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- The results in this report apply only to the sample tested. (Laboratory was not involved in sampling.)
- This sample tested is in compliance with the limits of the above regulation.
- The test results in this test report are traceable to the national or international standards.
- This test report must not be used by the customer to claim product certification, approval, or endorsement by the A2LA accreditation body.
- This test report covers Radio technical requirements.
 It does not cover administrative issues such as Manual or non-Radio test related Requirements.
 (if applicable)
- The all test items in this test report are conducted by UL Japan, Inc. Shonan EMC Lab.
- The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan, Inc. has been accredited.
- The information provided by the customer for this report is identified in SECTION 1.
- The laboratory is not responsible for information provided by the customer which can impact the validity of the results.
- For test report(s) referred in this report, the latest version (including any revisions) is always referred.

REVISION HISTORY

Original Test Report No.: 14577969S-C

This report is a revised version of 14577969S-C. 14577969S-C is replaced with this report.

Revision	Test Report No.	Date	Page Revised Contents
-	14577969S-C	April 26, 2024	-
(Original)			
1	14577969S-C-R1	May 27, 2024	p.9 Modified software date: From 2023.03.30 to 2023.11.01 p.11 Modified model number: DSS586233 -> DS586233

Test Report No. 14577969S-C-R1 Page 3 of 36

Reference: Abbreviations (Including words undescribed in this report)

A2LA	The American Association for Laboratory Accreditation	ICES	Interference-Causing Equipment Standard
AC	Alternating Current	IEC	International Electrotechnical Commission
AFH	Adaptive Frequency Hopping	IEEE	Institute of Electrical and Electronics Engineers
AM	Amplitude Modulation	IF	Intermediate Frequency
Amp, AMP	Amplifier	ILAC	International Laboratory Accreditation Conference
ANSI	American National Standards Institute	ISED	Innovation, Science and Economic Development Canada
Ant, ANT	Antenna	ISO	International Organization for Standardization
AP	Access Point	JAB	Japan Accreditation Board
ASK	Amplitude Shift Keying	LAN	Local Area Network
Atten., ATT	Attenuator	LIMS	Laboratory Information Management System
AV	Average	MCS	Modulation and Coding Scheme
BPSK	Binary Phase-Shift Keying	MRA	Mutual Recognition Arrangement
BR	Bluetooth Basic Rate	N/A	Not Applicable
BT	Bluetooth	NIST	National Institute of Standards and Technology
BT LE	Bluetooth Low Energy	NS	No signal detect.
BW	BandWidth	NSA	Normalized Site Attenuation
Cal Int	Calibration Interval	NVLAP	National Voluntary Laboratory Accreditation Program
CCK	Complementary Code Keying	OBW	Occupied Band Width
Ch., CH	Channel	OFDM	Orthogonal Frequency Division Multiplexing
CISPR	Comite International Special des Perturbations Radioelectriques	P/M	Power meter
CW	Continuous Wave	PCB	Printed Circuit Board
DBPSK	Differential BPSK	PER	Packet Error Rate
DC	Direct Current	PHY	Physical Layer
D-factor	Distance factor	PK	Peak
DFS	Dynamic Frequency Selection	PN	Pseudo random Noise
DQPSK	Differential QPSK	PRBS	Pseudo-Random Bit Sequence
DSSS	Direct Sequence Spread Spectrum	PSD	Power Spectral Density
EDR	Enhanced Data Rate	QAM	Quadrature Amplitude Modulation
EIRP, e.i.r.p.	Equivalent Isotropically Radiated Power	QP	Quasi-Peak
EMC	ElectroMagnetic Compatibility	QPSK	Quadri-Phase Shift Keying
EMI	ElectroMagnetic Interference	RBW	Resolution Band Width
EN	European Norm	RDS	Radio Data System
ERP, e.r.p.	Effective Radiated Power	RE	Radio Equipment
EU	European Union	RF	Radio Frequency
EUT	Equipment Under Test	RMS	Root Mean Square
Fac.	Factor	RSS	Radio Standards Specifications
FCC	Federal Communications Commission	Rx	Receiving
FHSS	Frequency Hopping Spread Spectrum	SA, S/A	Spectrum Analyzer
FM	Frequency Modulation	SG	Signal Generator
Freq.	Frequency	SVSWR	Site-Voltage Standing Wave Ratio
FSK	Frequency Shift Keying	TR	Test Receiver
GFSK	Gaussian Frequency-Shift Keying	Tx	Transmitting
GNSS	Global Navigation Satellite System	VBW	Video BandWidth
GPS	Global Positioning System	Vert.	Vertical
Hori.	Horizontal	WLAN	Wireless LAN

CONTENTS	PAGE
SECTION 1: Customer Information	5
SECTION 2: Equipment Under Test (EUT)	
SECTION 3: Test Specification, Procedures & Resu	
SECTION 4: Operation of EUT during testing	
SECTION 5: Conducted Emission	
SECTION 6: Radiated Spurious Emission	
SECTION 7: Antenna Terminal Conducted Tests	
APPENDIX 1: Test Data	16
Conducted Emission	
99 % Occupied Bandwidth and 6 dB Bandwidth	
Maximum Peak Output Power	19
Average Output Power	19
Burst rate confirmation	20
Radiated Spurious Emission	
Conducted Spurious Emission	
Power Density	
APPENDIX 2: Test Instruments	_
APPENDIX 3: Photographs of Test Setup	
Conducted Emission	
Radiated Spurious Emission	
Pre-check of Worst Case Position	
Antenna Terminal Conducted Tests	36

Test Report No. 14577969S-C-R1 Page 5 of 36

SECTION 1: Customer Information

Company Name	CANON INC.
Address	30-2, Shimomaruko 3-chome, Ohta-ku, Tokyo 146-8501, Japan
Telephone Number	+81-3-3757-4264
Contact Person	Tomohiro Suzuki

The information provided by the customer is as follows;

- Customer, Description of EUT, Model Number of EUT, FCC ID on the cover and other relevant pages
- Operating/Test Mode(s) (Mode(s)) on all the relevant pages
- SECTION 1: Customer Information
- SECTION 2: Equipment Under Test (EUT) other than the Receipt Date and Test Date
- SECTION 4: Operation of EUT during testing

SECTION 2: Equipment Under Test (EUT)

2.1 Identification of EUT

Description	Wireless Microphone
Model Number	DS586233
Serial Number	Refer to SECTION 4.2
Condition	Engineering prototype (Not for Sale: This sample is equivalent to mass-produced items.)
Modification	No Modification by the test lab
Receipt Date	November 1, 2023 (Antenna Terminal Conducted Tests sample) March 6, 2023 (Conducted Emission, Radiated Spurious Emission sample)
Test Date	November 6, 2023 to April 1, 2024

2.2 Product Description

General Specification

Rating	DC 3.3 V
Operating temperature	-20 deg. C to +40 deg. C

Radio Specification

This report contains data provided by the customer which can impact the validity of results. UL Japan, Inc. is only responsible for the validity of results after the integration of the data provided by the customer. The data provided by the customer is marked "a)" in the table below.

Bluetooth (Low Energy)

Equipment Type	Transceiver
Frequency of Operation	2402 MHz to 2480 MHz
Type of Modulation	GFSK
Antenna Type	Monopole Antenna
Antenna Gain a)	-0.35 dBi

Test Report No. 14577969S-C-R1 Page 6 of 36

SECTION 3: Test Specification, Procedures & Results

3.1 Test Specification

Test Specification	FCC Part 15 Subpart C		
	The latest version on the first day of the testing period		
Title	FCC 47 CFR Part 15 Radio Frequency Device Subpart C Intentional Radiators		
	Section 15.207 Conducted limits		
	Section 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz,		
	and 5725-5850 MHz		

3.2 Procedures and Results

Item	Test Procedure	Specification	Worst Margin	Results	Remarks
Conducted Emission	FCC: ANSI C63.10-2013 6. Standard test methods	FCC: Section 15.207	21.9 dB, 0.41559 MHz,	Complied	-
	ISED: RSS-Gen 8.8	ISED: RSS-Gen 8.8	L1, QP		
6dB Bandwidth	FCC: KDB 558074 D01 15.247 Meas Guidance v05r02	FCC: Section 15.247(a)(2)	See data.	Complied	Conducted
	ISED: -	ISED: RSS-247 5.2(a)	7		
Maximum Peak Output Power	FCC: KDB 558074 D01 15.247 Meas Guidance v05r02	FCC: Section 15.247(b)(3)		Complied	Conducted
·	ISED: RSS-Gen 6.12	ISED: RSS-247 5.4(d)	· -		
Power Density	FCC: KDB 558074 D01 15.247 Meas Guidance v05r02	FCC: Section 15.247(e)		Complied	Conducted
	ISED: -	ISED: RSS-247 5.2(b)			
Spurious Emission Restricted	FCC: KDB 558074 D01 15.247 Meas Guidance v05r02	FCC: Section15.247(d)	1.9 dB 4804.000 MHz, AV, Verical,	Complied	Conducted (below 30 MHz)/ Radiated
Band Edges	ISED: RSS-Gen 6.13	ISED: RSS-247 5.5 RSS-Gen 8.9 RSS-Gen 8.10	Tx BT LE, 2402 MHz		(above 30 MHz) *1)

Note: UL Japan, Inc.'s EMI Work Procedures: Work Instructions-ULID-003591 and Work Instructions-ULID-003593.

FCC Part 15.31 (e)

This EUT provides the stable voltage constantly to RF Module regardless of input voltage. Therefore, this EUT complies with the requirement.

FCC Part 15.203 Antenna requirement

It is impossible for end users to replace the antenna, because the antenna is mounted inside of the EUT. Therefore, the equipment complies with the antenna requirement of Section 15.203.

3.3 Addition to Standard

Item	Test Procedure	Specification	Worst Margin	Results	Remarks
99 % Occupied	ISED: RSS-Gen 6.7	ISED: -	N/A	=	Conducted
Bandwidth					

Other than above, no addition, exclusion nor deviation has been made from the standard.

^{*} In case any questions arise about test procedure, ANSI C63.10: 2013 is also referred.

^{*1)} Radiated test was selected over 30 MHz based on section 15.247(d) and KDB 558074 D01 15.247 Meas Guidance v05r02 8.5 and 8.6.

Test Report No. 14577969S-C-R1 Page 7 of 36

3.4 Uncertainty

Measurement uncertainty is not taken into account when stating conformity with a specified requirement. Note: When margins obtained from test results are less than the measurement uncertainty, the test results may exceed the limit.

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor k = 2.

Shonan EMC Lab.

Item	Frequency range	Uncertainty (+/-)
Conducted Emission (AC Mains) LISN	150 kHz to 30 MHz	3.2 dB
Radiated Emission	9 kHz to 30 MHz	3.3 dB
(Measurement distance: 3 m)	30 MHz to 200 MHz	4.9 dB
	200 MHz to 1 GHz	6.2 dB
	1 GHz to 6 GHz	4.7 dB
	6 GHz to 18 GHz	5.3 dB
	18 GHz to 40 GHz	5.5 dB
Radiated Emission	1 GHz to 18 GHz	5.6 dB
(Measurement distance: 1 m)	18 GHz to 40 GHz	5.8 dB

Antenna terminal test	Uncertainty (+/-)
Power Measurement above 1 GHz (Average Detector) SPM-06	1.1 dB
Power Measurement above 1 GHz (Peak Detector) SPM-06	1.8 dB
Power Measurement above 1 GHz (Average Detector) SPM-07	1.0 dB
Power Measurement above 1 GHz (Peak Detector) SPM-07	1.2 dB
Power Measurement above 1 GHz (Average Detector) SPM-13	0.81 dB
Power Measurement above 1 GHz (Peak Detector) SPM-13	1.1 dB
Spurious Emission (Conducted) below 1 GHz	0.91 dB
Conducted Emissions Power Density Measurement 1 GHz to 3 GHz	1.3 dB
Conducted Emissions Power Density Measurement 3 GHz to 18 GHz	2.5 dB
Spurious Emission (Conducted) 18 GHz to 26.5 GHz	2.8 dB
Spurious Emission (Conducted) 26.5 GHz to 40 GHz	2.6 dB
Bandwidth Measurement	0.012 %
Duty Cycle and Time Measurement	0.27 %
Temperature_SCH-01	0.96 deg.C.
Humidity_SCH-01	4.0 %
Temperature_SCH-02	2.2 deg.C.
Voltage	0.74 %

Test Report No. 14577969S-C-R1 Page 8 of 36

3.5 Test Location

UL Japan, Inc. Shonan EMC Lab.

1-22-3, Megumigaoka, Hiratsuka-shi, Kanagawa-ken 259-1220 Japan

Telephone: +81-463-50-6400 A2LA Certificate Number: 1266.03

(FCC test firm registration number: 626366, ISED lab company number: 2973D / CAB identifier: JP0001)

Test room	Width x Depth x Height	Size of reference ground	Maximum
	(m)	plane (m) / horizontal	measurement
		conducting plane	distance
No.1 Semi-anechoic chamber (SAC1)	20.6 x 11.3 x 7.65	20.6 x 11.3	10 m
No.2 Semi-anechoic chamber (SAC2)	20.6 x 11.3 x 7.65	20.6 x 11.3	10 m
No.3 Semi-anechoic chamber (SAC3)	12.7 x 7.7 x 5.35	12.7 x 7.7	5 m
No.4 Semi-anechoic chamber (SAC4)	8.1 x 5.1 x 3.55	8.1 x 5.1	-
Wireless anechoic chamber 1 (WAC1)	9.5 x 6.0 x 5.4	9.5 x 6.0	3 m
Wireless anechoic chamber 2 (WAC2)	9.5 x 6.0 x 5.4	9.5 x 6.0	3 m
No.1 Shielded room	6.8 x 4.1 x 2.7	6.8 x 4.1	-
No.2 Shielded room	6.8 x 4.1 x 2.7	6.8 x 4.1	-
No.3 Shielded room	6.3 x 4.7 x 2.7	6.3 x 4.7	-
No.4 Shielded room	4.4 x 4.7 x 2.7	4.4 x 4.7	-
No.5 Shielded room	7.8 x 6.4 x 2.7	7.8 x 6.4	-
No.6 Shielded room	7.8 x 6.4 x 2.7	7.8 x 6.4	-
No.8 Shielded room	3.45 x 5.5 x 2.4	3.45 x 5.5	-
No.1 Measurement room	2.55 x 4.1 x 2.5	-	-
No.2 Measurement room	4.5 x 3.5 x 2.5	-	-
Wireless shielded room 1	3.0 x 4.5 x 2.7	3.0 x 4.5	-
Wireless shielded room 2	3.0 x 4.5 x 2.7	3.0 x 4.5	-

3.6 Test Data, Test Instruments, and Test Set Up

Refer to APPENDIX.

Test Report No. 14577969S-C-R1 Page 9 of 36

SECTION 4: Operation of EUT during testing

4.1 Operating Mode(s)

[BT LE]

Mode	Remarks*
Bluetooth Low Energy (BT LE)	1 M-PHY Uncoded PHY (1 M-PHY), Maximum Packet Size,
	PRBS9

*Power of the EUT was set by the software as follows;

Power Setting: 0 dBm

Software: Direct Test Mode Version: 2.1.0

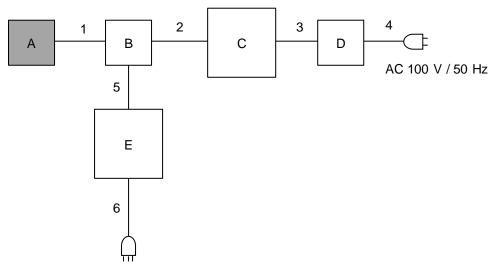
(Date: 2023.11.01, Storage location: Driven by connected PC)

*This setting of software is the worst case.

Any conditions under the normal use do not exceed the condition of setting.

In addition, end users cannot change the settings of the output power of the product.

*The Details of Operating Mode(s)


Test Item	Operating Mode	Tested Frequency
Conducted Emission,	Tx BT LE	2440 MHz
Radiated Spurious Emission (Below 1 GHz)		
Radiated Spurious Emission (Above 1 GHz),	Tx BT LE	2402 MHz
Maximum Peak Output Power,		2440 MHz
Power Density,		2480 MHz
6 dB Bandwidth,		
99 % Occupied Bandwidth,		
Conducted Spurious Emission		

^{*1)} Conducted emissions and Spurious emissions for frequencies below 1 GHz were limited to the channel that had the highest power during the antenna terminal test, as preliminary testing indicated that changing the operating frequency had no significant impact on the emissions in those frequency bands.

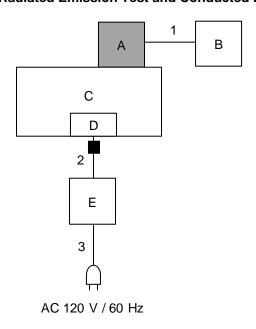
Test Report No. 14577969S-C-R1 Page 10 of 36

4.2 **Configuration and Peripherals**

<For Antenna Terminal Conducted Tests>

AC 100 V / 50 Hz

Description of EUT and Support Equipment


No.	Item	Model Number	Serial Number	Manufacturer	Remarks
Α	RF module of	BL5340	A013	Laird	EUT
	Wireless			Connectivity,	
	Microphone			LLC	
В	Jig board	-	18	Canon. Inc	-
С	Laptop Computer	ThinkPad E14	PF397TQG	LENOVO	-
		Gen2			
D	AC Adapter	ADLX65YCC2D	8SSA10R16922C2TJ19M1368	LENOVO	-
Е	Power Supply (DC)	PAN35-10A	ML002085	KIKUSUI	-

List of Cables Used

No.	Name	Length (m)	Shield	Remarks	
			Cable	Connector	
1	Signal	0.1	Unshielded	Unshielded	-
2	USB	0.8	Shielded	Shielded	-
3	DC	1.8	Unshielded	Unshielded	-
4	AC	0.9	Unshielded	Unshielded	-
5	DC	2.4	Unshielded	Unshielded	-
6	AC	1.5	Unshielded	Unshielded	-

Test Report No. 14577969S-C-R1 Page 11 of 36

<For Radiated Emission Test and Conducted Emission Test>

: Standard Ferrite Core

TDK, ZCAT2032-0930, 125mm from D, 3T

* Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions. *As a result of comparing AC 120 V and AC 240 V at pre-check, conducted emission test was performed with AC 120 V of the worst voltage as representative.

Description of EUT and Support Equipment

No.	Item	Model Number	Serial Number	Manufacturer	Remarks
Α	Wireless	DS586233	40	Canon. Inc	EUT
	Microphone				
В	Jig Borad	-	-	Canon. Inc	1
С	Camera	DS126841	141034001061	Canon. Inc	1
D	DC Coupler	DR-E6	-	Canon. Inc	1
Е	AC Adapter	AC-E6N	9	Canon. Inc	

List of Cables Used

No.	Name	Length (m)	Shield		Remarks
			Cable Connector		
1	Signal	0.1	Unshielded	Unshielded	*1)
2	DC	2.9	Unshielded	Unshielded	-
3	AC	1.0	Unshielded	Unshielded	-

^{*1)} Cable for test operation

Test Report No. 14577969S-C-R1 Page 12 of 36

SECTION 5: Conducted Emission

Test Procedure and Conditions

EUT was placed on a urethane platform of nominal size, 1.0 m by 1.5 m, raised 0.8 m above the conducting ground plane.

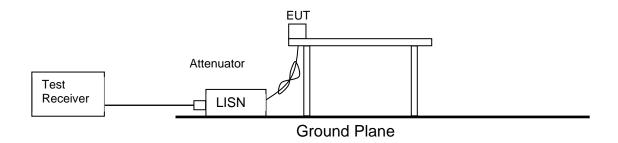
The rear of tabletop was located 40 cm to the vertical conducting plane. The rear of EUT, including peripherals was aligned and flushed with rear of tabletop. All other surfaces of tabletop were at least 80cm from any other grounded conducting surface. EUT was located 80 cm from a Line Impedance Stabilization Network (LISN) / Artificial mains Network (AMN) and excess AC cable was bundled in center.

For the tests on EUT with other peripherals (as a whole system)

I/O cables that were connected to the peripherals were bundled in center. They were folded back and forth forming a bundle 30 cm to 40 cm long and were hanged at a 40 cm height to the ground plane.

The AC Mains Terminal Continuous disturbance Voltage has been measured with the EUT via AE in a Shielded Room.

The EUT via AE was connected to a LISN (AMN).


An overview sweep with peak detection has been performed.

The test results and limit are rounded off to one decimal place, so some differences might be observed.

Detector : QP and CISPR AV
Measurement Range : 0.15 MHz to 30 MHz

Test Data : APPENDIX
Test Result : Pass

Figure 1: Test Setup

Test Report No. 14577969S-C-R1 Page 13 of 36

SECTION 6: Radiated Spurious Emission

Test Procedure

It was measured based on "8.5 and 8.6 of KDB 558074 D01 15.247 Meas Guidance v05r02".

[For below 1 GHz]

EUT was placed on a urethane platform of nominal size, 1.0 m by 1.5 m, raised 0.8 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with a ground plane.

[For above 1 GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 0.5 m, raised 1.5 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with absorbent materials lined on a ground plane. Test antenna was aimed at the EUT for receiving the maximum signal and always kept within the illumination area of the 3 dB beamwidth of the antenna.

The height of the measuring antenna varied between 1 m and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field strength.

The measurements were performed for both vertical and horizontal antenna polarization with the Test Receiver, or the Spectrum Analyzer.

The measurements were made with the following detector function of the test receiver and the Spectrum analyzer (in linear mode).

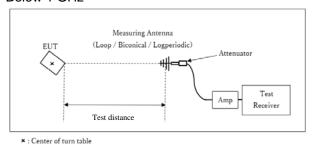
The test was made with the detector (RBW/VBW) in the following table.

When using Spectrum analyzer, the test was made with adjusting span to zero by using peak hold.

Test Antennas are used as below;

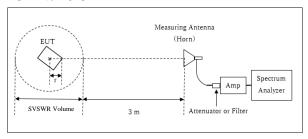
Frequency	30 MHz to 200 MHz	200 MHz to 1 GHz	Above 1 GHz
Antenna Type	Biconical	Logperiodic	Horn

In any 100 kHz bandwidth outside the restricted band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator confirmed 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on a radiated measurement.


20 dBc was applied to the frequency over the limit of FCC 15.209 / Table 4 of RSS-Gen 8.9(ISED) and outside the restricted band of FCC15.205 / Table 6 of RSS-Gen 8.10 (ISED).

Frequency	Below 1 GHz	Above 1 GHz		20 dBc
Instrument Used	Test Receiver	Spectrum Anal	yzer	Spectrum Analyzer
Detector	QP	PK	AV	PK
IF Bandwidth	BW 120 kHz	RBW: 1 MHz	11.12.2.5.2	RBW: 100 kHz
		VBW: 3 MHz	RBW: 1 MHz	VBW: 300 kHz
			VBW: 3 MHz	
			Detector:	
			Power Averaging (Linear	
			voltage)	
			Trace: 100 traces	
			Duty factor was added to	
			the results.	

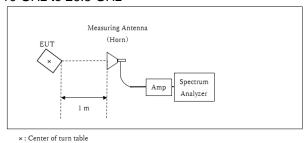
Test Report No. 14577969S-C-R1 Page 14 of 36


Figure 2: Test Setup

Below 1 GHz

Test Distance: 3 m

1 GHz to 10 GHz


- SVSWR Volume: 2.0 m
- (SVSWR Volume has been calibrated based on

Distance Factor: $20 \times \log (3.93 \text{ m} / 3.0 \text{ m}) = 2.35 \text{ dB}$ * Test Distance: (3 + SVSWR Volume /2) - r = 3.93 m

CISPR 16-1-4.) r = 0.07 m

- \boldsymbol{r} : Radius of an outer periphery of EUT
- ×: Center of turn table

10 GHz to 26.5 GHz

Distance Factor: $20 \times \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.54 \text{ dB}$ *Test Distance: 1 m

The carrier level and noise levels were confirmed at each position of X, Y and Z axes of EUT to see the position of maximum noise, and the test was made at the position that has the maximum noise.

BT LE:

Antenna polarization	Carrier	Spurious (30 MHz to 1 GHz)	Spurious (1 GHz to 2.8 GHz)	Spurious (2.8 GHz to 10 GHz)	Spurious (10 GHz to 18 GHz)	Spurious (18 GHz to 26.5 GHz)
Horizontal	Z	Z	Z	Z	X	X
Vertical	Υ	Υ	Υ	Υ	Х	X

The test results and limit are rounded off to one decimal place, so some differences might be observed.

Measurement Range : 30 MHz to 26.5 GHz

Test Data : APPENDIX
Test Result : Pass

Test Report No. 14577969S-C-R1 Page 15 of 36

SECTION 7: Antenna Terminal Conducted Tests

Test Procedure

The tests were made with below setting connected to the antenna port.

Test	Span	RBW	VBW	Sweep time	Detector	Trace	Instrument Used
6 dB Bandwidth	3 MHz	100 kHz	300 kHz	Auto	Peak	Max Hold	Spectrum Analyzer
99 % Occupied Bandwidth *1)	Enough width to display emission skirts	1 to 5 % of OBW	Three times of RBW	Auto	Peak	Max Hold	Spectrum Analyzer
Maximum Peak Output Power	-	-	-	Auto	Peak/ Average *2)	-	Power Meter (Sensor: 50 MHz BW)
Peak Power Density	1.5 times the 6 dB Bandwidth	3 kHz	9.1 kHz	Auto	Peak	Max Hold	Spectrum Analyzer *3)
Conducted	9 kHz to 150 kHz	200 Hz	620 Hz	Auto	Peak	Max Hold	Spectrum Analyzer
Spurious Emission *4) *5)	150 kHz to 30 MHz	10 kHz	30 kHz				

^{*1)} Peak hold was applied as Worst-case measurement.

The test results and limit are rounded off to two decimals place, so some differences might be observed. The equipment and cables were not used for factor 0 dB of the data sheets.

Test Data : APPENDIX
Test Result : Pass

^{*2)} Reference data

^{*3)} Section 11.10.2 Method PKPSD (peak PSD) of "ANSI C63.10-2013".

^{*4)} In the frequency range below 30MHz, RBW was narrowed to separate the noise contents.

Then, wide-band noise near the limit was checked separately, however the noise was not detected as shown in the chart.

(9 kHz - 150 kHz: RBW = 200 Hz, 150 kHz - 30 MHz: RBW = 10 kHz)

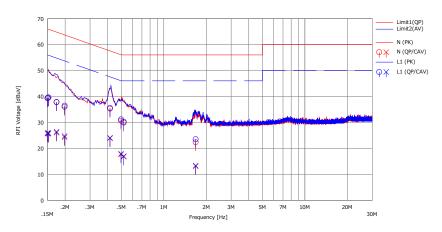
^{*5)} The limits in CFR 47, Part 15, Subpart C, paragraph 15.209(a), are identical to those in RSS-Gen section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377 Ohmes. For example, the measurement at frequency 9 kHz resulted in a level of 45.5 dBuV/m, which is equivalent to 45.5 - 51.5 = -6.0 dBuA/m, which has the same margin, 3 dB, to the corresponding RSS-Gen Table 6 limit as it has to 15.209(a) limit.

Test Report No. 14577969S-C-R1 Page 16 of 36

APPENDIX 1: Test Data

Conducted Emission

DATA OF CONDUCTED EMISSION TEST UL Japan, Inc. Shonan EMC Lab. No.3 Shielded Room


Date: 2024/04/01

Company Kind of EUT CANON.INC Wireless Microphone DS586233 Model No. Serial No. 40 -

Mode Order No. Power Temp./Humi. : Tx_BT LE_2440 MHz : 14577969 : AC 120 V / 60 Hz : 24 deg.C / 30 %RH

Limit: FCC_Part 15 Subpart C(15.207)

Engineer : Makoto Hosaka

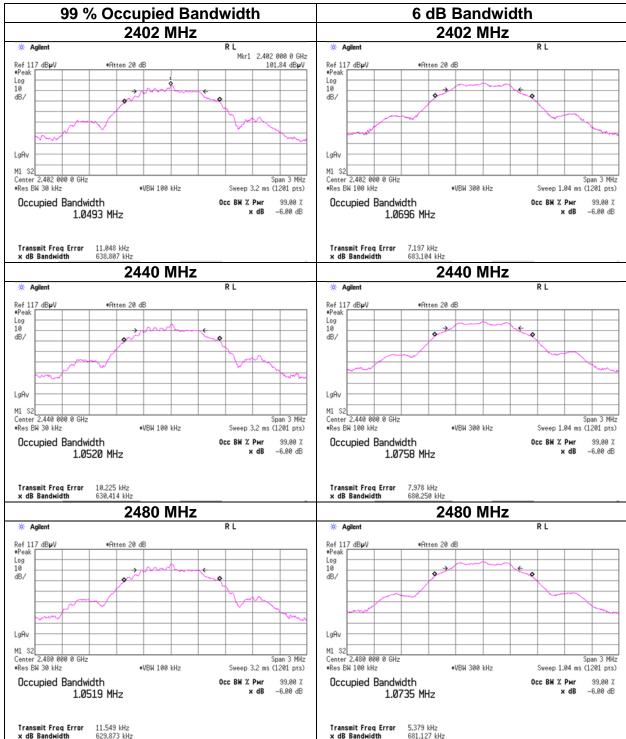
П	Frea.	Rea	ding	C.Fac	Res	ults	Lir	mit	Ma	rgin		
No.	rreq.	(QP)	(CAV)	U.FUU	(QP)	(CAV)	(QP)	(AV)	(QP)	(AV)	Phase	Comment
	[MHz]	[dBuV]	[dBuV]	[dB]	[dBuV]	[dBuV]	[dBuV]	[dBuV]	[dB]	[dB]		
1	0.15004	23.91	10.31	15.40	39.31	25.71	66.00	56.00	26.6	30.2	N	
2	0.15230	24.19	10.23	15.40	39.59	25.63	65.87	55.87	26.2	30.2	N	
3	0.17377	22.34	10.63	15.42	37.76	26.05	64.78	54.78	27.0	28.7	N	
4	0.19822	20.57	8.89	15.42	35.99	24.31	63.68	53.68	27.6	29.3	N	
5	0.41559	19.86	8.44	15.45	35.31	23.89	57.54	47.54	22.2	23.6	N	
6	0.49798	15.19	2.24	15.45	30.64	17.69	56.03	46.03	25.3	28.3	N	
7	0.52052	14.48	1.39	15.45	29.93	16.84	56.00	46.00	26.0	29.1	N	
8	1.68181	6.85	-2.38	15.52	22.37	13.14	56.00	46.00	33.6	32.8	N	
9	0.15004	24.02	10.55	15.41	39.43	25.96	66.00	56.00	26.5	30.0	L1	
10	0.15230	24.22	10.49	15.41	39.63	25.90	65.87	55.87	26.2	29.9	L1	
11	0.17377	22.48	10.99	15.41	37.89	26.40	64.78	54.78	26.8	28.3	L1	
12	0.19822	21.05	9.35	15.41	36.46	24.76	63.68	53.68	27.2	28.9	L1	
13	0.41559	20.13	8.63	15.46	35.59	24.09	57.54	47.54	21.9	23.4	L1	
14	0.49798	15.74	2.52	15.44	31.18	17.96	56.03	46.03	24.8	28.0	L1	
15	0.52052	14.84	1.60	15.44	30.28	17.04	56.00	46.00	25.7	28.9	L1	
16	1.68181	8.03	-2.15	15.53	23.56	13.38	56.00	46.00	32.4	32.6	L1	

 $\label{linear_calculation} Calculation: Result[dBuV] = Reading[dBuV] + C.Fac(LISN + Cable + ATT)[dB] \\ LISN(AMN): 145542$

Test Report No. 14577969S-C-R1 Page 17 of 36

99 % Occupied Bandwidth and 6 dB Bandwidth

Test place Shonan EMC Lab. No.3 Shielded Room


Date November 6, 2023 Temperature / Humidity 23 deg. C / 46 % RH Kenichi Adachi Engineer Mode Tx BT LE

Mode	Frequency	99 % Occupied	6 dB Bandwidth	Limit for
		Bandwidth		6 dB Bandwidth
	[MHz]	[kHz]	[MHz]	[MHz]
BTLE	2402	1049.3	0.683	> 0.5000
1M-PHY	2440	1052.0	0.680	> 0.5000
I IVI-F FI I	2480	1051.9	0.681	> 0.5000

Test Report No. 14577969S-C-R1 Page 18 of 36

99 % Occupied Bandwidth and 6 dB Bandwidth

BT LE

Test Report No. 14577969S-C-R1 Page 19 of 36

Maximum Peak Output Power

Test place Shonan EMC Lab. No.3 Shielded Room

Date November 6, 2023
Temperature / Humidity 23 deg. C / 46 % RH
Engineer Kenichi Adachi
Mode Tx BT LE

					Cond	ducted P	ower			e.i	.r.p. for l	RSS-247		
Freq.	Reading	Cable	Atten.	Re	sult	Lir	nit	Margin	Antenna	Re	sult	Lir	nit	Margin
		Loss	Loss					Gain						
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW] [dBm] [mW]		[dB]	[dBi]	[dBm] [mW]		[dBm]	[mW]	[dB]	
2402	-2.69	1.26	9.97	8.54	7.14	30.00	1000	21.46	-0.35	8.19	6.59	36.02	4000	27.83
2440	-1.66	1.26	9.97	9.57	9.06 30.00		1000	20.43	-0.35	9.22	8.36	36.02	4000	26.80
2480	-1.77	1.27	9.97	9.47	8.85 30.00 1000		20.53	-0.35	9.12	8.17	36.02	4000	26.90	

Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss e.i.r.p. Result = Conducted Power Result + Antenna Gain

Average Output Power (Reference data for RF Exposure)

Test place Shonan EMC Lab. No.3 Shielded Room

Date November 6, 2023
Temperature / Humidity 23 deg. C / 46 % RH
Engineer Kenichi Adachi
Mode Tx BT LE

BT LE 1M-PHY

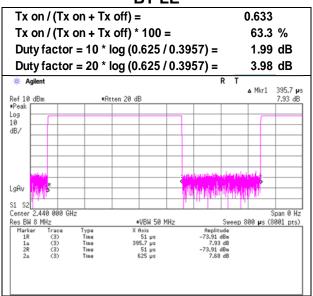
Freq.	Reading	Cable	Atten.	Res	sult	Duty	Res	sult
		Loss	Loss	(Time average) [dBm] [mW]		factor	(Burst pow	er average)
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dB]	[dBm]	[mW]
2402	-4.85	1.26	9.97	6.38	4.35	1.99	8.37	6.87
2440	-3.78	1.26	9.97	7.45	5.56	1.99	9.44	8.79
2480	-3.90	1.27	9.97	7.34	5.42	1.99	9.33	8.57

Sample Calculation:

Result (Time average) = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss Result (Burst power average) = Time average + Duty factor

^{*}The equipment and cables were not used for factor 0 dB of the data sheets.

^{*}The equipment and cables were not used for factor 0 dB of the data sheets.


Test Report No. 14577969S-C-R1 Page 20 of 36

Burst rate confirmation

Test place Shonan EMC Lab. No.3 Shielded Room

Date November 6, 2023
Temperature / Humidity 23 deg. C / 46 % RH
Engineer Kenichi Adachi
Mode Tx BT LE

BT LE

^{*} Since the burst rate is not different between the channels, the data has been obtained on the representative channel.

Test Report No. 14577969S-C-R1 Page 21 of 36

Radiated Spurious Emission

Test place Shonan EMC Lab.

SAC1 Semi Anechoic Chamber

Date March 13, 2024 Temperature / Humidity 23 deg. C / 33 % RH Yosuke Murakami Engineer (1 GHz -26.5 GHz) Mode Tx BT LE, 2402 MHz

		·		Qi . Quasi-i e									
Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Distance	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	Factor [dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg]	
Hori.	2390.000	PK	45.81	27.77	15.04	39.49	2.35	51.48	73.9	22.4	149	60	-
Hori.	4804.000	PK	53.21	31.06	7.96	39.62	2.35	54.96	73.9	18.9	148	88	-
Hori.	7206.000	PK	44.57	36.74	9.69	39.36	2.35	53.99	73.9	19.9	150	0	-
Hori.	9608.000	PK	44.26	38.14	11.14	39.60	2.35	56.29	73.9	17.6	150	0	l-
Hori.	7206.000	ΑV	34.98	36.74	9.69	39.36	2.35	44.40	53.9	9.5	150	0	Floor noise
Hori.	9608.000	AV	34.53	38.14	11.14	39.60	2.35	46.56	53.9	7.3	150	0	Floor noise
Vert.	2390.000	PK	45.28	27.77	15.04	39.49	2.35	50.95	73.9	22.9	146	81	-
Vert.	4804.000	PK	54.06	31.06	7.96	39.62	2.35	55.81	73.9	18.0	104	53	l-
Vert.	7206.000	PK	44.47	36.74	9.69	39.36	2.35	53.89	73.9	20.0	150	0	-
Vert.	9608.000	PK	44.33	38.14	11.14	39.60	2.35	56.36	73.9	17.5	150	0	l-
Vert.	7206.000	ΑV	35.03	36.74	9.69	39.36	2.35	44.45	53.9	9.4	150	0	Floor noise
Vert.	9608.000	AV	34.57	38.14	11.14	39.60	2.35	46.60	53.9	7.3	150	0	Floor noise

Result = Reading + Ant.Fac. + Loss (Cable+(Attenuator or Filter)(below 18 GHz)) - Gain(Amplifier) + Distance factor

Distance factor : 1 GHz - 10 GHz : 20log (3.93 m / 3.0 m) = 2.35 dB 10 GHz - 40 GHz: 20log (1.0 m / 3.0 m) = -9.54 dB

Average measurement value with duty factor

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty	Distance	Result	Limit	Margin	Remark
							Factor	Factor				
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2390.000	ΑV	36.24	27.77	15.04	39.49	3.98	2.35	45.89	53.9	8.0	*1)
Hori.	4804.000	ΑV	45.74	31.06	7.96	39.62	3.98	2.35	51.47	53.9	2.4	-
Vert.	2390.000	ΑV	35.75	27.77	15.04	39.49	3.98	2.35	45.40	53.9	8.5	*1)
Vert.	4804.000	AV	46.24	31.06	7.96	39.62	3.98	2.35	51.97	53.9	1.9	-

Result = Reading + Ant.Fac. + Loss (Cable+(Attenuator or Filter)(below 18 GHz)) - Gain(Amplifier) + Duty factor + Distance factor

Distance factor: 1 GHz - 10 GHz: $20\log (3.93 \text{ m} / 3.0 \text{ m}) = 2.35 \text{ dB}$ 10 GHz - 40 GHz: $20\log (1.0 \text{ m} / 3.0 \text{ m}) = -9.54 \text{ dB}$

Duty factor refer to "Burst rate confirmation" sheet. *1) Not out of band emission (Leakage Power)

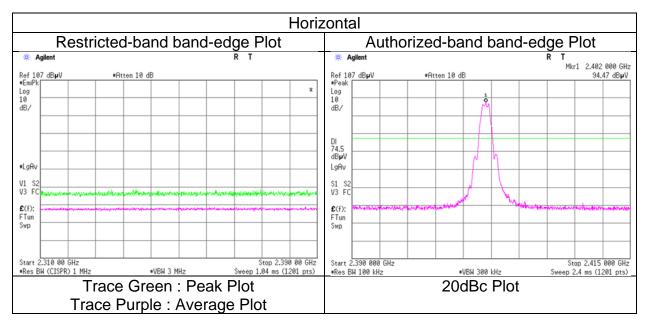
20 dBc Data Sheet	(RBW 100 kHz, VBW 300 kHz)

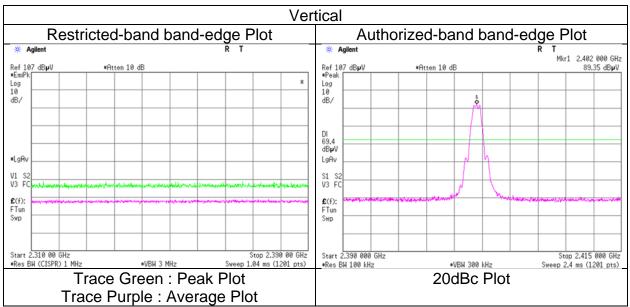
		(,	,							
Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Distance	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	Factor [dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2402.000	PK	94.47	27.76	15.06	39.49	2.35	100.15	-	-	Carrier
Hori.	2400.000	PK	42.73	27.76	15.06	39.49	2.35	48.41	80.1	31.6	-
Vert.	2402.000	PK	89.35	27.76	15.06	39.49	2.35	95.03	-	-	Carrier
Vert.	2400.000	PK	38.80	27.76	15.06	39.49	2.35	44.48	75.0	30.5	-

Result = Reading + Ant.Fac. + Loss (Cable+(Attenuator or Filter)(below 18 GHz)) - Gain(Amplifier) + Distance factor

Distance factor: 1 GHz - 10 GHz: 20log (3.93 m / 3.0 m) = 2.35 dB 10 GHz - 40 GHz: $20\log (1.0 \text{ m} / 3.0 \text{ m}) = -9.54 \text{ dB}$

Test Report No. 14577969S-C-R1 Page 22 of 36


Radiated Spurious Emission (Reference Plot for band-edge)


Test place Shonan EMC Lab. SAC1

Semi Anechoic Chamber

Date March 13, 2024 Temperature / Humidity 23 deg. C / 33 % RH Engineer Yosuke Murakami (1 GHz -10 GHz)

Tx BT LE, 2402 MHz Mode

The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Final result of restricted band edge and authorized band edge were shown in tabular data.

Test Report No. 14577969S-C-R1 Page 23 of 36

Radiated Spurious Emission

Test place Shonan EMC Lab.

Semi Anechoic Chamber SAC3 SAC1

Date April 1, 2024 March 13, 2024
Temperature / Humidity 24 deg. C / 33 % RH
Engineer Makoto Hosaka Yosuke Murakami
(30 MHz -1 GHz) (1 GHz -26.5 GHz)

Mode Tx BT LE, 2440 MHz

(* PK: Peak, AV: Average, QP: Quasi-Peak)

		(PK: Peak,	Av: Average,	QP: Quasi-Pe	ak)								
Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Distance	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	Factor [dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg]	
Hori.	400.498	QP	36.20	15.99	9.07	31.91	0.00	29.35	46.0	16.6	119	263	-
Hori.	409.497	QP	39.40	16.20	9.11	31.91	0.00	32.80	46.0	13.2	100	19	-
Hori.	418.501	QP	40.10	16.28	9.16	31.91	0.00	33.63	46.0	12.3	100	7	-
Hori.	427.500	QP	38.60	16.29	9.20	31.91	0.00	32.18	46.0	13.8	100	0	-
Hori.	2503.933	PK	51.06	27.63	15.17	39.54	2.35	56.67	73.9	17.2	100	56	-
Hori.	4880.000	PK	50.67	31.09	8.01	39.64	2.35	52.48	73.9	21.4	165	94	-
Hori.	7320.000	PK	42.97	36.82	9.78	39.36	2.35	52.56	73.9	21.3	150	0	-
Hori.	9760.000	PK	43.65	38.69	11.24	39.46	2.35	56.47	73.9	17.4	150	0	-
Hori.	7320.000	AV	34.15	36.82	9.78	39.36	2.35	43.74	53.9	10.1	150	0	Floor noise
Hori.	9760.000	AV	34.28	38.69	11.24	39.46	2.35	47.10	53.9	6.8	150	0	Floor noise
Vert.	80.717	QP	39.80	6.76	7.59	32.13	0.00	22.02	40.0	17.9	100	256	-
Vert.	88.732	QP	36.20	8.16	7.59	32.13	0.00	19.82	43.5	23.6	100	339	-
Vert.	125.459	QP	35.80	13.71	7.34	32.09	0.00	24.76	43.5	18.7	100	177	-
Vert.	400.498	QP	36.40	15.99	9.07	31.91	0.00	29.55	46.0	16.4	100	274	-
Vert.	2503.933	PK	51.37	27.63	15.17	39.54	2.35	56.98	73.9	16.9	240	116	-
Vert.	4880.000	PK	51.66	31.09	8.01	39.64	2.35	53.47	73.9	20.4	165	97	-
Vert.	7320.000	PK	43.00	36.82	9.78	39.36	2.35	52.59	73.9	21.3	150	0	-
Vert.	9760.000	PK	43.68	38.69	11.24	39.46	2.35	56.50	73.9	17.4	150	0	-
Vert.	7320.000	AV	34.11	36.82	9.78	39.36	2.35	43.70	53.9	10.2	150	0	Floor noise
Vert.	9760.000	AV	34.30		11.24	39.46	2.35	47.12	53.9	6.7	150		Floor noise
Desult	Dandina I Ant		/		\ //				. Diatanaa	_			

Result = Reading + Ant.Fac. + Loss (Cable+(Attenuator or Filter)(below 18 GHz)) - Gain(Amplifier) + Distance factor

Distance factor : 1 GHz - 10 GHz : 20log (3.93 m / 3.0 m) = 2.35 dB10 GHz - 40 GHz : <math>20log (1.0 m / 3.0 m) = -9.54 dB

Average measurement value with duty factor

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty	Distance	Result	Limit	Margin	Remark
							Factor	Factor				
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2503.933	ΑV	38.05	27.63	15.17	39.54	3.98	2.35	47.64	53.9	6.2	-
Hori.	4880.000	AV	43.77	31.09	8.01	39.64	3.98	2.35	49.56	53.9	4.3	-
Vert.	2503.933	AV	38.36	27.63	15.17	39.54	3.98	2.35	47.95	53.9	5.9	-
Vert.	4880.000	AV	43.71	31.09	8.01	39.64	3.98	2.35	49.50	53.9	4.4	-

Result = Reading + Ant.Fac. + Loss (Cable+(Attenuator or Filter)(below 18 GHz)) - Gain(Amplifier) + Duty factor + Distance factor

Distance factor : 1 GHz - 10 GHz : 20log (3.93 m / 3.0 m) = 2.35 dB10 GHz - 40 GHz : 20log (1.0 m / 3.0 m) = -9.54 dB

Duty factor refer to "Burst rate confirmation" sheet.

Test Report No. 14577969S-C-R1 Page 24 of 36

Radiated Spurious Emission

Test place Shonan EMC Lab.

Semi Anechoic Chamber SAC1

Date March 13, 2024
Temperature / Humidity 23 deg. C / 33 % RH
Engineer Yosuke Murakami
(1 GHz -26.5 GHz)

Mode Tx BT LE, 2480 MHz

(* PK: Peak, AV: Average, QP: Quasi-Peak)

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Distance	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	Factor [dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg]	
Hori.	2483.500	PK	48.58	27.65	15.16	39.53	2.35	54.21	73.9	19.6	109	51	-
Hori.	4960.000	PK	47.04	31.30	8.08	39.66	2.35	49.11	73.9	24.7	141	98	-
Hori.	7440.000	PK	43.74	36.95	9.90	39.36	2.35	53.58	73.9	20.3	150	0	-
Hori.	9920.000	PK	44.23	38.66	11.33	39.31	2.35	57.26	73.9	16.6	150	0	-
Hori.	7440.000	AV	34.48	36.95	9.90	39.36	2.35	44.32	53.9	9.5	150	0	Floor noise
Hori.	9920.000	AV	34.66	38.66	11.33	39.31	2.35	47.69	53.9	6.2	150	0	Floor noise
Vert.	2483.500	PK	46.65	27.65	15.16	39.53	2.35	52.28	73.9	21.6	180	105	-
Vert.	4960.000	PK	47.65	31.30	8.08	39.66	2.35	49.72	73.9	24.1	175	68	-
Vert.	7440.000	PK	43.83	36.95	9.90	39.36	2.35	53.67	73.9	20.2	150	0	-
Vert.	9920.000	PK	44.38	38.66	11.33	39.31	2.35	57.41	73.9	16.4	150	0	-
Vert.	7440.000	ΑV	34.46	36.95	9.90	39.36	2.35	44.30	53.9	9.6	150	0	Floor noise
Vert.	9920.000		34.63	38.66	11.33	39.31	2.35	47.66	53.9	6.2	150	0	Floor noise

Result = Reading + Ant.Fac. + Loss (Cable+(Attenuator or Filter)(below 18 GHz)) - Gain(Amplifier) + Distance factor

Distance factor : 1 GHz - 10 GHz : 20log (3.93 m / 3.0 m) = 2.35 dB10 GHz - 40 GHz : <math>20log (1.0 m / 3.0 m) = -9.54 dB

Average measurement value with duty factor

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty	Distance	Result	Limit	Margin	Remark
							Factor	Factor				
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2483.500	AV	37.54	27.65	15.16	39.53	3.98	2.35	47.15	53.9	6.7	*1)
Hori.	4960.000	AV	37.61	31.30	8.08	39.66	3.98	2.35	43.66	53.9	10.2	-
Vert.	2483.500	AV	36.75	27.65	15.16	39.53	3.98	2.35	46.36	53.9	7.5	*1)
Vert.	4960.000	AV	37.80	31.30	8.08	39.66	3.98	2.35	43.85	53.9	10.0	-

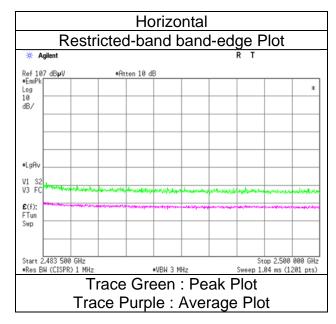
Result = Reading + Ant.Fac. + Loss (Cable+(Attenuator or Filter)(below 18 GHz)) - Gain(Amplifier) + Duty factor + Distance factor

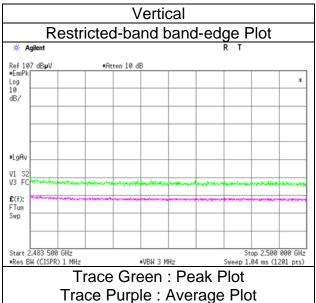
Distance factor : 1 GHz - 10 GHz : 20log (3.93 m / 3.0 m) = 2.35 dB

10 GHz - 40 GHz: 20log (1.0 m / 3.0 m) = -9.54 dB

Duty factor refer to "Burst rate confirmation" sheet.
*1) Not out of band emission (Leakage Power)

Test Report No. 14577969S-C-R1 Page 25 of 36


Radiated Spurious Emission (Reference Plot for band-edge)


Test place Semi Anechoic Chamber Date

Temperature / Humidity Engineer

Mode

Shonan EMC Lab. SAC1 March 13, 2024 23 deg. C / 33 % RH Yosuke Murakami (1 GHz -10 GHz) Tx BT LE, 2480 MHz

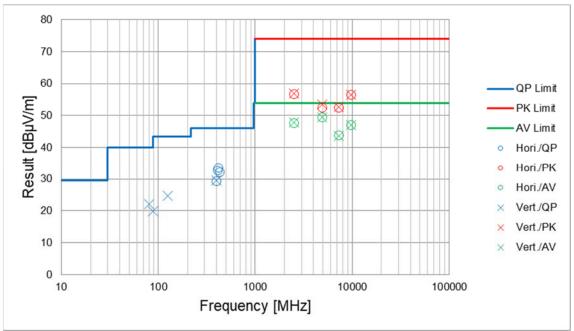
^{*} The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Final result of restricted band edge was shown in tabular data.

Test Report No. 14577969S-C-R1 Page 26 of 36

Radiated Spurious Emission (Plot data, Worst case mode for Maximum Peak Output Power)

Test place Semi Anechoic Chamber Date

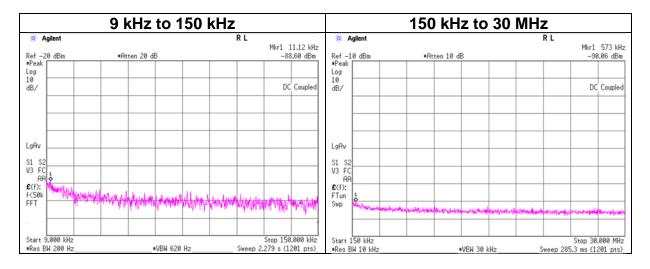

Temperature / Humidity Engineer

Mode

Shonan EMC Lab.

SAC3

April 1, 2024 24 deg. C / 33 % RH Makoto Hosaka Tx BT LE, 2440 MHz SAC1 March 13, 2024 23 deg. C / 33 % RH Yosuke Murakami


^{*}These plots data contain sufficient number to show the trend of characteristic features for EUT.

Test Report No. 14577969S-C-R1 Page 27 of 36

Conducted Spurious Emission

Test place Shonan EMC Lab. No.3 Shielded Room

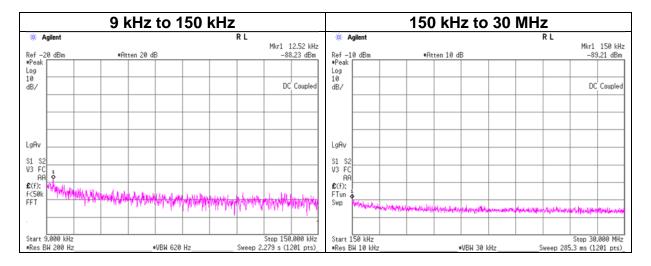
Date November 6, 2023
Temperature / Humidity 23 deg. C / 46 % RH
Engineer Kenichi Adachi
Mode Tx BT LE, 2402 MHz

Frequency	Reading	Cable	Attenuator	Antenna	N	EIRP	Distance	Ground	E	Limit	Margin	Remark
		Loss	Loss	Gain*	(Number			bounce	(field strength)			
[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output)	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
11.12	-88.6	0.61	9.9	2.0	1	-76.1	300	6.0	-14.8	46.6	61.4	-
573.00	-90.1	0.61	9.9	2.0	1	-77.5	30	6.0	3.7	32.4	28.7	-

E [dBuV/m] = EIRP [dBm] - 20 log (Distance [m]) + Ground bounce [dB] + 104.8 [dBuV/m]

EIRP[dBm] = Reading [dBm] + Cable loss [dB] + Attenuator Loss [dB] + Antenna gain [dBi] + 10 * log (N)

N: Number of output


^{*2.0} dBi was applied to the test result based on ANSI C63.10 since antenna gain was less than 2.0 dBi.

Test Report No. 14577969S-C-R1 Page 28 of 36

Conducted Spurious Emission

Test place Shonan EMC Lab. No.3 Shielded Room

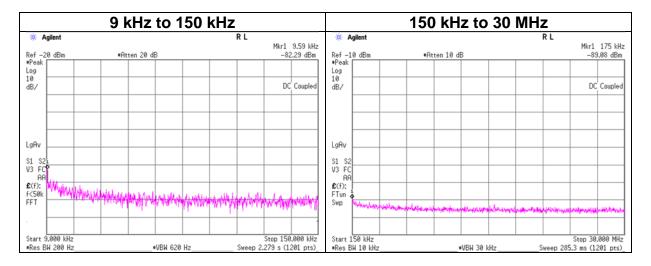
Date November 6, 2023
Temperature / Humidity 23 deg. C / 46 % RH
Engineer Kenichi Adachi
Mode Tx BT LE, 2440 MHz

Frequency	Reading	Cable	Attenuator	Antenna	N	EIRP	Distance	Ground	E	Limit	Margin	Remark
		Loss	Loss	Gain*	(Number			bounce	(field strength)			
[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output)	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
12.52	-88.2	0.61	9.9	2.0	1	-75.7	300	6.0	-14.4	45.6	60.0	-
150.00	-89.2	0.61	9.9	2.0	1	-76.7	300	6.0	-15.4	24.0	39.4	-

E [dBuV/m] = EIRP [dBm] - 20 log (Distance [m]) + Ground bounce [dB] + 104.8 [dBuV/m]

EIRP[dBm] = Reading [dBm] + Cable loss [dB] + Attenuator Loss [dB] + Antenna gain [dBi] + 10 * log (N)

N: Number of output


^{*2.0} dBi was applied to the test result based on ANSI C63.10 since antenna gain was less than 2.0 dBi.

Test Report No. 14577969S-C-R1 Page 29 of 36

Conducted Spurious Emission

Test place Shonan EMC Lab. No.3 Shielded Room

Date November 6, 2023
Temperature / Humidity 23 deg. C / 46 % RH
Engineer Kenichi Adachi
Mode Tx BT LE, 2480 MHz

Frequency	Reading	Cable	Attenuator	Antenna	N	EIRP	Distance	Ground	Е	Limit	Margin	Remark
		Loss	Loss	Gain*	(Number			bounce	(field strength)			
[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output)	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
9.59	-82.3	0.61	9.9	2.0	1	-69.7	300	6.0	-8.5	47.9	56.4	-
175.00	-89.1	0.61	9.9	2.0	1	-76.5	300	6.0	-15.3	22.7	38.0	-

E [dBuV/m] = EIRP [dBm] - 20 log (Distance [m]) + Ground bounce [dB] + 104.8 [dBuV/m]

EIRP[dBm] = Reading [dBm] + Cable loss [dB] + Attenuator Loss [dB] + Antenna gain [dBi] + 10 * log (N)

N: Number of output

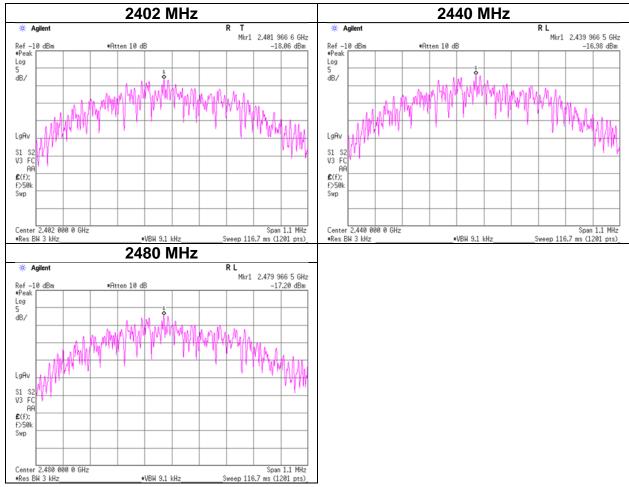
^{*2.0} dBi was applied to the test result based on ANSI C63.10 since antenna gain was less than 2.0 dBi.

Test Report No. 14577969S-C-R1 Page 30 of 36

Power Density

Test place Shonan EMC Lab. No.3 Shielded Room

Date November 6, 2023
Temperature / Humidity 23 deg. C / 46 % RH
Engineer Kenichi Adachi
Mode Tx BT LE


BT LE 1M-PHY

Freq.	Measured	Reading	Cable	Atten.	Result	Limit	Margin
	Frequency		Loss	Loss			
[MHz]	[MHz]	[dBm / 3 kHz]	[dB]	[dB]	[dBm / 3 kHz]	[dBm / 3 kHz]	[dB]
2402	2401.97	-18.06	1.26	9.97	-6.83	8.00	14.83
2440	2439.97	-16.98	1.26	9.97	-5.75	8.00	13.75
2480	2479.97	-17.20	1.27	9.97	-5.96	8.00	13.96

Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss

BT LE 1M-PHY

^{*}The equipment and cables were not used for factor 0 dB of the data sheets.

Test Report No. 14577969S-C-R1 Page 31 of 36

APPENDIX 2: Test Instruments

Test Equipment

	uipmer						
Test Item	LIMS ID	Description	Manufacturer	Model	Serial	Last Calibration Date	Cal Int
AT	146267	Power Meter	Anritsu Corporation	ML2495A	850009	2023/05/29	12
AT	146309	Power sensor	Anritsu Corporation	MA2411B	917063	2023/05/29	12
AT	160899	Spectrum Analyzer	Keysight Technologies Inc	E4440A	MY46185516	2023/01/26	12 *1)
AT	196945	Coaxial Cable	Huber+Suhner	SUCOFLEX 102	803414/2	2023/03/02	12 *1)
AT,CE	191841	Thermo- Hygrometer	CUSTOM. Inc	CTH-201	-	2023/08/01	12
AT,CE,R E	146210	Digital Hitester	HIOKI E.E. CORPORATION	3805-50	80997823	2023/09/25	12
AT,RE	145137	Attenuator	Keysight Technologies Inc	8493C-010	74865	2023/10/11	12
CE	145036	Coaxial Cable&RF Selector	Suhner/Suhner/TOYO	RG223U/141PE/NS4 906	-/0901-271(RF Selector)	2023/04/18	12
CE	145542	LISN	Rohde & Schwarz	ENV216	100516	2024/02/06	12
CE	199786	Attenuator	JFW	50HF-006N	-	2023/06/14	12
CE,RE	146432	Tape Measure	TAJIMA	GL19-55	-	-	-
CE,RE	150463	Test Receiver	Rohde & Schwarz	ESW44	101581	2023/08/25	12
CE,RE	170932	EMI Software	TSJ (Techno Science Japan)	TEPTO- DV3(RE,CE,ME,PE)	-	-	-
RE	145007	Pre Amplifier	Toyo Corporation	HAP18-26W	19	2024/03/05	12
RE	145023	Biconical Antenna	Schwarzbeck Mess- Elektronik OHG	BBA9106	91032666	2023/05/16	12
RE	145089	Spectrum Analyzer	Keysight Technologies Inc	E4446A	MY46180525	2024/02/07	12
RE	145126	Pre Amplifier	SONOMA	310N	290213	2024/02/07	12
RE	145127	Pre Amplifier	Toyo Corporation	TPA0118-36	2072554	2023/05/11	12
RE	145171	Coaxial Cable&RF Selector	Fujikura/Fujikura/Suhner/Su hner/Suhner/Suhner/TOYO	8D2W/12DSFA/141 PE/141PE/141PE/14 1PE/NS4906	-/0901-271(RF Selector)	2023/04/18	12
RE	145176	Coaxial Cable	Suhner	SUCOFLEX 102	32703/2	2023/08/23	12
RE	145301	Highpass Filter	Micro-Tronics	HPM50111	51	2023/10/13	12
RE	145383	Horn Antenna	Schwarzbeck Mess- Elektronik OHG	BBHA9120D	9120D-725	2024/03/04	12
RE	145512	Horn Antenna	ETS-Lindgren	3160-09	00094868	2023/06/12	12
RE	145529	Logperiodic Antenna	Schwarzbeck Mess- Elektronik OHG	VUSLP9111B	196	2023/05/16	12
RE	145561	Semi-Anechoic Chamber	TDK	SAEC-01(SVSWR)	1	2023/05/16	12
RE	145565	Semi-Anechoic Chamber	TDK	SAEC-03(NSA)	3	2023/04/05	12
RE	145792	Digital Hitester	HIOKI E.E. CORPORATION	3805-50	80997812	2023/09/25	12
RE	167094	Attenuator	JFW	50HF-006N	-	2024/02/13	12
RE	179540	Coaxial Cable	Huber+Suhner	SUCOFLEX 102	802815/2	2024/03/05	12
RE	191837	Thermo- Hygrometer	CUSTOM. Inc	CTH-201	-	2023/08/03	12
RE	191840	Thermo- Hygrometer	CUSTOM. Inc	CTH-201	-	2023/08/03	12
RE	194683	Horn Antenna	Schwarzbeck Mess- Elektronik OHG	BBHA 9120 C	694	2024/03/04	12
RE	196985	Coaxial Cable	Huber+Suhner	SUCOFLEX 102	803650/2	2024/03/05	12
RE	200008	Coaxial Cable	Huber+Suhner	SUCOFLEX 104	575616/4	2023/06/06	12
RE	207279	Tape Measure	ASKUL	-	_ =	-	-
RE	243212	Coaxial Cable	Hayashi-Repic co., Ltd.	SMS13-13A26- NMS13-9.0m	49306-01-01	2023/12/20	12

^{*}Hyphens for Last Calibration Date and Cal Int (month) are instruments that Calibration is not required (e.g. software), or instruments checked in advance before use.

Test Report No. 14577969S-C-R1 Page 32 of 36

The expiration date of the calibration is the end of the expired month.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

The expiration*1) This test equipment was used for the tests before the expiration date of the calibration.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

Test item:

AT: Antenna Terminal Conducted test

CE: Conducted Emission RE: Radiated Emission