

SAR Test Report

Test Report No. 14577971S-A

Customer	CANON INC.
Description of EUT	Wireless Microphone
Model Number of EUT	DS586233 (Master)
FCC ID	AZD250
Test Regulation	FCC 47CFR 2.1093
Test Result	Complied
Issue Date	March 18, 2024
Remarks	-

Representative Test Engineer	Approved By
H. haka	T.Amamura
Hiroshi Naka Engineer	Toyokazu Imamura Engineer
	CERTIFICATE 1266.03
The testing in which "Non-accreditation" is displayed i	s outside the accreditation scopes in UL Japan, Inc.
There is no testing item of "Non-accreditation"	· · · /
Report Cover Page -Form	ULID_003532 (DCS-13-EM_E0429) (sever 23.0 (SAR Pavision-1/23 /sar240226)

ANNOUNCEMENT

- This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- The results in this report apply only to the sample tested.
- This sample tested is in compliance with the limits of the above regulation.
- The test results in this test report are traceable to the national or international standards.
- This test report must not be used by the customer to claim product certification, approval, or endorsement by the A2LA accreditation body.
- This test report covers Radio technical requirements. It does not cover administrative issues such as Manual or non-Radio test related Requirements. (if applicable)
- The all test items in this test report are conducted by UL Japan, Inc. Shonan EMC Lab.
- The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan, Inc. has been accredited.
- The information provided from the applicant for this report is identified in Section 1.
- The laboratory is not responsible for information provided by the customer which can impact the validity of the results.

REVISION HISTORY

Original Test Report No.: 14577971S-A

Revision	Test Report No.	Date	Page Revised Contents
- (Original)	14577971S-A	March 18, 2024	-

Reference : Abbreviations (Including words undescribed in this report) (radio_r0v09s06_230726)

	The American Accession for Laboratory Accession		Jonan Approditation Doord
AZLA		JAD	Japan Accreditation Board
AC	Artemating Current	LAN	Local Area Network
AFH	Adaptive Frequency Hopping	LIMS	Laboratory Information Management System
AM	Amplitude Modulation	MCS	Modulation and Coding Scheme
Amp, AMP	Amplifier	MIMO	Multiple Input Multiple Output (Radio)
ANSI	American National Standards Institute	MPE	Maximum Permissible Exposure
Ant, ANT	Antenna	MRA	Mutual Recognition Arrangement
AP	Access Point	MU-MIMO	Multi-User Multiple Input Multiple Output (Radio)
APD	Absorbed Power Density	N/A	Not Applicable, Not Applied
ASK	Amplitude Shift Keying	NII	National Information Infrastructure (Radio)
Atten., ATT	Attenuator	NIST	National Institute of Standards and Technology
AV	Average	NR	New Radio
BPSK	Binary Phase-Shift Keving	NS	No signal detect
BR	Bluetooth Basic Rate	NSA	Normalized Site Attenuation
BT	Bluetooth	OBW/	Occupied Band Width
BTIE	Bluetooth Low Enormy		Occupied Dalid Width
	Didelooli i Low Li leigy		Division induced by Division invital plexing
DVV Collint	Dalluvviali		Power Density
Carini		P/IVI	Power meter
CCK	Complementary Code Keying	PCB	Printed Circuit Board
CDD	Cyclic Delay Diversity	PER	Packet Error Rate
CFR	Code of Federal Regulations	PHY	Physical Layer
Ch., CH	Channel	PK	Peak
CISPR	Comite International Special des Perturbations Radioelectriques	PN	Pseudo random Noise
CW	Continuous Wave	PRBS	Pseudo-Random Bit Sequence
DBPSK	Differential BPSK	PSD	Power Spectral Density
DC	Direct Current	QAM	Quadrature Amplitude Modulation
D-factor	Distance factor	QP	Quasi-Peak
DFS	Dynamic Frequency Selection	QPSK	Quadrature Phase Shift Keying
DQPSK	Differential QPSK	RBW	Resolution Band Width
DSSS	Direct Sequence Spread Spectrum	RDS	Radio Data System
DUT	Device Under Test	RF	Radio Equipment
FDR	Enhanced Data Rate	RF	Radio Frequency
FIRP eirn	Equivalent Isotropically Radiated Power	RMS	Root Mean Square
EMC	ElectroMagnetic Compatibility	RSS	Radio Standards Specifications
	ElectroMagnetic Interference	PU	Resource Unit
	European Norm	Rv	Receiving
	Effortive Redicted Dower		Sportrum Apply zor
ERF, e.i.p.	Elleulive Raulaleu Fowel	3A, 3/A 8AD	Spectrum Analyzer Specific Absorption Pote
			Specific Absolption Rate
EU	European Union	SDIVI	Space Division Multiplexing
EUI	Equipment Under Test	5150	Single Input Single Output (Radio)
Fac.	Factor	SG	Signal Generator
FCC	Federal Communications Commission	SPLSR	SAR to Peak Location Separation Ratio
FHSS	Frequency Hopping Spread Spectrum	SVSWR	Site-Voltage Standing Wave Ratio
FM	Frequency Modulation	TER	Total Exposure Ratio
Freq.	Frequency	TSL	Tissue Simulation Liquid
FSK	Frequency Shift Keying	T/R	Test Receiver
GFSK	Gaussian Frequency-Shift Keying	Tx	Transmitting
GNSS	Global Navigation Satellite System	U-NII	Unlicensed National Information Infrastructure (Radio)
GPS	Global Positioning System	URS	Unintentional Radiator(s)
HE	High Efficiency (e.g. IEEE 802.11ax20HE)	VBW	Video BandWidth
HT	High Throughput (e.g. IEEE 802.11n20HT)	Vert.	Vertical
Hori.	Horizontal	VHT	Verv High Throughput (e.g. IEEE 802.11ac20VHT)
ICES	Interference-Causing Equipment Standard	WLAN	Wireless LAN
IEC	International Electrotechnical Commission	Wi-Fi WiFi	Wireless LAN, trademarked by Wi-Fi Alliance
IFFF	Institute of Electrical and Electronics Engineers	····	
IF	Intermediate Frequency		
II AC	International Laboratory Accreditation Conference		
IPD	Incident Power Density		
ISED	Innovation. Science and Economic Development Canada		
190	In Invation 1, Over the and Lovin in the Developt the II. Calladd		
00	ווינטרומנטרומו טוצמו ובמנטרדטר סגמו ועמו עובמנטרד		

CONTENTS PAGE CONTENTS4 SECTION 1: **SECTION 2:** 21 2.2 **SECTION 3:** 3.1 RF Exposure limit6 3.2 3.3 Addition, deviation and exclusion to the test procedure7 3.4 3.5 3.6 Operation of EUT during testing......9 **SECTION 4:** Operation modes for testing9 41 4.2 RF exposure conditions (Test exemption)......9 Confirmation before testing......10 **SECTION 5:** Test reference power measurement......10 5.1 Tissue simulating liquid......11 **SECTION 6:** 6.1 Target of tissue simulating liquid11 6.2 6.3 SECTION 7: Measurement results......12 7.1 Simultaneous transmission evaluation......12 7.2 7.3 SAR Measurement Variability (Repeated measurement requirement)......12 7.4 7.5 Contents of appendixes **APPENDIX 1:** Photographs of test setup......13 Appendix 1-1 Appendix 1-2 Appendix 1-3 **APPENDIX 2:** Measurement data16 Appendix 2-1 Test instruments......17 **APPENDIX 3:** Appendix 3-1 Equipment used......17 Appendix 3-2 Appendix 3-2-1 Appendix 3-2-2 Appendix 3-2-3 Appendix 3-3 Appendix 3-4 Calibration certificates 23

SECTION 1: Customer information

Company Name	CANON INC.
Address	30-2.Shimomaruko 3-chome,Ohta-ku,Tokyo 146-8501,Japan
Telephone Number	+81-3-3757-4264
Contact Person	Tomohiro Suzuki

The information provided from the customer is as follows;

Customer name, Company name, Type of Equipment, Model No., FCC ID on the cover and other relevant pages. SECTION 1: Customer information

SECTION 2: Equipment under test (EUT) _

-

SECTION 4: Operation of EUT during testing Appendix 1: The part of Antenna location information, Description of EUT and Support Equipment _

SECTION 2: Equipment under test (EUT)

This report contains data provided by the customer which can impact the validity of results. UL Japan, Inc. is only responsible for the validity of results after the integration of the data provided by the customer. The data provided by the customer is marked "a)" in the table below.

Identification of EUT 2.1

Туре	Wireless Microphone
Model Number	DS586233 (Master)
Serial Number	No.40
Rating	DC 1.8 V
Condition of sample	Engineering prototype (Not for sale: The sample is equivalent to mass-produced items.)
Receipt Date of sample	December 20, 2023 (for power measurement and SAR) (*. No modification by the Lab.)
Test Date (SAR)	January 9, 2024

2.2 **Product Description**

General

Feature of EUT	Model number: DS586233 (referred to as the EUT in this report) is a Master of Wireless Microphone which has BLE function.
SAR Category	Portable device (*. Since EUT may contact to a localized human body during wireless operation, the partial-
Identified	body SAR (1g) shall be observed.)
SAR Accessory	None

Radio specification

Equipment type	Transceiver	Bluetooth version	Version 5.2	
Frequency of operation	2402 MHz ~2480 MHz	RF operating voltage	DC 1.8 V	
Antenna gain ^{a)} (max. gain)	-0.35 dBi (*including cable loss)			
Antenna type / connector type	Pattern antenna on PCB (no connector)			

Bluetooth	BTLE
Data rate	1 Mbps
Channel spacing	2 MHz
Number of channels	40
Type of modulation / carrier	GFSK/FHSS
Tune-up limit (maximum) power	10 dBm

Tune-up limit (maximum) is conducted burst average power and is defined by a customer as Duty cycle 100% (continuous transmitting).

* The measured output power (conducted) as SAR reference power refers to section 5 in this report.

SECTION 3: Maximum SAR value, test specification and procedures

3.1 Summary of Maximum SAR Value

Mode / Band		Highest Reported SAR [W/kg]					
		Partial-body		Head		Limbs	
		(Separation 0 mm, Flat phantom)		(Separation 0 mm, SAM phantom)		(Separation 0 mm, Flat phantom)	
		SAR type: SAR (1g)		SAR type: SAR (1g)		SAR type: SAR (10g)	
		Standalone	Simultaneous Transmission	Standalone	Simultaneous Transmission	Standalone	Simultaneous Transmission
Bluetooth		0.13	N/A	N/A	N/A	N/A	N/A
Limit applied	Partial-b CFR 2.1	tial-body/Head: 1.6 W/kg (SAR (1g)), Limbs: 4 W/kg (SAR (10g)), for general population/uncontrolled exposure is specified in FCC 47 R 2.1093.					
Teet Refer to		efer to Section 3.3 in this report. In addition;					
Procedure	UL Japa UL Japa	Japan's SAR measurement work procedures No. ULID-003599 (13-EM-W0430). Japan's SAR measurement equipment calibration and inspection work procedures No. 111 ID-003598 (13-EM-W0429)					

Conclusion

The SAR test values found for the device are separately below the maximum limit of 1.6 W/kg.

3.2 **RF Exposure limit**

SAR Exposure Limit (100 kHz ~ 6 GHz)				
	Occupational / Controlled Exposure (*2)			
	[W/kg]	[W/kg]		
Spatial Peak SAR (*3) (Whole Body)	0.08	0.4		
Spatial Peak SAR (*4) (Partial-Body, Head or Body)	1.6	8		
Spatial Peak SAR (*5) (Hands / Feet / Ankle / Wrist)	4	20		
* For the numerous of this Degulation FCC has adopted the SAD and DE support in the patchlished in FCC 47 CED 1 1210; Dedictroguency rediction				

For the purpose of this Regulation, FCC has adopted the SAR and RF exposure limits established in FCC 47 CFR 1.1310: Radiofrequency radiation exposure limits.

General Population / Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. *1. *2. Occupational / Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a

result of employment or occupation). The Spatial Average value of the SAR averaged over the whole body. *3.

The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time
 The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time

The limit applied to this device which tested in this report is;

Limit of Spatial Peak SAR (Partial-Body)	1.6 W/kg	General population / uncontrolled exposure

3.3 Test specification

Standard	Description	Version
47 CFR 2.1093	(Limit) Radiofrequency radiation exposure evaluation: portable devices	-
ANSI/IEEE C95.1	IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 KHz to 300 GHz	1992
IEEE Std. 1528	IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.	2013
KDB 248227 D01	SAR Guidance for IEEE 802.11 (Wi-Fi) transmitters	v02r02
KDB 447498 D04	Interim General RF Exposure Guidance	v01
KDB 447498 D03	OET Bulletin 65, Supplement C Cross-Reference	v01
KDB 865664 D01	SAR measurement 100 MHz to 6 GHz	v01r04
KDB 865664 D02	RF exposure compliance reporting and documentation considerations	v01r02
KDB 388624 D02	Pre-approval guidance list-APPENDIX OVER6G	v18r03
*. The measurement unce	rtainty budget is suggested by IEC/IEEE 62209-1528 and determined by SPEAG, DASY8 Manual for Module SAR. Refer to	Appendix3-3

for more details.

In addition to the above, the following information was used:

TCB workshop 2016 10	RF Exposure Procedure, DUT Holder Perturbations; When the highest reported SAR of an antenna is > 1.2 W/kg, holder
1CB workshop, 2010-10	perturbation verification is required for each antenna, using the highest SAR configuration among all applicable frequency bands.
TCB workshop, 2018-04	Expedited Area Scans. (Including mother scans)
TCB workshop, 2019-04	RF Exposure Procedure, 802.11ax SAR Testing
	RF Exposure Procedure, Tissue Simulating Liquids (TSL)
TCB workshop, 2019-10	-FCC has permitted the use of single head tissue simulating liquid specified in IEC 62209 for all SAR tests.
	-If FCC parameters are used, 5 % tolerance. If IEC parameters, 10 %.

3.4 Addition, deviation and exclusion to the test procedure

No addition, exclusion nor deviation has been made from the test procedure.

3.5 Test Location

UL Japan, Inc., Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken 259-1220 JAPAN

Telephone number: +81 463 50 6400 / Facsimile number: +81 463 50 6401

*. A2LA Certificate Number: 1266.03 (FCC Test Firm Registration Number: 626366, ISED Lab Company Number: 2973D / CAB identifier: JP0001)

Place	Width \times Depth \times Height (m)	Size of reference ground plane (m) / horizontal conducting plane
No.7 Shielded room	2.76 × 3.76 × 2.4	2.76×3.76

3.6 SAR measurement procedure

3.6.1 SAR Definition

SAR is defined as the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ). The equation description is shown in right.	$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho^* dV} \right)$
SAR measurement can be related to the electrical field in the tissue by the equation in right. SAR is expressed in units of Watts per kilogram (W/kg). Where : σ = conductivity of the tissue (S/m), ρ = mass density of the tissue (kg/m ³), E = RMS electric field strength in tissue (V/m)	$SAR = \frac{\sigma E ^2}{\rho}$

3.6.2 Full SAR measurement procedure

The SAR measurement procedures are as follows: (1) The EUT is installed engineering testing software that provides continuous transmitting signal; (2) Measure output power through RF cable and power meter; (3) Set scan area, grid size and other setting on the DASY software; (4) Find out the largest SAR result on these testing positions of each band; (5) Measure SAR results for other channels in worst SAR testing position if the SAR of highest power channel is larger than 0.8 W/kg.

- According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:
- Step 1) Power measurement --> SAR: Step 2) Power reference measurement -> Step 3) Area scan -> Step 4) Zoom scan -> Step 5) Power drift measurement

Step 1: Confirmation before SAR testing

Before SAR test, the RF wiring for the sample had been switched to the antenna conducted power measurement line from the antenna line and the average power was measured. This SAR reference power measurement was proceeded with the lowest data rate (which may have the higher time-based average power typically) on each operation mode and on the lower, middle (or near middle), upper and specified channels. The power measurement result is shown in Section 5.

The EUT transmission power used SAR test was verified that it was not more than 2 dB lower than the maximum tune-up tolerance limit. (KDB447498 D01 (v06))

Step 2: Power reference measurement

Measured psSAR value at a peak location of Fast Area Scan was used as a reference value for assessing the power drop.

Step 3: Area Scan

p N (Scan parameters: KDB 865664 D01, IEC/IEEE 62209-1528 (> 6GHz)) a Area Scans are used to determine the peak location of the measured tł field before doing a finer measurement around the hotspot. Peak location can be found accurately even on coarse grids using the advanced interpolation routines implemented in DASY8. Area Scans measure a two dimensional volume covering the full device under test area. DASY8 uses Fast Averaged SAR algorithm to compute the 1 g and 10 g of simulated tissue from the Area Scan. DASY8 can either manually or automatically generates Area Scan grid settings based on device dimensions. In automatically case, the scan extent is defined by the device dimensions plus additional 15mm on each side. In manually, the scan covered the entire dimension of the antenna of EUT.

N. Step 4: Zoom Scan and post-processing re (Scan parameters: KDB 865664 D01, IEC/IEEE 62209-1528 (> 6GHz)) Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures points (refer to table below) within a cube Ν whose base faces are centered on the maxima found in a preceding 7

area scan job within the same procedure. A minimum volume of 30 mm (x) \times 30 mm (y) \times 30 mm (z) was assessed

- re by "Ratio step" method (*1), for 2.4 GHz band. (Step XY: 5 mm)
- *. A minimum volume of 24 mm (x) × 24 mm (y) × 24 mm (z) was as by "Ratio step" method (*1), for 5 GHz band (Step XY: 4 mm). p
- . A minimum volume of 24 mm (x) \times 24 mm (y) \times 24 mm (z) was assessed by "Ratio step" method (*1), for 6 GHz band (Step XY: 3.4 mm).

When the SAR of the highest peak is within 2 dB of the SAR limit, additional zoom scans are proceeded for other peaks within 2 dB of the highest peak that have not been included in any zoom scan to ensure there is no increase in SAR. If the zoom scan measured as defined above complies with both of the following criteria. or if the peak spatial-average SAR is below 0.1 W/kg, no additional measurements are needed.

- The smallest horizontal distance from the local SAR peaks to all points 3 dB below the SAR peak shall be larger than the horizontal grid steps in both x and y directions and recorded.
- *. The ratio of the SAR at the second measured point to the SAR at the closest measured point at the x-y location of the measured maximum SAR value shall be at least 30 % and recorded.

			1 2 0 01 12				
Maximum d measureme center of pro phantom su	istance ant point obe sena Inface	from closest (geometric sors) to	$5\text{mm}\pm1\text{mm}$	$\begin{array}{c} 1/2 \times \delta \times \text{ln(2) mm} \\ \pm 0.5 \text{mm} \end{array}$			
Maximum p axis to phan the measure	robe an tom sur ement lo	gle from probe face normal at ocation	$5^{\circ} \pm 1^{\circ}$ (flat phantom only) $30^{\circ} \pm 1^{\circ}$ (other phantom)	$5^{\circ} \pm 1^{\circ}$ (flat phantom only) $30^{\circ} \pm 1^{\circ}$ (other phantom)			
Maximum a	area sc	an spatial	≤2 GHz : ≤ 15 mm, 2~3 GHz : ≤ 12 mm	3~4 GHz : ≤ 12 mm, 4~6 GHz : ≤ 10 mm > 6 GHz : ≤ 60/fmm, or half of the corresponding zoom scan length, whichever is smaller.			
	LAArea, ∠	iy Area	When the x or y dimension o measurement plane orientati above, the measurement res corresponding x or y dimensi least one measurement poin	the test device, in the on, is smaller than the colution must be ≤ the ion of the test device with at t on the test device.			
Maximum z resolution: Δ	oom sca XArea, ∆y	an spatial ^{(Area}	\leq 2 GHz : \leq 8 mm, 2~3 GHz : \leq 5 mm (*1)	$3 \sim 4 \text{ GHz} : \le 5 \text{ mm} (*1),$ $4 \sim 6 \text{ GHz} : \le 4 \text{ mm} (*1)$ $> 6 \text{ GHz} : \le 24/f \text{ mm}$			
Maximum	uniform	ι grid: Δz _{zcom} (n)	≤5mm	3~4 GHz:≤4 mm, 4~5 GHz:≤3 mm, 5~6 GHz:≤2 mm >6 GHz:≤10/(£1) mm			
spatial resolution, normal to phantom	graded	$\Delta z_{Zoom}(1)$: between 1st two points closest to phantom surface	≤4mm	3~4 GHz : ≤ 3 mm, 4~5 GHz : ≤ 2.5 mm, 5~6 GHz : ≤ 2 mm > 6 GHz : ≤ 12/fmm			
surface	gnu	Δz _{zcom} (n>1): between subsequent points	\leq 1.5 × Δz_{zo}	_{am} (n-1) mm			
Minimum zoom scan volume	x, y, z		≥ 30 mm	$3 \sim 4 \text{ GHz}$: $\geq 28 \text{ mm}$, $4 \sim 5 \text{ GHz}$: $\geq 25 \text{ mm}$, $5 \sim 6 \text{ GHz}$: $\geq 22 \text{ mm}$ $> 6 \text{ GHz}$: $\geq 22 \text{ mm}$			
Note: δ is the Std 1528-20	penetrat 13 (< 6 G	ion depth of a plane Hz) and IEC/IEEE	e-wave at normal incidence to 62209-1528 (< 10 GHz) for c	the tissue medium; see IEEE letails			

f≤3GHz

 $3 \text{ GHz} < f \le 10 \text{ GHz}$

*1. When zoom scan is required and the reported SAR from the area scan based 1-g SAR estimation procedures of KDB Publication 447498 is \leq 1.4 W/kg, \leq 8 mm, \leq 7 mm and \leq 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz. (KDB 865664 D01)

". The scan parameters of > 6GHz is defined IEC/IEEE 62209-1528.

Step 5: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same project. The Power Drift Measurement gives the SAR difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. It was checked that the power drift was within ± 5% (0.21 dB) in single SAR project run. The verification of power drift during the SAR test shown in SAR plot data of APPENDIX 2.

The most of SAR tests were conservatively performed with test separation distance 0 mm. The phantom bottom thickness is approx. 2mm. Therefore, the distance between the SAR probe tip to the surface of test device which is touched the bottom surface of the phantom is approx. 2.4 mm. Typical distance from probe tip to

probe's dipole centers is 1mm. "Ratio step" method parameters used; the first measurement point: "1.4 mm" from the phantom surface, the initial z grid separation: "1.5 mm", subsequent graded grid ratio: "1.5" for 2.4 GHz band and the initial z grid separation: "1.4 mm", subsequent graded grid ratio: "1.4" for above 5 GHz. These parameters comply with the *1. requirement of KDB 865664 D01 and recommended by Schmid & Partner Engineering AG (DASY8 manual).

SECTION 4: Operation of EUT during testing

4.1 Operating modes for testing

The EUT has Bluetooth continuous transmitting modes. The frequency and the modulation used in the SAR testing are shown as a following.

Operation mode	BTLE		Test name	Software name	Version	Released Date	Storage location	
Tx Band [MHz]	2402~2480			Direct Test Mode	220	2023-12-20	Connected host PC	
Max.power [dBm]	10	Controlled	Power	/ nRF Connect for Desktop	2.2.0	2023-12-20	Connected host i C	
Data rate [Mbps]	1M-PHY	software	measurement,					
Frequency tested [MHz]	2402, 2440,		SAR	BTLE	1.0	2023-12-20	EUT firmware	
	2480							

Max.power: Maximum power (tune-up limit power), n/a: SAR test was not applied.

 SAR test applies in according to the following "SAR test reduction considerations" procedure.
 (KDB 447498 D04(v01), General RF Exposure Guidance) Testing of other required channels within the operating mode of a frequency band is not required. when the reported 1g or 10g SAR for the mid-band or highest output power channel is:

(1) ≤ 0.8 W/kg for 1g, or 2.0 W/kg for 10g respectively, when the transmission band is ≤ 100 MHz (2) ≤ 0.6 W/kg for 1g, or 1.5 W/kg for 10g respectively, when the transmission band is between 100 MHz and 200 MHz (3) ≤ 0.4 W/kg for 1g, or 1.0 W/kg for 10g respectively, when the transmission band is ≥ 200 MHz

The SAR has been measured with highest transmission duty factor supported by the test mode tool for Bluetooth. When the transmission duty factor could not be 100%, the reported SAR will be scaled to 100% transmission duty factor to determine compliance. When SAR is not measured at the maximum power level allowed for production unit, the measured SAR will be scaled to the maximum tune-up tolerance limit to determine compliance.

RF exposure conditions (Test exemption) 4.2

Antenna separation distances in each test setup plan are shown as follows.

Setup	Explanation of SAR test setup plan (* Refer to Appendix 1 for test setup plotographs which had been tested)	D [mm]	SAR Tested /Reduced (*2)
Left	The left side of EUT is touched to the Flat phantom.	4.46	Tested
Back	The back side of EUT is touched to the Flat phantom.	≈10	Tested
Тор	The top side of EUT is touched to the Flat phantom.	≈16	Tested
Bottom	The bottom side of EUT is touched to the Flat phantom. (DS586233: host device side)	≈20	Tested
Front	The front side of EUT is touched to the Flat phantom.	≈25	Tested
Right	The right side of EUT is touched to the Flat phantom.	≈37	Tested
* Dra Amete	and a second in all the second second from the antenna inside CLIT to the automatic second second second second	a a mana an i Aan na la	

Antenna separation distance. It is the distance from the antenna inside EUT to the outer surface of EUT which user may touch.

*2. [SAR test exemption consideration by KDB 447498 D04 (v01)]

							Ji	udge of SAR test e	exemption ("Test "c	r "Exempt") / SAR b	ased Threshold pow	<i>i</i> er
									D: Antenna sepa	aration distance [m	m]	
Tv	Higher	Conduc	cted	ŀ	Antenna		<5	10	16	20	25	37
mode	frequency	Max. ave.	power	Gain	ERF	U	Left	Back	Тор	Bottom	Front	Right
mode	[MHz]	[dBm]	[mW]	[dBi]	[dBm] [[mW]	SAR1g	SAR1g	SAR1g	SAR1g	SAR1g	SAR1g
BT LE	2480	10	10	-0.35	7.50	6	Test, 3 mW	Test , 10 mW	Exempt, 25 mW	Exempt, 38 mW	Exempt, 58 mW	Exempt, >100 mW

Module-based antenna gains with maximum values were used conservatively.

Antenna separation distance is rounded to the nearest integer numbers (in mm) before calculation. (Calculating formula) ERP (dBm) = (max. conducted output power, dBm) + (antenna gain, dBi) -2.15

<Conclusion for consideration for SAR test reduction>

The all SAR tests were conservatively performed with test separation distance 0 mm.

All surface (6 face) of EUT's setup are applied the SAR test because the EUT is small device even if the SAR test exemption judge is "exempt." 2)́

SAR-based thresholds (Pth (mW) shown below table of "Example Power Thresholds [mW]" are derived based on frequency, power, and separation distance of the RF source. The formula defines the thresholds in general for either available maximum time-averaged power or maximum time-averaged effective radiated power (ERP), which ever is greater. The SAR-based exemption is calculated by Formula (B.2) in below, applies for single fixed, mobile, and portable RF sources with available maximum time-averaged power or effective radiated power (ERP), which ever is greater, of less than or equal to the threshold Pth (mW). When 10-g extremity SAR applies, SAR test exemption may be considered by applying a factor of 2.5 to the SAR-based exemption thresholds. *. This method shall only be used at separation distances from 0.5 cm to 40 cm and at frequencies from 0.3 GHz to 6 GHz (inclusive).

		Table: Example Power Thresholds [mW] for SAR(1g) (Bold: listed in Table B.2 of KDB 447498 D04 (v01), Italic: Calculated)]					Anima DE I	No. of Contract of																							
																			Dista	ince	[mm	1													1.10		IA	BLE B.I-	THRESHOLD	FOR	SINGLE RF 3	OURCES
			5	6	7	8	9	10	11	12	2 1	13	14	15	1	6 1	7	18	19	20	21	22	23	2	4 2	25	26	27	28	29	30	35	40	4	50	-	SU	BJECT TO R	OUTINE ENV	RON	MENTAL EVA	LUATION
	240	12	3	4	5	7	9	10	12	15	5 1	17	20	22	2	5 2	8	32	35	39	42	46	50	5	5 5	9	64	68	73	78	84	112	144	18	220	RF Sou	rce F	requency	Minim	um I	Distance	Threshold ERP
	24	50	3	4	5	7	8	10	12	15	5 1	17	19	22	25	5 2	8	31	35	38	42	46	50	5	4 5	59	63	68	73	78	83	111	143	3 17	219	fi MHz		fa MHz	$\lambda_L/2\pi$		$\lambda_{\rm H}/2\pi$	W
P	246	2	3	4	5	7	8	10	12	14	1 1	17	19	22	2	5 2	8	31	35	38	42	46	50	5	4 5	8	63	68	73	78	83	111	143	3 17	219	0,3	-	1.34	159 m	-	35.6 m	1,920 R ²
Ē	248	30	3	4	5	7	8	10	12	14	1 1	17	19	22	2	5 2	8	31	35	38	42	46	50	5	4 5	8	63	67	72	77	82	111	143	17	218	1.34	-	30	35.6 m	-	1.6 m	3,450 R ² /f ²
>	360	00	2	3	4	5	6	8	10	11	1 1	13	16	18	20) 2	3	26	29	32	35	38	42	4	5 4	9	53	57	62	66	71	96	12	5 15	3 195	30	-	300	1.6 m	-	159 mm	3.83 R ²
č	524	0	1	2	3	4	5	6	8	9	1	11	13	14	11	7 1	9	21	24	26	29	32	35	3	8 4	2	45	49	53	57	61	83	110) 14	174	300	-	1,500	159 mm	-	31.8 mm	0.0128 R ² f
n	532	20	1	2	3	4	5	6	8	9	1	11	12	14	10	5 1	9	21	23	26	29	32	35	3	8 4	1	45	48	52	56	60	83	109	13	173	1,500	-	100,000	31.8 mm	-	0.5 mm	19.2R ²
é	570	00	1	2	3	4	5	6	7	9	1	10	12	14	10	5 1	8	20	23	25	28	31	34	3	7 4	10	43	47	51	55	59	81	107	13	5 170	Subscrip	ts L an	d H are low	and high; λ is	wavel	length	
"	580	0	1	2	3	4	5	6	7	9	1	10	12	14	10	5 1	8	20	22	25	28	30	33	3	6 4	40	43	47	50	54	58	80	100	3 13	5 169	From §1	1307(b)(3)(1)(C), 1	nodified by ad	ding l	Minimum Dist	ince columns.
	582	25	1	2	3	4	5	6	7	9	1	10	12	14	10	5 1	8	20	22	25	28	30	33	3	6 4	0	43	47	50	54	58	80	100	13	5 169	1 _		Ri	s in mete	r, fis	s in MHz	
	588	35	1	2	3	4	5	6	7	8	1	10	12	14	10	5 1	8	20	22	25	27	30	33	3	6 3	19	43	46	50	54	58	80	105	5 13	5 168	Inn	esha	M ERP	[VV] = 19	.2×	R^2 (~to	rmula (A.1))
	600	0	1	2	3	4	5	6	7	8	1	10	12	13	1	5 1	7	20	22	24	27	30	33	30	6 3	19	42	46	50	53	57	79	105	5 13	167	1		(D	istance: (vei	40 GH)	
		atir	na	fo	m		،		-			-		-	-		-			-	-		-	-		-			-	-	-					-						
Ē	lioui	au	'g	10		aic	A.	_		(20	40	t	0.3	GI	ZŚ	st	<	1.5	GH	Z							(E	ERP	20 0	.(d	/20	cm)	e d	≤ 2) cm						1	N
P.	(m)	W)	=	ER.	P20	-	(m	W	=	1						1							P	-h (1	mW	0 =	={ ⁻		20 01	1,000	-			_				Y :	= - 10	σ.,	(0
					-					30	60		1.5	GI	Iz s	sf	5	6 G	Hz	0	B.1)					(E	RP	20 cr	n			2	0 cm	< d :	5 40 cm	(B	.2)		510	ERP20	$cm\sqrt{f}$
																				- (<i>'</i>	9	nd	fic	in (GH	7 1	list	hes	ena	ratio	n dis	tane	e (cm	and F	Pa	is ne	Formul	a (P	1)	

SECTION 5: Confirmation before testing

5.1 Test reference power measurement

			_	Power	spec.	D	uty cyc	le		Ante	enna 1	power		Adjusted
Mode	Freque	ency	Data	on e	ach nna	duty	duty	scaled	Set	Burst	Δ	Tune-up	Time	power
IVIOUE			Tate	Typical	Max.	cycle	factor	factor	pwr.	Ave.	Max.	factor	Ave.	setting?
	[MHz]	CH	[Mbps]	[dBm]	[dBm]	[%]	[dB]	[-]	[-]	[dBm]	[dB]	[-]	[dBm]	(1)
	2402	0	1	8	10	63.3	1.99	1.58	0	8.47	-1.53	1.42	6.48	No
BTLE	2440	19	1	8	10	63.3	1.99	1.58	0	9.35	-0.65	1.16	7.36	No
	2480	39	1	8	10	63.3	1.99	1.58	0	8.51	-1.49	1.41	6.52	No

: SAR test was applied.

*1. "Yes": The power setting was adjusted so that measured average power was not more than 2 dB lower than the maximum tune-up tolerance limit. (This power setting value might be different from product specification value. Any conditions under the normal use do not exceed the condition of setting. End user cannot change the power setting of product.)

CH: Channel; Power spec:: Power specification; Max.: Maximum; Set pwr.: Setting power by tested software; Burst Ave.: Measured burst average power; Time Ave.: Measured time-based average power; n/a: Not applied,/Not applicable.

*.

- Calculating formula: Time average power (dBm) = (P/M Reading, dBm)+(Cable loss, dB)+(Attenuator, dB) Burst power (dBm) = (P/M Reading, dBm)+(Cable loss, dB)+(Attenuator, dB)+(duty factor, dB) Duty cycle: (duty cycle, %) = (Tx on time) / (1 cycle time) × 100, Duty factor (dBm) = $10 \times \log (100/(duty cycle, %))$ Duty cycle scaled factor: Duty cycle cycle correction factor for obtained SAR value, Duty scaled factor [-] = 100(%) / (duty cycle, %)
- △ Max. (Deviation form max. power, dB) = (Burst power measured (average, dBm)) (Max.tine-up limit power (average, dBm)) Tune-up factor: Power tune-up factor for obtained SAR value, Tune-up factor [-] = 1 / (10 ^ ("Deviation from max., dB" / 10)) Date measured: December 26, 2023 / Measured by: H. Naka/ Place: Preparation room of No. 7 shield room. (23 deg.C./ 34 %RH)
- Uncertainty of antenna port conducted test; (±) 0.81 dB (Average power), (±) 0.27 % (duty cycle).

SECTION 6: Tissue simulating liquid

Liquid measurement 6.1

							Liq	uid param	neters						∆SAR	Coeffi	icients (*a)	
_			Liquid		Permi	ittivity	(er) [-]			Condu	ctivity	[S/m]		Inter-	ΔS	AR		
Frequency [MHz]	iuency Liquid Liquid (Hz] type Temp		depth of	Torget	Me	asure	d	∆end,	Torget	Mea	asure	d	∆end,	polated ?	10	100	∆SAR correct	Date measured
[····-]	-11	Idea.C.1	phantom	value	Value	Δεr	Limit	>48hrs.	value	V/alue	Δσ	Limit	>48hrs.	□: No	19 [%]	10g	Required?	
		L - 9 - 1	[mm]	Value	value	[%]	[%]	(*1)	value	value	[%]	[%]	(*1)	⊠: Yes	[/0]	[/9]		
2450	Head	22.5	151	39.2	39.66	1.2	5	begin	1.80	1.858	3.2	5	begin		1.3	0.6	no	2024-01-09
2402	Head	22.5	151	39.29	39.75	1.2	5	< 48 hrs.	1.757	1.824	3.8	5	begin		1.6	0.8	no	2024 01 00 before SAR
2440				39.22	39.69	1.2	5	< 48 hrs.	1.791	1.850	3.3	5	begin		1.3	0.7	no	2024-01-09, Deloie SAR
2480				39.16	39.62	1.2	5	< 48 hrs.	1.833	1.882	2.7	5	begin		1.0	0.5	no	iesi.

*1. "begin": SAR test has ended within 24 hours from the liquid parameter measurement, "< 48 hrs.": Since SAR test has ended within 48 hours (2 days) from the liquid parameter measurement and a change in the liquid temperature was within 1 degree, liquid parameters measured on first day were used on next day continuously, "value (%)": Since the SAR test series took longer than 48 hours, the liquid parameters were measured on every 48 hours period and on the date which was end of test series. Since the difference of liquid parameters between the beginning and next measurement was smaller than 5%, the liquid parameters measured in beginning were used until end of each test series.

Calculating formula: " Δ end(>48 hrs.) (%)" = {(dielectric properties, end of test series) / (dielectric properties, beginning of test series) -1} × 100 The dielectric parameters were checked prior to assessment using the DAKS-3.5 dielectric probe.

The target values refers to clause 6.2 of this report.

*а. The coefficients in below are parameters defined in IEEE Std. 1528-2013.

 $(Calculating formula, 4 \text{ MHz-}6 \text{ GHz}): \Delta SAR(1g) = C \epsilon r \times \Delta \epsilon r + C \sigma \times \Delta \sigma, C \epsilon = -7.854E - 4 \times 4^3 + 9.402E - 3 \times 4^2 - 2.742E - 2 \times 40.2026 / C \sigma = -9.804E - 3 \times 4^3 - 8.661E - 2 \times 4^2 + 2.981E - 2 \times 40.7829 / C \sigma = -9.804E - 3 \times 4^3 - 8.661E - 2 \times 4^2 + 2.981E - 2 \times 40.7829 / C \sigma = -9.804E - 3 \times 4^3 - 8.661E - 2 \times 4^2 + 2.981E - 2 \times 40.7829 / C \sigma = -9.804E - 3 \times 4^3 - 8.661E - 2 \times 4^2 + 2.981E - 2 \times 40.7829 / C \sigma = -9.804E - 3 \times 4^3 - 8.661E - 2 \times 4^2 + 2.981E - 2 \times 40.7829 / C \sigma = -9.804E - 3 \times 4^3 - 8.661E - 2 \times 4^2 + 2.981E - 2 \times 40.7829 / C \sigma = -9.804E - 3 \times 4^3 - 8.661E - 2 \times 4^2 + 2.981E - 2 \times 40.7829 / C \sigma = -9.804E - 3 \times 4^3 - 8.661E - 2 \times 4^2 + 2.981E - 2 \times 40.7829 / C \sigma = -9.804E - 3 \times 4^3 - 8.661E - 2 \times 4^2 + 2.981E - 2 \times 40.7829 / C \sigma = -9.804E - 3 \times 4^3 - 8.661E - 2 \times 4^2 + 2.981E - 2 \times 40.7829 / C \sigma = -9.804E - 3 \times 4^3 - 8.661E - 2 \times 4^2 + 2.981E -$ $\Delta SAR(10g) = Cer \times \Delta Er + Co \times \Delta \sigma, Cer = 3456 \times 10^3 \text{ } x^3 \cdot 3.531 \times 10^2 \text{ } x^2 + 7.675 \times 10^2 \text{ } x61.1860 / Co = 4.479 \times 10^3 \text{ } x^3 \cdot 1.586 \times 10^2 \text{ } x^4 + 0.172 \text{ } x^4 + 7.675 \times 10^2 \text{ } x61.1860 / Co = 4.479 \times 10^3 \text{ } x^3 \cdot 1.586 \times 10^2 \text{ } x^4 + 0.172 \text{ } x^4 + 0.1717 \text{ } x^5 \text{ } x^5 + 0.1860 / Co = 4.479 \times 10^3 \text{ } x^3 \cdot 1.586 \times 10^2 \text{ } x^4 + 0.1717 \text{ } x^5 \text{ } x^5 + 0.1860 / Co = 4.479 \times 10^3 \text{ } x^3 \cdot 1.586 \times 10^2 \text{ } x^4 + 0.1717 \text{ } x^5 \text{ } x^5 + 0.1860 / Co = 4.479 \times 10^3 \text{ } x^3 \cdot 1.586 \times 10^2 \text{ } x^4 + 0.1717 \text{ } x^5 \text{ } x^5 + 0.1917 \text{ } x^5 + 0.191$

(Calculating formula): Since the calculated ASAR values of the tested liquid had shown positive correction, the measured SAR was not converted by ASAR correction conservatively.

6.2 Target of tissue simulating liquid

Nominal dielectric values of the tissue simulating liquids in the phantom are listed in the following table. (Appendix A, KDB 865664 v01r04)

l arget Frequency	HE	ead	В	ody	l arget Frequency	HE	ead	В	ody
(MHz)	٤ _r	σ(S/m)	ε _r	σ(S/m)	(MHz)	ε _r	σ(S/m)	٤ _r	σ(S/m)
1800~2000	40.0	1.40	53.3	1.52	3000	38.5	2.40	52.0	2.73
2450	39.2 1.80		52.7 1.95		5800	35.3	5.27	48.2	6.00
* - 4 (1 11 14 1					~

For other frequencies, the target nominal dielectric values shall be obtained by linear interpolation between the higher and lower tabulated figures. Above 5800MHz were obtained using linear extrapolation.

6.3 Simulated tissue composition

Liquid type	Head Control No. SSLHV6-01 Model No. / Product No. HBBL600-10000V6 / SLAAH U16 BC								
Ingredient: Mixture [%]	Water: >77, Ethanediol: <5.2, Sodium petroleum sulfonate:<2.9, Hexylene Glycol: <2.9, alkoxylated alcohol (>C16):<2.0								
Tolerance specification	± 10%								
Temperature gradients [%/deg.C]	permittivity: -0.19 / conductivity: -0.57 (at 2.6 GHz), permittivity: +0.31 / conductivity: -1.43 (at 5.5 GHz) (*)								
Manufacture	Schmid & Partner Engineering AG Note: *. speag_920-SLAAxyy-E_1.12.15CL (Maintenance of tissue simulating liquid)								

SECTION 7: Measurement results

Measurement results (SAR) 7.1

	Tests	setup		Mode and F	requen	су	Duty	cycle	Po	wer correc	ction		SAF	R results	[W/ka]			SAR	Setup			
	Test	Gan	Source	Mode (D/R)	[MHz]	CH	Duty	Duty	Max.	Measured	Power		(Ma	x.value of m	ulti-peak)			plot# in	photo# in	Memo		
Ant.	" position (r	[mm]	[mm]	[mm]	power	Mark with "*" is mode & fr	the initial equency.	test	cycle [%]	factor	limit [dBm]	conducted [dBm]	(tune-up) factor	Measured SAR	∆SAR [%]	∆SAR corrected	Reported SAR (*b)	SAR type	Limit	Аррх. 2	Аррх. 1-3	
1)[DS5862	33 (I	Master)																		
1Tx	Left	0	DC P/S	BT LE (1Mbps)	2402	0	63.3	1.58	10	8.47	1.42	0.033	Positive	n/a(*a)	0.074	1g	1.6	-	P1	-		
1Tx	Left	0	DC P/S	BT LE (1Mbps)	2440*	19	63.3	1.58	10	9.35	1.16	0.060	Positive	n/a(*a)	0.110	1g	1.6	-	P1	-		
1Tx	Left	0	DC P/S	BT LE (1Mbps)	2480	38	63.3	1.58	10	8.51	1.41	0.058	Positive	n/a(*a)	0.129	1g	1.6	1-1	P1	-		
1Tx	Back	0	DC P/S	BT LE (1Mbps)	2440*	19	63.3	1.58	10	9.35	1.16	0.054	Positive	n/a(*a)	0.099	1g	1.6	I	P2	-		
1Tx	Тор	0	DC P/S	BT LE (1Mbps)	2440*	19	63.3	1.58	10	9.35	1.16	0.028	Positive	n/a(*a)	0.051	1g	1.6	I	P3	-		
1Tx	Bottom	0	DC P/S	BT LE (1Mbps)	2440*	19	63.3	1.58	10	9.35	1.16	0.011	Positive	n/a(*a)	0.026	1g	1.6	I	P4	-		
1Tx	Front	0	DC P/S	BT LE (1Mbps)	2440*	19	63.3	1.58	10	9.35	1.16	0.013	Positive	n/a(*a)	0.074	1g	1.6	-	P5	-		
1Tx	Right	0	DC P/S	BT LE (1Mbps)	2440*	19	63.3	1.58	10	9.35	1.16	0.006	Positive	n/a(*a)	0.110	1g	1.6	1	P6	-		

Notes:

The higher scaled (reported) SAR in each operation band is marked (shaded yellow marker).

Appx. Appendix, n/a: not applied. Gap: It is the separation distance between EUT surface and the bottom outer surface of phantom.

During test, the EUT was connected with the DC P/S to provide dc power, and connected to host PC via USB to control.

During SAR test, the radiated power is always monitored by Spectrum Analyzer or/and MAIA.

*a. Since the calculated Δ SAR values of the tested liquid had shown positive correction, the measured SAR was not converted by Δ SAR correction. Calculating formula: Δ SAR corrected SAR (W/kg) = (Measured SAR (W/kg)) × (100 - (Δ SAR(%)) / 100 Calculating formula: Δ SAR corrected SAR (W/kg) = (Measured SAR (W/kg)) × (100 - (Δ SAR(%)) / 100

*b. Calculating formula:

Calculating formula: Reported (Scaled) SAR (Wkg) = (Measured SAR (Wkg)) × (Duty scaled factor) × (Power scaled factor) where, Duty scaled factor [-] = 100(%) / (measured duty cycle, %), Power scaled factor [-] = 10^{(((Maxtune-up limit power, dBm)) - (Measured conducted power, dBm)) / 10) Calibration frequency of the SAR measurement probe (and used conversion factors for each frequency.)

The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Liquid	SAR test frequency	Probe calibration frequency	Validity	Conversion factor	Uncertainty
Head	(2402, 2440, 2480) MHz	2450 MHz	within \pm 50 MHz of calibration frequency	6.89	± 12.0 %

7.2 Simultaneous transmission evaluation

Result: Simultaneous transmission did not exist.

7.3 SAR Measurement Variability (Repeated measurement requirement)

Result: Since all the measured SAR are less than 0.8 W/kg (SAR(1g)), the repeated measurement is not required.

In accordance with published RF Exposure KDB 865664 D01: SAR measurement 100 MHz to 6 GHz. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

Repeated measurement is not required when the original highest measured SAR(1g) is < 0.80 W/kg; steps 2) through 4) do not apply. When the original highest measured SAR is \geq 0.80 W/kg, repeat that measurement once.

- Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

7.4 Device holder perturbation verification (SAR)

Result: Since all the reported (scaled) SAR were less than 1.2 W/kg (SAR(1g)), the additional "device holder

perturbation verification" measurement was not considered.

When the highest reported SAR of an antenna is > 1.2 W/kg, holder perturbation verification (by Urethane form alone) is required by using the highest SAR configuration among all applicable frequency bands.

7.5 **Requirements on the Uncertainty Evaluation**

7.5.1 SAR Uncertainty Evaluation

Decision Rule

☑ Uncertainty is not included. □ Uncertainty is included.

*. The highest measured SAR(1g) is less than 1.5 W/kg and the highest measured SAR(10g) is less than 3.75 W/kg. Therefore, per KDB 865664 D01, the extended measurement uncertainty analysis described in IEEE 1528-2013 and in IEC/IEEE 62209-1528 is not required.

APPENDIX 2: Measurement data

Appendix 2-1: Plot(s) of Worst Reported Value

Plot 1-1: Left & touch, BT LE (1Mbps), 2480 MHz

EUT: Wireless Microphone; Model: DS586233(Master); Serial:No.40

Mode: BT LE (1 Mbps) (UID: 0 (CW)) ; Frequency: 2480 MHz ; Test Distance: 0.00 mm TSL parameters used: Head(v6) ; f= 2480 MHz; Conductivity: 1.882 S/m; Permittivity: 39.62

DASY8 Configuration: - Electronics: DAE4 - SN518 (Calibrated: 2023-04-19) / - Phantom: ELI V8.0 (20deg probe tilt) ; Serial: 2161 ; Phantom section: Flat - Probe: EX3DV4 - SN3745(Calibrated: 2023-04-18); ConvF: (6.89, 6.89, 6.89)@2480 MHz / - Software: 16.2.4.2524 (Measurement); 16.2.4.2524 (Evaluation)

_									
		Scan Setup		Measurement Results					
	Setup items	Area Scan	Zoom Scan	Meas. Items	Area Scan	Zoom Scan			
	Grid Extents [mm]	100.0×80.0	30.0× 30.0 ×30.0	0.0) psSAR 1g [W/kg]		0.058			
	Grid Steps [mm]	10.0×10.0	4.6×4.6×1.5	psSAR 10g [W/kg]	0.025	0.024			
	Sensor Surface [mm]	3.0	1.4	Power Drift [dB]	-0.03	0.03			
	Graded Grid	N/A	Yes	Power Scaling	Disabled	Disabled			
	Grading Ratio	N/A	1.5	Scaling Factor [dB]	N/A	N/A			
	MAIA monitored	Y	Y	TSL Correction	No correction	No correction			
	Surface Detection	VMS+6p	VMS+6p	M2/M1 [%]	N/A	60.3			
	Scan Method	Measured	Measured	Dist 3dB Peak [mm]	N/A	5.4			

*. Date tested: 2024-01-09;Tested by: Hiroshi Naka; Tested place:No.7 shielded room; Ambient: 23 deg.C. / (60–65) %RH; Liquid depth: 151 mm; *. Liquid temperature: 22.5 deg.C. ± 0.5 deg.C. (22.5 deg.C., in check); *. Red cubic: big=SAR(10g) / small=SAR(1g) *. Project file name-Measurement Group: 240109_14577971_mic-oya_canon.d8sar- 1/9-4,24h4,left&d0,2480,ble(1) Remarks:

APPENDIX 3: Test instruments

Appendix 3-1: Equipment used

Test	10000		1		A company of the second	Calibration		
Name	LIMS ID	Description	Manufacturer	Model	Serial	Last Date	Interval (Month)	
AT	160520	Attenuator	Weinschel - API Technologies Corp	4M-10	-	2023/12/04	12	
AT	169910	Power Meter	Keysight Technologies Inc	8990B	MY51000448	2023/09/28	12	
AT	169911	Power sensor	Keysight Technologies Inc	N1923A	MY57270004	2023/09/28	12	
AT.SAR	191844	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	-	2023/08/03	12	
SAR	144886	Dielectric assessment kit soft	Schmid&Partner Engineering AG	DAK ver.3.0.6.14	9-0EE103A4		-	
SAR	144986	Thermo-Hygrometer data logger	SATO KEIRYOKI	SK-L200THIIa/SK-LTHIIa-2	015246/08169	2023/08/04	12	
SAR	144988	Power meter	Keysight Technologies Inc	E4417A	GB41290718	2023/09/27	12	
SAR	144990	Power sensor	Keysight Technologies Inc	E9327A	US40440544	2023/09/27	12	
SAR	144991	Power sensor	Anritsu Corporation	MA2411B	12088	2023/09/27	12	
SAR	145086	Ruler(300mm)	SHINWA	13134	-	2023/02/08	12	
SAR	145087	Ruler(100x50mm,L)	SHINWA	12101	-	2023/02/08	12	
SAR	145105	Power meter	Anritsu Corporation	ML2495A	6K00003356	2023/09/27	12	
SAR	145106	Ruler(150mm,L)	SHINWA	12103	-	2023/02/08	12	
SAR	145558	Dipole Antenna	Schmid&Partner Engineering AG	D2450V2	765	2023/05/24	12	
SAR	146112	Primepure Ethanol	Kanto Chemical Co., Inc.	14032-79	-	-	-	
SAR	146176	Spectrum Analyzer	ADVANTEST	R3272	101100994		-	
SAR	146185	DI water	MonotaRo	34557433		-	-	
SAR	146258	Network Analyzer	Keysight Technologies Inc	8753ES	US39171777	2023/10/05	12	
SAR	146308	Power sensor	Keysight Technologies Inc	E9327A	US40440545	2023/09/27	12	
SAR	150560	Measuring Tool, Ruler	SHINWA	14001	-	2023/02/08	12	
SAR	201967	Digital thermomoter	HANNA	Checktemp-4	A01440226111	2023/08/04	12	
SAR	201968	Digital thermomoter	HANNA	Checktemp-4	A01310946111	2023/08/04	12	
SAR	207714	Head Tissue Simulating Liquid	Schmid&Partner Engineering AG	HBBL600-10000V6	SL AAH U16 BC	-	-	
SAR	224020	DASY8 PC	Hewlett Packard	HP Z4 G4 Workstation	CZC1198G21	-	÷.	
SAR	224023	Robot Controller	Schmid&Partner Engineering AG	CS9spe-TX2-60	F/22/0033789/C/001	-	-	
SAR	224025	Measurement Server	Schmid&Partner Engineering AG	DASY8 Measurement Server	10042	2023/12/18	12	
SAR	224026	Electro-Optical Converter	Schmid&Partner Engineering AG	EOC8-60	1027	-	-	
SAR	224027	Light Beam Unit	Schmid&Partner Engineering AG	LIGHTBEAM-85	2069	-	-	
SAR	224028	Modulation & Audio Interference Analyser	Schmid&Partner Engineering AG	MAIA	1582	-	-	
SAR	224031	DASY8 Module SAR/APD soft	Schmid&Partner Engineering AG	ver_16.2.4.2524	9-2506F07D	-	-	
SAR	224032	6-axis Robot	Schmid&Partner Engineering AG	TX2-60L spe	F/22/0033789/A/001	2023/08/29	12	
SAR	224034	Flat Phantom	Schmid&Partner Engineering AG	ELI V8.0	2161	2023/08/21	12	
SAR	225155	Mounting Platform	Schmid&Partner Engineering AG	MP8E-TX2-60L Basic	2	-		
SAR	225418	Directional coupler (dual)	TAP Microwave	TDC20180A20D	22100556	2023/12/04	12	
SAR	226380	Dosimetric E-Field Probe	Schmid & Partner Engineering AG	EX3DV4	3745	2023/04/18	12	
SAR	235176	Signal Generator	Rohde & Schwarz	SMB 100A	183690	2023/01/26	12	
SAR	236501	Coaxial Cable	To-Conne Co., Ltd.	TC-038-SP-SP-200	23E09-01	2023/12/04	12	
SAR	236503	Coaxial Cable	To-Conne Co., Ltd.	TC-038-SP-SP-1800	23E09-02	2023/12/04	12	
SAR	243045	Data Acquisition Electronics	Schmid&Partner Engineering AG	DAE4	518	2023/04/19	12	
SAR	243048	Dielectric assessment kit	Schmid&Partner Engineering AG	DAKS-3.5	1058	2023/05/22	12	

LIMS ID: 146112, the parameters of primepure Ethanol (as reference liquid) used for the simulated tissue parameter confirmation was defined the NPL Report MAT23 (http://www.npl.co.uk/content/conpublication/4295)

The expiration date of calibration is the end of the expired month.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chain of calibrations. All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

*. Hyphens for Last Calibration Date and Cal Int (month) are instruments that Calibration is not required (e.g. software), or instruments checked in advance before use.

[Test Item] SAR: Specific Absorption Rate, AT: Antenna terminal conducted power

Appendix 3-2: Measurement System

Appendix 3-2-1: SAR Measurement System

These measurements were performed with the automated near-field scanning system DASY8 from Schmid & Partner Engineering AG (SPEAG). The system is based on a high precision robot), which positions the probes with a positional repeatability of better than \pm 0.03 mm. Special E- and H-field probes have been developed for measurements close to material discontinuity, the sensors of which are directly loaded with a Schottky diode and connected via highly resistive lines to the data acquisition unit. The SAR measurements were conducted with the dosimetry probes EX3DV4 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation.

The DASY8 SAR/APD system for performing compliance tests consist of the following items:

- 6-axis robotic arm (Stäubli TX2-60L) for positioning the probe
- Mounting Platform for keeping the phantoms at a fixed location relative to the robot
- Measurement Server for handling all time-critical tasks, such as measurement data acquisition and supervision of safety features
- EOC (Electrical to Optical Converter) for converting the optical signal from the DAE to electrical before being transmitted to the measurement server
- LB (Light-Beam unit) for probe alignment (measurement of the exact probe length and eccentricity)
- SAR probe (EX3DV4 probes) for measuring the E-field distribution in the phantom. The SAR distribution and the psSAR (peak spatial averaged SAR) are derived from the E-field measurement.
- SAR phantom that represents a physical model with an equivalent human anatomy. A Specific Anthropomorphic Mannequin (SAM) head is usually used for handheld devices, and a Flat phantom is used for body-worn devices.
- TSL (Tissue Simulating Liquid) representing the dielectric properties of used tissue, e.g. Head Simulating Liquid, HSL.
- DAE (Data Acquisition Electronics) for reading the probe voltages and transmitting it to the DASY8 PC.
- Device Holder for positioning the DUT beneath the phantom.
- MAIA (Modulation and Interference Analyzer) for confirming the accuracy of the probe linearization parameters
- Operator PC for running the DASY8 software to define/execute the measurements
- System validation kits for system check/validation purposes.

Data storage and evaluation (post processing)

The uplink signal transmitted by the DUT is measured inside the TSL by the probe, which is accurately positioned at a precisely known distance and with a normal orientation with respect to the phantom surface. The dipole / loop sensors at the probe tips pick up the signal and generate a voltage, which is measured by the voltmeter inside the DAE. The DAE returns digital values, which are converted to an optical signal and transmitted via the EOC to the measurement server. The data is finally transferred to the DASY8 software for further post processing. In addition, the DASY8 software periodically requests a measurement with short-circuited inputs from the DAE to compensate the amplifier offset and drift. This procedure is called DAE zeroing.

The operator has access to the following low level measurement settings:

• the integration time is the voltage acquisition time at each measurement point. It is typically 0.5 s.

• the zeroing period indicates how often the DAE zeroing is performed.

In parallel, the MAIA measures the characteristics of the uplink signal via the air interface and sends this information to the DASY8 software, which compares them to the communication system defined by the operator. A warning is issued if any difference is detected.

А

The measurement data is now acquired and can be post processed to compute the psSAR1g /8g /10g. The measured voltages are not directly proportional to SAR and must be linearized. The formulas below are based on [1] (*1). The measured voltage is first linearized using the (a, b, c, d) set of parameters specific to the communication system and sensor:

		$V_{compi} = U_i + U_i^2 \cdot \frac{10^{\overline{10}}}{d}$	
with	Vcompi Ui d dcpi	= compensated voltage of channel i (μ V) = input voltage of channel i (μ V) = PMR factor d (dB) = diode compression point of channel i (μ V)	(i = x,y,z) (i = x,y,z) (Probe parameter) (Probe parameter, $i = x,y,z$)
		$V_{compi_{dB}/\mu V} = 10 \cdot \log_{10}(V_{compi})$	
with The v	corrí Vcompiæ _{√µV}) ai bi ci ci voltage Viæ (→) is the	$corr_{i} = a_{i} \cdot e^{-\left(\frac{b_{i}-10 \log_{10}(V_{compi})}{c_{i}}\right)^{2}}$ = correction factor of channel i (dB) = compensated voltage of channel i (dB $\sqrt{\mu V}$) = PMR factor a of channel i (dB $\sqrt{\mu V}$) = PMR factor b of channel i (dB $\sqrt{\mu V}$) = PMR factor c of channel i (-) linearized voltage in dB $\sqrt{\mu V}$):	
	οια σ γ _μ γ) το στο	$V_{i} = V_{complet} - corr_i$	
with	$V_{i_{dE}/\overline{uV})}$ $V_{compl_{dE}/\overline{\muV})}$ Corrj	= linearized voltage of channel i $(dB\sqrt{\mu V})$ = compensated voltage of channel i $(dB\sqrt{\mu V})$ = PMR factor a of channel <i>i</i> (dB)	(i = x, y, z) (i = x, y, z) (i = x, y, z)
Final	y, the linearized volta	age is converted in μV :	
with The F	Vi Vcompiæ√ _{µV}) Field data for each cl	$\begin{split} V_i &= 10^{\frac{V_{idB\sqrt{\mu V}}}{10}} \\ = \text{linearized voltage of channel i } (\mu \text{V}) \\ = \text{linearized voltage of channel i } (\text{dB}\sqrt{\mu \text{V}}) \\ \text{nannel are calculated using the linearized voltage:} \end{split}$	(i = x,y,z) (i = x,y,z)
		E-filedprobes: $E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$	
with	Vi Normi ConvF Fi	= linearized voltage of channel i in μV = sensor sensitivity of channel i in $\mu V/(V/m)^2$ for E-field Probes = sensitivity enhancement in solution	(i = x, y, z) (i = x, y, z)
The F	RMS value of the fiel	d components gives the total field strength (Hermitian magnitude)	(I = X, y, Z)
		$E_{tot} = \sqrt{E_{r}^{2} + E_{y}^{2} + E_{z}^{2}}$	
The E	E-field data value is ι	used to calculate SAR :	
		$SAR = E_{tot}^2 \cdot \frac{\sigma}{\sigma}$	
with	SAR =	local specific absorption rate in mW/g	

 with
 SAR
 = local specific absorption rate in mW

 Etot
 = total field strength in V/m

 σ = conductivity in [Ω /m] or [S/m]

 ρ = equivalent tissue density in g/cm³

Note: The resulting linearized voltage is only approximated because the probe UID is used 0 (CW) for the test signal in this test report.

(*1) [1] Jagadish Nadakuduti, Sven Kuehn, Marcel Fehr, Mark Douglas Katja Pokovic and Niels Kuster, "The Effect of Diode Response of electromagnetic Field Probes for the Measurements of Complex Signals." IEEE Transactions on Electromagnetic Compatibility, vol. 54, pp. 1195–1204, Dec. 2012.

Appendix 3-2-2: SAR system check results

*.	Prior to the SAR assessment of EUT, the Daily check was performed to test whether the SAR system was operating within its target of ±10%. The Daily
	check results are in the table below.
	Doily about roouts (* Alter informer Er Ernennen Mannen Alter Mannen Cell, Online in a the OTD: Atendenturbus Days Davietien)

Appendix 3-2-3: SAR system check measurement data

Dipole: D2450V2 - SN765; Mode: CW (0); Frequency: 2450 MHz; Test Distance: 10 mm (dipole to liquid); Power: 17.0 dBm TSL parameters used: Head(v6); f= 2450 MHz; Conductivity: 1.858 S/m; Permittivity: 39.66 DASY8 Configuration: - Electronics: DAE4 - SN518 (Calibrated:2023-04-19) - Phantom: ELI V8.0 (20deg probe tilt); Serial: 2161; Phantom section: Flat - Probe: EX3DV4 - SN3745(Calibrated: 2023-04-18); ConvF: (6.89, 6.89, 6.89, 6.89)@2450 MHz / - Software: 16.2.4.2524 (Measurement): 16.2.4.2524 (Evaluation)

TODE. EX3D V - OKAN											
	Scan Setup)	Measurement Results								
Setup Items	Area Scan	Zoom Scan	Meas. Items	Area Scan	Zoom Scan						
Grid Extents [mm]	40.0×80.0	30.0× 30.0 ×30.0	psSAR1g [W/kg]	2.74	2.71						
Grid Steps [mm]	10.0×10.0	5.0× 5.0 ×1.5	psSAR10g [W/kg]	1.26	1.26						
Sensor Surface [mm]	3.0	1.4	Power Drift [dB]	0.01	0.01						
Graded Grid	N/A	Yes	Power Scaling	Disabled	Disabled						
Grading Ratio	N/A	1.5	Scaling Factor [dB]	N/A	N/A						
MAIA monitored	Y	Y	TSL Correction	No correction	No correction						
Surface Detection	VMS+6p	VMS+6p	M2/M1 [%]	N/A	79.5						
Scan Method	Measured	Measured	Dist 3dB Peak [mm]	N/A	9.0						

Remarks: *. Date tested:2024-01-09; Tested by: Hiroshi Naka; Tested place:No.7 shielded room; Ambient: (23) deg.C. / (65~70) %RH; Liquid depth: 151 mm; *. Liquid temperature: 22.5 deg.C. ± 0.5 deg.C. (22.5 deg.C., in check); *. Red cubic: big=SAR(10g) / small=SAR(1g) *. Project file name-Measurement Group: 240109_14577971_mic-oya_canon.d8sar-1/9a,50mw

Appendix 3-3: Measurement Uncertainty

	Incortainty of SAR managerement (2.4.CL				T)) (.440	(4)		10a SAD
L L	Dicertainty of SAR measurement (2.4 Gr	12~0GHZ)(". 11q	uid: nead(V6), DAKS-3.	5, VVI-FI(B	(V1110	4)	IY SAR	IUY SAR
Symbol	Error Description	Uncertainty (Unc.) Probability distribution	Divisor	ci (1g)	ci (10g)	ui (1g) (Std. Unc.)	ui (10g) (Std. Unc.)
Meas	urement System (DASY8)							
CF	Probe Calibration (EX3DV4)	± 13.1 %	Normal	2	1	1	± 6.55 %	± 6.55 %
CFdfift	Probe Calibration Drift	±1.7%	Rectangular	√3	1	1	± 1.0%	±1.0%
LIN	Probe Linearity	±4.7%	Rectangular	√3	1	1	±2.7%	±2.7%
BBS	Broadband Signal	±2.6%	Rectangular	√3	1	1	±1.5%	±1.5%
ISO1	Probe Isotropy	±7.6%	Rectangular	√3	1	1	±4.4%	±4.4%
DAE	Data Acquisition	±1.2%	Normal	1	1	1	±1.2%	±1.2%
AMB	RF Ambient (noise&refrection) (< 12µW/g)	±1.0%	Normal	1	1	1	±1.0%	± 1.0 %
∆sys	Probe Positioning	±0.5%	Normal	1	0.33	0.33	±0.2%	±0.2%
DAT	Data Processing	±2.3%	Normal	1	1	1	±2.3%	±2.3%
Phan	tom and Device Error							
LIQ(σ)	Conductivity (measured) (DAKS-3.5)	±5.0%	Normal	2	0.78	0.71	±2.0%	±1.8%
LIQ(Tσ)	Conductivity (temperature) ($\leq 2 \deg.C.$)	±2.4%	Rectangular	√3	0.78	0.71	±1.1%	±1.0%
EPS	Phantom Permittivity (liquid to antenna: ≥5 mm)	± 14.0 %	Rectangular	√3	0.25	0.25	±2.0%	±2.0%
DIS	Distance EUT-TSL	±2.7%	Normal	1	2	2	±5.4%	± 5.4 %
Dxyz	Test Sample positioning	±1.8%	Normal	1	1	1	± 5.0 %	± 5.0 %
Н	Device holder uncertainty	± 3.6 %	Normal	1	1	1	± 3.6 %	± 3.6 %
MOD	EUT Modulation	±2.4%	Rectangular	√3	1	1	±1.4%	±1.4%
TAS	Time-average SAR	±0.0%	Rectangular	√3	1	1	±0.0%	±0.0%
RFdrift	Drift of output power (measured, < 0.2 dB)	±4.7%	Normal	2	1	1	±2.4%	±2.4%
Corre	ection to the SAR results							
C(e,\sigma)	Deviation to Target (e', σ : \leq 10 %, IEC head)	±1.9%	Normal	1	1	0.84	±1.9%	±1.6%
C(R)	SAR Scaling	±0%	Rectangular	√3	1	1	±0.0%	±0.0%
u(∆SAR)	(SAR: 2.4 GHz~6 GHz) Combined Standard Unc	ertainty				RSS	± 12.1 %	±12.0%
U	(SAR: 2.4 GHz~6 GHz) Expanded Uncertainty					k=2	± 24.2 %	± 24.0 %
*. This	uncertainty budget is suggested by IEC/IEEE 62209-152	8 and determined	by SPEAG. DASY8 Mo	dule SAR	Manual.	2022-08 (Chapter 6.3. DASY8 l	Jncertainty Budget for

Hand-held/Body-worn Devices, Frequency band: 300 MHz - 3 GHz range and 3 GHz – 6 GHz range). All listed error components have veff equal to ∞ .

	Uncertainty of SAR daily check (2.4 0	GHz ~ 6 GHz) (*. I	iquid: head(v6), DAKS	-3.5, CW)	(v11r04)		1g SAR	10g SAR
Symbol	Error Description	Uncertainty (Unc.)	Probability distribution	Divisor	ci (1g)	ci (10g)	ui (1g) (Std. Unc.)	ui (10g) (Std. Unc.)
Meas	urement System (DASY8)							
CF	Probe Calibration (EX3DV4)	± 13.1 %	Normal	2	1	1	±6.55%	± 6.55 %
CFdfift	Probe Calibration Drift	±1.7%	Rectangular	√3	1	1	±1.0%	±1.0%
LIN	Probe Linearity	±4.7%	Rectangular	√3	1	1	±2.7%	±2.7%
ISO2	Probe Isotropy	±4.7%	Rectangular	√3	1	1	±2.7%	±2.7%
DAE	Data Acquisition	± 1.2 %	Normal	1	1	1	±1.2%	±1.2%
AMB	RF Ambient (noise&refrection) (<12uW/g)	±1.0%	Normal	1	1	1	±1.0%	±1.0%
∆sys	Probe Positioning	±0.5%	Normal	1	0.33	0.33	±0.2%	±0.2%
DAT	Data Processing	±2.3%	Normal	1	1	1	±2.3%	±2.3%
Phan	tom and Device Error							
LIQ(σ)	Conductivity (measured) (DAKS-3.5)	±5.0%	Normal	2	0.78	0.71	±2.0%	±1.8%
LIQ(Tσ)	Conductivity (temperature) ($\leq 2 \text{ deg.C.}$)	±2.4%	Rectangular	√3	0.78	0.71	±1.1%	± 1.0 %
EPS	Phantom Permittivity (liquid to antenna: ≥5 mm)	±14.0%	Rectangular	√3	0.25	0.25	±2.0%	±2.0%
VAL	Validation antenna uncertainty	±5.5%	Rectangular	√3	1	1	± 3.2 %	± 3.2 %
Pin	Uncertainty in accepted power	±2.5%	Normal	2	1	1	±1.3%	±1.3%
DIS	Distance EUT-TSL	±2.0%	Normal	1	2	2	±4.0%	±4.0%
Dxyz	Test Sample positioning	±1.0%	Normal	1	1	1	±1.0%	±1.0%
RFdrift	Drift of output power (measured, < 0.1 dB)	±2.3%	Rectangular	√3	1	1	±1.3%	±1.3%
Corre	ection to the SAR results							
C(e,\sigma)	Deviation to Target (e', σ : \leq 10 %. IEC head)	±1.9%	Normal	1	1	0.84	±1.9%	± 1.6%
u(∆SAR)	(SAR daily check: 2.4 GHz~6 GHz) Combined S	tandard Uncertai	nty			RSS	± 10.5 %	±10.4%
U	(SAR daily check: 2.4 GHz~6 GHz) Expanded U	ncertainty				k=2	± 21.0 %	± 20.8 %
*. This Sys	s uncertainty budget is suggested by IEC/IEEE 62209-152 tem Verification, Frequency band: 300 MHz - 6 GHz rang	28 and determined b e). All listed error co	by SPEAG, DASY8 Mo mponents have veff ec	odule SAF jual to ∞.	R Manual,	2022-08 (Chapter 6.2, DASY8	Uncertainty Budget for

Table of uncertainties are listed for ISO/IEC 17025. *.*

Although this standard determines only the limit value of uncertainty, there is no applicable rule of uncertainty in this. Therefore, the results are derived depending on whether or not laboratory uncertainty is applied.

Appendix 3-4: Calibration certificates

LIMS ID	Description	Type/Model	Serial Number	Manufacture	Calibration Certificate	Note
226380	Dosimetric E-Field Probe	EX3DV4	3745	SPEAG	k=	-
145558	Dipole Antenna (2.45 GHz)	D2450V2	765	SPEAG	*	*1

*1: As stated on page 2 of the certificate, the calibration was performed in accordance to the latest standard IEC/IEEE 62209-1528. Therefore, the reported SAR values are valid for any system that complies with IEC/IEEE 62209-1528 including all new versions of DASY such as DASY6 and DASY8.

-End of report-