

RADIO TEST REPORT

Test Report No. 14781152S-F-R3

Customer	Canon Inc.
Description of EUT	Wireless Module
Model Number of EUT	ES205
FCC ID	AZD248
Test Regulation	FCC Part 15 Subpart E
Test Result	Complied
Issue Date	July 9, 2024
Remarks	WLAN (6 GHz band) part CBP test only

Representative Test Engineer	Approved By
K. Adachi	T. Imamura
Kenichi Adachi Engineer	Toyokazu Imamura Engineer ACCREDITED
The testing in which "Non-accreditation" is displaye	d is outside the accreditation scopes in UL Japan, Inc.
There is no testing item of "Non-accreditation".	

Report Cover Page - Form-ULID-003532 (DCS:13-EM-F0429) Issue# 23.0

Test Report No. 14781152S-F-R3
Page 2 of 24

ANNOUNCEMENT

- This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- The results in this report apply only to the sample tested. (Laboratory was not involved in sampling.)
- This sample tested is in compliance with the limits of the above regulation.
- The test results in this test report are traceable to the national or international standards.
- This test report must not be used by the customer to claim product certification, approval, or endorsement by the A2LA accreditation body.
- This test report covers Radio technical requirements.
 It does not cover administrative issues such as Manual or non-Radio test related Requirements.
 (if applicable)
- The all test items in this test report are conducted by UL Japan, Inc. Shonan EMC Lab.
- The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan, Inc. has been accredited.
- The information provided by the customer for this report is identified in SECTION 1.
- The laboratory is not responsible for information provided by the customer which can impact the validity of the results.
- For test report(s) referred in this report, the latest version (including any revisions) is always referred.

REVISION HISTORY

Original Test Report No.: 14781152S-F

This report is a revised version of 14781152S-F-R2. 14781152S-F-R2 is replaced with this report.

Revision	Test Report No.	Date	Revised Contents
-	14781152S-F	June 7, 2024	-
(Original)			
1	14781152S-F-R1	June 13, 2024	Section 2 Added rating: DC 1.8 V
2	14781152S-F-R2	June 27, 2024	Cover page Corrected FCC ID: AZD 248 to AZD248
			Section 2.2 Addition of the value of the Directional Gain.
			Section 3 Modification of FCC Part 15.31 (e)
			From: The RF Module has its own regulator. The RF Module is
			constantly provided voltage through the regulator regardless of input voltage. Therefore, this EUT complies with the
			requirement.
			To: The module is constantly provided the stable voltage (DC
			3.3 V / 1.8 V) from the host device regardless of input voltage.
			Therefore, this EUT complies with the requirement.
			P19 and 20 Additional comment.
			" * customer's cable loss is a loss of antenna cable for measurement attached to the sample provided by the customer.
			* Incumbent power is level at the point of connector of customer's
			measurement cable connected the antenna port of EUT.
			* Adjusted incumbent power is level at antenna port of EUT."
			P.6, P19 and 20 Correction antenna gain.
			(additional minimum (min) antenna gain)
			P.21 Correction of the transcription of tested frequencies.
3	14781152S-F-R3	July 9, 2024	P.6 Additional specification of "6 GHz Contention Based
		, , -,	Protocol Incumbent avoidance".
			P.19 Correction antenna gain
			(U-NII-5 & 6 change from -1.55 to -2.03 dBi.)
			P.21 Correction frequency. (from 6175 to 6195)

Test Report No. 14781152S-F-R3 Page 3 of 24

Reference: Abbreviations (Including words undescribed in this report)

A2LA	The American Association for Laboratory Accreditation	ICES	Interference-Causing Equipment Standard	
AC	Alternating Current	IEC	International Electrotechnical Commission	
AFH	Adaptive Frequency Hopping	IEEE	Institute of Electrical and Electronics Engineers	
AM	Amplitude Modulation	IF	Intermediate Frequency	
Amp, AMP	Amplifier	ILAC	International Laboratory Accreditation Conference	
ANSI	American National Standards Institute	ISED	Innovation, Science and Economic Development Canada	
Ant, ANT	Antenna	ISO	International Organization for Standardization	
AP	Access Point	JAB	Japan Accreditation Board	
ASK	Amplitude Shift Keying	LAN	Local Area Network	
Atten., ATT	Attenuator	LIMS	Laboratory Information Management System	
AV	Average	MCS	Modulation and Coding Scheme	
BPSK	Binary Phase-Shift Keying	MRA	Mutual Recognition Arrangement	
BR	Bluetooth Basic Rate	N/A	Not Applicable	
BT	Bluetooth	NIST	National Institute of Standards and Technology	
BT LE	Bluetooth Low Energy	NS	No signal detect.	
BW	BandWidth	NSA	Normalized Site Attenuation	
Cal Int	Calibration Interval	NVLAP	National Voluntary Laboratory Accreditation Program	
CCK	Complementary Code Keying	OBW	Occupied Band Width	
Ch., CH	Channel	OFDM	Orthogonal Frequency Division Multiplexing	
CISPR	Comite International Special des Perturbations Radioelectriques	P/M	Power meter	
CW	Continuous Wave	PCB	Printed Circuit Board	
DBPSK	Differential BPSK	PER	Packet Error Rate	
DC	Direct Current	PHY	Physical Layer	
D-factor	Distance factor	PK	Peak	
DFS	Dynamic Frequency Selection	PN	Pseudo random Noise	
DQPSK	Differential QPSK	PRBS	Pseudo-Random Bit Sequence	
DSSS	Direct Sequence Spread Spectrum	PSD	Power Spectral Density	
EDR	Enhanced Data Rate	QAM	Quadrature Amplitude Modulation	
EIRP, e.i.r.p.	Equivalent Isotropically Radiated Power	QP	Quasi-Peak	
EMC	ElectroMagnetic Compatibility	QPSK	Quadri-Phase Shift Keying	
EMI	ElectroMagnetic Interference	RBW	Resolution Band Width	
EN	European Norm	RDS	Radio Data System	
ERP, e.r.p.	Effective Radiated Power	RE	Radio Equipment	
EU	European Union	RF	Radio Frequency	
EUT	Equipment Under Test	RMS	Root Mean Square	
Fac.	Factor	RSS	Radio Standards Specifications	
FCC	Federal Communications Commission	Rx	Receiving	
FHSS	Frequency Hopping Spread Spectrum	SA, S/A	Spectrum Analyzer	
FM	Frequency Modulation	SG	Signal Generator	
Freq.	Frequency	SVSWR	Site-Voltage Standing Wave Ratio	
FSK	Frequency Shift Keying	TR	Test Receiver	
GFSK	Gaussian Frequency-Shift Keying	Tx	Transmitting	
			-	
GNSS	Global Navigation Satellite System	VBW	Video BandWidth	
GNSS GPS	Global Navigation Satellite System Global Positioning System	VBW Vert.	Video BandWidth Vertical	

PAGE CONTENTS SECTION 1: Customer Information.....5 Equipment Under Test (EUT)5 **SECTION 2:** Test specification, Procedures & Results......7 **SECTION 3: SECTION 4:** Operation of EUT during testing......9 **SECTION 5:** Antenna Terminal Conducted Tests12 APPENDIX 1: APPENDIX 2: Test Instruments.......23 APPENDIX 3: Photographs of Test Setup......24 Contention Based Protocol24

Test Report No. 14781152S-F-R3 Page 5 of 24

SECTION 1: Customer Information

Company Name	Canon Inc.
Address	30-2, Shimomaruko 3-chome, Ohta-ku, Tokyo 146-8501 Japan
Telephone Number	+81-3-5482-4941
Contact Person	Yasuhito Yukita

The information provided from the customer is as follows;

- Customer, Description of EUT, Model Number of EUT, FCC ID on the cover and other relevant pages
- Operating/Test Mode(s) (Mode(s)) on all the relevant pages
- SECTION 1: Customer Information
- SECTION 2: Equipment Under Test (EUT) other than the Receipt Date and Test Date
- SECTION 4: Operation of EUT during testing

SECTION 2: Equipment Under Test (EUT)

2.1 Identification of EUT

Description	Wireless Module
Model Number	ES205
Serial Number	Refer to SECTION 4.2
Condition	Engineering prototype
	(Not for Sale: This sample is equivalent to mass-produced items.)
Modification	No Modification by the test lab
Receipt Date	May 8, 2023
Test Date	May 21 to May 22, 2024

2.2 Product Description

General Specification

Rating	DC 3.3 V / DC 1.8 V
Operating temperature	-40 deg. C to +85 deg. C

Test Report No. 14781152S-F-R3 Page 6 of 24

Radio Specification

This report contains data provided by the customer which can impact the validity of results. UL Japan, Inc. is only responsible for the validity of results after the integration of the data provided by the customer. The data provided by the customer is marked "a)" in the table below.

Bluetooth (BR/EDR/BTLE)

Equipment Type	Transceiver
Frequency of Operation	2402 MHz to 2480 MHz
Type of Modulation	FHSS, GFSK / π/4-DQPSK, 8DPSK / GFSK
Antenna Type	Monopole Antenna
Antenna Gain a)	2.67 dBi

WLAN (IEEE802.11b/11g/11n-20/11ax-20)

Equipment Type	Transceiver	Transceiver		
Frequency of Operation	2412 MHz to 2462	2412 MHz to 2462 MHz		
Type of Modulation	DSSS, OFDM	DSSS, OFDM		
	OFDMA: (20 MHz band): 26/52/106/242-tone RU			
Antenna Type	Monopole Antenna	Monopole Antenna		
Antenna Gain a)	Antenna Gain	Directinal Gain *1)		
	2.67 dBi	5.69 dBi		

WLAN (IEEE802.11a/11n-20/11ac-20/11ax-20/11n-40/11ac-40/11ax-40/11ac-80/11ax-80)

Equipment Type	Transceiver		•	
Frequency of Operation	20 MHz Band:	5180 MHz to 5240 MHz 5260 MHz to 5320 MHz 5500 MHz to 5700 MHz 5745 MHz to 5825 MHz		
		5955 MHz to 6415 MHz 6435 MHz to 6515 MHz 6535 MHz to 6875 MHz (*6875 MHz:straddle ch) 6895 MHz to 7095 MHz		
	40 MHz Band	5190 MHz to 5230 MHz 5270 MHz to 5310 MHz 5510 MHz to 5670 MHz 5755 MHz to 5795 MHz 5965 MHz to 6405 MHz 6445 MHz to 6525 MHz (*6525 MHz:straddle ch) 6565 MHz to 6885 MHz (*6885 MHz:straddle ch)		
	80 MHz band	6925 MHz to 7085 MHz 5210 MHz 5290 MHz 5530 MHz to 5610 MHz 5775 MHz 5985 MHz to 6385 MHz 6465 MHz to 6545 MHz (*6545 MHz:straddle ch) 6625 MHz to 6865 MHz (*6865 MHz:straddle ch) 6945 MHz to 7025 MHz		
Type of Modulation	OFDM OFDMA	(20 MHz band): 26/52/106/242-tone RU (40 MHz band): 26/52/106/242/484-tone RU (80 MHz band): 26/52/106/242/484/996-tone RU		
	(IEEE802.11ax only)			
Antenna Type	Monopole Antenna			
Antenna Gain ^{a)}	Antenna Gain 5.14 dBi (max), 2.53 dBi (min) 3.53 dBi (max), 1.95 dBi (min) 3.05 dBi (max), 0.91 dBi (min) 1.61 dBi (max), -1.55 dBi (min) 0.60 dBi (max), -2.03 dBi (min)	Directinal Gain *1) 8.16 dBi (max) 6.55 dBi (max) 6.07 dBi (max) 4.63 dBi (max) 3.62 dBi (max)	Band (WLAN UNII-1 and UNII-2A band) (WLAN UNII-2C band) (WLAN UNII-3 band) (WLAN UNII-5 and UNII-6 band) (WLAN UNII-7 and UNII-8 band)	
6 GHz Contention Based Protocol Incumbent avoidance	Channel puncturing: Not supported Bandwidth reduction: Not supported	ted		

^{*1)} Directional Gain = Antenna Gain + Arry Gain

Arry Gain = 10 * log (Number of transmit Antennas / Number of spatial streams)

Number of transmit Antennas = 2, Number of spatial streams = 1

Test Report No. 14781152S-F-R3 Page 7 of 24

SECTION 3: Test specification, Procedures & Results

3.1 Test Specification

Test	FCC Part 15 Subpart E
Specification	The latest version on the first day of the testing period
Title	FCC 47 CFR Part 15 Radio Frequency Device Subpart E
	Unlicensed National Information Infrastructure Devices
	Section 15.407 General technical requirements

3.2 Procedures and Results

Item	Test Procedure	Specification	Worst Margin	Results	Remarks
Contention Based	FCC: KDB Publication	FCC: 15.407 (d) (6)	N/A	Complied	Conducted
Protocol	Number 987594	. , , ,			
	ISED: -	ISED: RSS-248 4.7	1		
Note: UL Japan, Inc.'s EMI Work Procedures: Work Instructions-ULID-003591 and Work Instructions-ULID-003593.					
* In case any questions arise about test procedure, ANSI C63.10: 2013 is also referred.					

FCC Part 15.31 (e)

The module is constantly provided the stable voltage (DC 3.3 V / 1.8 V) from the host device regardless of input voltage. Therefore, this EUT complies with the requirement.

FCC Part 15.203 Antenna requirement

The EUT has a unique coupling/antenna connector (MHF-4L (IPEX)). Therefore the equipment complies with the requirement of 15.203.

3.3 Addition to Standard

No addition, exclusion nor deviation has been made from the standard.

Test Report No. 14781152S-F-R3 Page 8 of 24

3.4 Uncertainty

Measurement uncertainty is not taken into account when stating conformity with a specified requirement. Note: When margins obtained from test results are less than the measurement uncertainty, the test results may exceed the limit.

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor k=2.

Antenna terminal test	Uncertainty (+/-)
Power Measurement above 1 GHz (Average Detector) SPM-06	1.1 dB
Power Measurement above 1 GHz (Peak Detector) SPM-06	1.8 dB
Power Measurement above 1 GHz (Average Detector) SPM-07	1.0 dB
Power Measurement above 1 GHz (Peak Detector) SPM-07	1.2 dB
Power Measurement above 1 GHz (Average Detector) SPM-13	0.81 dB
Power Measurement above 1 GHz (Peak Detector) SPM-13	1.1 dB
Spurious Emission (Conducted) below 1 GHz	0.91 dB
Conducted Emissions Power Density Measurement 1 GHz to 3 GHz	1.3 dB
Conducted Emissions Power Density Measurement 3 GHz to 18 GHz	2.5 dB
Spurious Emission (Conducted) 18 GHz to 26.5 GHz	2.8 dB
Spurious Emission (Conducted) 26.5 GHz to 40 GHz	2.6 dB
Bandwidth Measurement	0.012 %
Duty Cycle and Time Measurement	0.27 %
Temperature_SCH-01	0.96 deg.C.
Humidity_SCH-01	4.0 %
Temperature_SCH-02	2.2 deg.C.
Voltage	0.74 %

3.5 Test Location

UL Japan, Inc. Shonan EMC Lab.

1-22-3, Megumigaoka, Hiratsuka-shi, Kanagawa-ken 259-1220 Japan

Telephone: +81-463-50-6400 A2LA Certificate Number: 1266.03

(FCC test firm registration number: 626366, ISED lab company number: 2973D / CAB identifier: JP0001)

(FCC lest lifth registration number: 6263			illier. JP0001)
Test room	Width x Depth x Height		Maximum
	(m)	plane (m) / horizontal	measurement
		conducting plane	distance
No.1 Semi-anechoic chamber (SAC1)	20.6 x 11.3 x 7.65	20.6 x 11.3	10 m
No.2 Semi-anechoic chamber (SAC2)	20.6 x 11.3 x 7.65	20.6 x 11.3	10 m
No.3 Semi-anechoic chamber (SAC3)	12.7 x 7.7 x 5.35	12.7 x 7.7	5 m
No.4 Semi-anechoic chamber (SAC4)	8.1 x 5.1 x 3.55	8.1 x 5.1	-
Wireless anechoic chamber 1 (WAC1)	9.5 x 6.0 x 5.4	9.5 x 6.0	3 m
Wireless anechoic chamber 2 (WAC2)	9.5 x 6.0 x 5.4	9.5 x 6.0	3 m
No.1 Shielded room	6.8 x 4.1 x 2.7	6.8 x 4.1	-
No.2 Shielded room	6.8 x 4.1 x 2.7	6.8 x 4.1	-
No.3 Shielded room	6.3 x 4.7 x 2.7	6.3 x 4.7	-
No.4 Shielded room	4.4 x 4.7 x 2.7	4.4 x 4.7	-
No.5 Shielded room	7.8 x 6.4 x 2.7	7.8 x 6.4	-
No.6 Shielded room	7.8 x 6.4 x 2.7	7.8 x 6.4	-
No.8 Shielded room	3.45 x 5.5 x 2.4	3.45 x 5.5	-
No.1 Measurement room	2.55 x 4.1 x 2.5	-	-
No.2 Measurement room	4.5 x 3.5 x 2.5	-	-
Wireless shielded room 1	3.0 x 4.5 x 2.7	3.0 x 4.5	-
Wireless shielded room 2	3.0 x 4.5 x 2.7	3.0 x 4.5	-
	0.0 % X Z.I	0.0 /	1

3.6 Test Data, Test Instruments, and Test Set Up

Refer to APPENDIX.

Test Report No. 14781152S-F-R3 Page 9 of 24

SECTION 4: Operation of EUT during testing

4.1 Operating Mode(s)

Mode	Remarks*
IEEE 802.11ax MIMO 20 MHz BW (11ax-20)	MCS 0 (1SS), PN9
IEEE 802.11ax MIMO 80 MHz BW (11ax-80)	MCS 0 (1SS), PN9

The worst condition was determined based on the test result of Maximum Peak Output Power. (SS: Spatial Stream)

*Power of the EUT was set by the software as follows:

Power Setting: Power Setting: Fixed Software: 18.53 (For WLAN)

(Date: 2023.05 25, Storage location: Driven by connected PC)

*This setting of software is the worst case.

Any conditions under the normal use do not exceed the condition of setting.

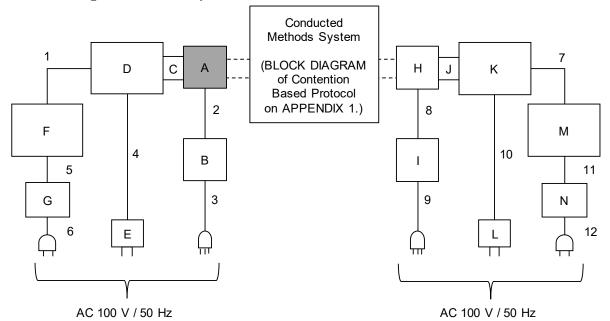
In addition, end users cannot change the settings of the output power of the product.

Test operating mode was determined as follows according to "Section 1 of 6 802.11 a/b/g/n testing - Managing Complex Regulatory Approvals - " of TCB Council Workshop October 2009 and also was judged the necessity of 802.11ac/ax mode by the pre-test.

Test Report No. 14781152S-F-R3 10 of 24 Page

Power Setting for OFDMA (U-NII 5 & 6)

i awai aatang iai ai bitii t (a		
	20 MHz BW	80 MHz BW
26-tone RU	-7 dBm (2SS)	-10 dBm (2SS)
20-tone RO	-10 dBm (1SS)	-12 dBm (1SS)
52-tone RU	-4 dBm (2SS)	-7 dBm (2SS)
	-7 dBm (1SS)	-10 dBm (1SS)
106-tone RU	-1 dBm (2SS)	-4 dBm (2SS)
	-4 dBm (1SS)	-7 dBm (1SS)
242-tone RU	3 dBm (2SS)	-1 dBm (2SS)
	-1 dBm (1SS)	-4 dBm (1SS)
484-tone RU	-	1 dBm (2SS)
		-2 dBm (1SS)
996-tone RU	-	4 dBm (2SS)
		1 dBm (1SS)


Power Setting for OFDMA (U-NII 7 & 8)

TOWER DELLING FOR OF DIVING	1111 7 6 0)	
	20 MHz BW	80 MHz BW
26-tone RU	-6 dBm (2SS)	-9 dBm (2SS)
20-tone RU	-9 dBm (1SS)	-12 dBm (1SS)
52-tone RU	-3 dBm (2SS)	-6 dBm (2SS)
	-6 dBm (1SS)	-9 dBm (1SS)
106-tone RU	0 dBm (2SS)	-3 dBm (2SS)
	-3 dBm (1SS)	-6 dBm (1SS)
242-tone RU	4 dBm (2SS)	0 dBm (2SS)
	0 dBm (1SS)	-3 dBm (1SS)
484-tone RU	-	2 dBm (2SS)
		-1 dBm (1SS)
996-tone RU	-	5 dBm (2SS)
		2 dBm (1SS)

*The Details of Operation Mode(s)

Test Item	Operating	Tested	Tested Frequency	uency		
	Mode *1)	Antenna	U-NII-5	U-NII-6	U-NII-7	U-NII-8
Contention Based	Communication 11ax-20	ANT 0	6195 MHz	6475 MHz	6695 MHz	6995 MHz
Protocol	Communication 11ax-80	+ ANT 1	6225 MHz	6465 MHz	6625 MHz	6945 MHz

4.2 Configuration and Peripherals

Description of EUT and Support Equipment

No.	Item	Model Number	Serial Number	Manufacturer	Remarks
Α	Wireless module	ES205	B1	Canon Inc.	EUT *1)
В	Power Supply (DC)	RPE-4323	150D015G2	RS PRO	-
С	Interface board	WJIG2021_2	A17	Canon Inc.	-
D	Raspberry Pi board	600-90768-01 REV2.0	2-4	Infineon Technologies AG	-
E	AC Adapter	QFWB-30-12-US01	16	Qualtek	-
F	Laptop PC	HP 250 G9/CT	JPH318LWC6	HP	-
G	AC Adapter	TPN-LA15	-	Lite-On Technorogy Corp.	-
Н	Wireless module	ES205	B5	Canon Inc.	-
I	Power Sup ply (DC)	PAN35-10A	ML002085	Kikusui Electronics Corp.	-
J	Interface board	WJIG2021_2	A14	Canon Inc.	-
K	Raspberry Pi board	600-90768-01 REV2.0	2-1	Infineon Technologies AG	-
L	AC Adapter	QFWB-30-12-US01	01	Qualtek	-
М	Laptop PC	HP 250 G9/CT	JPH318LWSV	HP	-

^{*1)} With Jig board

List of Cables Used

No.	Name	Length (m)	ength (m) Shield							
			Cable	Connector						
1	LAN	2.0	Unshielded	Unshielded	-					
2	DC	0.9	Unshielded	Unshielded	-					
3	AC	2.0	Unshielded	Unshielded	-					
4	DC	1.5	Unshielded	Unshielded	-					
5	DC	1.7	Unshielded	Unshielded	-					
6	AC	0.9	Unshielded	Unshielded	-					
7	LAN	3.0	Unshielded	Unshielded	-					
8	DC	0.9	Unshielded	Unshielded	-					
9	AC	2.0	Unshielded	Unshielded	-					
10	DC	1.5	Unshielded	Unshielded	-					
11	DC	1.7	Unshielded	Unshielded	-					
12	AC	0.9	Unshielded	Unshielded	-					

Test Report No. 14781152S-F-R3 Page 12 of 24

SECTION 5: Antenna Terminal Conducted Tests

Test Procedure

The tests were made with below setting connected to the antenna port.

Test	Span	RBW	VBW	Sweep time	Detector	Trace	Instrument used and Test method
Contention based protocol	2 to 5 times span of EBW (check only) / Zero span	1 MHz	3 MHz	Auto / 100 s	Peak	-	Spectrum Analyzer

The test results and limit are rounded off to two decimals place, so some differences might be observed. The equipment and cables were not used for factor 0 dB of the data sheets.

Test Data : APPENDIX
Test Result : Pass

Test Report No. 14781152S-F-R3 Page 13 of 24

APPENDIX 1: Test Data

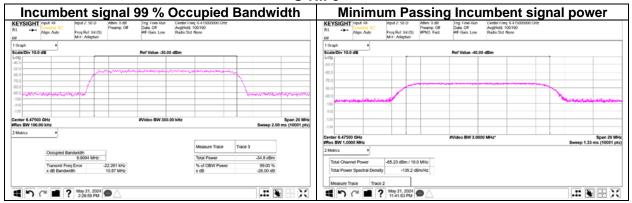
Contention Based Protocol

Test place Shonan EMC Lab. No.5 Shielded Room Date May 21, 2024 May 22, 2024
Temperature / Humidity Engineer Shiro Kobayashi No.5 Shielded Room May 22, 2024

Z5 deg. C / 43 % RH 26 deg. C / 41 % RH Kenichi Adachi

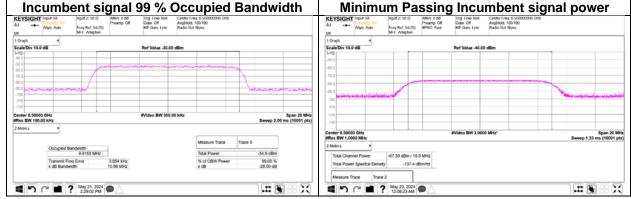
Mode Communication 11ax-20 / Communication 11ax-80

Incumbent signal plots


[20 MHz BW mode]

All tests were conducted with the Incumbent Signal frequency set to the middle of EUT channel and a nominal 99 % occupied power bandwidth of 10 MHz.

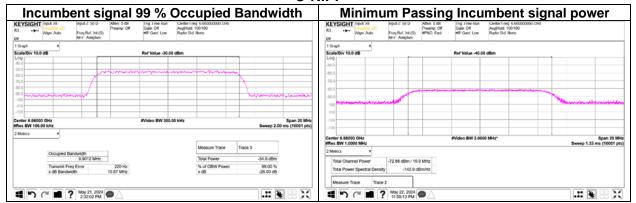
[80 MHz BW mode]


All tests were conducted with the Incumbent Signal frequency set to as closely as possible to the lower edge of the EUT channel, in the middle of EUT channel, and as closely as possible to the upper edge of the EUT channel and a 99 % occupied bandwidth of 10 MHz.

Reference plot U-NII-5

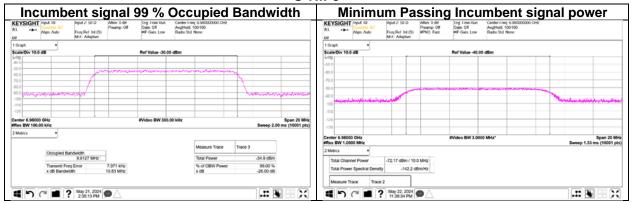
Incumbent signal power takes into account customer supplied cable losses.

Reference plot U-NII-6



Incumbent signal power takes into account customer supplied cable losses.

Test Report No. 14781152S-F-R3 Page 14 of 24


Contention Based Protocol

Reference plot U-NII-7

Incumbent signal power takes into account customer supplied cable losses.

Reference plot U-NII-8

Incumbent signal power takes into account customer supplied cable losses.

Test Report No. 14781152S-F-R3
Page 15 of 24

Contention Based Protocol

EUT response to the applied incumbent signal

A link between the EUT and the Companion Device was established on the test channel.

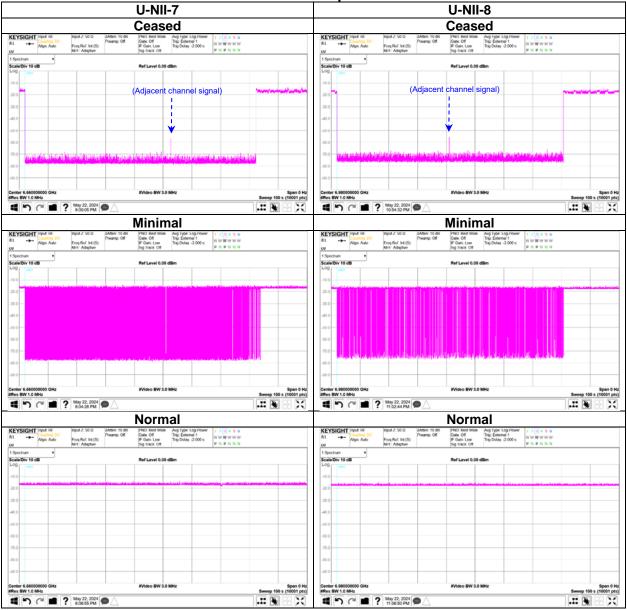
Traffic flowing from the EUT to Companion Device was then initiated.

A sweep was started, and the incumbent signal was continuously applied at approximately 5 seconds after the start of the sweep for a duration of 30 seconds and removed after the end of the observation period.

Transmissions cease while the incumbent AWGN Signal is present and resume after it is removed. Span was set to zero to ensure detection of transmissions from EUT.

Reference plot U-NII-5 U-NII-6 Ceased Ceased (Adjacent channel signal) May 22, 2024 2:56:13 PM 4:50:50 PM **Minimal Minimal** .:: May 22, 2024 Sa. 10:06 PM 4 7 (1 ? May 22, 2024 9 Normal Normal Trig: External 1 Trig Dolay: -2.000 s Spen 0 Hz Sweep 100 s (10001 pts) ■ ? May 22, 2024 ■ ? 3:12:54 PM May 22, 2024 9 5:05:11 PM

Ceased: The level at which no transmission is detected, consistently for a minimum period of 10 seconds.


Minimal: The AWGN level at which the system begins to trigger the transmission switch off, albeit not being kept off consistently.

Normal: The level at which there no apparent detection and the operation of the EUT is still considered optimal.

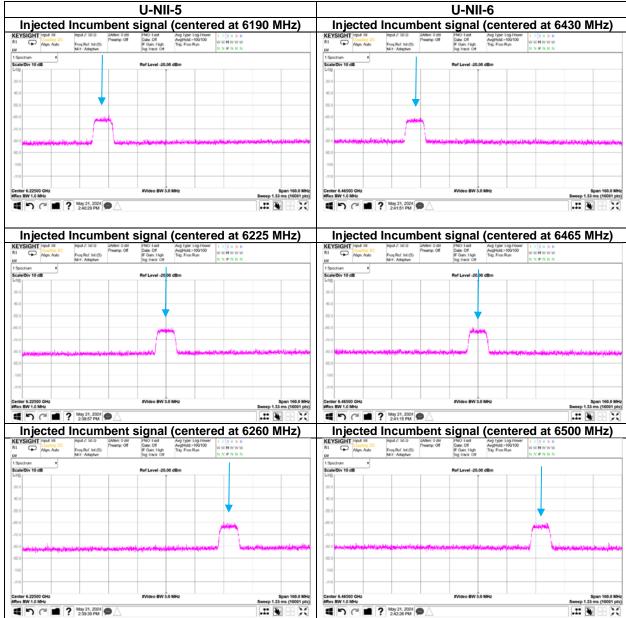
Test Report No. 14781152S-F-R3 Page 16 of 24

Contention Based Protocol

Reference plot

Ceased: The level at which no transmission is detected, consistently for a minimum period of 10 seconds.

Minimal: The AWGN level at which the system begins to trigger the transmission switch off, albeit not being kept off consistently.

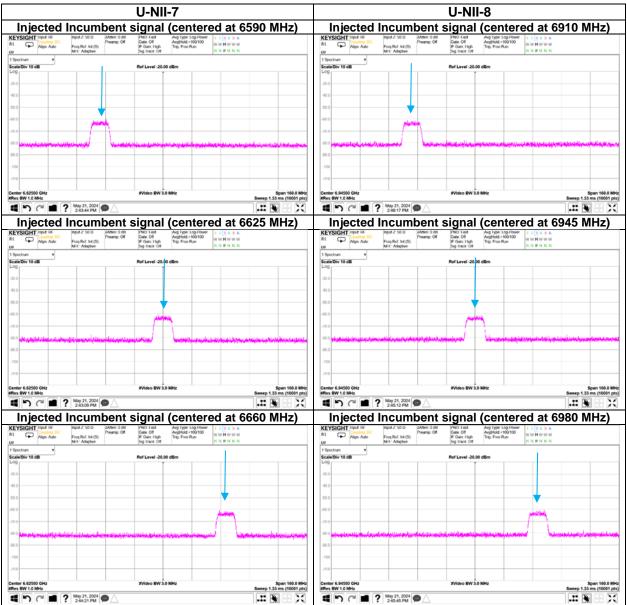

Normal: The level at which there no apparent detection and the operation of the EUT is still considered optimal.

Test Report No. 14781152S-F-R3
Page 17 of 24

Contention Based Protocol

CBP Bandwidth Reduction Description

It was confirmed how the channel is reduced when AWGN is injected at the lower edge of the EUT channel, in the middle of EUT channel, and as closely as possible to the upper edge of the EUT channel.



^{*} No EUT transmission was confirmed after the incumbent signal was injected.

---- : Incumbent signal

Test Report No. 14781152S-F-R3
Page 18 of 24

Contention Based Protocol

^{*} No EUT transmission was confirmed after the incumbent signal was injected.

--- : Incumbent signal

Test Report No. 14781152S-F-R3
Page 19 of 24

Contention Based Protocol

Incumbent signal detection results

	Center		Incumbent	Incumbent	customer's	Antenna	Adjusted	Detection	EUT
UNII Band	Frequency	BW	Frequency	Power	cable	gain *	Incumbent	Limit	Tx
					Loss		Power		Status
	[MHz]	[MHz]	[MHz]	[dBm]	[dB]	[dBi]	[dBm]	[dBm]	
				-66.06	0.32	-2.03	-64.35	-62.00	Ceased
5	6195	20	6195	-72.96	0.32	-2.03	-71.25	-62.00	Minimal
				-73.26	0.32	-2.03	-71.55	-62.00	Normal
				-69.09	0.32	-2.03	-67.38	-62.00	Ceased
			6190	-73.09	0.32	-2.03	-71.38	-62.00	Minimal
				-73.29	0.32	-2.03	-71.58	-62.00	Normal
				-71.27	0.32	-2.03	-69.56	-62.00	Ceased
	6225	80	6225	-72.27	0.32	-2.03	-70.56	-62.00	Minimal
				-72.47	0.32	-2.03	-70.76	-62.00	Normal
				-71.87	0.32	-2.03	-70.16	-62.00	Ceased
			6260	-73.07	0.32	-2.03	-71.36	-62.00	Minimal
				-73.27	0.32	-2.03	-71.56	-62.00	Normal
				-66.15	0.32	-2.03	-64.44	-62.00	Ceased
6	6475	20	6475	-73.75	0.32	-2.03	-72.04	-62.00	Minimal
				-74.05	0.32	-2.03	-72.34	-62.00	Normal
				-70.48	0.32	-2.03	-68.77	-62.00	Ceased
			6430	-71.88	0.32	-2.03	-70.17	-62.00	Minimal
				-72.08	0.32	-2.03	-70.37	-62.00	Normal
				-69.62	0.32	-2.03	-67.91	-62.00	Ceased
	6465	80	6465	-72.02	0.32	-2.03	-70.31	-62.00	Minimal
				-72.22	0.32	-2.03	-70.51	-62.00	Normal
				-68.31	0.32	-2.03	-66.60	-62.00	Ceased
			6500	-69.71	0.32	-2.03	-68.00	-62.00	Minimal
				-69.91	0.32	-2.03	-68.20	-62.00	Normal

Adjusted Incumbent Power = Incumbent Power - customer's cable Loss - Antenna gain.

The testing was performed with the AWGN signal set to Normal level (more than 20 dB below the -62 dBm threshold) and increased until the EUT detected and stopped transmitting (Ceased level).

EUT Tx Status means below

Ceased: The level at which no transmission is detected, consistently for a minimum period of 10 seconds.

Minimal: The AWGN level at which the system begins to trigger the transmission switch off, albeit not being kept off consistently.

Normal: The level at which there no apparent detection and the operation of the EUT is still considered optimal.

^{*} The antenna gain value was applied as conservative condition (minimum antenna gain).

^{*} customer's cable loss is a loss of antenna cable for measurement attached to the sample provided by the customer.

^{*} Incumbent power is level at the point of connector of customer's measurement cable connected the antenna port of EUT.

^{*} Adjusted incumbent power is level at antenna port of EUT.

Test Report No. 14781152S-F-R3
Page 20 of 24

Contention Based Protocol

Incumbent signal detection results

	Center		Incumbent	Incumbent	customer's	Antenna	Adjusted	Detection	EUT	
UNII Band	Frequency	BW	Frequency	Power	cable	gain *	Incumbent	Limit	Tx	
					Loss	_	Power		Status	
	[MHz]	[MHz]	[MHz]	[dBm]	[dB]	[dBi]	[dBm]	[dBm]		
				-65.61	0.32	-2.03	-63.90	-62.00	Ceased	
7	6695	20	6695	-76.11	0.32	-2.03	-74.40	-62.00	Minimal	
				-76.41	0.32	-2.03	-74.70	-62.00	Normal	
				-74.51	0.32	-2.03	-72.80	-62.00	Ceased	
			6590	-76.11	0.32	-2.03	-74.40	-62.00	Minimal	
				-76.31	0.32	-2.03	-74.60	-62.00	Normal	
				-75.23	0.32	-2.03	-73.52	-62.00	Ceased	
	6625	80	6625	-76.43	0.32	-2.03	-74.72	-62.00	Minimal	
					-76.63	0.32	-2.03	-74.92	-62.00	Normal
				-73.80	0.32	-2.03	-72.09	-62.00	Ceased	
			6660	-75.00	0.32	-2.03	-73.29	-62.00	Minimal	
				-75.20	0.32	-2.03	-73.49	-62.00	Normal	
				-65.57	0.32	-2.03	-63.86	-62.00	Ceased	
8	6995	20	6995	-76.07	0.32	-2.03	-74.36	-62.00	Minimal	
				-76.37	0.32	-2.03	-74.66	-62.00	Normal	
				-74.62	0.32	-2.03	-72.91	-62.00	Ceased	
			6910	-76.02	0.32	-2.03	-74.31	-62.00	Minimal	
				-76.22	0.32	-2.03	-74.51	-62.00	Normal	
				-73.82	0.32	-2.03	-72.11	-62.00	Ceased	
	6945	80	6945	-76.02	0.32	-2.03	-74.31	-62.00	Minimal	
				-76.22	0.32	-2.03	-74.51	-62.00	Normal	
				-73.09	0.32	-2.03	-71.38	-62.00	Ceased	
			6980	-74.69	0.32	-2.03	-72.98	-62.00	Minimal	
				-74.89	0.32	-2.03	-73.18	-62.00	Normal	

Adjusted Incumbent Power = Incumbent Power - customer's cable Loss - Antenna gain.

The testing was performed with the AWGN signal set to Normal level (more than 20 dB below the -62 dBm threshold) and increased until the EUT detected and stopped transmitting (Ceased level).

EUT Tx Status means below

Ceased: The level at which no transmission is detected, consistently for a minimum period of 10 seconds.

Minimal: The AWGN level at which the system begins to trigger the transmission switch off, albeit not being kept off consistently.

Normal: The level at which there no apparent detection and the operation of the EUT is still considered optimal.

^{*} The antenna gain value was applied as conservative condition (minimum antenna gain).

^{*} customer's cable loss is a loss of antenna cable for measurement attached to the sample provided by the customer.

^{*} Incumbent power is level at the point of connector of customer's measurement cable connected the antenna port of EUT.

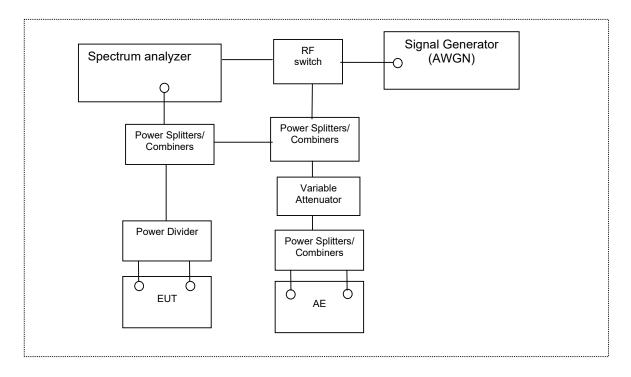
^{*} Adjusted incumbent power is level at antenna port of EUT.

Test Report No. 14781152S-F-R3 21 of 24 Page

Contention Based Protocol

Incumbent signal detection certainty results

	Center		Incumbent *					Tria	No.						Detection
UNII Band	Frequency	BW	Frequency											Detection	Rate
	[MHz]	[MHz]	[MHz]	1	2	3	4	5	6	7	8	9	10	Rate [%]	Limit [%]
5	6195	20	6195	0	0	0	0	0	0	0	0	0	0	100.0	90.0
			6190	0	0	0	0	0	0	0	0	0	0	100.0	90.0
	6225	80	6225	0	0	0	0	0	0	0	0	0	0	100.0	90.0
			6260	0	0	0	0	0	0	0	0	0	0	100.0	90.0
6	6475	20	6475	0	0	0	0	0	0	0	0	0	0	100.0	90.0
			6430	0	0	0	0	0	0	0	0	0	0	100.0	90.0
	6465	80	6465	0	0	0	0	0	0	0	0	0	0	100.0	90.0
			6500	0	0	0	0	0	0	0	0	0	0	100.0	90.0
7	6695	20	6695	0	0	0	0	0	0	0	0	0	0	100.0	90.0
			6590	0	0	0	0	0	0	0	0	0	0	100.0	90.0
	6625	80	6625	0	0	0	0	0	0	Ο	0	0	0	100.0	90.0
			6660	0	0	0	0	0	0	0	0	0	0	100.0	90.0
8	6995	20	6995	0	0	0	0	0	0	0	0	0	0	100.0	90.0
			6910	0	0	0	0	0	0	0	0	0	0	100.0	90.0
	6945	80	6945	0	Ο	0	Ο	0	0	Ο	0	0	0	100.0	90.0
			6980	0	0	0	0	0	0	0	0	0	0	100.0	90.0


[&]quot;O" means EUT ceased.

Blank means EUT did not ceased.
* Test was performed at the level which the EUT Tx status was ceased.

Test Report No. 14781152S-F-R3 Page 22 of 24

Contention Based Protocol

Conducted Methods System Block Diagram of Contention Based Protocol

^{*}Signal Generator and Spectrum Analyzer were started at the same time by Switcher.

Test Report No. 14781152S-F-R3
Page 23 of 24

APPENDIX 2: Test Instruments

Test Equipment

Test Item	LIMS ID	Description	Manufacturer	Model	Serial	Last Calibration Date	Cal Int
CBP	146212	Digital Hitester	HIOKI E.E. CORPORATION	3805-50	80997828	2023/09/25	12
CBP	191845	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	-	2023/08/07	12
CBP	145174	Coaxial Cable	Suhner	SUCOFLEX 102	31595/2	2024/03/07	12
CBP	145175	Coaxial Cable	Suhner	SUCOFLEX 102	31600/2	2023/12/08	12
CBP	146020	RF switch circuit	UL Japan	-	1	-	-
CBP	146252	Power Splitters/Combiners	Mini-Circuits	ZFSC-2-10G+	-	2023/11/22	12
CBP	146253	Power Splitters/Combiners	Mini-Circuits	ZFSC-2-10G+	-	2023/11/22	12
CBP	146261	Power Divider	Keysight Technologies Inc	11636B	56998	2024/04/04	12
CBP	146276	Power Splitters/Combiners	Mini-Circuits	ZFSC-2-10G+	-	2023/11/22	12
CBP	167151	Step Attenuator	Keysight Technologies Inc	8494B	MY42157639	2024/02/14	12
CBP	167152	Step Attenuator	Keysight Technologies Inc	8496B	MY42151198	2024/02/14	12
CBP	196949	Coaxial Cable	Huber+Suhner	SUCOFLEX 102	803480/2	2024/03/07	12
CBP	199606	Microwave cable	RS Pro	R-132G7210 100CO	-	-	-
CBP	202920	Microwave cable	RS Pro	R-132G7210 100CO	-	-	-
CBP	226868	Signal Generator	Rohde & Schwarz	SMW200A	108835	2024/04/09	12
CBP	235697	Coaxial Cable	Hayashi-Repic co., Ltd.	KMS020B- GL140sE- KMS020B-2.0m	47456-01-01	2024/04/09	12
CBP	236410	Spectrum Analyzer	Keysight Technologies Inc	N9030B	MY63050151	2024/04/26	12
CBP	246245	Coaxial Cable	Hayashi-Repic co., Ltd.	SMS13-13A26- SMS13-1.0m	49883-01-02	2024/03/15	12
CBP	246246	Coaxial Cable	Hayashi-Repic co., Ltd.	SMS13-13A26- SMS13-1.0m	49883-01-03	2024/03/15	12

^{*}Hyphens for Last Calibration Date and Cal Int (month) are instruments that Calibration is not required (e.g. software), or instruments checked in advance before use.

The expiration date of the calibration is the end of the expired month.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

Test item:

CBP: Contention Based Protocol