

SAR Test Report

Test Report No. 15407507S-A

Customer	Canon Inc.
Description of EUT	Wireless LAN/Bluetooth Combo Module
Model Number of EUT	ES204
FCC ID	AZD241
Test Regulation	FCC 47CFR 2.1093
Test Result	Complied
Issue Date	September 20, 2024
Remarks	-

Representative Test Engineer	Approved By
A. Oda	T.Amamura
Akihiro Oda Engineer	Toyokazu Imamura Engineer
The testing in which "Non-accreditation" is displayed in	CERTIFICATE 1266.03
The testing in which "Non-accreditation" is displayed is	outside the accreditation scopes in UL Japan, Inc.
There is no testing item of "Non-accreditation".	ID-003532 (DCS:13-EM-E0429) ISSUE# 23.0 (SAR Revision- v23.12sar240820)

ANNOUNCEMENT

- This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- The results in this report apply only to the sample tested.
- This sample tested is in compliance with the limits of the above regulation.
- The test results in this test report are traceable to the national or international standards.
- This test report must not be used by the customer to claim product certification, approval, or endorsement by the A2LA accreditation body.
- This test report covers Radio technical requirements.
 It does not cover administrative issues such as Manual or non-Radio test related Requirements. (if applicable)
- The all test items in this test report are conducted by UL Japan, Inc. Shonan EMC Lab.
- The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan, Inc. has been accredited.
- The information provided by the applicant for this report is identified in Section 1.
- The laboratory is not responsible for information provided by the customer which can impact the validity of the results.
- •

REVISION HISTORY

Original Test Report No.: 15407507S-A

Revision	Test Report No.	Date	Page Revised Contents
- (Original)	15407507S-A	September 20, 2024	-

Reference : Abbreviations (Including words undescribed in this report) (R16/240731S10/240806)

Reference : Abbreviations (Including words undescribed in this report) (R16v240731S10v240806)					
A2LA	The American Association for Laboratory Accreditation	MRA	Mutual Recognition Arrangement		
AC	Alternating Current	MU-MIMO	Multi-User Multiple Input Multiple Output (Radio)		
AFH	Adaptive Frequency Hopping	N/A	Not Applicable, Not Applied		
AM	Amplitude Modulation	NII	National Information Infrastructure (Radio)		
Amp, AMP	Amplifier	NIST	National Institute of Standards and Technology		
ANSI	American National Standards Institute	NR	New Radio		
Ant, ANT	Antenna	NS	Nerve Stimulation		
AP	Access Point	NSA	Normalized Site Attenuation		
APD	Absorbed Power Density	NVLAP	National Voluntary Laboratory Accreditation Program		
ASK	Amplitude Shift Keying	OBW	Occupied Band Width		
Atten., ATT		OFDM	Orthogonal Frequency Division Multiplexing		
AV	Average	OFDMA	Orthogonal Frequency Division Multiple Access		
BPSK	Binary Phase-Shift Keying	PD	Power Density		
BR	Bluetooth Basic Rate	psPD	Peak spatial-average power density		
BT	Bluetooth	psPDn+	Surface-normal propagation-direction peak spatial-average		
		•	power density		
BTLE	Bluetooth Low Energy	psPDtot+	Total propagating spatial-average peak power density		
BW	BandWidth	psPDmod+	Total peak spatial-average power density considering		
		•	reactive near-field effects		
Cal Int	Calibration Interval	P/M	Power meter		
CCK	Complementary Code Keying	PCB	Printed Circuit Board		
CDD	Cyclic Delay Diversity	PER	Packet Error Rate		
CFR	Code of Federal Regulations	PHY	Physical Layer		
Ch., CH	Channel	PK	Peak		
CISPR	Comite International Special des Perturbations Radioelectriques	PN	Pseudo random Noise		
CW	Continuous Wave	PP	Preamble Puncturing		
DBPSK	Differential BPSK	PRBS	Pseudo-Random Bit Sequence		
DC	Direct Current	PSD	Power Spectral Density		
D-factor	Distance factor	QAM	Quadrature Amplitude Modulation		
DFS	Dynamic Frequency Selection	QP	Quasi-Peak		
DQPSK	Differential QPSK	QPSK	Quadrature Phase Shift Keying		
DSSS	Direct Sequence Spread Spectrum	RAT	Radio Access Technology		
DUT	Device Under Test	RBW	Resolution Band Width		
EDR	Enhanced Data Rate	RDS	Radio Data System		
	Equivalent Isotropically Radiated Power	RE	Radio Equipment		
EMC	ElectroMagnetic Compatibility	RF	Radio Frequency		
EMI	ElectroMagnetic Interference	RMS			
EN		RSS	Root Mean Square Radio Standards Specifications		
	European Norm				
ERP, e.r.p.	Effective Radiated Power	RU	Resource Unit		
ETSI	European Telecommunications Standards Institute	Rx	Receiving		
EU	European Union	SA, S/A	Spectrum Analyzer		
EUT	Equipment Under Test	SAR	Specific Absorption Rate		
Fac.	Factor	SDM	Space Division Multiplexing		
FCC	Federal Communications Commission	SISO	Single Input Single Output (Radio)		
FHSS	Frequency Hopping Spread Spectrum	SG	Signal Generator		
FM	Frequency Modulation	sPD	Spatial-average power density		
Freq.	Frequency	sPDn+	Surface-normal propagation-direction spatial-average		
•			power density		
FSK	Frequency Shift Keying	sPDtot+	Total propagating spatial-average power density		
GFSK	Gaussian Frequency-Shift Keying	sPDmod+	Total spatial-average power density considering reactive		
			near-field effects		
GNSS	Global Navigation Satellite System	SPLSR	SAR to Peak Location Separation Ratio		
GPS	Global Positioning System	SVSWR	Site-Voltage Standing Wave Ratio		
HE	High Efficiency (e.g. IEEE 802.11ax20HE)	TER	Total Exposure Ratio		
HT	High Throughput (e.g. IEEE 802.11n20HT)	TSL	Tissue Simulation Liquid		
Hori.	Horizontal	T/R	Test Receiver		
ICES	Interference-Causing Equipment Standard	Tx	Transmitting		
IEC	International Electrotechnical Commission	U-NII	Unlicensed National Information Infrastructure (Radio)		
IEEE	Institute of Electrical and Electronics Engineers	URS	Unintentional Radiator(s)		
IF	Intermediate Frequency	VBW	Video BandWidth		
ILAC	International Laboratory Accreditation Conference	Vert.	Vertical		
IPD	Incident Power Density	VHT	Very High Throughput (e.g. IEEE 802.11ac20VHT)		
ISED	Innovation, Science and Economic Development Canada	WLAN	Wireless LAN		
ISO	International Organization for Standardization	Wi-Fi, WiFi	Wireless LAN, trademarked by Wi-Fi Alliance		
JAB	Japan Accreditation Board	WPT	Wireless Power Transmit		
LAN	Local Area Network				
LIMS	Laboratory Information Management System				
MCS	Modulation and Coding Scheme				
MIMO	Multiple Input Multiple Output (Radio)				
	Maximum Permissible Exposure				

MPE Maximum Permissible Exposure

CONTENTS		PAGE
ANNOUNCEME	NT	2
REVISION HISTO	DRY	2
	reviations (Including words undescribed in this report)	
SECTION 1:	Customer information	
SECTION 2:	Equipment under test (EUT)	
2.1	Identification of EUT	5
2.2	Product Description	
SECTION 3:	Maximum SAR value, test specification and procedures	6
3.1	Summary of Maximum SAR Value	6
3.2	RF Exposure limit	7
3.3	Test specification	
3.4	Test specification Addition, deviation and exclusion to the test procedure	
3.5	Test location	8
3.6	SAR measurement procedure	
SECTION 4:	Operation of EUT during testing	
4.1	Operation modes for testing	
4.2	RF exposure conditions (Test exemption)	
SECTION 5:	Confirmation before testing	
5.1	Test reference power measurement	
SECTION 6:	Tissue simulating liquid	
6.1	Liquid measurement	13
6.2	Target of tissue simulating liquid	
6.3	Simulated tissue composition	
SECTION 7:	Measurement results	
7.1	Measurement results	
7.1.1	SAR measurement results (2.4 GHz band)	
7.1.2	SAR measurement results (WLAN 5 GHz band)	
7.2	Simultaneous transmission (including Co-location) evaluation	
7.3	SAR Measurement Variability (Repeated measurement requirement) Device holder perturbation verification	15
7.4	Device holder perturbation verification	
7.5	Requirements on the Uncertainty Evaluation	
7.5.1	SAR Uncertainty Evaluation	

Contents of appendixes

APPENDIX 1:	Photographs of test setup	.16
Appendix 1-1	Photograph of Host platform and antenna position	. 16
Appendix 1-2	EUT and support equipment	.17
Appendix 1-3	Photograph of test setup (SAR)	. 18
APPENDIX 2:	Measurement data	.20
Appendix 2-1	Plot(s) of Worst Reported Value	.20
APPENDIX 3:	Test instruments	
Appendix 3-1	Equipment used Measurement System	.23
Appendix 3-2	Measurement System	.23
Appendix 3-2-1		.24
Appendix 3-2-2	SAR system check results	.27
Appendix 3-2-3	SAR system check measurement data	.27
Appendix 3-3	Measurement Uncertainty	
Appendix 3-4	Calibration certificates	.31

SECTION 1: **Customer information**

Company Name	Canon Inc.			
Address	30-2, Shimomaruko 3-chome, Ohta-ku, Tokyo 146-8501 Japan			
Telephone Number	+81-3-5482-4941			
Contact Person	Yasuhito Yukita			
The information was ideal from the systematic so follows:				

The information provided from the customer is as follows;

Customer name, Company name, Type of Equipment, Model No., FCC ID on the cover and other relevant pages.

SECTION 1: Customer information

-

SECTION 2: Equipment under test (EUT) SECTION 4: Operation of EUT during testing Appendix 1: The part of Antenna location information, Description of EUT and Support Equipment _

SECTION 2: Equipment under test (EUT)

Identification of EUT 2.1

Туре	Wireless LAN/Bluetooth Combo Module
Model Number	ES204
Serial Number	No.16_01
Rating	DC 3.3 V supplied form the host platform.
Condition of sample	Engineering prototype (Not for sale: The sample is equivalent to mass-produced items.)
Receipt Date of sample	July 19, 2024 (for power measurement) (*. No modification by the Lab.)
	August 2, 2024 (for SAR test) (*. No modification by the Lab.)
Test Date (SAR)	August 22, 23 and 26, 2024

2.2 **Product Description**

This report contains data provided by the customer which can impact the validity of results. UL Japan, Inc. is only responsible for the validity of results after the integration of the data provided by the customer. The data provided by the customer is marked "a)" in the table below.

General

Feature of EUT	Model: ES204 (referred to as the EUT in this report) is a Wireless LAN/Bluetooth Combo Module.
SAR Category	Portable device (*. Since EUT may contact to a localized human body during wireless operation, the partial-
Identified	body SAR (1g) shall be observed.)
SAR Accessory	N/A

Radio specification				
Equipment type	Transceiver			
Frequency of operation	Bluetooth: 2402 MHz ~ 2480 MHz WLAN 2.4 GHz Band: (DTS) 2412 MHz ~ 2462 MHz WLAN 5.2 GHz Band (U-NII-1): 5180 MHz ~ 5240 MHz WLAN 5.3 GHz Band (U-NII-2A): 5260 MHz ~ 5320 MHz	WLAN 5.6 GHz Band (U-NII-2C): 5500 MHz ~ 5700 MHz (*. excluding 5600 ~ 5650 MHz) WLAN 5.8 GHz Band (U-NII-3): 5745 MHz ~ 5825 MHz		
Supported modulations	Bluetooth: BR/EDR/BT LE (FHSS, GFSK (*. EDR: GFSK+π/4-DQPSK, GFSK+ 8DPSK)) (*.BR/EDR is not supported by the firmware in this host device.) WLAN 2.4GHz band) DSSS) 11b: DBPSK/DQPSK/CCK WLAN 2.4GHz band) OFDM) 11g/n: BPSK/QPSK/16QAM/64QAM WLAN 5.2,5.3,5.6,5.8GHz band) OFDM) 11a/n/ac: BPSK/QPSK/16QAM/64QAM, 11ac: 256QAM			
Typical and maximum transmit power	*. The specification of typical and maximum transmit power (which may occur) refer to remarks in below "Table of Typical power and Maximum tune-up tolerance limit power". The measured output power (conducted) as SAR reference power refers to section 5 in this report.			
Quantity of antenna Antenna gain ^a (max. gain)	1 piece Antenna type Printed PCB Antenna com 2.98 dBi (2.4 GHz band), 4.94 dBi (5 GHz band) (*.module alo	nector type Antenna side: Soldered / Module side: MHF4 ne base, including cable loss)		

Description of Host Platform

Manufacture	Canon Inc.
Product name	Digital Camera
Model number	DS126938
Condition of sample	Engineering prototype (Not for sale: The sample is equivalent to mass-produced items.)
Rating	DC 7.2 V (Li-ion Battery, Refer to Appendix 1-2) (*. The SAR test was performed in battery operation.)
SAR Category	Portable device (*. Since EUT may contact to a localized human body during wireless operation, the partial-
Identified	body SAR (1g) shall be observed.)
Exposure Category	General Population/Uncontrolled Exposure
SAR Accessory	None, There are no accessories that would affect SAR test.

Table of Typical Maximum tupe	Table of Typical power and Maximum tune-up tolerance limit power. Maximum tune-up tolerance limit is conducted burst average power and is defined by a customer as Duty cycle 100% (continuous transmitting).							
			Frequency		BW	D/R or Index#		Max.Pwr.
Туре	Band	Channel	[MHz]	Mode	[MHz]	[Mbps]	[dBm]	[dBm]
BT	BR	0 to 79	2402 to 2480	DH5	-	1	N/A	N/A
BT	EDR	0 to 79	2402 to 2480	2DH5	-	2	N/A	N/A
BT	EDR	0 to 79	2402 to 2480	3DH5	-	3	N/A	N/A
BT	BT LE	0 to 39	2402 to 2480	PHY1	-	1	3	6
BT	BT LE	0 to 39	2402 to 2480	PHY2	-	2	3	6
WLAN	2.4GHz	1 to 11	2412 to 2462	11b	20	1	8	10
WLAN	2.4GHz	1 to 11	2412 to 2462	11g	20	6	8	10
WLAN	2.4GHz	1 to 11	2412 to 2462	11n	20	MCS0	7	9
WLAN	2.4GHz	3 to 9	2422 to 2452	11n	40	MCS0	7	9
WLAN	5.2 GHz	36 to 48	5180 to 5240	11a	20	6	8	10
WLAN	5.2 GHz	36 to 48	5180 to 5240	11n	20	MCS0	7	9
WLAN	5.2 GHz	36 to 48	5180 to 5240	11ac	20	MCS0	7	9
WLAN	5.2 GHz	38 , 46	5190 , 5230	11n	40	MCS0	7	9
WLAN	5.2 GHz	38 , 46	5190 , 5230	11ac	40	MCS0	7	9
WLAN	5.2 GHz	42	5210	11ac	80	MCS0	7	9
WLAN	5.3 GHz	52 to 64	5260 to 5320	11a	20	6	8	10
WLAN	5.3 GHz	52 to 64	5260 to 5320	11n	20	MCS0	7	9
WLAN	5.3 GHz	52 to 64	5260 to 5320	11ac	20	MCS0	7	9
WLAN	5.3 GHz	54 , 62	5270 , 5310	11n	40	MCS0	7	9
WLAN	5.3 GHz	54 , 62	5270 , 5230	11ac	40	MCS0	7	9
WLAN	5.3 GHz	58	5290	11ac	80	MCS0	7	9
WLAN	5.6 GHz	100 to 140	5500 to 5700	11a	20	6	8	10
WLAN	5.6 GHz	100 to 140	5500 to 5700	11n	20	MCS0	7	9
WLAN	5.6 GHz	100 to 140	5500 to 5700	11ac	20	MCS0	7	9
WLAN	5.6 GHz	102 to 134	5510 to 5670	11n	40	MCS0	7	9
WLAN	5.6 GHz	102 to 134	5510 to 5670	11ac	40	MCS0	7	9
WLAN	5.6 GHz	106	5530	11ac	80	MCS0	7	9
WLAN	5.8 GHz	149 to 165	5745 to 5825	11a	20	6	8	10
WLAN	5.8 GHz	149 to 165	5745 to 5825	11n	20	MCS0	7	9
WLAN	5.8 GHz	149 to 165	5745 to 5825	11ac	20	MCS0	7	9
WLAN	5.8 GHz	151 , 159	5755 , 5795	11n	40	MCS0	7	9
WLAN	5.8 GHz	151 , 159	5755 , 5795	11ac	40	MCS0	7	9
WLAN	5.8 GHz	155	5775	11ac	80	MCS0	7	9

: The transmission mode with the highest power in each band is marked with a yellow marker.

BR/EDR is not supported by the firmware in this host device. Excluding 5600 MHz to 5650 MHz.

* * * *

D/R: data rate, Typ.: Typical power, Max. Maximum tune-up limit power, N/A: Not applicable.

The table above shows the lowest data rate with the highest power for each mode and each operation band. The power measurements and SAR tests were performed based on the conditions listed in the table above.

*. WLAN and Bluetooth use same antenna. Therefore, simultaneously transmitted SAR was not considered for the WLAN 2.4 GHz band and Bluetooth. Simultaneously transmitted SAR was only considered for the WLAN 5 GHz band and Bluetooth. The EUT do not use the special transmitting technique such as "beam-forming" and "time-space code diversity."

*.

SECTION 3: Maximum SAR value, test specification and procedures

Summary of Maximum SAR Value 3.1

Mode / Band			Highest Reported SAR [W/kg]								
		Partial-body (Flat phantom, Separation 0 mm)			Head (SAM phantom)	Limbs					
DTS) WLAN 2.4 GHz			0.22		^{1g} N/A		N/A				
UNII) WLAN 5 GHz (5.2, 5.3, 5.6, 5.8 GHz band)		1g	0.75		N/A	10g	N/A				
Bluetooth		1g	0.12		1g N/A		N/A				
Simultaneous SAR		1g	0.87		1g N/A		N/A				
Limit applied											
Test			n this report. In addition;	_0035	00 (13-EM-W0/30)						

Procedure

UL Japan's SAR measurement work procedures No. ULID-003599 (13-EM-W0430). UL Japan's SAR measurement equipment calibration and inspection work procedures No. ULID-003598 (13-EM-W0429).

WLAN and Bluetooth use same antenna. Therefore, simultaneously transmitted SAR was not considered for the WLAN 2.4 GHz band and Bluetooth. Simultaneously transmitted SAR was only considered for the WLAN 5 GHz band and Bluetooth.

For Module approval;

Test outline: Where the EUT is built into this platform, it was verified whether multi-platform conditions can be suited in according with clause 4.2.4 in KDB 447408 D04 (v01)

	50 D04 (V01).
Consideration of the test	The highest reported SAR (1g) of this platform was kept; \leq 1.2 W/kg.
results:	*. Since highest reported SAR (1g) on this EUT's platform obtained in accordance with KDB447498 D04 (v01) was
	kept under 1.2 W/kg, this EUT was approved to operate same type of multi-platform.

Conclusion

The SAR test values found for the device are separately below the maximum limit of 1.6 W/kg. For the simultaneous transmission, sum of SAR values were below the maximum limit of 1.6 W/kg

3.1.1 History of maximum SAR value in different platforms - Informative (Reference purpose only)

The following information indicates a highest SAR number of the different host platforms in the past test. The SAR test results are not described in this report. In the past, this module had installed into the following host platforms and tested with measured highest reported SAR (1g) with < 0.8 W/kg. (per KDB 447498 D01 (v06); multi-platform operation requirement).

		Highest Reported SAR [W/kg]									
	st No. # :	1	2	3	4	5	6	7			
Host type :		Digital Camera	Digital Camera	Digital Cinema Camera	Digital Camera	Digital Cinema Camera	Digital Cinema Camera	Digital Camera			
Host model n	umber:	DS126836	DS126855	ID0156	DS126861	ID0177	ID0172	DS126938			
SAR test report	No. (*2):	13024973S-A	13651875S-A	13863703S-A	14121389S-A	15005437S-A	15136384S-A	This report			
SAR test pro	cedure :	K	B 248227 D01(v02r DB 447498 D01(v00 B 865664 D01 (v01)	5),	KDB 248227 D01(\02r02), KDB 447498 D04(\01), KDB 865664 D01 (\01r04)						
	Max	Body-worn	Body-worn	Body-worn	Body-worn	Body-worn	Body-worn	Body-worn			
Band	Power	(Separation 0 mm)	(Separation 0 mm)	(Separation 0 mm)	(Separation 0 mm)	(Separation 0 mm)	(Separation 0 mm)	(Separation 0 mm)			
	[dBm]	SAR (1g)	SAR (1g)	SAR (1g)	SAR (1g)	SAR (1g)	SAR (1g)	SAR (1g)			
WLAN 2.4 GHz	10.0	0.25	0.17	0.17	0.14	0.19	0.09	0.22			
WLAN 5.2 GHz	10.0	0.42	0.11	0.43	0.26	0.79	0.51	0.75			
WLAN 5.3 GHz	10.0	0.33	0.15	0.25	0.35 0.64		0.45	0.68			
WLAN 5.6 GHz 10.0		0.32	0.22	N/A (*3)	0.677 N/A (*5)		N/A (*5)	0.70			
WLAN 5.8 GHz	10.0	0.25	0.12	N/A (*3)	0.676	N/A (*5)	N/A (*5)	0.63			
Bluetooth	6.0	0.08	0.06	0.06 (*3)	0.047	N/A (*5)	N/A (*5)	0.12			
Simultaneous	SAR	0.50 (*4)	0.28 (*4)	0.49 (*3, *4)	0.72 (*4)	N/A (*5)	N/A (*5)	0.87 (*4)			

SAR evaluation and report publishing was done by Shonan EMC Lab. UL Japan. Refer to latest SAR test report. *2.

*3. This host platform (ID0156) is only supported WLÁN 2.4GHz&5.2GHz&5.3GHz band and BT LE(PHY1) which are limited by firmware.

*4. WLAN and Bluetooth use same antenna. Therefore, simultaneously transmitted SAR was not considered for the WLAN 2.4 GHz band and Bluetooth.

Simultaneously transmitted SAR was only considered for the WLAN 5 GHz band and Bluetooth. These host platforms are only supported WLAN 2.4GHz & 5.2GHz & 5.3GHz band which are limited by firmware.

*5.

3.2 **RF Exposure limit**

SAR Exposure Limit (100 kHz ~ 6 GHz)										
Туре	General Population / Uncontrolled Exposure (*1)	Occupational / Controlled Exposure (*2)								
Spatial Peak SAR (*3) (Whole Body)	0.08 W/kg	0.4 W/kg								
Spatial Peak SAR (*4) (Partial-Body, Head or Body)	1.6 W/kg	8 W/kg								
Spatial Peak SAR (*5) (Hands / Feet / Ankle / Wrist)	4 W/kg	20 W/kg								

For the purpose of this Regulation, FCC has adopted the SAR and RF exposure limits established in FCC 47 CFR 1.1310: Radiofrequency radiation exposure limits. General Population / Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

*2. Occupational / Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

*3.

The Spatial Average value of the SAR averaged over the whole body. The Spatial Average value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time *4.

*5

The limit applied to this device which tested in this report is;

Limit of Spatial Peak SAR (Partial-Body) 1.6 W/kg General population / uncontrolled exposure	Limit of Spatial Peak SAR (Partial-Body)	1.6 W/kg	General population / uncontrolled exposure

3.3 **Test specification**

Standard	Description	Version
47 CFR 2.1093	(Limit) Radiofrequency radiation exposure evaluation: portable devices	-
ANSI/IEEE C95.1	IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz	1992
IEEE Std. 1528	IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.	2013
KDB 248227 D01	SAR Guidance for IEEE 802.11 (Wi-Fi) transmitters v02r02	v02r02
KDB 447498 D04	Interim General RF Exposure Guidance v01	v01
KDB 447498 D03	OET Bulletin 65, Supplement C Cross-Reference v01	v01
KDB 865664 D01	SAR measurement 100 MHz to 6 GHz v01r04	v01r04
KDB 865664 D02	RF exposure compliance reporting and documentation considerations v01r02	v01r02
IEC/IEEE 62209-1528 (*1)	Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Part 1528: Human models, instrumentation, and procedures (Frequency range of 4 MHz to 10 GHz). - Secs. 6.1, 7.4.2, 7.7 - fabove 4 MHz SAR provisions (TCB workshop, 2022-10)	2020
*1. The measurement uncer	rtainty budget is suggested by IEC/IEEE 62209-1528:2020 and determined by SPEAG, DASY8 Manual. Refer to Appendix3-3 for more det	ails.

In addition to the above, the following information was used:

I CB workshop 2016-10 ((RF Exposure Procedure) Bluetooth Duty Factor.	
TCB workshop 2016-10 (RF Exposure Procedure) DUT Holder Perturbations; When the highest reported SAR of an antenna is > 1.2 W/kg, holder perturbation v required for each antenna, using the highest SAR configuration among all applicable frequency bands.	/erification is
required for each antenna, using the highest SAR configuration among all applicable frequency bands.	
TCB workshop 2017-05 (RF Exposure Procedure) Broadband liquid above 3 GHz. Allow application of 10% tissue dielectric tolerance correction in KDB 865664	D01.
TCB workshop 2018-04 (RF Exposure Procedure) Allow Expedited Area Scans. (including mother scans)	
TCB workshop 2019-04 (RF Exposure Procedure) 802.11ax SAR Testing	
TCB workshop 2019-04 (RF Exposure Procedure) Tissue Simulating Liquids (TSL) FCC has permitted the use of single head tissue simulating liquid specified in for all SAR tests. If FCC parameters are used, 5 % tolerance. If IEC parameters, 10 %.	IEC 62209
for all SAR tests. If FCC parameters are used, 5 % tolerance. If IEC parameters, 10 %.	
TCB workshop 2019-04 (RF Exposure Policy) SAR Zoom-Scan Update.	
TCB workshop 2021-04 (RF Exposure Procedure) Application of specific phantoms. (case by case, PAG)	

3.4 Addition, deviation and exclusion to the test procedure

No addition, exclusion nor deviation has been made from the test procedure.

3.5 **Test Location**

UL Japan, Inc., Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken 259-1220 JAPAN Telephone number: +81 463 50 6400

*. A2LA Certificate Number: 1266.03 (FCC Test Firm Registration Number: 626366, ISED Lab Company Number: 2973D / CAB identifier: JP0001)

		······································
Place	Width \times Depth \times Height (m)	Size of reference ground plane (m) / horizontal conducting plane
No.7 Shielded room	2.76 × 3.76 × 2.4	2.76×3.76

3.6 SAR measurement procedure

3.6.1 SAR Definition

SAR is defined as the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ). The equation description is shown in right.	$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho * dV} \right)$
SAR measurement can be related to the electrical field in the tissue by the equation in right. SAR is expressed in units of	- F ²
Watts per kilogram (W/kg).	$SAR = \frac{\sigma E ^2}{2}$
Where : σ = conductivity of the tissue (S/m), ρ = mass density of the tissue (kg/m ³), E = RMS electric field strength in tissue (V/m)	ρ

3.6.2 Full SAR measurement procedure

The SAR measurement procedures are as follows: (1) The EUT is installed engineering testing software that provides continuous transmitting signal; (2) Measure output power through RF cable and power meter; (3) Set scan area, grid size and other setting on the DASY software; (4) Find out the largest SAR result on these testing positions of each band; (5) Measure SAR results for other channels in worst SAR testing position if the SAR of highest power channel is larger than 0.8 W/kg.

- According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:
- Step 1) Power measurement --> SAR: Step 2) Power reference measurement -> Step 3) Area scan -> Step 4) Zoom scan -> Step 5) Power drift measurement

Step 1: Confirmation before SAR testing

Before SAR test, the RF wiring for the sample had been switched to the antenna conducted power measurement line from the antenna line and the average power was measured. This SAR reference power measurement was proceeded with the lowest data rate (which may have the higher time-based average power typically) on each operation mode and on the lower, middle (or near middle), upper and specified channels. The power measurement result is shown in Section 5.

The EUT transmission power used SAR test was verified that it was not more than 2 dB lower than the maximum tune-up tolerance limit. (KDB447498 D04 (v01))

Maximum distance from closest

measurement point (geometric

Step 2: Power reference measurement

Measured psSAR value at a peak location of Fast Area Scan was used as a reference value for assessing the power drop.

Step 3: Area Scan

(Scan parameters: KDB 865664 D01, IEC/IEEE 62209-1528 (> 6GHz))

Area Scans are used to determine the peak location of the measured field before doing a finer measurement around the hotspot. Peak location can be found accurately even on coarse grids using the advanced interpolation routines implemented in DASY8. Area Scans measure a two dimensional volume covering the full device under test area. DASY8 uses Fast Averaged SAR algorithm to compute the 1 g and 10 g of simulated tissue from the Area Scan. DASY8 can either manually or automatically generates Area Scan grid settings based on device dimensions. In automatically case, the scan extent is defined by the device dimensions plus additional 15mm on each side. In manually, the scan covered the entire dimension of the antenna of FUT.

Step 4: Zoom Scan and post-processing

(Scan parameters: KDB 865664 D01, IEC/IEEE 62209-1528 (> 6GHz)) Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures points (refer to table below) within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure.

- area scan job within the same proceedure.
 A minimum volume of 30 mm (x) × 30 mm (y) × 30 mm (z) was assessed by "Ratio step" method (*1), for 2.4 GHz band. (Step XY: 5 mm)
 A minimum volume of 24 mm (x) × 24 mm (y) × 22 mm (z) was assessed by "Ratio step" method (*1), for 5 GHz band (Step XY: 4 mm).
 A minimum volume of 24 mm (x) × 24 mm (y) × 24 mm (z) was assessed by "Ratio step" method (*1), for 6 GHz band (Step XY: 34 mm).

When the SAR of the highest peak is within 2 dB of the SAR limit, additional zoom scans are proceeded for other peaks within 2 dB of the highest peak that have not been included in any zoom scan to ensure there is no increase in SAR. If the zoom scan measured as defined above complies with both of the following criteria. or if the peak spatial-average SAR is below 0.1 W/kg, no additional measurements are needed.

- The smallest horizontal distance from the local SAR peaks to all points 3 dB below the SAR peak shall be larger than the horizontal grid steps in both x and y directions and recorded.
- The ratio of the SAR at the second measured point to the SAR at the closest measured point at the x-y location of the measured maximum SAR value shall be at least 30 % and recorded.

center of pro	be sens		$5\mathrm{mm}\pm1\mathrm{mm}$	$\pm 0.5 \mathrm{mm}$		
	tom sur	gle from probe face normal at ocation	$5^{\circ} \pm 1^{\circ}$ (flat phantom only) $30^{\circ} \pm 1^{\circ}$ (other phantom)	$5^{\circ} \pm 1^{\circ}$ (flat phantom only) $30^{\circ} \pm 1^{\circ}$ (other phantom)		
Maximum a resolution:	area sc	an spatial	$ \leq 2 \text{ GHz} : \leq 15 \text{ mm}, \\ 2-3 \text{ GHz} : \leq 15 \text{ mm}, \\ 2-3 \text{ GHz} : \leq 12 \text{ mm} \\ \qquad > 6 \text{ GHz} : \leq 60/\text{fmn} \\ \text{half of the correspond} \\ \text{zorm scan length}, \\ \text{which ever is smalle} \\ \text{When the x or y dimension of the test device, in the} \\ \text{measurement plane orientation, is smaller than the} \\ \text{above, the measurement resolution must be \leq the} \\ \text{corresponding x or y dimension of the test device.} \\ \end{cases} $			
Maximum z resolution: Δ			$\leq 2 \text{ GHz} : \leq 8 \text{ mm},$ 2~3 GHz : $\leq 5 \text{ mm}$ (*1)	$3 - 4 \text{ GHz} : \le 5 \text{ mm} (*1),$ $4 - 6 \text{ GHz} : \le 4 \text{ mm} (*1)$ $> 6 \text{ GHz} : \le 24/f \text{ mm}$		
Maximum	uniform	n grid: ∆z _{z∞m} (n)	3~4 GHz:≤4 mm, 4~5 GHz:≤3 mm, 5~6 GHz:≤2 mm >6 GHz:≤10/(f-1) mm			
zoom scan spatial resolution, normal to phantom	graded grid	$\Delta z_{Zcom}(1)$: between 1st two points closest to phantom surface	≤4mm	3~4 GHz : ≤ 3 mm, 4~5 GHz : ≤ 2.5 mm, 5~6 GHz : ≤ 2 mm > 6 GHz : ≤ 12/fmm		
surface	gnu	Δz _{Zcom} (n>1): between subsequent points	\leq 1.5 × Δ z _{zx}	_m (n-1) mm		
Minimum zoom scan volume			≥ 30 mm	$3 \sim 4 \text{ GHz} :\geq 28 \text{ mm},$ $4 \sim 5 \text{ GHz} :\geq 25 \text{ mm},$ $5 \sim 6 \text{ GHz} :\geq 22 \text{ mm}$ $> 6 \text{ GHz} :\geq 22 \text{ mm}$		
Note: δ is the	penetrat	ion depth of a plan	e-wave at normal incidence to	the tissue medium; see IEEE		

f≤3GHz

~ 1 ~

 $3 \text{ GHz} < f \le 10 \text{ GHz}$

 $1/2 \times \delta \times \ln(2)$ mm

ote: δ is the penetration depth of a plane-wave at normal incidence to the tiss

Std 1528-2013 (≤ 6 GHz) and IEC/IEEE 62209-1528 (≤ 10 GHz) for details. *1. When zoom scan is required and the reported SAR from the area scan based 1-g SAR estimation procedures of KDB Publication 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz. (KDB 865664 D01) *. The scan parameters of > 6GHz is defined IEC/IEEE 62209-1528.

Step 5: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same project. The Power Drift Measurement gives the SAR difference in dB from the reacting conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. It was checked that the power drift was within ± 5% (0.21 dB) in single SAR project run. The verification of power drift during the SAR test shown in SAR plot data of APPENDIX 2.

The most of SAR tests were conservatively performed with test separation distance 0 mm. The phantom bottom thickness is approx. 2mm. Therefore, the distance between the SAR probe tip to the surface of test device which is touched the bottom surface of the phantom is approx. 2.4 mm. Typical distance from probe tip to probe's dipole centers is 1mm.

"Ratio step" method parameters used; the first measurement point: "1.4 mm" from the phantom surface, the initial z grid separation: "1.5 mm", subsequent graded requirement of KDB 865664 D01and recommended by Schmid & Partner Engineering AG (DASY8 manual).

SECTION 4: Operation of EUT during testing

4.1 Operating modes for testing

The EUT has Bluetooth and IEEE 802.11b, 11g, 11a, 11n and 11ac continuous transmitting modes.

The test modes and frequencies used in the SAR test are shown in the table of power measurement results in Section 5 with markings. The control software in the power measurement and SAR test are shown in the following.

				Ų		
Controlled	Test name	Software name	Version Date		Storage location / Remarks	
	Power measurement	RF Test	1.3.0 0011(04)	July 19, 2024	Memory of host digital camera. (firmware)	
software	SAR test	RF Test	1.3.0 0011(04)	August 2, 2024	Memory of host digital camera. (firmware)	

4.2 RF exposure conditions (Test exemption considerations)

Antenna separation distances in each test setup plan are shown as follows. SAR test exemption consideration by KDB 447498 D04 (v01)

							Antenna separation distance [mm]						
							4.89	6.73	8	19.25	34.45	38.9	106.3
	Antenna						Front-left	Front	Left	Тор	Bottom	Back	Right
Tx mode Freq.		Max.	. ATP	Gain	EF	RP	SAR1g test exempt threshold power [mW](upper row)						
	[MHz]	[dBm]	[mW]	[dBi]	[dBm]	[mW]		Judge	of SAR t	est exem	ption (low	er row)	
BT	2480	6	3.98	2.98	6.83 4.82	2.72	4.79	6.65	35.42	107.34	135.29	918.04	
	2400	0	3.90	2.90	0.05	0.03 4.02	Test	Test	Exempt	Exempt	Exempt	Exempt	Exempt
WLAN 2.4 GHz	2480	10	10.00	2.98	10.83 12.11	2.72	4.79	6.65	35.42	107.34	135.29	918.04	
	2400	10	10.00	2.90		Test	Test	Test	Exempt	Exempt	Exempt	Exempt	
WLAN 5.2 GHz	5240	10	10.00	4.94	12.79	19.01	1.49	2.76	3.94	24.22	80.66	103.69	828.46
	3240	10	10.00	4.94	12.79	19.01	Test	Test	Test	Exempt	Exempt	Exempt	Exempt
WLAN 5.3 GHz	5320	10	10.00	4.94	12.79	19.01	1.47	2.73	3.9	24.03	80.2	103.14	826.74
	5320	10	10.00	4.94	12.79	19.01	Test	Test	Test	Exempt	Exempt	Exempt	Exempt
WLAN 5.6 GHz	5700	10	10.00	4.94	12 70	10.01	1.4	2.59	3.72	23.21	78.11	100.64	818.95
	5700	10	10.00	4.94	12.79	12.79 19.01	Test	Test	Test	Exempt	Exempt	Exempt	Exempt
WLAN 5.8 GHz	5825	10	10.00	4.94	12.79	19.01	1.37	2.55	3.66	22.95	77.47	99.86	816.51
	5625	10	10.00	4.94	12.79	19.01	Test	Test	Test	Exempt	Exempt	Exempt	Exempt

Freq.: Frequency, ATP: Antenna terminal conducted power.

Antenna separation distance. It is the distance from the antenna inside EUT to the outer surface of EUT which user may touch. Details of "antenna separation distance" and "Size of EUT" are shown in Appendix 1-1.

The table shows the upper frequency which has the maximum power (as "Tune-up limit") in each operation band, in mode and on the single antenna transmission. Since this method shall only be used at separation distances from 0.5 cm to 40 cm and at frequencies from 0.3 GHz to 6 GHz (inclusive), when the minimum test

separation distance is < 5 mm, a distance of 5 mm was applied to determine SAR test exclusion for the calculation. 6

. The actual test setup tested depends on the r	neasurement results. See Section 7 for the ad	tuai tested test setup.	
<u>Calculating formula:</u> 1) ERP		TABLE B.1—THRESHOLDS FOR SINGLE RF SOU ROUTINE ENVIRONMENTAL EVAL	
	$P_{th}(mW) = \begin{cases} ERP_{20cm}(d/20)^x \ d \le 20cm \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ (B.2) \end{cases}$	RF Source Frequency Minimum Distance	
	$P_{th}(mW) = \begin{cases} (B.2) \\ ERP_{20cm} & 20cm < d \le 40cm \end{cases}$	$f_L MHz$ $f_H MHz$ $\lambda_L/2\pi$ $\lambda_H/2$ 0.3 - 1.34 159m - 35.6	
2) SAR test exempt threshold power		1.34 - 30 35.6m - 1.6r	
$P_{th}(mW) =$ (2040f 0.3 GHz $\leq f < 1.5$ GHz	where $x = -\log_{10}\left(\frac{60}{ERP_{20cm}\sqrt{f}}\right)$	30 - 300 1.6m - 159i	
$ERP_{20cm}(mW) = \begin{cases} 2040 & 0.3 \text{ GH2} \leq 1 < 1.5 \text{ GH2} \\ & \Box & (B.1) \end{cases}$	$(ERF_{20cm}\sqrt{f})$	300 - 1500 159 mm - 31.8 m 1500 - 100000 31.8 mm - 0.5 m	,
2060 15 CHz < f < 60 CHz	ERP20cm is per Formula (B.1).	Subscripts L and H are low and high; \(\lambda\) is waveleng From § 1.1307(b)(3)(()(C), modified by adding Minin columns. R is in meter, if is in MHz. Upper 2.4GHz; Threshold ERP [W] = 19.2 × R ⁴ 2, a	h. num Distance
SAR-based thresholds (Pth (mW) shown below table of "Exam formula defines the thresholds in general for either available ma SAR-based exemption is calculated by Formula (B.2) in below, readiated power (FRP) whichever is greater of less than or equi	ple Power Thresholds [mW]" are derived based on frequ aximum time-averaged power or maximum time-average applies for single fixed, mobile, and portable RF sources	ency, power, and separation distance of the d effective radiated power (ERP), whicheve	RF source. The ris greater. The

When 10-g extremits SAR applies, SAR test exemption may be considered by applying a factor of 2.5 to the SAR-based exemption thresholds. *. This method shall only be used at separation distances from 0.5 cm to 40 cm and at frequencies from 0.3 GHz to 6 GHz (inclusive).

Below is the test reduction procedure for KDB.

* OFDM Transmission Mode SAR Test Configuration and Channel Selection Requirements (KDB 248227 DD1, SAR Guidance for Wi-Fi Transmitters) The initial test configuration for 2.4 GHz and 5 GHz OFDM transmission modes is determined by the 802.11 configuration with the highest maximum output power specified for production units, including tune-up tolerance, in each standalone and aggregated frequency band. SAR for the initial test configuration is measured using the highest maximum output power channel determined by the default power measurement procedures. When multiple channel bandwidth configurations in a frequency band have the same specified maximum output power, largest channel bandwidth, lowest order modulation and how the same specified maximum output power and the same specified maximum output power, largest channel bandwidth, lowest order modulation and how the same specified maximum output power and the same specified maximum output power, largest channel bandwidth, lowest order modulation and how the same specified maximum output power and the same specified maximum output power, largest channel bandwidth, lowest order modulation and how the same specified maximum output power and the same specified maximum output power, largest channel bandwidth, lowest order modulation and how the same specified maximum output power and the same specified maximum output p

lowest data rate, the lowest order 802.11 mode is selected.

SAR test reduction considerations

(KDB 447498 D04(k0), General RF Exposure Guidance) Testing of other required channels within the operating mode of a frequency band is not required when the reported 1g or 10g SAR for the mid-band or highest output power channel is:

 \leq 0.8 W/kg for 1g, or 2.0 W/kg for 10g respectively, when the transmission band is \leq 100 MHz \leq 0.6 W/kg for 1g, or 1.5 W/kg for 10g respectively, when the transmission band is between 100 MHz and 200 MHz \leq 0.4 W/kg for 1g, or 1.0 W/kg for 10g respectively, when the transmission band is \geq 200 MHz

The SAR has been measured with highest transmission duty factor supported by the test mode tool for WLAN and/or Bluetooth. When the transmission duty factor could not be 100%, the reported SAR will be scaled to 100% transmission duty factor to determine compliance. When SAR is not measured at the maximum power level allowed for production unit, the measured SAR will be scaled to the maximum tune-up tolerance limit to determine compliance.

(KDB 248227 D01, SAR Guidance for Wi-Fi Transmitters) When the reported SAR of the initial test configuration is > 0.8 W/kg, SAR measurement is required for subsequent next highest measured output power channel(s) in the initial test configuration until reported SAR is < 1.2 W/kg or all required channels are tested.

For 2.4GHz band, the highest measured maximum output power channel of DSSS was selected for SAR measurement, When the reported SAR is < 0.8 W/kg, no further SAR test is required in this exposure configuration. Otherwise, SAR is required for that exposure configuration using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel. For OFDM modes (802.11g/n), SAR is not required when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg

For 5GHz band, the initial test configuration was selected accordance to the transmission mode with the highest maximum output power. When the reported SAR is > 0.8 W/kg, SAR is required for the subsequent highest measured output power channel until the reported SAR result is ≤ 1.2 W/kg or all required channels are measured. For other transmission modes, SAR is not required when the highest reported SAR for initial test configuration is adjusted by the ratio of subsequent test configuration to initial test configuration specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.

SECTION 5: Confirmation before testing

5.1 Test reference power measurement

16	SLICI	erence	powe	71 11 15	casu													
	Free		Tx mod	le			Power			Duty				Pov	ver			Adjusted
СН	Freq.		D/R or Index#	Number		Тур.	Max.	Set	Cycle	Factor	Scaled	Burst	Ave.	Δmax	Scaled	Time	e.Ave	power
0		Mode		of Tx	Stream				-								-	setting? (*1)
	[MHz]		[Mbps]	ant.		[dBm]	[dBm]		[%]	[dB]	Factor	[dBm]	[mW]	[dB]	Factor	[dBm]	[mW]	setting: (1)
0	2402	BT LE(1M)	1	1Tx	1ST	3	6	6	63.8	1.95	1.57	5.90	3.89	0.10	1.02	3.95	2.48	Yes
19	2440	BT LE(1M)	1	1Tx	1ST	3	6	6	63.8	1.95	1.57	5.74	3.75	0.26	1.06	3.79	2.39	Yes
							-											
39	2480	BT LE(1M)	1	1Tx	1ST	3	6	6	63.8	1.95	1.57	5.45	3.51	0.55	1.14	3.50	2.24	Yes
0	2402	BT LE(2M)	2	1Tx	1ST	3	6	6	34.3	4.65	2.92	5.82	3.82	0.18	1.04	1.17	1.31	Yes
19	2440	BT LE(2M)	2	1Tx	1ST	3	6	6	34.3	4.65	2.92	5.72	3.73	0.28	1.07	1.07	1.28	Yes
39	2480	BT LE(2M)	2	1Tx	1ST	3	6	6	34.3	4.65	2.92	5.44	3.50	0.56	1.14	0.79	1.20	Yes
1	2412	11b	1	1Tx	1ST	8	10	8	100.0	0.00	1.00	8.53	7.13	1.47	1.40	8.53	7.13	No
6	2437	11b	1	1Tx	1ST	8	10	8	100.0	0.00	1.00	8.49	7.06	1.51	1.42	8.49	7.06	No
11	2462	11b	1	1Tx	1ST	8	10	8	100.0	0.00	1.00	8.30	6.76	1.70	1.48	8.30	6.76	No
1	2412	11g	6	1Tx	1ST	8	10	8	100.0	0.00	1.00	8.54	7.14	1.46	1.40	8.54	7.14	No
6	2437	11g	6	1Tx	1ST	8	10	8	100.0	0.00	1.00	8.49	7.06	1.51	1.42	8.49	7.06	No
11	2462	11g	6	1Tx	1ST	8	10	8	100.0	0.00	1.00	8.34	6.82	1.66	1.47	8.34	6.82	No
1							9						5.85					No
	2412	11n20	MCS0	1Tx	1ST	7		7	100.0	0.00	1.00	7.67		1.33	1.36	7.67	5.85	
6	2437	11n20	MCS0	1Tx	1ST	7	9	7	100.0	0.00	1.00	7.58	5.73	1.42	1.39	7.58	5.73	No
11	2462	11n20	MCS0	1Tx	1ST	7	9	7	100.0	0.00	1.00	7.44	5.55	1.56	1.43	7.44	5.55	No
	2422	11n40	MCS0	1Tx		7		7	100.0			7.62	5.78			7.62		No
3					1ST		9			0.00	1.00			1.38	1.37		5.78	
6	2437	11n40	MCS0	1Tx	1ST	7	9	7	100.0	0.00	1.00	7.58	5.73	1.42	1.39	7.58	5.73	No
9	2452	11n40	MCS0	1Tx	1ST	7	9	7	100.0	0.00	1.00	7.54	5.68	1.46	1.40	7.54	5.68	No
36	5180	11a	6	1Tx	1ST	8	10	9	100.0	0.00	1.00	9.19	8.30	0.81	1.21	9.19	8.30	Yes
40	5200	11a	6	1Tx	1ST	8	10	9	100.0	0.00	1.00	9.29	8.49	0.71	1.18	9.29	8.49	Yes
44	5220	11a	6	1Tx	1ST	8	10	9	100.0	0.00	1.00	9.29	8.49	0.71	1.18	9.29	8.49	Yes
48	5240	11a	6	1Tx	1ST	8	10	9	100.0	0.00	1.00	9.20	8.32	0.80	1.20	9.20	8.32	Yes
52	5260	11a	6	1Tx	1ST	8	10	9	100.0	0.00	1.00	9.30	8.51	0.70	1.17	9.30	8.51	Yes
56	5280	11a	6	1Tx	1ST	8	10	9	100.0	0.00	1.00	9.26	8.43	0.74	1.19	9.26	8.43	Yes
60	5300	11a	6	1Tx	1ST	8	10	9	100.0	0.00	1.00	9.32	8.55	0.68	1.17	9.32	8.55	Yes
64	5320	11a	6	1Tx	1ST	8	10	9	100.0	0.00	1.00	9.31	8.53	0.69	1.17	9.31	8.53	Yes
100	5500	11a	6	1Tx	1ST	8	10	9	100.0	0.00	1.00	8.39	6.90	1.61	1.45	8.39	6.90	Yes
116	5580	11a	6	1Tx	1ST	8	10	9	100.0	0.00	1.00	8.23	6.65	1.77	1.50	8.23	6.65	Yes
140	5700	11a	6	1Tx	1ST	8	10	9	100.0	0.00	1.00	8.07	6.41	1.93	1.56	8.07	6.41	Yes
149	5745	11a	6	1Tx	1ST	8	10	9	100.0	0.00	1.00	8.67	7.36	1.33	1.36	8.67	7.36	Yes
157	5785	11a	6	1Tx	1ST	8	10	9	100.0	0.00	1.00	8.43	6.97	1.57	1.44	8.43	6.97	Yes
165		11a	6	1Tx	1ST	8	10	9	100.0	0.00	1.00	8.06	6.40	1.94	1.56	8.06	6.40	Yes
	5825																	
36	5180	11n20	MCS0	1Tx	1ST	7	9	8	100.0	0.00	1.00	8.40	6.92	0.60	1.15	8.40	6.92	Yes
40	5200	11n20	MCS0	1Tx	1ST	7	9	8	100.0	0.00	1.00	8.42	6.95	0.58	1.14	8.42	6.95	Yes
44	5220	11n20	MCS0	1Tx	1ST	7	9	8	100.0	0.00	1.00	8.41	6.93	0.59	1.15	8.41	6.93	Yes
48	5240	11n20	MCS0	1Tx	1ST	7	9	8	100.0	0.00	1.00	8.44	6.98	0.56	1.14	8.44	6.98	Yes
52	5260	11n20	MCS0	1Tx	1ST	7	9	8	100.0	0.00	1.00	8.42	6.95	0.58	1.14	8.42	6.95	Yes
56	5280	11n20	MCS0	1Tx	1ST	7	9	8	100.0	0.00	1.00	8.43	6.97	0.57	1.14	8.43	6.97	Yes
60	5300	11n20	MCS0	1Tx	1ST	7	9	8	100.0	0.00	1.00	8.47	7.03	0.53	1.13	8.47	7.03	Yes
64	5320	11n20	MCS0	1Tx	1ST	7	9	8	100.0	0.00	1.00	8.47	7.03	0.53	1.13	8.47	7.03	Yes
100	5500	11n20	MCS0	1Tx	1ST	7	9	8	100.0	0.00	1.00	7.23	5.28	1.77	1.50	7.23	5.28	Yes
116	5580	11n20	MCS0	1Tx	1ST	7	9	8	100.0	0.00	1.00	7.38	5.47	1.62	1.45	7.38	5.47	Yes
140	5700	11n20	MCS0	1Tx	1ST	7	9	8	100.0	0.00	1.00	7.05	5.07	1.95	1.57	7.05	5.07	Yes
149	5745	11n20	MCS0	1Tx	1ST	7	9	8	100.0	0.00	1.00	7.89	6.15	1.11	1.29	7.89	6.15	Yes
157	5785	11n20	MCS0	1Tx	1ST	7	9	8	100.0	0.00	1.00	7.71	5.90	1.29	1.35	7.71	5.90	Yes
165	5825	11n20	MCS0	1Tx	1ST	7	9	8	100.0	0.00	1.00	7.19	5.24	1.81	1.52	7.19	5.24	Yes
36	5180	11ac20	MCS0	1Tx	1ST	7	9	8	100.0	0.00	1.00	8.33	6.81	0.67	1.17	8.33	6.81	Yes
40	5200	11ac20	MCS0	1Tx	1ST	7	9	8	100.0	0.00	1.00	8.44	6.98	0.56	1.14	8.44	6.98	Yes
44	5220	11ac20	MCS0	1Tx	1ST	7	9	8	100.0	0.00	1.00	8.01	6.32	0.99	1.26	8.01	6.32	Yes
48	5240	11ac20	MCS0	1Tx	1ST	7	9	8	100.0	0.00	1.00	7.96	6.25	1.04	1.27	7.96	6.25	Yes
52	5260	11ac20	MCS0	1Tx	1ST	7	9	8	100.0	0.00	1.00	8.51	7.10	0.49	1.12	8.51	7.10	Yes
56	5280	11ac20	MCS0	1Tx	1ST	7	9	8	100.0	0.00	1.00	8.53	7.13	0.47	1.11	8.53	7.13	Yes
60	5300	11ac20	MCS0	1Tx	1ST	7	9	8	100.0	0.00	1.00	8.63	7.29	0.37	1.09	8.63	7.29	Yes
64	5320	11ac20	MCS0	1Tx	1ST	7	9	8	100.0	0.00	1.00	8.66	7.35	0.34	1.08	8.66	7.35	Yes
100	5500	11ac20	MCS0	1Tx	1ST	7	9	8	100.0	0.00	1.00	7.61	5.77	1.39	1.38	7.61	5.77	Yes
116	5580	11ac20	MCS0	1Tx	1ST	7	9	8	100.0	0.00	1.00	7.38	5.47	1.62	1.45	7.38	5.47	Yes
140	5700	11ac20	MCS0	1Tx	1ST	7	9	8	100.0	0.00	1.00	7.05	5.07	1.95	1.57	7.05	5.07	Yes
149	5745	11ac20	MCS0	1Tx	1ST	7	9	8	100.0	0.00	1.00	7.91	6.18	1.09	1.29	7.91	6.18	Yes
157	5785	11ac20	MCS0	1Tx	1ST	7	9	8	100.0	0.00	1.00	7.53	5.66	1.47	1.40	7.53	5.66	Yes
165	5825	11ac20	MCS0	1Tx	1ST	7	9	8	100.0	0.00	1.00	7.35	5.43	1.65	1.46	7.35	5.43	Yes
38	5190	11n40	MCS0	1Tx	1ST	7	9	8	100.0	0.00	1.00	8.27	6.71	0.73	1.18	8.27	6.71	Yes
46	5230	11n40	MCS0	1Tx	1ST	7	9	8	100.0	0.00	1.00	8.49	7.06	0.51	1.12	8.49	7.06	Yes
54	5270	11n40	MCS0	1Tx	1ST	7	9	8	100.0	0.00	1.00	8.50	7.08	0.50	1.12	8.50	7.08	Yes
62	5310	11n40	MCS0	1Tx	1ST	7	9	8	100.0	0.00	1.00	8.62	7.28	0.38	1.09	8.62	7.28	Yes
	5510	11n40	MCS0	1Tx	1ST	7	9	8	100.0	0.00	1.00	7.52	5.65	1.48	1.41	7.52	5.65	Yes
														-				
110		11n40	MCS0	1Tx	1ST	7	9	8	100.0	0.00	1.00	7.41	5.51	1.59	1.44	7.41	5.51	Yes
134	5670	11n40	MCS0	1Tx	1ST	7	9	8	100.0	0.00	1.00	7.15	5.19	1.85	1.53	7.15	5.19	Yes
151	5755	11n40	MCS0	1Tx	1ST	7	9	8	100.0	0.00	1.00	7.80	6.03	1.20	1.32	7.80	6.03	Yes
		11n40	MCS0															
159				1Tx	1ST	7	9	8	100.0	0.00	1.00	7.53	5.66	1.47	1.40	7.53	5.66	Yes
38	5190	11ac40	MCS0	1Tx	1ST	7	9	8	100.0	0.00	1.00	8.30	6.76	0.70	1.17	8.30	6.76	Yes
46	5230	11ac40	MCS0	1Tx	1ST	7	9	8	100.0	0.00	1.00	8.51	7.10	0.49	1.12	8.51	7.10	Yes
54	5270	11ac40	MCS0	1Tx	1ST	7	9	8	100.0	0.00	1.00	8.50	7.08	0.50	1.12	8.50	7.08	Yes
62	5310	11ac40	MCS0	1Tx	1ST	7	9	8	100.0	0.00	1.00	8.61	7.26	0.39	1.09	8.61	7.26	Yes
102		11ac40	MCS0	1Tx	1ST	7	9	8	100.0	0.00	1.00	7.51	5.64	1.49	1.41	7.51	5.64	Yes
110						7	9		100.0									Yes
	5550	11ac40	MCS0	1Tx	1ST			8		0.00	1.00	7.40	5.50	1.60	1.45	7.40	5.50	
134	5670	11ac40	MCS0	1Tx	1ST	7	9	8	100.0	0.00	1.00	7.17	5.21	1.83	1.52	7.17	5.21	Yes
151		11ac40	MCS0	1Tx	1ST	7	9	8	100.0	0.00	1.00	7.75	5.96	1.25	1.33	7.75	5.96	Yes
159	5795	11ac40	MCS0						100.0	0.00	1.00		5.69	1.45	1.40			Yes
				1Tx	1ST	7	9	8				7.55				7.55	5.69	
42	5210	11ac80	MCS0	1Tx	1ST	7	9	8	100.0	0.00	1.00	8.73	7.46	0.27	1.06	8.73	7.46	Yes
58	5290	11ac80	MCS0	1Tx	1ST	7	9	8	100.0	0.00	1.00	8.90	7.76	0.10	1.02	8.90	7.76	Yes
106		11ac80	MCS0	1Tx	1ST	7	9	8	100.0	0.00	1.00	7.97	6.27	1.03	1.27	7.97	6.27	Yes
155	5775	11ac80	MCS0	1Tx	1ST	7	9	8	100.0	0.00	1.00	7.82	6.05	1.18	1.31	7.82	6.05	Yes
_				-														

: SAR test was applied.

"Yes" *1.

"Yes": The power setting was adjusted so that measured average power was not more than 2 dB lower than the maximum tune-up tolerance limit. (KDB 248227 D01) Initial SAR test was applied to the operation mode which has higher bandwidth with the highest tune-up power and lower data rate. CH: Channel; Frequ: Frequency; Power spec: Typ:: Typical; Max:: Maximum; Set: Setting power by tested software; Burst Ave.: Measured burst average power; Time Ave.: Maximum; Set: Setting power by tested software; Burst Ave.: Measured burst average power; Time Ave.: * Measured time-based average power. *.

 Calculating formula:
 Time average power (dBm) = (P/M Reading, dBm)+(Cable loss, dB)+(Attenuator, dB)

 Burst power (dBm) = (P/M Reading, dBm)+(Cable loss, dB)+(Attenuator, dB)

 Duty cycle: (duty cycle, %) = (Tx on time) / (1 cycle time) × 100, Duty factor (dBm) = 10 × log (100/(duty cycle, %))

 Duty cycle: (duty cycle, %) = (Tx on time) / (1 cycle time) × 100, Duty factor (dBm) = 10 × log (100/(duty cycle, %))

 Duty cycle: (duty cycle, %) = (Tx on time) / (1 cycle time) × 100, Duty factor (dBm) = 10 × log (100/(duty cycle, %))

 Duty cycle scaled factor: Duty cycle correction factor for obtained SAR value, Duty scaled factor [-] = 100(%) / (duty cycle, %)

 Armax. (Deviation form max.power, dB) = (Max.tune-up limit power (average, dBm)) - (Burst power measured (average, dBm))

 Scaled Factor: Power tune-up factor for obtained SAR value, Scaled Factor [-] = 1 / (10 ^ (Deviation from max., dB'' / 10))

 Date measured: 2024-07-25 / Measured by: A.Oda / Place: Preparation room of No. 7 shield room. (24 deg.C / 40 % RH)

 Uncertainty of antenna pot conducted test; (±) 0.81 dB (Average power), (±) 0.27 % (duty cycle).

SECTION 6: Tissue simulating liquid

Liquid measurement 6.1

10	
(0	FU)

(350)																				
Date	Frea.	Liq.	Target	F	Permittiv	vity (*.	measured)	Target	Condu	ctiv ity	(*.mea	isured)	ΔS	AR		e',e''	Liq.	Liq.	Liquid usage conditions
measured	1 104.		e'	e'	Δe'	Limit	e"	∆end	σ_tgt	σ	Δσ	Limit	∆end	1g	10g	correct required	Lerp	Temp.	depth	(*1)
(YYYY-MM-DD)	[MHz]	type	[-]	[-]	[%]	[%](*2)	[-]	[%](*1)	[S/m]	[S/m]	[%]	[%](*2)	[%](*1)	[%]	[%]	requireu ?	?	[deg.C.]	[mm]	(.,
2024-08-22	5250	Head	35.93	34.62	-3.6	±10	15.5025	<48hrs.	4.706	4.528	-3.8	±10	<48hrs.	0.8	1.1	No	No	22.5	150	Measured before SAR test.
2024-08-22	5600	Head	35.53	34.02	-4.2	±10	15.7871	<48hrs.	5.065	4.918	-2.9	±10	<48hrs.	1.0	1.2	No	No	22.5	150	There were used until 2024-08-
2024-08-22	5800	Head	35.30	33.68	-4.6	±10	15.9585	<48hrs.	5.270	5.149	-2.3	±10	<48hrs.	1.0	1.2	No	No	22.5	150	23 (< 48 hrs.).
2024-08-26	2450	Head	39.20	39.24	0.1	±10	13.6540	<24hrs.	1.800	1.861	3.4	±10	<24hrs.	1.6	0.9	No	No	22.5	150	Measured before SAR test.

<u>(SAR)</u>				_										-						
Date	Freq.	Lia.	Target	F	Permitti	vity (*.	measured)	Target	Condu	ctiv ity	(*.mea	isured)	ΔS	AR	ΔSAR	e',e''	Liq.	Liq.	Liquid usage conditions
measured	1109.	ty pe	e'	e'	∆e'	Limit	e"	∆end	σ_tgt	σ	Δσ	Limit	∆end	1g	10g	correct required	Lerp	Temp.	depth	(*1)
(YYYY-MM-DD)	[MHz]	ty pe	[-]	[-]	[%]	[%](*2)	[-]	[%](*1)	[S/m]	[S/m]	[%]	[%](*2)	[%](*1)	[%]	[%]	2	?	[deg.C.]	[mm]	()
2024-08-22	5180	Head	36.01	34.74	-3.5	±10	15.4434	<48hrs.	4.635	4.450	-4.0	±10	<48hrs.	0.8	1.1	No	No	22.5	150	
2024-08-22			35.99	34.71	-3.5	±10	15.4609	<48hrs.	4.655	4.473	-3.9	±10	<48hrs.	0.8	1.1	No		22.5	150	
2024-08-22	5220	Head	35.96	34.67	-3.6	±10	15.4782	<48hrs.	4.676	4.495	-3.9	±10	<48hrs.	0.8	1.1	No		22.5	150	
2024-08-22			35.94	34.63	-3.6	±10	15.4940	<48hrs.	4.696	4.517	-3.8	±10	<48hrs.	0.8	1.1	No	No	22.5	150	
2024-08-22			35.92	34.60	-3.7	±10	15.5096	<48hrs.	4.717	4.538	-3.8	±10	<48hrs.	0.9	1.1	No	No	22.5	150	
2024-08-22			35.89	34.57	-3.7	±10	15.5269	<48hrs.	4.737	4.561	-3.7	±10	<48hrs.	0.9	1.1	No	No	22.5	150	
2024-08-22	5300	Head	35.87	34.53	-3.7	±10	15.5450	<48hrs.	4.758	4.583	-3.7	±10	<48hrs.	0.9	1.1	No	No	22.5	150	Measured before SAR test.
2024-08-22			35.85	34.50	-3.8	-	1 1 1	<48hrs.	4.778	4.606	-3.6	±10	<48hrs.	0.9	1.2	No	No	22.5		There were used until 2024-08
2024-08-22			35.64	34.20	-4.0	±10	15.6880	<48hrs.	4.963	4.800	-3.3	±10	<48hrs.	0.9	1.2	No	No	22.5		23 (< 48 hrs.).
2024-08-22			35.55	34.06	-4.2	±10	15.7681	<48hrs.	5.045	4.895	-3.0	±10	<48hrs.	1.0	1.2	No	No	22.5	150	
2024-08-22			35.53	34.02	-4.2	±10	15.7871	<48hrs.	5.065	4.918	-2.9	±10	<48hrs.	1.0	1.2	No	No	22.5	150	
2024-08-22			35.41	33.85	-4.4	±10	15.8765		5.168	5.034	-2.6	±10	<48hrs.	1.0	1.2	No	No	22.5	150	
2024-08-22			35.36	33.77	-4.5				5.214		-2.5	±10	<48hrs.	1.0	1.2	No	No	22.5	150	
2024-08-22			35.32	33.70	-4.6	±10	1 1 1 1		5.255	5.127	-2.4	±10	<48hrs.	1.0	1.2	No	No	22.5	150	
2024-08-22	5825		35.27	33.67	-4.5	±10	15.9739	<48hrs.	5.296	5.176	-2.3	±10	<48hrs.	1.0	1.2	No	No	22.5	150	
2024-08-26			39.29	39.32	0.1	±10	13.6492	<24hrs.	1.757	1.824	3.8	±10	<24hrs.	1.8	1.0	No	No	22.5	150	
2024-08-26			39.27	39.30	0.1	±10	13.6547	<24hrs.	1.766	1.832	3.7	±10	<24hrs.	1.8	1.0	No	No	22.5	150	
2024-08-26	2437		39.22	39.26	0.1	±10	13.6521	<24hrs.	1.788	1.851	3.5	±10	<24hrs.	1.7	0.9	No	No	22.5	150	Measured before SAR test.
2024-08-26	2440		39.22	39.25	0.1	±10	13.6511	<24hrs.	1.791	1.853	3.5	±10	<24hrs.	1.7	0.9	No	No	22.5	150	weasureu berole SAR lest.
2024-08-26			39.19	39.22	0.1	±10	13.6587	<24hrs.	1.813	1.871	3.2	±10	<24hrs.	1.5	0.8	No	No	22.5	150	
2024-08-26	2480	Head	39.16	39.20	0.1	±10	13.6570	<24hrs.	1.833	1.884	2.8	±10	<24hrs.	1.3	0.7	No	No	22.5	150	

Lero: Linear interpolation

. *1. Definition of Δend.) "begin": there are measured before SAR test; "< 24 hrs.": SAR test has ended within 24 hours from the liquid parameter measured; "< 48 hrs.": Since SAR test has ended within 48 hours from the liquid parameter measured and a change in the liquid temperature was within 1 degree, liquid parameters Since SAR test has endours non-next day continuously; "> 48 his:": Since the SAR test series took longer than 48 hours, the liquid parameters were measured on every 48 hours period and on the date which was end of test series. Since the difference of liquid parameters between the beginning and next measurement was smaller than 5%, the liquid parameters measured in beginning were used until end of each test series. Calculating formula: "Δend (when, >48 hrs.) (%)" = {(dielectric properties, end of test series) / (dielectric properties, beginning of test series) -1} x 100

The electrical properties of the liquid at <6 GHz were controlled to within 5% even with a limit of 10%.

The dielectric parameters were checked prior to assessment using the DAK-3.5 dielectric probe kit.

The electrical characteristics of the SAR test frequencies were measured using DAK software, DAK-3.5 and a network analyzer with the 2.4 GHz band swept at 1 MHz and the 5 GHz and 6 GHz bands swept at 5 MHz. In this way, the electrical characteristics of all test frequencies were measured directly at the individual frequencies without interpolation. The target values refers to clause 6.2 of this report.

*a. The coefficients in below are parameters defined in IEEE Std.1528.

 $(Calculating formula, 4 \text{ MHz} \sim 6 \text{ GHz}): \Delta SAR(1g) = C \epsilon r \times \Delta \epsilon r + C \sigma \times \Delta \sigma, C \epsilon = -7.854 \pm 4.4^{3} + 9.402 \pm 3.4^{2} - 2.742 \pm 2.40.2026 / C \sigma = 9.804 \pm 3.4^{3} + 9.802 \pm 2.440.7829 + 2.440$ $\frac{1}{2} \frac{1}{2} \frac{1}$ (Calculating formula): Δ SAR corrected SAR (W/kg) = (Measured SAR (W/kg)) × (100 - (Δ SAR(%)) / 100

6.2 Target of tissue simulating liquid

Nominal dielectric values of the tissue simulating liquids in the phantom are listed in the following table. (Appendix A, KDB 865664 v01r04)

Target Frequency	He	ead	B	lody	Target Frequency	He	ead	B	ody
(MHz)	ε _r	σ(S/m)	εr	σ(S/m)	(MHz)	٤r	σ(S/m)	ε _r	σ(S/m)
1800~2000	40.0	1.40	53.3	1.52	3000	38.5	2.40	52.0	2.73
2450	39.2	1.80	52.7	1.95	5800	35.3	5.27	48.2	6.00

For other frequencies, the target nominal dielectric values were obtained by linear interpolation between the higher and lower tabulated figures. Above 5800MHz were obtained using linear extrapolation.

Simulated tissue composition 6.3

Liquid type	Head	Control No.	SSLHV6-01	Model No. / Product No.	HBBL600-10000V6 / SL AAH U16 BC
Ingredient: Mixture [%]	Wate	er: >77, Ethanedio	l: <5.2, Sodium p	etroleum sulfonate:<2.9, Hexylene G	lycol: <2.9, alkoxylated alcohol (>C ₁₆):<2.0
Tolerance specification				± 10%	
Temperature gradients [% / deg.C]		permittivity: -0.1	9 / conductivity:	0.57 (at 2.6 GHz), permittivity: +0.31	/ conductivity: -1.43 (at 5.5 GHz) (*)
Manufacture	Schmid &	Partner Engineeri	ng AG	Note: *. speag_920-SLAAxyy-E_1.12.1	5CL (Maintenance of tissue simulating liquid)

SECTION 7: Measurement results

7.1 Measurement results

7.1.1 SAR measurement results (2.4 GHz band)

RF	Setup	Gap	Source		Tx m	node		OF	DMA	Fre	q.	Duty	Duty S/F	Pmax	Pmeas	Pwr.S/F	SAR	1g [W/kg] (*b)	SAR	10g [W/k	g] (*b)	Data	Setup
Exposure conditon	position	[mm]	power	mode	Тx	Stream	D/R or Index# [Mbps]	RU	index	[MHz]	СН	[%]	[-]	[dBm]	[dBm]	[-]	Meas.	∆sar(*a)	Report	Meas.	∆sar(*a)	Report	plot#, Appx.2	photo#, Appx.1-3
Body	Front-left	0	Battery	11b	1Tx	1ST	1	-	-	2412	1	100	1	10	8.53	1.4	0.073	N/A	0.102	0.027	N/A	0.038	-	S1
Body	Front-left	0	Battery	11b	1Tx	1ST	1	-	-	2437	6	100	1	10	8.49	1.42	0.105	N/A	0.149	0.038	N/A	0.054	-	S1
Body	Front-left	0	Battery	11b	1Tx	1ST	1	-	-	2462	11	100	1	10	8.3	1.48	0.145	N/A	0.215	0.053	N/A	0.078	1-1	S1
Body	Front	0	Battery	11b	1Tx	1ST	1	-	-	2412	1	100	1	10	8.53	1.4	0.045	N/A	0.063	0.017	N/A	0.024	-	S2
Body	Front	0	Battery	11b	1Tx	1ST	1	-	-	2437	6	100	1	10	8.49	1.42	0.065	N/A	0.092	0.026	N/A	0.037	-	S2
Body	Front	0	Battery	11b	1Tx	1ST	1	-	-	2462	11	100	1	10	8.3	1.48	0.089	N/A	0.132	0.035	N/A	0.052	-	S2
Body	Left	0	Battery	11b	1Tx	1ST	1	-	-	2437	6	100	1	10	8.49	1.42	0.119	N/A	0.169	0.048	N/A	0.068	-	S3
Body	Тор	0	Battery	11b	1Tx	1ST	1	-	-	2437	6	100	1	10	8.49	1.42	0.008	N/A	0.011	0.004	N/A	0.006	-	S4
Body	Bottom	0	Battery	11b	1Tx	1ST	1	-	-	2462	11	100	1	10	8.3	1.48	0.003	N/A	0.004	0.001	N/A	0.001	-	S5
Body	Back	0	Battery	11b	1Tx	1ST	1	-	-	2462	11	100	1	10	8.3	1.48	0.002	N/A	0.003	0.001	N/A	0.001	-	S6
Body	Right	0	Battery	11b	1Tx	1ST	1	-	-	2462	11	100	1	10	8.3	1.48	0.02	N/A	0.030	0.001	N/A	0.001	-	S7
Body	Front-left	0	Battery	11g	1Tx	1ST	6	-	-	2412	1	100	1	10	8.54	1.4	0.068	N/A	0.095	0.025	N/A	0.035	-	S1
Body	Front-left	0	Battery	11g	1Tx	1ST	6	-	-	2437	6	100	1	10	8.49	1.42	0.097	N/A	0.138	0.036	N/A	0.051	-	S1
Body	Front-left	0	Battery	11g	1Tx	1ST	6	-	-	2462	11	100	1	10	8.34	1.47	0.133	N/A	0.196	0.05	N/A	0.074	-	S1
Body	Front-left	0	Battery	BT LE(1M)	1Tx	-	1	-	-	2402	0	63.8	1.57	6	5.9	1.02	0.029	N/A	0.046	0.01	N/A	0.016	-	S1
Body	Front-left	0	Battery	BT LE(1M)	1Tx	-	1	-	-	2440	19	63.8	1.57	6	5.74	1.06	0.051	N/A	0.085	0.018	N/A	0.030	-	S1
Body	Front-left	0	Battery	BT LE(1M)	1Tx	-	1	-	-	2480	39	63.8	1.57	6	5.45	1.14	0.068	N/A	0.122	0.025	N/A	0.045	1-2	S1

7.1.2 SAR measurement results (WLAN 5 GHz band)

1.1.2			cusui	CITICIT		Juit	3 (116				Nui	101												
RF	Setup	Gap	Source		Tx n	node		OF	DMA	Fre	eq.	Duty	Duty S/F	Pmax	Pmeas	Pwr.S/F	SAR	1g [W/kg] (*b)	SAR	10g [W/k	g] (*b)	Data	Setup
Exposure conditon	position	[mm]	power	mode	Тх	Stream	D/R or Index# [Mbps]	RU	index	[MHz]	СН	[%]	[-]	[dBm]	[dBm]	[-]	Meas.	∆sar(*a)	Report	Meas.	∆sar(*a)	Report	plot#, Appx.2	photo#, Appx.1-3
Body	Front-left	0	Battery	11a	1Tx	1ST	6	-	-	5180	36	100	1	10	9.19	1.21	0.529	N/A	0.640	0.136	N/A	0.165	-	S1
Body	Front-left	0	Battery	11a	1Tx	1ST	6	-	-	5220	44	100	1	10	9.29	1.18	0.554	N/A	0.654	0.144	N/A	0.170	-	S1
Body	Front-left	0	Battery	11a	1Tx	1ST	6	-	-	5240	48	100	1	10	9.2	1.2	0.625	N/A	0.750	0.159	N/A	0.191	2-1	S1
Body	Front-left	0	Battery	11a	1Tx	1ST	6	-	-	5260	52	100	1	10	9.3	1.17	0.552	N/A	0.646	0.143	N/A	0.167	-	S1
Body	Front-left	0	Battery	11a	1Tx	1ST	6	-	-	5300	60	100	1	10	9.32	1.17	0.585	N/A	0.684	0.15	N/A	0.176	2-2	S1
Body	Front-left	0	Battery	11a	1Tx	1ST	6	-	-	5320	64	100	1	10	9.31	1.17	0.554	N/A	0.648	0.142	N/A	0.166	-	S1
Body	Front-left	0	Battery	11a	1Tx	1ST	6	-	-	5500	100	100	1	10	8.39	1.45	0.452	N/A	0.655	0.116	N/A	0.168	-	S1
Body	Front-left	0	Battery	11a	1Tx	1ST	6	-	-	5580	116	100	1	10	8.23	1.5	0.467	N/A	0.701	0.12	N/A	0.180	2-3	S1
Body	Front-left	0	Battery	11a	1Tx	1ST	6	-	-	5700	140	100	1	10	8.07	1.56	0.416	N/A	0.649	0.108	N/A	0.168	-	S1
Body	Front-left	0	Battery	11a	1Tx	1ST	6	-	-	5745	149	100	1	10	8.67	1.36	0.494	N/A	0.672	0.125	N/A	0.170	2-4	S1
Body	Front-left	0	Battery	11a	1Tx	1ST	6	-	-	5785	157	100	1	10	8.43	1.44	0.435	N/A	0.626	0.107	N/A	0.154	-	S1
Body	Front-left	0	Battery	11a	1Tx	1ST	6	-	-	5825	165	100	1	10	8.06	1.56	0.384	N/A	0.599	0.097	N/A	0.151	-	S1
Body	Front	0	Battery	11a	1Tx	1ST	6	-	-	5180	36	100	1	10	9.19	1.21	0.441	N/A	0.534	0.115	N/A	0.139	-	S2
Body	Front	0	Battery	11a	1Tx	1ST	6	-	-	5220	44	100	1	10	9.29	1.18	0.483	N/A	0.570	0.126	N/A	0.149	-	S2
Body	Front	0	Battery	11a	1Tx	1ST	6	-	-	5240	48	100	1	10	9.2	1.2	0.491	N/A	0.589	0.127	N/A	0.152	-	S2
Body	Front	0	Battery	11a	1Tx	1ST	6	-	-	5260	52	100	1	10	9.3	1.17	0.457	N/A	0.535	0.121	N/A	0.142	-	S2
Body	Front	0	Battery	11a	1Tx	1ST	6	-	-	5300	60	100	1	10	9.32	1.17	0.448	N/A	0.524	0.119	N/A	0.139	-	S2
Body	Front	0	Battery	11a	1Tx	1ST	6	-	-	5320	64	100	1	10	9.31	1.17	0.411	N/A	0.481	0.108	N/A	0.126	-	S2
Body	Front	0	Battery	11a	1Tx	1ST	6	-	-	5500	100	100	1	10	8.39	1.45	0.324	N/A	0.470	0.082	N/A	0.119	-	S2
Body	Front	0	Battery	11a	1Tx	1ST	6	-	-	5580	116	100	1	10	8.23	1.5	0.342	N/A	0.513	0.091	N/A	0.137	-	S2
Body	Front	0	Battery	11a	1Tx	1ST	6	-	-	5700	140	100	1	10	8.07	1.56	0.313	N/A	0.488	0.084	N/A	0.131	-	S2
Body	Front	0	Battery	11a	1Tx	1ST	6	-	-	5745	149	100	1	10	8.67	1.36	0.378	N/A	0.514	0.099	N/A	0.135	-	S2
Body	Front	0	Battery	11a	1Tx	1ST	6	-	-	5785	157	100	1	10	8.43	1.44	0.333	N/A	0.480	0.084	N/A	0.121	-	S2
Body	Front	0	Battery	11a	1Tx	1ST	6	•	-	5825	165	100	1	10	8.06	1.56	0.296	N/A	0.462	0.076	N/A	0.119	-	S2
Body	Left	0	Battery	11a	1Tx	1ST	6	-	-	5220	44	100	1	10	9.29	1.18	0.308	N/A	0.363	0.094	N/A	0.111	-	S3
Body	Left	0	Battery	11a	1Tx	1ST	6	•	•	5300	60	100	1	10	9.32	1.17	0.341	N/A	0.399	0.106	N/A	0.124	-	S3
Body	Left	0	Battery	11a	1Tx	1ST	6	•	•	5580	116	100	1	10	8.23	1.5	0.326	N/A	0.489	0.091	N/A	0.137	-	S3
Body	Left	0	Battery	11a	1Tx	1ST	6	-	-	5785	157	100	1	10	8.43	1.44	0.381	N/A	0.549	0.102	N/A	0.147	-	S3
Body	Тор	0	Battery	11a	1Tx	1ST	6	•	-	5220	44	100	1	10	9.29	1.18	0.08	N/A	0.094	0.026	N/A	0.031	-	S4
Body	Тор	0	Battery	11a	1Tx	1ST	6	-	-	5300	60	100	1	10	9.32	1.17	0.093	N/A	0.109	0.031	N/A	0.036	-	S4
Body	Тор	0	Battery	11a	1Tx	1ST	6	-	-	5580	116	100	1	10	8.23	1.5	0.075	N/A	0.113	0.021	N/A	0.032	-	S4
Body	Тор	0	Battery	11a	1Tx	1ST	6	-	-	5785	157	100	1	10	8.43	1.44	0.086	N/A	0.124	0.024	N/A	0.035	-	S4
Body	Bottom	0	Battery	11a	1Tx	1ST	6	-	-	5240	48	100	1	10	9.2	1.2	0.011	N/A	0.013	0.004	N/A	0.005	-	S5
Body	Back	0	Battery	11a	1Tx	1ST	6	•	-	5240	48	100	1	10	9.2	1.2	0.013	N/A	0.016	0.006	N/A	0.007	•	S6
Body	Right	0	Batterv	11a	1Tx	1ST	6	-	-	5240	48	100	1	10	9.2	1.2	0.007	N/A	0.008	0.002	N/A	0.002	-	S7

The highest Reported (scaled) SAR on each operation band for the operation mode which has highest power are marked with yellow marker. The Bottom, Back and Right were tested at the worst SAR frequency.

D/R: Data rate; Freq.: Frequency; Duty: Duty cycle; D.S/F: Duty Scaling Factor; Pmax: Max power (Tune-up tolerance power); Pmeas.: Measurement conducted power; P.S/F Power Scaling Factor; Meas.: Measurement; Appx: Appendix; Gap: It is separation distance between the device surface and the bottom outer surface of phantom. All SAR tests were conservatively performed with test separation distance 0 mm. Before test, the battery was full charged. During SAR test, the radiated power is always monitored by Spectrum Analyzer or/and MAIA. *.

Since the calculated Δ SAR values of the tested liquid had shown positive correction even when error was more than 5%, the measured SAR was not converted by Δ SAR correction. *а.

Calculating formula: Δ SAR corrected SAR (W/kg) = (Measured SAR (W/kg)) × (100 - (Δ SAR(%)) / 100, when Δ SAR shows negative sign. Calculating formula: Reported (Scaled) SAR (W/kg) = (Measured SAR (W/kg)) × (Duty scaled factor) × (Power scaled factor) where, Duty scaled factor (D.S/F) [-] = 100(%) / (measured duty cycle, %), Power scaled factor (P.S/F) [-] = 10^ (((Max,power, dBm) - (Measured power, dBm)) / 10) *b.

7.2 Simultaneous transmission (including Co-location) evaluation

Result: Simultaneous transmission SAR complied to SUM of the SAR(1g) is < 1.6 W/kg. According to KDB 447498, when the sum of SAR is greater than the limit, SAR test exclusion is determined by the SAR to peak location separation ratio (SPLSR), and the simultaneously transmitting antennas must be considered one pair at a time. The ratio is determined by {(SAR1+SAR2)^1.5} / (separation distance between the peak SAR locations for the antenna pair, mm), round to two decimal digits, and must be s 0.04 for all antenna pairs in the configuration to qualify for 1g SAR test exclusion.

*. The table below shows the combinations of transmissions (as "use case") that can be sent simultaneously from two antennas.

Setup		Use cases		SAR 1g [W/kg]		SUM SAR 1g [W/kg]
Selup		Use cases	BT	WLAN 2.4 GHz	WLAN 5 GHz	(Limit: 1.6 Ŵ/kg)
Front-left	1	BT + WLAN 2.4 GHz	0.122	0.215	N/A	N/A (*1)
Front-left	2	BT + WLAN 5 GHz	0.122	N/A	0.750	0.872
*1 WI AN 2	and B	luetooth use same antenna. There	fore simultaneously transm	itted SAR was not consider	ed for the WI AN 24 GHz I	and and Bluetooth Simultaneously

transmitted SAR was only considered for the WLAN 5 GHz band and Bluetooth.

For SAR measurement, simultaneous transmission SAR measurement (Volume Scan) is not required for antenna pair because the either sum of the SAR(1g) is < 1.6 W/kg.

7.3 SAR Measurement Variability (Repeated measurement requirement)

Result: Since all the measured SAR are less than 0.8 W/kg (SAR(1g)), the repeated measurement is not required.

7.4 Device holder perturbation verification (SAR)

Result: Since all the reported (scaled) SAR are less than 1.2 W/kg (SAR(1g)), the additional "device holder perturbation verification" measurement is not considered.

7.5 **Requirements on the Uncertainty Evaluation**

7.5.1 SAR Uncertainty Evaluation

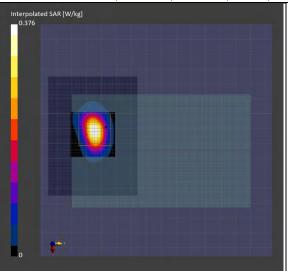
Decision Rule

☑ Uncertainty is not included.

□ Uncertainty is included.

The highest measured SAR(1g) is less than 1.5 W/kg and the highest measured SAR(10g) is less than 3.75 W/kg. Thus, per KDB Publication 865664 D01, the extended measurement uncertainty analysis described in IEEE 1528 is not required. The uncertainty (k=2) of SAR measurement for 2.4 GHz ~ 6 GHz is smaller than 30 %.

APPENDIX 2: Measurement data

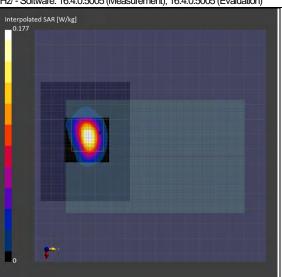

Appendix 2-1: Plot(s) of Worst Reported Exposure Value (in each operation band)

Plot 1-1: SAR1g: (2.4 GHz band), Front-left & touch, 11b(1Mbps), 2462 MHz

EUT: Wireless LAN/Bluetooth Combo Module + Digital Camera; Model (Serial): ES204 (No.16 01) + DS126938 (000101900073) Mode: 11b (1Mbps) (UID: 0 (CW)) ; Frequency: 2462.000 MHz ; Test Distance: 0.00 mm TSL parameters used: Head(v6) ; f= 2462.000 MHz; Conductivity: 1.871 S/m; Permittivity: 39.22

DASY8 Configuration: - Electronics: DAE4 - SN626 (Calibrated: 2024-01-09) / - Phantom: ELI V8.0 (20deg probe tilt) ; Serial: 2161 ; Phantom section: Flat - Probe: EX3DV4 - SN3907(Calibrated: 2024-01-15); ConvF: (6.83, 7.07, 6.68) @ 2462.000 MHz/ - Software: 16.4.0.5005 (Measurement); 16.4.0.5005 (Evaluation)

		(-,,	,,	2402.000
	Scan S	ietup		Measure	ment Res	ults
Setup items	Fast	Area	Zoom	Meas. Items	Area	Zoom
Grid Extents [mm]	120.0x160.0	80.0×60.0	30.0×30.0×30.0	psSAR 1g [W/kg]	0.145	0.145
Grid Steps [mm]	10.0x10.0	10.0×10.0	5.0×5.0×1.5	psSAR 10g [W/kg]	0.056	0.053
Sensor Distance [mm]	4.0	3.0	1.4	Power Drift [dB]	0.00	0.03
Graded Grid	N/A	N/A	Yes	pSAR (extrapolated) [W/kg]	N/A	0.376
Grading Ratio	N/A	N/A	1.5	Power Scaling	Disabled	Disabled
MAIA monitored	N/A	Y	Y	TSL Correction	No correction	No correction
Surface Detection	VMS+6p	VMS+6p	All points	M2/M1 [%]	N/A	74.4
Scan Method	Measured	Measured	Measured	Dist 3dB Peak [mm]	N/A	6.1
Grid Effective [mm]	N/A	80.0×60.0	30.0x30.0x31.2	SAR1g Position (x,y,z)	N/A	1.2, -5.1, -171.9

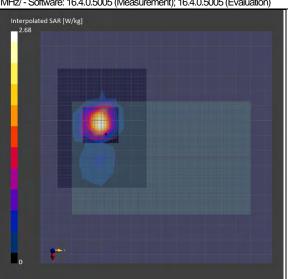


Remarks: *. Date tested: 2024-08-26;Tested by: Akihiro Oda; Tested place:No.7 shielded room; Ambient: 24 deg.C. / 54 %RH; Liquid depth: 150 mm; *. Liquid temperature: 22.5 deg.C. ± 0.5 deg.C. (22.5 deg.C., in check); *. Red cubic: big=SAR(10g) / small=SAR(10) *. Project file name-Measurement Group: 240822_15407507_es204(7)+ds126907.d8sar- 8/26-3,11b,2462,front-left

Plot 1-2: SAR1g: (2.4 GHz band), Front-left & touch, BT LE(1Mbps), 2480 MHz EUT: Wireless LAN/Bluetooth Combo Module + Digital Camera; Model (Serial): ES204 (No.16_01) + DS126938 (000101900073) Mode: BTLE(1M) (UID: 0 (CW)) ; Frequency: 2480.000 MHz ; Test Distance: 0.00 mm

Mode: BTLE(TW) (GID. 0 (CW)), Frequency. 2400.000 NHz; Conductivity: 1.884 S/m; Permittivity: 39.20 TSL parameters used: Head(v6); f= 2480.000 MHz; Conductivity: 1.884 S/m; Permittivity: 39.20 DASY8 Configuration: - Electronics: DAE4 - SN626 (Calibrated: 2024-01-09)/- Phantom: ELI V8.0 (20deg probe tilt); Serial: 2161Phantom section: Flat - Probe: EX3DV4 - SN3907(Calibrated: 2024-01-15); ConvF: (6.83, 7.07, 6.68) 2480.000@ MHz/ - Software: 16.4.0.5005 (Measurement); 16.4.0.5005 (Evaluation)

-TIODE. LAODA		(Ocalioration		o), contra (0.00, r	,)	. 100.000 0
	Scan S	Setup		Measure	ment Res	ults
Setup items	Fast	Area	Zoom	Meas. Items	Area	Zoom
Grid Extents [mm]	120.0x160.0	80.0×60.0	30.0x30.0x30.0	psSAR 1g [W/kg]	0.067	0.068
Grid Steps [mm]	10.0x10.0	10.0×10.0	5.0×5.0×1.5	psSAR 10g [W/kg]	0.026	0.025
Sensor Distance [mm]	4.0	3.0	1.4	Power Drift [dB]	-0.01	-0.06
Graded Grid	N/A	N/A	Yes	pSAR (extrapolated) [W/kg]	N/A	0.177
Grading Ratio	N/A	N/A	1.5	Power Scaling	Disabled	Disabled
MAIA monitored	N/A	Y	Y	TSL Correction	No correction	No correction
Surface Detection	VMS+6p	VMS+6p	All points	M2/M1 [%]	N/A	74.0
Scan Method	Measured	Measured	Measured	Dist 3dB Peak [mm]	N/A	6.4
Grid Effective [mm]	N/A	80.0×60.0	30.0x30.0x31.2	SAR1g Position (x,y,z)	N/A	1.2, -5.0, -171.9



*. Date tested: 2024-08-26; Tested by: Akihiro Oda; Tested place:No.7 shielded room; Ambient: 24 deg.C. / 54 %RH; Liquid depth: 150 mm; *. Liquid temperature: 22.5 deg.C. ± 0.5 deg.C. (22.5 deg.C., in check); *. Red cubic: big=SAR(10g) / small=SAR(1g) *. Project file name-Measurement Group: 240822_15407507_es204(7)+ds126907.d8sar- 8/26-6,ble1M,2480,front-left8 Remarks:

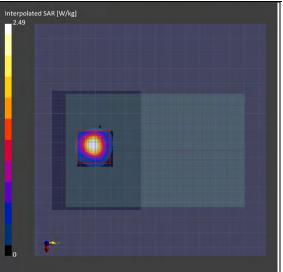
SAR1g: (5.2 GHz band), Front-left & touch, 11a(6Mbps), 5240 MHz Plot 2-1:

EUT: Wireless LAN/Bluetooth Combo Module + Digital Camera; Model (Serial): ES204 (No.16_01) + DS126938 (000101900073) Mode: 11a(6Mbps) CW (UID: 0 (CW)) ; Frequency: 5240.000 MHz ; Test Distance: 0.00 mm TSL parameters used: Head(v6) ; f= 5240.000 MHz; Conductivity: 4.517 S/m; Permittivity: 34.63 DASY8 Configuration: - Electronics: DAE4 - SN626(Calibrated:2024-01-09) - Phantom: ELI V8.0 (20deg probe tilt) ; Serial: 2161 ; Phantom section: Flat - Probe: EX3DV4 - SN3907(Calibrated: 2024-01-15); ConvF: (5.47, 5.16, 5.18) @ 5240.000 MHz - Software: 16.4.0.5005 (Measurement); 16.4.0.5005 (Evaluation)

- Probe: EX3DV	4 - 511390	7 (Calibrate	b); CONVF: (5.47, 5	.16, 5.18) (2 5240.000	
	Scan S	ietup	Measurement Results			
Setup items	Fast	Area	Zoom	Meas. Items	Area	Zoom
Grid Extents [mm]	120.0x140.0	80.0×60.0	24.0x24.0x22.0	psSAR 1g [W/kg]	0.527	0.625
Grid Steps [mm]	10.0x10.0	10.0×10.0	4.0x4.0x1.4	psSAR 10g [W/kg]	0.154	0.159
Sensor Distance [mm]	4.0	3.0	1.4	Power Drift [dB]	-0.02	-0.01
Graded Grid	N/A	N/A	Yes	pSAR (extrapolated) [W/kg]	N/A	2.68
Grading Ratio	N/A	N/A	1.4	Power Scaling	Disabled	Disabled
MAIA monitored	N/A	Y	N/A	TSL Correction	No correction	No correction
Surface Detection	VMS+6p	VMS+6p	VMS+6p	M2/M1 [%]	N/A	63.0
Scan Method	Measured	Measured	Measured	Dist 3dB Peak [mm]	N/A	6.3
Grid Effective [mm]	N/A	80.0x60.0	24.0x24.0x22.9	SAR1g Position (x,y,z)	N/A	-8.6, -1.9, -172.0

Remarks: *. Date tested: 2024-08-22;Tested by: Akihiro Oda; Tested place:No.7 shielded room; Ambient: 22 deg.C. / 78 %RH; Liquid depth: 150 mm; *. Liquid temperature: 22.5 deg.C. ± 0.5 deg.C. (22.5 deg.C., in check); *. Red cubic: big=SAR(10g) / small=SAR(10) *. Project file name-Measurement Group: 240822_15407507_es204(7)+ds126907.d8sar- 8/22-1,11a,5240,front-left

SAR1g: (5.3 GHz band), Front-left & touch, 11a(6Mbps), 5300 MHz Plot 2-2:

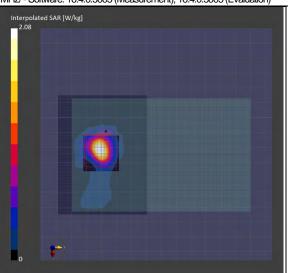

EUT: Wireless LAN/Bluetooth Combo Module + Digital Camera; Model (Serial): ES204 (No.16_01) + DS126938 (000101900073) Mode: 11a(6Mbps) CW (UID: 0 (CW)) ; Frequency: 5300.000 MHz ; Test Distance: 0.00 mm

 TSL parameters used: Head(v6); f= 5300.000 MHz; Conductivity: 4.583 S/m; Permittivity: 34.53

 DASY8 Configuration: - Electronics: DAE4 - SN626 (Calibrated: 2024-01-09) / - Phantom: ELI V8.0 (20deg probe tilt); Serial: 2161; Phantom section: Flat

 - Probe: EX3DV4 - SN3907(Calibrated: 2024-01-15); ConvF: (5.47, 5.16, 5.18) @ 5300.000 MHz/- Software: 16.4.0.5005 (Measurement); 16.4.0.5005 (Evaluation)

- Probe: EX3D\	/4 - SN390	7(Calibrate	b); CONVF: (5.47, 5.16, 5.18) @ 5300.000				
	Scan S	Setup	Measure	ment Res	ults		
Setup items	Fast	Area	Zoom	Meas. Items	Area	Zoom	
Grid Extents [mm]	120.0x140.0	80.0×60.0	24.0x24.0x22.0	psSAR 1g [W/kg]	0.508	0.585	
Grid Steps [mm]	10.0x10.0	10.0×10.0	4.0x4.0x1.4	psSAR 10g [W/kg]	0.147	0.150	
Sensor Distance [mm]	4.0	3.0	1.4	Power Drift [dB]	-0.06	-0.06	
Graded Grid	N/A	N/A	Yes	pSAR (extrapolated) [W/kg]	N/A	2.49	
Grading Ratio	N/A	N/A	1.4	Power Scaling	Disabled	Disabled	
MAIA monitored	N/A	Y	Y	TSL Correction	No correction	No correction	
Surface Detection	VMS+6p	VMS+6p	VMS+6p	M2/M1 [%]	N/A	62.5	
Scan Method	Measured	Measured	Measured	Dist 3dB Peak [mm]	N/A	6.5	
Grid Effective [mm]	N/A	80.0×60.0	24.0x24.0x22.9	SAR1g Position (x,y,z)	N/A	10.7,-21,-172.0	

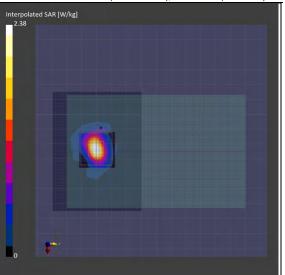


*. Date tested: 2024-08-22;Tested by: Akihiro Oda; Tested place:No.7 shielded room; Ambient: 24 deg.C. / 61 %RH; Liquid depth: 150 mm; *. Liquid temperature: 22.5 deg.C. ± 0.5 deg.C. (22.5 deg.C., in check); *. Red cubic: big=SAR(10g) / small=SAR(1g) *. Project file name-Measurement Group: 240822_15407507_es204(7)+ds126907.d8sar- 8/22-5,11a,5300,front-left Remarks:

SAR1g: (5.6 GHz band), Front-left & touch, 11a(6Mbps), 5580 MHz Plot 2-3:

EUT: Wireless LAN/Bluetooth Combo Module + Digital Camera; Model (Serial): ES204 (No.16_01) + DS126938 (000101900073) Mode: 11a(6Mbps) CW (UID: 0 (CW)) ; Frequency: 5580.000 MHz ; Test Distance: 0.00 mm TSL parameters used: Head(v6) ; f= 5580.000 MHz; Conductivity: 4.895 S/m; Permittivity: 34.06 DASY8 Configuration: - Electronics: DAE4 - SN626 (Calibrated: 2024-01-09) / - Phantom: ELI V8.0 (20deg probe tilt) ; Serial: 2161 ; Phantom section: Flat - Probe: EX3DV4 - SN3907(Calibrated: 2024-01-15); ConvF: (4.78, 4.48, 4.49) @ 5580.000 MHz / - Software: 16.4.0.5005 (Measurement); 16.4.0.5005 (Evaluation)

- FIODE. LASDY			50. 202 4 0 1-1	J), CONVE. (4.70, 4	.40, 4.49) (S 2200.000	
	Scan S	Setup		Measure	urement Results		
Setup items	Fast	Area	Zoom	Meas. Items	Area	Zoom	
Grid Extents [mm]	120.0x140.0	80.0×60.0	24.0x24.0x22.0	psSAR 1g [W/kg]	0.424	0.467	
Grid Steps [mm]	10.0x10.0	10.0×10.0	4.0x4.0x1.4	psSAR 10g [W/kg]	0.119	0.120	
Sensor Distance [mm]	4.0	3.0	1.4	Power Drift [dB]	-0.06	-0.06	
Graded Grid	N/A	N/A	Yes	pSAR (extrapolated) [W/kg]	N/A	2.07	
Grading Ratio	N/A	N/A	1.4	Power Scaling	Disabled	Disabled	
MAIA monitored	N/A	Y	Y	TSL Correction	No correction	No correction	
Surface Detection	VMS+6p	VMS+6p	VMS+6p	M2/M1 [%]	N/A	61.2	
Scan Method	Measured	Measured	Measured	Dist 3dB Peak [mm]	N/A	5.8	
Grid Effective [mm]	N/A	80.0x60.0	24.0x24.0x22.9	SAR1g Position (x,y,z)	N/A	11.1, -1.1, -172.0	


Remarks: *. Date tested: 2024-08-22;Tested by: Akihiro Oda; Tested place:No.7 shielded room; Ambient: 24 deg.C. / 61 %RH; Liquid depth: 150 mm; *. Liquid temperature: 22.5 deg.C. ± 0.5 deg.C. (22.5 deg.C., in check); *. Red cubic: big=SAR(10g) / small=SAR(10) *. Project file name-Measurement Group: 240822_15407507_es204(7)+ds126907.d8sar- 8/22-8,11a,5580,front-left

SAR1g: (5.8 GHz band), Front-left & touch, 11a(6Mbps), 5745 MHz Plot 2-4:

EUT: Wireless LAN/Bluetooth Combo Module + Digital Camera; Model (Serial): ES204 (No.16_01) + DS126938 (000101900073) Mode: 11a(6Mbps) CW (UID: 0 (CW)) ; Frequency: 5745.000 MHz ; Test Distance: 0.00 mm

TSL parameters used: Head(v6); f= 5745.000 MHz; Conductivity: 5.084 S/m; Permittivity: 33.77 DASY8 Configuration: - Electronics: DAE4 - SN626 (Calibrated: 2024-01-09) / - Phantom: ELI V8.0 (20deg probe tilt); Serial: 2161; Phantom section: Flat - Probe: EX3DV4 - SN3907(Calibrated: 2024-01-15); ConvF: (4.87, 4.59, 4.57) @ 5745.000 MHz/- Software: 16.4.0.5005 (Measurement); 16.4.0.5005 (Evaluation)

- Probe: EX3DV4 - SIN3907(Calibrated: 2024-01-15); CONVF: (4.87, 4.59, 4.57) @ 574								
	Scan S	Setup	Measure	ment Res	ults			
Setup items	Fast	Area	Zoom	Meas. Items	Area	Zoom		
Grid Extents [mm]	120.0x140.0	80.0×60.0	24.0x24.0x22.0	psSAR 1g [W/kg]	0.473	0.494		
Grid Steps [mm]	10.0x10.0	10.0×10.0	4.0×4.0×1.4	psSAR 10g [W/kg]	0.124	0.125		
Sensor Distance [mm]	4.0	3.0	1.4	Power Drift [dB]	-0.07	-0.00		
Graded Grid	N/A	N/A	Yes	pSAR (extrapolated) [W/kg]	N/A	2.38		
Grading Ratio	N/A	N/A	1.4	Power Scaling	Disabled	Disabled		
MAIA monitored	N/A	Y	Y	TSL Correction	No correction	No correction		
Surface Detection	VMS+6p	VMS+6p	VMS+6p	M2/M1 [%]	N/A	58.4		
Scan Method	Measured	Measured	Measured	Dist 3dB Peak [mm]	N/A	5.4		
Grid Effective [mm]	N/A	80.0×60.0	24.0x24.0x22.9	SAR1g Position (x,y,z)	N/A	13.4, -0.4, -172.0		

*. Date tested: 2024-08-22;Tested by: Akihiro Oda; Tested place:No.7 shielded room; Ambient: 24 deg.C. / 54 %RH; Liquid depth: 150 mm; *. Liquid temperature: 22.5 deg.C. ± 0.5 deg.C. (22.5 deg.C., in check); *. Red cubic: big=SAR(10g) / small=SAR(1g) *. Project file name-Measurement Group: 240822_15407507_es204(7)+ds126907.d8sar- 8/22-11,11a,5745,front-left Remarks:

APPENDIX 3: Test instruments

Appendix 3-1: Equipment used

Test Name	LIMS ID	Description	Manufacturer	Model	Serial	Last Calibration Date	Calibration Interval (Month)
AT	191844	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	-	2023/08/03	12
AT	146247	Power Meter	Keysight Technologies Inc	8990B	MY51000272	2024/05/14	12
AT	146310	Power sensor	Keysight Technologies Inc	N1923A	MY5326009	2024/05/14	12
AT	236500	Attenuator	To-Conne Co., Ltd.	SA-PJ-10	-	2023/12/04	12
AT	146223	Spectrum Analyzer	Keysight Technologies Inc	N9010A-526	MY48031482	2023/10/07	12
AT	196942	Coaxial Cable	Suhner	SUCOFLEX 102	803416/2	2024/03/07	12
*. AT	was me	asured 2024-07-25. (Refer to Section 5	in this report.)				

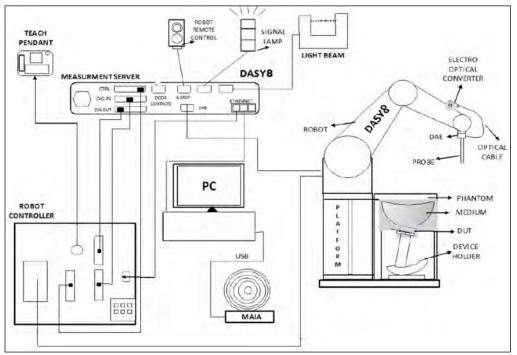
Test Name	LIMS ID	Description	Manufacturer	Model	Serial	Last Calibration Date	Calibration Interval (Month)
SAR	224031	DASY8 Module SAR/APD soft	Schmid & Partner Engineering AG	ver.16.4.0.5005	9-2506F07D	-	-
SAR	144886	Dielectric assessment kit soft	Schmid & Partner Engineering AG	DAK ver.3.0.6.14	9-0EE103A4	-	-
SAR	224020	DASY8 PC	Hewlett Packard	HP Z4 G4 Workstation	CZC1198G21	-	-
SAR	225155	Mounting Platform	Schmid & Partner Engineering AG	MP8E-TX2-60L Basic	-	-	-
SAR	224032	6-axis Robot	Schmid & Partner Engineering AG	TX2-60L spe	F/22/0033789/A/001	2023/08/29	12
SAR	224023	Robot Controller	Schmid & Partner Engineering AG	CS9spe-TX2-60	F/22/0033789/C/001	-	-
SAR	224025	Measurement Server	Schmid & Partner Engineering AG	DASY8 Measurement Server	10042	2024/02/01	12
SAR	224026	Electro-Optical Converter	Schmid & Partner Engineering AG	EOC8-60	1027	-	-
SAR	224027	Light Beam Unit	Schmid & Partner Engineering AG	LIGHTBEAM-85	2069	-	-
SAR	227155	SP2 Manual Control Pendant	Schmid & Partner Engineering AG	D21144507 C	22066839	-	-
SAR	144944	Data Acquisition Electronics	Schmid & Partner Engineering AG	DAE4	626	2024/01/09	12
SAR	146235	Dosimetric E-Field Probe	Schmid & Partner Engineering AG	EX3DV4	3907	2024/01/15	12
SAR	224034	Flat Phantom	Schmid & Partner Engineering AG	ELI V8.0	2161	2023/08/21	12
SAR	145596	Device holder	Schmid & Partner Engineering AG	Mounting device for transmitter	-	2023/08/29	12
SAR	224028	Modulation & Audio Interference Analyzer	Schmid & Partner Engineering AG	MAIA	1582	-	-
SAR	145090	Dipole Antenna (2.45 GHz)	Schmid & Partner Engineering AG	D2450V2	822	2024/01/05	12
SAR	145091	Dipole Antenna (5 GHz)	Schmid & Partner Engineering AG	D5GHzV2	1070	2024/01/17	12
SAR	230872	RF Power Source	Schmid & Partner Engineering AG	POWERSOURCE1	4300	2024/01/03	12
SAR	145500	Dielectric probe	Schmid & Partner Engineering AG	DAK3.5	1129	2024/01/16	12
SAR	146258	Network Analyzer	Keysight Technologies Inc	8753ES	US39171777	2023/10/05	12
SAR	145106	Ruler(150mm,L)	SHINWA	12103	-	2024/02/26	12
SAR	145086	Ruler(300mm)	SHINWA	13134	-	2024/02/26	12
SAR	145087	Ruler(100x50mm,L)	SHINWA	12101	-	2024/02/26	12
SAR	150560	Ruler(150mm)	SHINWA	14001	-	2024/02/26	12
SAR	144986	Thermo-Hygrometer data logger	SATO KEIRYOKI	SK-L200THIIa/SK-LTHIIa-2	015246/08169	2023/08/04	12
SAR	201967	Digital thermometer	HANNA	Checktemp-4	A01440226111	2023/08/04	12
SAR	201968	Digital thermometer	HANNA	Checktemp-4	A01310946111	2023/08/04	12
SAR	191844	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	-	2023/08/03	12
SAR	146176	Spectrum Analyzer	ADVANTEST	R3272	101100994	-	-
SAR		DI water	MonotaRo	34557433	-	-	-
SAR	146112	Primepure Ethanol	Kanto Chemical Co., Inc.	14032-79	-	-	-
SAR	207714	Head Tissue Simulating Liquid	Schmid & Partner Engineering AG	HBBL600-10000V6	SLAAH U16 BC	-	-

*. SAR test was performed 2024-08-22~2024-08-26.

The expiration date of calibration is the end of the expired month.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chain of calibrations. All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

*. Hyphens for Last Calibration Date and Cal Int (month) are instruments that Calibration is not required (e.g. software), or instruments checked in advance before use.


[Test Item] AT: Antenna terminal conducted power, SAR: Specific Absorption Rate

*. LIMS ID: 146112, the parameters of primepure Ethanol (as reference liquid) used for the simulated tissue parameter confirmation was defined the NPL Report MAT23 (http://www.npl.co.uk/content/conpublication/4295)

Appendix 3-2: Measurement System

Appendix 3-2-1: SAR Measurement System

These measurements were performed with the automated near-field scanning system DASY8 from Schmid & Partner Engineering AG (SPEAG). The system is based on a high precision robot), which positions the probes with a positional repeatability of better than \pm 0.03 mm. Special E- and H-field probes have been developed for measurements close to material discontinuity, the sensors of which are directly loaded with a Schottky diode and connected via highly resistive lines to the data acquisition unit. The SAR measurements were conducted with the dosimetry probes EX3DV4 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation.

The DASY8 SAR/APD system for performing compliance tests consist of the following items:

- 6-axis robotic arm (Stäubli TX2-60L) for positioning the probe
- Mounting Platform for keeping the phantoms at a fixed location relative to the robot
- Measurement Server for handling all time-critical tasks, such as measurement data acquisition and supervision of safety features
- EOC (Electrical to Optical Converter) for converting the optical signal from the DAE to electrical before being transmitted to the measurement server
- LB (Light-Beam unit) for probe alignment (measurement of the exact probe length and eccentricity)
- SAR probe (EX3DV4 probes) for measuring the E-field distribution in the phantom. The SAR distribution and the psSAR (peak spatial averaged SAR) are derived from the E-field measurement.
- SAR phantom that represents a physical model with an equivalent human anatomy. A Specific Anthropomorphic Mannequin (SAM) head is usually used for handheld devices, and a Flat phantom is used for body-worn devices.
- TSL (Tissue Simulating Liquid) representing the dielectric properties of used tissue, e.g. Head Simulating Liquid, HSL.
- DAE (Data Acquisition Electronics) for reading the probe voltages and transmitting it to the DASY8 PC.
- Device Holder for positioning the DUT beneath the phantom.
- MAIA (Modulation and Interference Analyzer) for confirming the accuracy of the probe linearization parameters
- Operator PC for running the DASY8 software to define/execute the measurements
- System validation kits for system check/validation purposes.

Material : Polyoxymethylene (POM), PET-G, Foam
 Manufacture: Schmid & Partner Engineering AG
 Support form: Urethane foam

Data storage and evaluation (post processing)

The uplink signal transmitted by the DUT is measured inside the TSL by the probe, which is accurately positioned at a precisely known distance and with a normal orientation with respect to the phantom surface. The dipole / loop sensors at the probe tips pick up the signal and generate a voltage, which is measured by the voltmeter inside the DAE. The DAE returns digital values, which are converted to an optical signal and transmitted via the EOC to the measurement server. The data is finally transferred to the DASY8 software for further post processing. In addition, the DASY8 software periodically requests a measurement with short-circuited inputs from the DAE to compensate the amplifier offset and drift. This procedure is called DAE zeroing.

The operator has access to the following low level measurement settings:

• the integration time is the voltage acquisition time at each measurement point. It is typically 0.5 s.

• the zeroing period indicates how often the DAE zeroing is performed.

In parallel, the MAIA measures the characteristics of the uplink signal via the air interface and sends this information to the DASY8 software, which compares them to the communication system defined by the operator. A warning is issued if any difference is detected.

The measurement data is now acquired and can be post processed to compute the psSAR1g /8g /10g. The measured voltages are not directly proportional to SAR and must be linearized. The formulas below are based on [1] (*1). The measured voltage is first linearized using the (a, b, c, d) set of parameters specific to the communication system and sensor.

$$\begin{split} V_{compli} = U_i + U_i^2 \cdot \frac{10^{10}}{d_{cp_i}} \\ \end{split} \\ \label{eq:product} \\ \begin{split} \text{with } V_{compli} &= \text{compensated voltage of channel } i(\mu V) & (i=x,y,z) \\ U_i &= \text{iput voltage of channel } i(\mu V) & (i=x,y,z) \\ d &= \text{PMR factor } d(\text{GB}) & (\text{Probe parameter}) \\ dcp_i &= \text{dice compression point of channel } i(\mu V) & (\text{Probe parameter}, i=x,y,z) \\ V_{compli}_{dB,\sqrt{\mu V}} = 10 \cdot \log_{10}(V_{compli}) \\ \hline V_{comple_{A}/\mu V} &= \text{correction factor of channel } i(\text{GB}) & (i=x,y,z) \\ (i=x,y,z) & (i=x,y,z) \\ d_i &= \text{PMR factor of channel } i(\text{GB}) & (i=x,y,z) \\ e_i &= \text{PMR factor of channel } i(\text{GB}) & (Probe parameter, i=x,y,z) \\ b_i &= \text{PMR factor of channel } i(\text{GB}) & (Probe parameter, i=x,y,z) \\ c_i &= \text{PMR factor of channel } i(\text{GB}) & (Probe parameter, i=x,y,z) \\ c_i &= \text{PMR factor of channel } i(\text{GB}) & (Probe parameter, i=x,y,z) \\ c_i &= \text{PMR factor of channel } i(\text{GB}) & (Probe parameter, i=x,y,z) \\ c_i &= \text{PMR factor of channel } i(\text{GB})_{\mu V} & (Probe parameter, i=x,y,z) \\ c_i &= \text{PMR factor of channel } i(\text{GB})_{\mu V} & (Probe parameter, i=x,y,z) \\ c_i &= \text{PMR factor of channel } i(\text{GB})_{\mu V} & (Probe parameter, i=x,y,z) \\ c_i &= \text{PMR factor of channel } i(\text{GB})_{\mu V} & (Probe parameter, i=x,y,z) \\ V_{idB,\sqrt{\mu V}} &= \text{Inearized voltage of channel } i(\text{GB})_{\mu V} & (i=x,y,z) \\ \text{Vormple}_{\mu (\mu V)} &= \text{Inearized voltage of channel } i(\text{GB})_{\mu V} & (i=x,y,z) \\ \text{Vormple}_{\mu (\mu V)} &= \text{Inearized voltage of channel } i(\text{GB})_{\mu V} & (i=x,y,z) \\ \text{Vormple}_{\mu (\mu V)} &= \text{Inearized voltage of channel } i(\text{GB})_{\mu V} & (i=x,y,z) \\ \text{Vormple}_{\mu (\mu V)} &= \text{Inearized voltage of channel } i(\text{GB})_{\mu V} & (i=x,y,z) \\ \text{Vormple}_{\mu (\mu V)} &= \text{Inearized voltage of channel } i(\text{GB})_{\mu V} & (i=x,y,z) \\ \text{Vormple}_{\mu (\mu V)} &= \text{Inearized voltage of channel } i(\text{GB})_{\mu V} & (i=x,y,z) \\ \text{The Field data for each channel are calculated using the linearized voltage: \\ E-fieldprobes: \quad E_i = \sqrt{\frac{V_{idB_i/W}}{Norm_i (c=x,y,z)}} \\ \text{Norm_i &= \text{sensorized voltage of channel in } \mu_i V/(V/$$

The E-field data value is used to calculate SAR :

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$

withSAR= local specific absorption rate in mW/gEtot= total field strength in V/m σ = conductivity in [Ω /m] or [S/m] ρ = equivalent tissue density in g/cm3

Note: The resulting linearized voltage is only approximated because the probe UID is used 0 (CW) for the test signal in this test report.

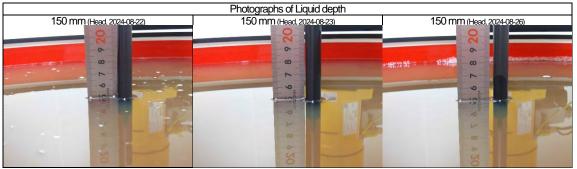
(*1) [1] Jagadish Nadakuduti, Sven Kuehn, Marcel Fehr, Mark Douglas Katja Pokovic and Niels Kuster, "The Effect of Diode Response of electromagnetic Field Probes for the Measurements of Complex Signals." IEEE Transactions on Electromagnetic Compatibility, vol. 54, pp. 1195–1204, Dec. 2012.

Appendix 3-2-2: SAR system check results

Prior to the SAR assessment of EUT, the Daily check was performed to test whether the SAR system was operating within its target of ±10%. The Daily check results are in the table below.

I familal transmission	Lined	A.C.				0 4 0	(1 m) [\/	1/1 1 /*	(h.)				CAD	(40 ~) [\///.cm1	(*6)			Davi
Liquid type:	Head	ΔS	AR	P.in		SAR	(1g) [V	v/кg] (D)				SAR	(10g) [vv/ĸgj	(°D)			Dev.
Date	Freq.	1g	10g		Meas.	1W	Targe	et (*c)	Dev	′.[%]	Pass	Meas.	1W	Targe	et (*c)	Dev	′.[%]	Pass	limit
Dato	[MHz]	[%]	[%]	[dBm]	(*a)	scaled	CAL.	STD	CAL.	STD	?	(*a)	scaled	CAL.	STD	Cal.	STD	?	[%]
2024-08-22	5250	0.8	1.1	16.97	4.12	82.1	81.2	77.6	1.1	5.8	Pass	1.2	23.8	23.4	21.9	1.7	8.7	Pass	±10
2024-08-22	5600	1.0	1.2	16.99	4.48	88.7	84.8	81.5	4.6	8.8	Pass	1.27	25.1	24.4	22.9	2.9	9.6	Pass	±10
2024-08-22	5800	1.0	1.2	16.96	4.21	83.9	80.4	78	4.4	7.6	Pass	1.2	23.9	22.9	21.9	4.4	9.1	Pass	±10
2024-08-23	5250	0.8	1.1	16.97	4.2	83.7	81.2	77.6	3.1	7.9	Pass	1.21	24	23.4	21.9	2.6	9.6	Pass	±10
2024-08-23	5600	1.0	1.2	16.99	4.17	82.6	84.8	81.5	-2.6	1.3	Pass	1.22	24.1	24.4	22.9	-1.2	5.2	Pass	±10
2024-08-23	5800	1.0	1.2	16.96	3.96	78.9	80.4	78	-1.9	1.2	Pass	1.16	23.1	22.9	21.9	0.9	5.5	Pass	±10
2024-08-26	2450	1.6	0.9	17.01	2.68	52.5	53.4	52.4	-1.7	0.2	Pass	1.25	24.7	25	24	-1.2	2.9	Pass	±10

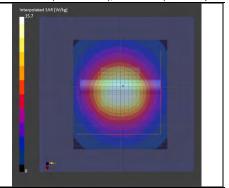
Freq.: Frequency, Meas.: Measurement, CAL.: Value of Calibration, STD: Value of Standard, Dev. Deviation. (2.45, 5.25, 5.6, 5.8 GHz) The Measured SAR/ value is obtained at 17 dBm (50 mW) setting of POWERSOURCE1 (LIMS ID#230872, S/N: 4300) calibrated by *a. Schmid & Partner Engineering AG, the data sheet was filed in this report.


The measured SAR value of Daily check was compensated for tissue dielectric deviations (ASAR) and scaled to 1W of output power in order to compare with the *b. manufacture's calibration target value which was normalized.

 Δ SAR corrected SAR (1g) (W/kg) = (Measured SAR(1g) (W/kg)) × (100 - (Δ SAR1g(%)) / 100

ASAR corrected SAR (10g,8g) (W/kg) = (Measured SAR(10g,8g) (W/kg)) × (100 - (ASAR10g(%)) / 100 The "CAL." target value is a parameter defined in the calibration data sheet of D2450V2 (sn:822), D5GHzV2 (sn:1070) dipole antenna calibrated by Schmid & *c. Partner Engineering AG, the data sheet was filed in this report.

(2.45, 5.8 GHz) The "STD" target value (normalized to 1VV) is defined in IEEE Std.1528. (2.55, 5.6 GHz) The "STD" target value (normalized to 1VV) (which are reference purpose) was obtained by linear interpolation of two adjacent frequencies described in IEC/IEEE 62209-1528.


Appendix 3-2-3: SAR system check measurement data

Dipole: D5GHzV2-1070-2401 ; Mode: CW(0) ; Frequency: 5250.000 MHz ; Test Distance: 10 mm (dipole to liquid); Power setting: 17.0 dBm TSL parameters used: Head(v6) ; f= 5250.000 MHz; Conductivity: 4.528 S/m; Permittivity: 34.62

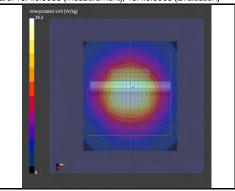
DASY8 Configuration: - Electronics: DAE4 - SN626(Calibrated: 2024-01-09) - Phantom: ELI V8.0 (20deg probe till); Serial: 2161; Phantom section: Flat - Probe: EX3DV4 - SN3907(Calibrated: 2024-01-15); ConvF: (5.47, 5.16, 5.18) @ 5250.000 MHz/ - Software: 16.4.0.5005 (Measurement); 16.4.0.5005 (Evaluation)

	Scan	Setup	Measurement Results				
Setup Items	Fast	Area	Zoom	Meas. Items	Area	Zoom	
Grid Extents [mm]	40.0x80.0	40.0×80.0	24.0x24.0x22.0	psSAR1g [W/kg]	3.92	4.12	
Grid Steps [mm]	10.0x10.0	10.0×10.0	4.0x4.0x1.4	psSAR10g [W/kg]	1.12	1.20	
Sensor Distance [mm]	4.0	3.0	1.4	Power Drift [dB]	0.01	-0.02	
Graded Grid	N/A	N/A	Yes	pSAR (extrapolated) [W/kg]	N/A	15.7	
Grading Ratio	N/A	N/A	1.4	Power Scaling	Disabled	Disabled	
MAIA monitored	N/A	N/A	N/A	TSL Correction	No correction	No correction	
Surface Detection	VMS+6p	VMS+6p	VMS+6p	M2/M1 [%]	N/A	66.2	
Scan Method	Measured	Measured	Measured	Dist 3dB Peak [mm]	N/A	7.2	
Grid Effective [mm]	N/A	40.0×80.0	28.0x24.0x22.9	psSAR8g [W/kg]	1.29	1.39	

Remarks: *. Date tested:2024-08-22; Tested by: Akihiro Oda; Tested place:No.7 shielded room; Ambient: 22.4 deg.C. / 64 %RH; Liquid depth: 150 mm; *. Liquid temperature: 22.5 deg.C. ± 0.5 deg.C. (22.5 deg.C., in check); *. Red cubic: big=SAR(10g) / small=SAR(1); *. Project file name-Measurement Group: 240822_15407507_es204(7)+ds126907.d8sar- SPC Measurement Group

Test Report No. 15407507S-A Page 28 of 31

Dipole: D5GHzV2-1070-2401 ; Mode: CW(0) ; Frequency: 5600.000 MHz ; Test Distance: 10 mm (dipole to liquid); Power setting: 17.0 dBm TSL parameters used: Head(v6); f= 5600.000 MHz; Conductivity: 4.918 S/m; Permittivity: 34.02 DAE4 SNI626(Calibrated:2024.01.00)/ Phan DACVO Configurations. Floots ction: Flat

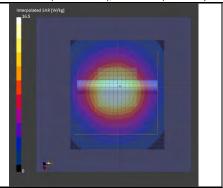

Interpolated SAR [W/kg]	S	ement Result	Measur		Setup	Scan	
18.5	Zoom	Area	Meas. Items	Zoom	Area	Fast	Setup Items
	4.48	4.22	psSAR1g [W/kg]	24.0x24.0x22.0	40.0×80.0	40.0x80.0	Grid Extents [mm]
E State	1.27	1.19	psSAR10g [W/kg]	4.0x4.0x1.4	10.0×10.0	10.0x10.0	Grid Steps [mm]
	-0.02	0.01	Power Drift [dB]	1.4	3.0	4.0	Sensor Distance [mm]
	18.5	N/A	pSAR (extrapolated) [W/kg]	Yes	N/A	N/A	Graded Grid
	Disabled	Disabled	Power Scaling	1.4	N/A	N/A	Grading Ratio
	No correction	No correction	TSL Correction	N/A	N/A	N/A	MAIA monitored
	63.1	N/A	M2/M1 [%]	VMS+6p	VMS+6p	VMS+6p	Surface Detection
	7.2	N/A	Dist 3dB Peak [mm]	Measured	Measured	Measured	Scan Method
	1.49	1.38	psSAR8g [W/kg]	28.0x24.0x22.9	40.0×80.0	N/A	Grid Effective [mm]

0.5005 (Evaluation)

 *. Date tested:2024-08-22; Tested by: Akihiro Oda; Tested place:No.7 shielded room; Ambient: 22.4 deg.C. / 64 %RH; Liquid depth: 152 mm;
 *. Liquid temperature: 22.5 deg.C. ± 0.5 deg.C. (22.5 deg.C., in check); *. Red cubic: big=SAR(10g) / small=SAR(1g)
 *. Project file name-Measurement Group: 240822_15407507_es204(7)+ds126907.d8sar- SPC Measurement Group Remarks:

Dipole: D5GHzV2-1070-2401; Mode: CW(0); Frequency: 5800.000 MHz; Test Distance: 10 mm (dipole to liquid); Power setting: 17.0 dBm TSL parameters used: Head(v6); f= 5800.000 MHz; Conductivity: 5.149 S/m; Permittivity: 33.68 DASY8 Configuration: - Electronics: DAE4 - SN626(Calibrated:2024-01-09)/ - Phantom: ELI V8.0 (20deg probe tilt); Serial: 2161; Phantom section: Flat - Probe: EX3DV4 - SN3907(Calibrated: 2024-01-15); ConvF: (4.87, 4.59, 4.57) @ 5800.000 MHz/ - Software: 16.4.0.5005 (Measurement); 16.4.0.5005 (Evaluation)

	Scan	Setup		Measurement Results				
Setup Items	Fast	Area	Zoom	Meas. Items	Area	Zoom		
Grid Extents [mm]	40.0x80.0	40.0×80.0	24.0x24.0x22.0	psSAR1g [W/kg]	3.96	4.21		
Grid Steps [mm]	10.0x10.0	10.0×10.0	4.0x4.0x1.4	psSAR10g [W/kg]	1.11	1.20		
Sensor Distance [mm]	4.0	3.0	1.4	Power Drift [dB]	0.01	0.01		
Graded Grid	N/A	N/A	Yes	pSAR (extrapolated) [W/kg]	N/A	18.2		
Grading Ratio	N/A	N/A	1.4	Power Scaling	Disabled	Disabled		
MAIA monitored	N/A	N/A	N/A	TSL Correction	No correction	No correction		
Surface Detection	VMS+6p	VMS+6p	VMS+6p	M2/M1 [%]	N/A	61.2		
Scan Method	Measured	Measured	Measured	Dist 3dB Peak [mm]	N/A	7.4		
Grid Effective [mm]	N/A	40.0×80.0	28.0x24.0x22.9	psSAR8g [W/kg]	1.29	1.39		



 *. Date tested:2024-08-22 ; Tested by: Akihiro Oda; Tested place:No.7 shielded room; Ambient: 22.4 deg.C. / 64 %RH; Liquid depth: 150 mm;
 *. Liquid temperature: 22.5 deg.C. ± 0.5 deg.C. (22.5 deg.C., in check); *. Red cubic: big=SAR(10g) / small=SAR(1g)
 *. Project file name-Measurement Group: 240822_15407507_es204(7)+ds126907.d8sar- SPC Measurement Group Remarks:

Dipole: D5GHzV2-1070-2401; Mode: CW(0); Frequency: 5250.000 MHz; Test Distance: 10 mm (dipole to liquid); Power setting: 17.0 dBm TSL parameters used: Head(v6); f= 5250.000 MHz; Conductivity: 4.528 S/m; Permittivity: 34.62

	, · · · · · · · · · · · · · · · · ·	
DASY8 Configuration: - Electronics: DAE4 - SN626(C	alibrated:2024-01-09)/ - Phantom: ELI V8.0 (20dec	probe tilt) ; Serial: 2161 ; Phantom section: Flat
 Probe: EX3DV4 - SN3907(Calibrated: 2024-01-15); C 	onvF: (5.47, 5.16, 5.18) @ 5250.000 MHz/ - Softwa	are: 16.4.0.5005 (Measurement); 16.4.0.5005 (Evalua
Scan Setup	Measurement Results	Interpolated SAR (W/kg)

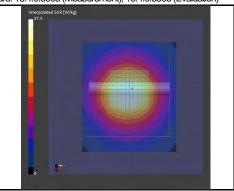
	Scan	Setup	Measur	ement Result	S	
Setup Items	Fast	Area	Zoom	Meas. Items	Area	Zoom
Grid Extents [mm]	40.0x80.0	40.0×80.0	24.0x24.0x22.0	psSAR1g [W/kg]	3.95	4.20
Grid Steps [mm]	10.0x10.0	10.0×10.0	4.0x4.0x1.4	psSAR10g [W/kg]	1.12	1.21
Sensor Distance [mm]	4.0	3.0	1.4	Power Drift [dB]	-0.01	-0.03
Graded Grid	N/A	N/A	Yes	pSAR (extrapolated) [W/kg]	N/A	16.5
Grading Ratio	N/A	N/A	1.4	Power Scaling	Disabled	Disabled
MAIA monitored	N/A	Y	Y	TSL Correction	No correction	No correction
Surface Detection	VMS+6p	VMS+6p	VMS+6p	M2/M1 [%]	N/A	64.9
Scan Method	Measured	Measured	Measured	Dist 3dB Peak [mm]	N/A	7.2
Grid Effective [mm]	N/A	40.0×80.0	28.0x24.0x22.9	psSAR8g [W/kg]	1.30	1.41

uation)

Remarks: *. Date tested:2024-08-23 ; Tested by: Akihiro Oda; Tested place:No.7 shielded room; Ambient: 23 deg.C. / 65 %RH; Liquid depth: 150 mm; *. Liquid temperature: 22.5 deg.C. ± 0.5 deg.C. (22.5 deg.C., in check); *. Red cubic: big=SAR(10g) / small=SAR(1) *. Project file name-Measurement Group: 240822_15407507_es204(7)+ds126907.d8sar- SPC Measurement Group:

Test Report No. 15407507S-A Page 29 of 31

Dipole: D5GHzV2-1070-2401 ; Mode: CW(0) ; Frequency: 5600.000 MHz ; Test Distance: 10 mm (dipole to liquid); Power setting: 17.0 dBm TSL parameters used: Head(v6); f= 5600.000 MHz; Conductivity: 4.918 S/m; Permittivity: 34.02 n: Flat

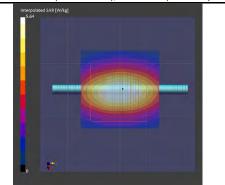

	Scan	Setup		Measur	ement Result	S	Interpolated SAR [W/kg]	
Setup Items	Fast	Area	Zoom	Meas. Items	Area	Zoom	17.6	
Grid Extents [mm]	40.0x80.0	40.0×80.0	24.0x24.0x22.0	psSAR1g [W/kg]	3.86	4.17		
Grid Steps [mm]	10.0x10.0	10.0×10.0	4.0x4.0x1.4	psSAR10g [W/kg]	1.11	1.22		
Sensor Distance [mm]	4.0	3.0	1.4	Power Drift [dB]	0.01	0.01		
Graded Grid	N/A	N/A	Yes	pSAR (extrapolated) [W/kg]	N/A	17.6		
Grading Ratio	N/A	N/A	1.4	Power Scaling	Disabled	Disabled		
MAIA monitored	N/A	Y	Y	TSL Correction	No correction	No correction		
Surface Detection	VMS+6p	VMS+6p	VMS+6p	M2/M1 [%]	N/A	61.3		
Scan Method	Measured	Measured	Measured	Dist 3dB Peak [mm]	N/A	7.4		
Grid Effective [mm]	N/A	40.0×80.0	28.0x24.0x22.9	psSAR8g [W/kg]	1.29	1.41		

005 (Evaluation)

 *. Date tested:2024-08-23 ; Tested by: Hiroshi Naka; Tested place:No.7 shielded room; Ambient: 23 deg.C. / 65 %RH; Liquid depth: 150 mm;
 *. Liquid temperature: 22.5 deg.C. ± 0.5 deg.C. (22.5 deg.C., in check); *. Red cubic: big=SAR(10g) / small=SAR(1g)
 *. Project file name-Measurement Group: 240822_15407507_es204(7)+ds126907.d8sar- SPC Measurement Group Remarks:

Dipole: D5GHzV2-1070-2401; Mode: CW(0); Frequency: 5800.000 MHz; Test Distance: 10 mm (dipole to liquid); Power setting: 17.0 dBm TSL parameters used: Head(v6); f= 5800.000 MHz; Conductivity: 5.149 S/m; Permittivity: 33.68 DASY8 Configuration: - Electronics: DAE4 - SN626(Calibrated:2024-01-09)/ - Phantom: ELI V8.0 (20deg probe tilt); Serial: 2161; Phantom section: Flat - Probe: EX3DV4 - SN3907(Calibrated: 2024-01-15); ConvF: (4.87, 4.59, 4.57) @ 5800.000 MHz/ - Software: 16.4.0.5005 (Measurement); 16.4.0.5005 (Evaluation)

	Scan	Setup	Measurement Results				
Setup Items	Fast	Area	Zoom	Meas. Items	Area	Zoom	
Grid Extents [mm]	40.0x80.0	40.0×80.0	24.0x24.0x22.0	psSAR1g [W/kg]	3.65	3.96	
Grid Steps [mm]	10.0x10.0	10.0×10.0	4.0x4.0x1.4	psSAR10g [W/kg]	1.05	1.16	
Sensor Distance [mm]	4.0	3.0	1.4	Power Drift [dB]	-0.05	0.00	
Graded Grid	N/A	N/A	Yes	pSAR (extrapolated) [W/kg]	N/A	17.4	
Grading Ratio	N/A	N/A	1.4	Power Scaling	Disabled	Disabled	
MAIA monitored	N/A	Y	Y	TSL Correction	No correction	No correction	
Surface Detection	VMS+6p	VMS+6p	VMS+6p	M2/M1 [%]	N/A	59.6	
Scan Method	Measured	Measured	Measured	Dist 3dB Peak [mm]	N/A	7.6	
Grid Effective [mm]	N/A	40.0×80.0	28.0x24.0x22.9	psSAR8g [W/kg]	1.22	1.34	



 Date tested:2024-08-23; Tested by: Akihiro Oda; Tested place:No.7 shielded room; Ambient: 23 deg.C. / 65 %RH; Liquid depth: 150 mm;
 Liquid temperature: 22.5 deg.C. ± 0.5 deg.C. (22.5 deg.C., in check); *. Red cubic: big=SAR(10g) / small=SAR(1g)
 * Project file name-Measurement Group: 240822_15407507_es204(7)+ds126907.d8sar- SPC Measurement Group Remarks:

Dipole: D2450V2-822 2401 ; Mode: CW(0) ; Frequency: 2450.000 MHz ; Test Distance: 10 mm (dipole to liquid); Power setting: 17.0 dBm TSL parameters used: Head(v6) ; f= 2450.000 MHz; Conductivity: 1.861 S/m; Permittivity: 39.24

DASY8 Configuration: - Electronics: DAE4 - SN626(Calibrated:2024-01-09)/ - Phantom: ELI V8.0 (20deg probe tilt); Serial: 2161; Phantom section: Flat - Probe: EX3DV4 - SN3907(Calibrated: 2024-01-15); ConvF: (6.83, 7.07, 6.68) @ 2450.000 MHz/ - Software: 16.4.0.5005 (Measurement); 16.4.0.5005 (Evaluation)

	Scan	Setup		Measurement Results				
Setup Items	Fast	Fast Area Zoom		Meas. Items	Area	Zoom		
Grid Extents [mm]	40.0x80.0	40.0×80.0	30.0×30.0×30.0	psSAR1g [W/kg]	2.69	2.68		
Grid Steps [mm]	10.0x10.0	10.0×10.0	5.0×5.0×1.5	psSAR10g [W/kg]	1.25	1.25		
Sensor Distance [mm]	4.0	3.0	1.4	Power Drift [dB]	-0.01	-0.00		
Graded Grid	N/A	N/A	Yes	pSAR (extrapolated) [W/kg]	N/A	5.64		
Grading Ratio	N/A	N/A	1.5	Power Scaling	Disabled	Disabled		
MAIA monitored	N/A	Y	Y	TSL Correction	No correction	No correction		
Surface Detection	VMS+6p	VMS+6p	VMS+6p	M2/M1 [%]	N/A	79.5		
Scan Method	Measured	Measured	Measured	Dist 3dB Peak [mm]	N/A	9.0		
Grid Effective [mm]	N/A	40.0×80.0	30.0x30.0x31.2	psSAR8g [W/kg]	1.38	1.38		
					-			

Remarks: *. Date tested:2024-08-26 ; Tested by: Akihiro Oda; Tested place:No.7 shielded room; Ambient: 24 deg.C. / 45 %RH; Liquid depth: 150 mm; *. Liquid temperature: 22.5 deg.C. ± 0.5 deg.C. (22.5 deg.C., in check); *. Red cubic: big=SAR(10g) / small=SAR(1) *. Project file name-Measurement Group: 240822_15407507_es204(7)+ds126907.d8sar- SPC Measurement Group:

Appendix 3-3: **Measurement Uncertainty**

	Uncertainty of SAR measurement (2.4	GHz~	6GHz)	(*. liquid: head(v6), DAK, V	WLAN)		SAR 1g		SA	א 10g
Sy mbol	Error Description	Un	ic. [%]	Probablity distribution	Divisor	ci 1g	ci 10g	ui 1	g [%]	ui 10	Og [%]
-	Measurement system (DASY8)										
CF	Probe Calibration (EX3DV4) (*.HSL:10%)	±	14.0	Normal	2	1	1	±	7.0	±	7.0
CFdfift	Probe Calibration Drift	±	1.7	Rectangular	√3	1	1	Ħ	1.0	±	1.0
LIN	Probe Linearity	±	4.7	Rectangular	√3	1	1	Ħ	2.7	±	2.7
BBS	Broadband Signal	±	2.6	Rectangular	√3	1	1	Ħ	1.5	±	1.5
ISO	Probe Isotropy	±	7.6	Rectangular	√3	1	1	Ħ	4.4	±	4.4
DAE	Data Acquisition	±	1.2	Normal	1	1	1	÷	1.2	±	1.2
AMB	RF Ambient (noise&refrection) (< 12 W/g)	±	1.0	Normal	1	1	1	Ħ	1.0	±	1.0
∆sys	Probe Positioning	±	0.5	Normal	1	0.29	0.29	H	0.2	±	0.2
DAT	Data Processing	±	4.0	Rectangular	√3	1	1	±	2.3	±	2.3
-	Phantom and Device Error										
LIQ(σ)	Conductivity (measured) (DAK)	±	5.0	Normal	2	0.78	0.71	Ħ	2.0	±	1.8
LIQ(Tσ)	Conductivit (temp.)(1°C,v6-head)	±	2.4	Rectangular	√3	0.78	0.71	Ħ	1.1	±	1.0
EPS	Phantom Permittivity	±	14.0	Rectangular	√3	0.25	0.25	±	2.0	±	2.0
DIS	Distance EUT-TSL (liqant:5mm)	±	2.7	Normal	1	2	2	Ħ	5.4	±	5.4
Dxyz	Test Sample positioning	±	1.8	Normal	1	1	1	±	1.8	±	1.8
Н	Device holder uncertainty	±	3.6	Normal	1	1	1	H	3.6	±	3.6
MOD	EUT Modulation	±	2.4	Normal	√3	1	1	Ħ	1.4	±	1.4
TAS	Time-average SAR	±	0.0	Rectangular	√3	1	1	±	0.0	±	0.0
RFdfift		±	4.7	Normal	2	1	1	Ħ	2.4	±	2.4
-	Correction to the SAR results										
C(e, o)	Deviation to Target (e', o:10 %, IEC head)	±	1.9	Normal	1	1	0.84	Ħ	1.9	ŧ	1.6
C(R)	SAR Scaling	±	0.0	Rectangular	√3	1	1	±	0.0	±	0.0
u(ΔSAR)	Combined standard uncertainty						RSS	±	12.3	ŧ	12.3
U	Expand uncertainty (95% confidence in	terva	al)			(v11r06)	k=2	±	24.6	±	24.6

*. This uncertainty budget is suggested by IEC/IEEE 62209-1528 and determined by SPEAG, DASY8 Module SAR Manual, 2024-05 (Chapter 6.3, DASY8 Uncertainty Budget for Hand-held/Body-worn Devices, Frequency band: 300 MHz - 3 GHz range and 3 GHz - 6 GHz range). All listed error components have veff equal to ∞.

	Uncertainty of SAR daily check (2.4GF	łz~6	GHz) (*	. liquid: head(v6), DAK, C	VV)		SA	R 1g	SA	R 10g
Sy mbol	Error Description	Un	nc. [%]	Probablity distribution	Divisor	ci 1g	ci 10g	ui 1	g [%]	ui 1	0g [%]
-	Measurement system (DASY8)										
CF	Probe Calibration (EX3DV4) (*.HSL:10%)	±	14.0	Normal	2	1	1	Ħ	7.00	H	7.00
CFdfift	Probe Calibrationr Drift	±	1.7	Rectangular	√3	1	1	Ħ	1.0	Ħ	1.0
LIN	Probe Linearity	±	4.7	Rectangular	√3	1	1	Ħ	2.7	Ħ	2.7
ISO	Probe Isotropy	±	4.7	Rectangular	√3	1	1	Ħ	2.7	H	2.7
DAE	Data Acquisition	±	1.2	Normal	1	1	1	±	1.2	÷	1.2
AMB	RF Ambient (noise&refrection) (< 12 W/g)	±	1.0	Normal	1	1	1	±	1.0	÷	1.0
∆sys	Probe Positioning	±	0.5	Normal	1	0.29	0.29	±	0.2	÷	0.2
DAT	Data Processing	±	4.0	Rectangular	√3	1	1	±	2.3	÷	2.3
-	Phantom and Device Error										
LIQ(σ)	Conductivity (measured) (DAK)	±	5.0	Normal	2	0.78	0.71	±	2.0	Ħ	1.8
LIQ(Tσ)	Conductivit (temp.)(1°C,v6-head)	±	2.4	Rectangular	√3	0.78	0.71	Ħ	1.1	Ħ	1.0
EPS	Phantom Permittivity	±	14.0	Rectangular	√3	0.25	0.25	Ħ	2.0	Ħ	2.0
VAL	Validation antenna uncertainty	±	5.5	Rectangular	√3	1	1	Ħ	3.2	Ħ	3.2
Pin	Uncertainty in accpted pow er	±	2.5	Normal	2	1	1	Ħ	1.3	Ħ	1.3
DIS	Distance EUT-TSL (VAL) (liqant:10mm)	±	2.0	Normal	1	2	2	Ħ	4.0	Ħ	4.0
Dxyz	Test Sample (dipole) positioning	±	1.0	Normal	1	1	1	Ħ	1.0	Ħ	1.0
RFdfift	Drift of output pow er (measured, <0.1dB)	±	2.3	Rectangular	√3	1	1	±	1.3	±	1.3
-	Correction to the SAR results										
C(e, \sigma)	Deviation to Target (e', o:10 %, IEC head)	±	1.9	Normal	1	1	0.84	±	1.9	±	1.6
$u(\Delta SAR)$	Combined standard uncertainty						RSS	±	10.8	±	10.7
U	Expand uncertainty (95% confidence interval) (vi						k=2	±	21.6	±	21.4

This uncertainty budget is suggested by IEC/IEEE 62209-1528 and determined by SPEAG, DASY8 Module SAR Manual, 2024-05 (Chapter 6.2, DASY8 Uncertainty Budget for System Verification, Frequency band: 300 MHz - 6 GHz range). All listed error components have veff equal to ∞.

*.

Table of uncertainties are listed for ISO/IEC 17025. Although this standard determines only the limit value of uncertainty, there is no applicable rule of uncertainty in this. Therefore, the results are derived depending on whether or not laboratory uncertainty is applied.

Appendix 3-4: Calibration certificates

LIMS ID	Description	Type/Model	Serial Number	Manufacture	Calibration Certificate	Note
146235	Dosimetric E-Field Probe	EX3DV4	3907	SPEAG		-
145090	Dipole Antenna (2.45 GHz)	D2450V2	822	SPEAG	k	*1
145091	Dipole Antenna (5 GHz)	D5GHzV2	1070	SPEAG		*1
230872	RF Power Source	POWERSORCE1	4300	SPEAG	R	-

*1: As stated on page 2 of the certificate, the calibration was performed in accordance with the latest standard IEC/IEEE 62209-1528. Therefore, the reported SAR values are valid for any system that complies with IEC/IEEE 62209-1528 including all new versions of DASY such as DASY6 and DASY8.

-End of report-