

Test report No. : 10882639S-A
Page : 1 of 78
Issued date : December 1, 2015
Revised date : December 21, 2015 (-r01)

FCC ID : AZD233

SAR TEST REPORT

Test Report No.: 10882639S-A

Applicant : Canon Inc.

Type of Equipment : Wireless Module

Model No. : ES201 (*. Installed into the limited platform: Wireless transmitter)

FCC ID : AZD233

Test Standard : FCC 47CFR §2.1093

Test Result : Complied

Highest Reported SAR(1g) Value	Platfo	rm	Host device		Remarks			
8 1	Type	Model	Type	Model	Renai as			
0.70 W/kg (measured: 0.589W/kg)	Wireless File	DC506001	Digital	DS126561	(DTS) 2437 MHz, 802.11b (1Mbps, DSSS) (output power: 14.78 dBm).			
1.18 W/kg (measured: 0.842W/kg)	Transmitter DS58609		Camera	DS120301	(UNII) 5500 MHz, 802.11a (6Mbps, OFDM) (output power: 12.06 dBm)			

*. <u>Highest reported SAR (1g) across this platform and exposure conditions (body-touch) = "1.18 W/kg" = grant listing.</u>

* Since highest reported SAR (1g) on a platform with a specified host device for DS586091 (EUT) which obtained in accordance with KDB447498 D01 (v05r02) was > 0.8 W/kg and ≤ 1.2 W/kg, this EUT is approved to operate a single platform

- 1. This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- 2. The results in this report apply only to the sample tested.
- 3. This sample tested is in compliance with the limits of the above regulation.
- 4. The test results in this test report are traceable to the national or international standards.
- 5. This test report must not be used by the customer to claim product certification, approval, or endorsement by any agency of the Federal Government.
- 6. The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan has been accredited.
- 7. This test report covers Radio technical requirements. It does not cover administrative issues such as Manual or non-Radio test related Requirements. (if applicable)

Date of test: September 28, 29 and 30, 2015

Test engineer:

Hiroshi Naka

Engineer, Consumer Technology Division

Approved by:

Toyokazu Imamura

Leader, Consumer Technology Division

Test report No. : 10882639S-A Page : 2 of 78 : December 1, 2015 Issued date

: December 21, 2015 (-r01) : AZD233 Revised date

FCC ID

REVISION HISTORY

Revision	Test report No.	Date	Page revised	Contents
Original	10882639S-A	December 1, 2015	-	-
-r01	10882639S-A	December 21, 2015	p1,2,12,28,31	(p12,28,31) Error correction.

By issue of new revision report, the report of an old revision becomes invalid.

CONTENTS		PAGE
REVISION HISTO	RY	2
CONTENTS		2
SECTION 1:	Customer information	3
SECTION 2:	Equipment under test (EUT)	
2.1	Identification of EUT	
2.2	Product Description	
SECTION 3:	Test specification, procedures and results	
3.1	Test specification	4
3.2	Exposure limit	4
3.3	Procedure and result	
3.4	Test location	
3.5	Confirmation before SAR testing	
3.6	Confirmation after SAR testing.	
3.7	Test setup of EUT and SAR measurement procedure	6
SECTION 4:	Operation of EUT during testing	
SECTION 5:	Uncertainty assessment (SAR measurement)	
SECTION 6:	Confirmation before testing	
6.1	SAR reference power measurement (antenna terminal conducted average power of EUT)	
SECTION 7:	Measurement results	
7.1	SAR test results (Wi-Fi, 2.4 GHz)	
7.2	SAR test results (Wi-Fi, 5GHz)	
Contents of app	pendixes	
APPENDIX 1:	Photographs of test setup	14
Appendix 1-1	Photograph of Host device, Platform and Antenna position	
Appendix 1-2	EUT and support equipment	
Appendix 1-3	Photograph of test setup	
APPENDIX 2:	SAR Measurement data	
Appendix 2-1	Evaluation procedure	
Appendix 2-2	SAR measurement data	
APPENDIX 3:	Test instruments	
Appendix 3-1	Equipment used	
Appendix 3-2	Configuration and peripherals	
Appendix 3-3	Test system specification	
Appendix 3-4	Simulated tissues composition and parameter confirmation	35
Appendix 3-5	Daily check results	35
Appendix 3-6	Daily check measurement data	
Appendix 3-7	Daily check uncertainty	
Appendix 3-8	Calibration certificate: E-Field Probe (EX3DV4)	
Appendix 3-9	Calibration certificate: Dipole (D2450V2)	50
Appendix 3-10	Calibration certificate: Dipole (D5GHzV2)	58

Test report No. : 10882639S-A Page : 3 of 78

Issued date : December 1, 2015

FCC ID : AZD233

SECTION 1: Customer information

Company Name	Canon Inc.
Brand Name	Canon
Address	30-2, Shimomaruko 3-chome, Ohta-ku, Tokyo 146-8501 Japan
Telephone Number	+81-3-3757-6218
Facsimile Number	+81-3-3757-8431
Contact Person	Takato Matsuura

SECTION 2: Equipment under test (EUT)

2.1 Identification of EUT

	EUT	Platform	Host device					
Type of Equipment	Wireless Module	Wireless File Transmitter	Digital camera					
Model Number	ES201 DS586091 DS126561							
Serial Number	5152	36	DK0000118					
Condition of EUT	Engineering prototype	Engineering prototype	Engineering prototype					
Condition of EC 1	(*. Not for sale: These samples are equiv	valent to mass-produced items.)	_					
Country of Mass-production	Japan	Japan	Japan					
Receipt Date of Sample	September 28, 2015 (*. EUT (*. The EUT that had been measur	er measurement) *. No modification by the for SAR test.) *. No modification by the red the power of SAR test reference, was after power measurement, the EUT was re-	he Lab. Lab. installed into the platform: Wireless File eturned to the customer in order to install					
Category Identified	Portable device *. Since EUT may contact and very of	close to a human body during Wi-Fi operation, t	he partial-body SAR (1g) shall be observed.					
Rating	DC3.3V supplied form the host device. * The EUT is installed into the Wireless File Transmitter that was operated by the dc power supplied from the constant voltage circuit of the host device.							
Feature of EUT	The EUT is a Wireless Module which installs into the Wireless File Transmitter which was connected with the limited host device.							
SAR Accessory	None							

2.2 Product Description (ES201)

F : 44	I.m. :										
Equipment type	Transceiver	1 2442 2462 2 577 4	(TTTO()) / (2.100.0.15)	NA (((((((((((((((((((
	2.4GHz band: 2412-2462 MHz (b,g,n(HT20)) / 2422-2452 MHz (n(HT40)); W52 (L) NIL 1): 5180-5340 MHz (c,r(HT20)) co(2/HT20)) / 5100-5230 MHz (r,r(HT40)) co(2/HT40)) / 5210 MHz (co(2/HT20))										
	$ \begin{tabular}{ll} $ \underline{W52} \ (\underline{U-NII-1}): 5180-5240 \ MHz \ (a,n(HT20),ac(VHT20)) / 5190-5230 \ MHz \ (n(HT40),ac(VHT40)) / 5210 \ MHz \ (ac(VHT80)); \\ \hline \end{tabular} $										
	<u>W53 (U-NII-2A)</u> : 5260-5320 MHz (a,n(HT20),ac(VHT20)) / 5270-5310 MHz (n(HT40),ac(VHT40)) / 5290 MHz										
Frequency of operation	(ac(VHT80)										
	W56 (U-NI	<u>I-2C</u>): 5500-5700 MH:	z (a,n(HT20),ac(VHT20))) / 5510-5670 MHz (n	(HT40),ac(HT40))/						
	5530-5610	MHz (ac(VHT80))									
	W58 (U-NI	I-3): 5745-5825 MHz	(a,n(HT20),ac(VHT20))	/ 5755-55795 MHz (n(HT40),ac(HT40)), 5775	5 MHz (ac(VHT40))					
Channel spacing	5 MHz (2.40	3Hz band), 20 MHz (W	52, W53, W56, W58)								
Bandwidth	20 MHz (b,g	,a,n(HT20),ac(VHT20))	, 40 MHz (n(HT20),ac(V	TH20)), 80 MHz (ac(VH	T80),						
True of madulation	DSSS: DBF	SK, DQPSK, CCK									
Type of modulation	OFDM: BP	SK, QPSK, 16QAM, 6	64QAM, (256QAM) (*.	256QAM is only supported	by 11ac.)						
Q'ty of Antenna	1 pc.		Antenna type	PIFA (Planar	Inverted F Antenna)						
Antenna model name	Dual Band	WLAN Antenna Cable	Assembly 2011 (21740	96-1)	,						
Antenna connector type	RF module	RF module side: W.FL (Hirose) / Antenna side: soldered.									
Antenna gain	1.05 dD: (2)	100 2500 MIL-) 1 22	JD: (5160 5240 MIL	0.2 JD: (5490, 5720 N	4II-) 0.42 4D: (5705)	5045 MIL.)					
(Peak, with cable loss.)	1.93 UDI (22	100~2300 lvi⊓z), -1.32	dBi (5160~5340 MHz)), 0.3 ubi (3460~3720 iv	/ITIZ), -0.43 UDI (3/23~.	0043 MIIZ),					
	Mode	2.4GHz	U-NII-1 (W52)	UN-NII-2A (W53)	U-NII-2C (W56)	U-NII-3 (W58)					
	b	13 ± 2.5dBm									
	g	11 ± 2.5dBm									
	a		11 ± 2.5dBm	11 ± 2.5dBm	11 ± 2.5dBm	11 ± 2.5dBm					
Transmit power	n(HT20)	11 ± 2.5dBm	11 ± 2.5dBm	11 ± 2.5dBm	11 ± 2.5dBm	11 ± 2.5dBm					
and tolerance	n(HT40)	9 ± 2.5dBm	8 ± 2.5dBm	8 ± 2.5dBm	8 ± 2.5dBm	8 ± 2.5dBm					
(Manufacture variation)	ac(VHT20)		11 ± 2.5dBm,	11 ± 2.5dBm,	11 ± 2.5dBm,	11 ± 2.5 dBm,					
			10 ± 2.5 dBm (MCS8)	10 ± 2.5 dBm (MCS8)	10 ± 2.5 dBm (MCS8)	10 ± 2.5 dBm (MCS8)					
	ac(VHT40)		8 ± 2.5dBm	$8 \pm 2.5 dBm$	$8 \pm 2.5 dBm$	$8 \pm 2.5 dBm$					
	ac(VHT80)		7+1.5/-2.5 dBm	7+1.5/-2.5 dBm	7 ± 2.5 dBm	7 ± 2.5 dBm					
	*. The measu	ired Tx output power (co	onducted) refers to section	6 in this report.							
Power rating	DC 3.3V, *.	The dc power is suppli	ed from the constant vol	tage circuit of the host d	evice.	·					
Operation temperature	$0 \sim +45 \deg$.C. (*. Operation temper	ature of a platform.)								
* The FLIT do not use th	The FUT do not use the special transmitting technique such as "beam-forming" and "time-space code diversity."										

The EUT do not use the special transmitting technique such as "beam-forming" and "time-space code diversity."

Test report No. : 10882639S-A
Page : 4 of 78
Legged data : December 1 20

Issued date : December 1, 2015

FCC ID : AZD233

SECTION 3: Test specification, procedures and results

3.1 Test specification

The US Federal Communications Commission has released the report and order "Guidelines for Evaluating the Environmental Effects of RF Radiation", ET Docket No. 93-62 in August 1996. The order requires routine SAR evaluation prior to equipment authorization of portable transmitter devices, including portable telephones. For consumer products, the applicable limit is 1.6 mW/g for an uncontrolled environment and 8.0 mW/g for an occupational/controlled environment as recommended by the ANSI/IEEE standard C95.1-1992. The device should be evaluated at maximum output power (radiated from the antenna) under "worst-case" conditions for normal or intended use, incorporating normal antenna operating positions, device peak performance frequencies and positions for maximum RF energy coupling in accordance with the following measurement procedures...

KDB 447498 D01 (v05r02): General RF exposure guidance

KDB 248227 D01 (v02r01): SAR Guidance for IEEE 802.11 (Wi-Fi) transmitters

KDB 865664 D01 (v01r03): SAR measurement 100MHz to 6GHz

IEEE Std. 1528-2003: IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in

the Human Head from Wireless Communications Devices: Measurement Techniques

IEEE Std. 1528-2013: IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in

the Human Head from Wireless Communications Devices: Measurement Techniques.

(*. The reference for Uncertainty in SAR correction for deviations in permittivity and conductivity, in clause E.3.2.)

3.2 Exposure limit

Environments of exposure limit	Whole-Body (averaged over the entire body)	Partial-Body (averaged over any 1g of tissue)	Hands, Wrists, Feet and Ankles (averaged over any 10g of tissue)
(A) Limits for Occupational /Controlled Exposure (W/kg)	0.4	8.0	20.0
(B) Limits for General population /Uncontrolled Exposure (W/kg)	0.08	<u>1.6</u>	4.0

^{*.} Occupational/Controlled Environments:

The limit applied in this test report is;

General population / uncontrolled exposure, Partial-Body (averaged over any 1g of tissue) limit: 1.6 W/kg

3.3 Procedures and Results

	Wi-Fi (DTS) 2412~2462 MHz	Wi-Fi (U-NII-1) 5180~5240 MHz (W52)	Wi-Fi (U-NII-2A) 5260~5320 MHz (W53)	Wi-Fi (U-NII-2C) 5500~5700 MHz (W56)	Wi-Fi (U-NII-3) 5745~5825 MHz (W58)
Test Procedure		SAR measurement; KDB 4	47498, KDB 248227, KDE	8 865664, IEEE Std.1528	
Category		FCC 47	CFR §2.1093 (Portable de	evice)	
Results (SAR(1g))	Complied	Complied	Complied	Complied	Complied
Reported SAR value	0.70 W/kg	not applied (*.≤1.2 W/kg for U-NII-2A)	0.76 W/kg	1.18 W/kg	0.79 W/kg
Measured SAR value	0.589 W/kg	-	0.543 W/kg	0.842 W/kg	0.573 W/kg
Operation mode	11b, 2437 MHz	-	11a, 5300 MHz	11a, 5500 MHz	11a, 5785 MHz
Duty cycle (duty cycle factor)	99.9 % (×1.00)	-	99.4 % (×1.01)	99.4 % (×1.01)	99.4 % (×1.01)
Output power (scaled factor)	14.78 dBm (×1.18)	=	12.11 dBm (×1.38)	12.06 dBm (×1.39)	12.17 dBm (×1.36)

Note: UL Japan's SAR Work Procedures No.13-EM-W0429 and 13-EM-W0430. No addition, deviation nor exclusion has been made from standards

<u>Test outline:</u> Where this product is built into a new platform, it was verified whether multiplatform conditions can be suited in according with section 2) of 5.2.2 in KDB447498 D01 (v05r02).

Consideration of the test results: Since highest reported SAR (1g) on a platform for ES201 (EUT) which obtained in accordance with

KDB447498 (v05r02) was > 0.8 W/kg and ≤ 1.2 W/kg, this EUT is approved to operate a single platform.

3.4 Test Location

No.7 shielded room (2.76 m (Width) × 3.76 m (Depth) × 2.4 m (Height)) for SAR testing.

UL Japan, Inc., Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken 259-1220 JAPAN Telephone number: +81 463 50 6400 / Facsimile number: +81 463 50 6401

UL Japan, Inc. Shonan EMC Lab.

are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

^{*.} General Population/Uncontrolled Environments: are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Test report No. : 10882639S-A Page : 5 of 78

Issued date : December 1, 2015

FCC ID : AZD233

3.5 Confirmation before SAR testing

3.5.1 Average power for SAR tests

Before SAR test, the RF wiring for the sample had been switched to the antenna conducted power measurement line from the antenna line and the average power was measured. The result is shown in Section 6.

*. The EUT transmission power was verified that it was within 2dB lower than the maximum tune-up tolerance limit when it was set the rated power. (Clause 4.1, KDB447498 D01 (v05r02))

Step.1 Data rate check (*. The EUT supported the following data rate in each operation mode.)

802.11	lb	802.11	g	802.11a		
Modulation Data rate [Mbps]		Modulation	Data rate [Mbps]	Modulation	Data rate [Mbps]	
DBPSK/DSSS	1	BPSK/OFDM	6	BPSK/OFDM	6	
DQPSK/DSSS	2	BPSK/OFDM	9	BPSK/OFDM	9	
CCK/DSSS	5.5	QPSK/OFDM	12	QPSK/OFDM	12	
CCK/DSSS	11	QPSK/OFDM	18	QPSK/OFDM	18	
		16QAM/OFDM	24	16QAM/OFDM	24	
		16QAM/OFDM	36	16QAM/OFDM	36	
		64QAM/OFDM	48	64QAM/OFDM	48	
		64QAM/OFDM	54	64QAM/OFDM	54	

	802.11	n(HT20)	802.11n(HT40)		n(HT40)		302.11a	c(VHT20)		302.11a	c(VHT40)	802.11ac(VHT80)		
MCS Index	Spatial Stream	Modulation	MCS Index	Spatial Stream	Modulation	MCS Index	Spatial Stream	Modulation	MCS Index			MCS Index	Spatial Stream	Modulation
0	1	BPSK/OFDM	0	1	BPSK/OFDM	0	1	BPSK/OFDM	0	1	BPSK/OFDM	0	1	BPSK/OFDM
1	1	QPSK/OFDM	1	1	QPSK/OFDM	1	1	QPSK/OFDM	1	1	QPSK/OFDM	1	1	QPSK/OFDM
2	1	QPSK/OFDM	2	1	QPSK/OFDM	2	1	QPSK/OFDM	2	1	QPSK/OFDM	2	1	QPSK/OFDM
3	1	16QAM/OFDM	3	1	16QAM/OFDM	3	1	16QAM/OFDM	3	1	16QAM/OFDM	3	1	16QAM/OFDM
4	1	16QAM/OFDM	4	1	16QAM/OFDM	4	1	16QAM/OFDM	4	1	16QAM/OFDM	4	1	16QAM/OFDM
5	1	64QAM/OFDM	5	1	64QAM/OFDM	5	1	64QAM/OFDM	5	1	64QAM/OFDM	5	1	64QAM/OFDM
6	1	64QAM/OFDM	6	1	64QAM/OFDM	6	1	64QAM/OFDM	6	1	64QAM/OFDM	6	1	64QAM/OFDM
7	1	64QAM/OFDM	7	1	64QAM/OFDM	7	1	64QAM/OFDM	7	1	64QAM/OFDM	7	1	64QAM/OFDM
	-	-	-	-	-	8	1	256QAM/OFDM	8	1	256QAM/OFDM	8	1	256QAM/OFDM
-	-	-	-	-	-	-	-	-	9	1	256QAM/OFDM	9	1	256QAM/OFDM

Step.2 Consideration of SAR test channel

For the SAR test reference, on each operation band, the average output power was measured on the low/middle/upper and specified channels with the worst data rate condition in step 1 in the above.

*. The worst SAR position search was done by the worst operation mode and on near the middle channels.

3.6 Confirmation after SAR testing

It was checked that the power drift [W] is within $\pm 5\%$ in the evaluation procedure of SAR testing. The verification of power drift during the SAR test is that DASY5 system calculates the power drift by measuring the e-filed at the same location at beginning and the end of the scan measurement for each test position.

The result is shown in APPENDIX 2.

*. DASY5 system calculation Power drift value[dB] =20log(Ea)/(Eb) (where, Before SAR testing: Eb[V/m] / After SAR testing: Ea[V/m])

Limit of power drift[W] = $\pm 5\%$

Power drift limit (X) [dB] = $10\log(P_{drift}) = 10\log(1.05/1) = 10\log(1.05) - 10\log(1) = 0.21dB$

from E-filed relations with power.

S=E×H=E²/ η =P/(4× π ×r²) (η : Space impedance) \rightarrow P=(E²×4× π ×r²)/ η

Therefore, The correlation of power and the E-filed

Power drift limit (X) dB=10log(P_drift)=10log(E_drift)^2=20log(E_drift)

From the above mentioned, the calculated power drift of DASY5 system must be the less than ±0.21dB.

Test report No. : 10882639S-A Page : 6 of 78

Issued date : December 1, 2015

FCC ID : AZD233

3.7 Test setup of EUT and SAR measurement procedure

3.7.1 Consideration of SAR test reduction by the antenna separation distance

Antenna separation distances in each test setup plan are shown as follows.

Setup plan	Explanation of SAR test setup plan (*. Refer to Appendix 1 for test setup photographs which had been tested.)	D [mm]	SAR Tested /Reduced(*1)	SAR type
Left	When test is required, the left surface of platform connected with the host device is touched to the Flat phantom.	2.95	Tested	
Front-right	When test is required, the front-right edge of platform connected with the host device is touched to the Flat phantom.	2.95	Tested	
Front	When test is required, the front upper portion of platform connected with the host device is touched to the Flat phantom.	7.60	Tested	Body-
Top (tip)	When test is required, the top surface of platform connected with the host device is touched to the Flat phantom.	7.79	Tested	touch
Rear	Since the rear surface of platform is connector to connect the host device, SAR test is excluded.	≈13	Reduced	
Bottom	Since the body of a host device makes interference to touch the bottom surface of platform, SAR test is excluded.	≈ 40	Reduced	

- *. D: Antenna separation distance. It is the distance from the EUT antenna inside a platform to the outer surface of platform which an operator may touch.
- *. Size of EUT (ES201): 19.5 mm (width) $\times 22.9 \text{ mm}$ (depth) $\times 2.9 \text{ mm}$ max (thickness)
- *. Size of platform: 24.65 mm (width) × 23.94 mm (depth) × 56.97 mm (height)
- *. Size of host device (digital camera): 157.9 mm (width) $\times 82.6 \text{ mm}$ (depth) $\times 167.6 \text{ mm}$ (height)

*1. KDB 447498 D01 (v05r02) was taken into consideration to reduce SAR test.

(Consideration of SAR test reduction by the antenna separation distance (100MHz~6GHz, ≤50mm)											
	Setup	Minim	ım distance	Upper	Max	. tune-up	power	Calculation	Stan	dalone SAR		
Band, Mode	Position	[mm]	[mm] (rounded)	frequency [GHz]	[dBm]	[mW]	[mW] (rounded)	of exclusion: $\leq 3.0 (*2)$		t Required? 3, Tested)	Remarks	
	Left	2.95	3 (≤5)	2.462	15.5	35.48	35	11.0	>3.0	Required	-	
	Front-right	2.95	3 (≤5)	2.462	15.5	35.48	35	11.0	>3.0	Required	-	
WLAN 2.4GHz	Front	7.60	8	2.462	15.5	35.48	35	11.0	>3.0	Required	-	
11b	Top (tip)	7.79	8	2.462	15.5	35.48	35	6.9	>3.0	Required	_	
	Rear	≈13	13	2.462	15.5	35.48	35	4.2	>3.0	Required	(*3) SAR test was reduced.	
	Bottom	≈40	40	2.462	15.5	35.48	35	1.4	≤3.0	Required	_	
	Left	2.95	3 (≤5)	5.32	13.5	22.39	22	10.1	>3.0	Required	_	
	Front-right	2.95	3 (≤5)	5.32	13.5	22.39	22	10.1	>3.0	Required	_	
WLAN W52&53	Front	7.60	8	5.32	13.5	22.39	22	6.3	>3.0	Required	_	
a, n(HT20), ac(VHT20)	Top (tip)	7.79	8	5.32	13.5	22.39	22	6.3	>3.0	Required	-	
	Rear	≈13	13	5.32	13.5	22.39	22	3.9	>3.0	Required	(*3) SAR test was reduced.	
	Bottom	≈40	40	5.32	13.5	22.39	22	1.3	≤3.0	Reduced	_	
	Left	2.95	3 (≤5)	5.7	13.5	22.39	22	10.5	>3.0	Required	_	
	Front-right	2.95	3 (≤5)	5.7	13.5	22.39	22	10.5	>3.0	Required	_	
WLAN W56	Front	7.60	8	5.7	13.5	22.39	22	6.6	>3.0	Required	_	
a, n(HT20), ac(VHT20)	Top (tip)	7.79	8	5.7	13.5	22.39	22	6.6	>3.0	Required	_	
	Rear	≈13	13	5.7	13.5	22.39	22	4.0	>3.0	Required	(*3) SAR test was reduced.	
	Bottom	≈40	40	5.7	13.5	22.39	22	1.3	≤3.0	Reduced	_	
	Left	2.95	3 (≤5)	5.825	13.5	22.39	22	10.6	>3.0	Required	_	
	Front-right	2.95	3 (≤5)	5.825	13.5	22.39	22	10.6	>3.0°	Required	-	
WLAN W58	Front	7.60	8	5.825	13.5	22.39	22	6.6	>3.0	Required	-	
a, n(HT20), ac(VHT20)	Top (tip)	7.79	8	5.825	13.5	22.39	22	6.6	>3.0	Required	-	
	Rear	≈13	13	5.825	13.5	22.39	22	4.1	>3.0	Required	(*3) SAR test was reduced.	
	Bottom	≈40	40	5.825	13.5	22.39	22	1.3	≤3.0	Reduced	-	

^{*2.} Parenthesis 1), Clause 4.3.1, KDB 447498 D01 (v05r02) gives the following formula to calculate the SAR(1g) test exclusion thresholds for 100MHz-6GHz at test separation distance ≤50mm.

<Conclusion for consideration for SAR test reduction>

- 1) Left, Front-right, Front and Top (tip) setup conditions of a platform are considered body-touch SAR and require the SAR evaluation in body-liquid.
- 2) The SAR tests for Rear setup conditions of platform are reduced because it is connector side and connected with a specified host device (digital camera) in normal operation.
- The SAR tests for Bottom setup conditions of platform are reduced because it is enough antenna separation distance.
- 4) The SAR test of head liquid (front-of-face) was reduced because the location of a platform which was installed on the host device was far enough from the human face.

By the determined test setup shown above, the SAR test was applied in the following procedures.

Step 1	On 2.4GHz band, Worst SAR search by 11b (DSSS, *. highest output power) mode. (*. Change the channel, if it is necessary.)
Sten 2	On W53 band, Worst SAR search of 11a (*. highest output power and lowest data rate) mode. (*. Change the channel, if it is
Step 2 ~ Step 4	necessary.)
~ Sucp 4	Repeat for w56 (Step 3) and w58 (Step 4) band.
Ston 5	Check SAR measurement variability, when if the measured SAR(1g) was ≥ 0.80 W/kg and on a highest measured SAR(1g)
Step 5	condition.

^{*.} During SAR test, the radiated power is always monitored by Spectrum Analyzer.

^{[(}max.power of channel, including tune-up tolerance, mW)/(min.test separation distance, mm)] \times [\sqrt{f} (GHz)] \leq 3.0 (for SAR(1g)) ···········formula (1) If power is calculated from the upper formula (1);

[[]SAR(1g) test exclusion thresholds, mW] = $3 \times 50 / SQR1(2.462)$ = 96mW, where test separation distance *3. SAR test was reduced, because it was connector side and connected with a specified host device in normal use.

Test report No. : 10882639S-A Page : 7 of 78

Issued date : December 1, 2015

FCC ID : AZD233

SECTION 4: Operation of EUT during testing

4.1 Operating modes for SAR testing

This EUT has IEEE 802.11b, g, a, n(HT20), n(HT40), ac(VHT20), ac(VTH40) and ac(VHT80) continuous transmitting modes. The frequency and the modulation used in the SAR testing are shown as a following.

Operation mode	b	g	n(HT20)	n(HT40)
Tx band [MHz]	2	2412~2462	2	2422~2452
Bandwidth [MHz]	20	20	20	40
Max.power [dBm]	15.5	13.5	13.5	11.5
SAR Tested/Reduced?	Tested	Reduced	Reduced	Reduced
Frequency tested [MHz]	2437	-(*3)	-(*3)	-(*3)
Data rate [Mbps]	1	6	6.5	13
Modulation	DSSS	OFDM	OFDM	OFDM

Operation mode	a	n(HT20)	ac(VHT20)	n(HT40)	ac(VHT40)	ac(VHT80)	a	n(HT20)	ac(VHT20)	n(HT40)	ac(VHT40)	ac(VHT80)
band			W52 (U-1	VII-1)(*2)					W53 (U	-NII-2A)		
Tx band [MHz]	4	5180~5240)	5190)~5230	5210		5260~532	0	5270)~5310	5290
Bandwidth [MHz]	20	20	20	40	40	80	20	20	20	40	40	80
Max.power [dBm]	13.5	13.5	13.5	10.5	10.5	8.5	13.5	13.5	13.5	10.5	10.5	8.5
SAR Tested/Reduced?	Reduced	Reduced	Reduced	Reduced	Reduced	Reduced	Tested	Reduced	Reduced	Reduced	Reduced	Reduced
Frequency tested [MHz]		-	ı	1	ı	-	5300	-		•		-
Data rate [Mbps]	6	6.5	7.2	13	15.0	32.5	6(*1)	6.5	7.2	13	15.0	32.5
Modulation	OFDM	OFDM	OFDM	OFDM	OFDM	OFDM	OFDM	OFDM	OFDM	OFDM	OFDM	OFDM
Operation mode	a	n(HT20)	ac(VHT20)	n(HT40)	ac(VHT40)	ac(VHT80)	a	n(HT20)	ac(VHT20)	n(HT40)	ac(VHT40)	ac(VHT80)
band			W56 (U	-NII-2C)					W58 (U	J-NII-3)		
Tx band [MHz]	4	5500~5700)	5510	0~5670	5530~5690	:	5745~582	5	5755	5~5795	5775
Bandwidth [MHz]	20	20	20	40	40	80	20	20	20	40	40	80
Max.power [dBm]	13.5	13.5	13.5	10.5	10.5	9.5	13.5	13.5	13.5	10.5	10.5	9.5
SAR Tested/Reduced?	Tested	Reduced	Reduced	Reduced	Reduced	Reduced	Tested	Reduced	Reduced	Reduced	Reduced	Reduced
Frequency tested [MHz]	5600, 5580 5500, 5700	_	İ	ı	I	-	5785	-	ı	ı	ı	1
Data rate [Mbps]	6(*1)	6.5	7.2	13	15.0	32.5	6(*1)	6.5	7.2	13	15.0	32.5
Modulation	OFDM	OFDM	OFDM	OFDM	OFDM	OFDM	OFDM	OFDM	OFDM	OFDM	OFDM	OFDM
Controlled software	"rftest" mod	le										

Note: SAR test reduction consideration

[Table A-1. Output power measured and SAR test channel selection]

802.11 M	odes	b	g	1	ı	a (*1)	n(H	Γ)		ac(VHT)	
Ch. Bandwid	th [MHz]	20	20	20	40	20	20	40	20	40	80
Lowest data ra	te [Mbps]	1	<mark>6</mark>	6.5	6.5	6 (*1)	6.5	13	7.2	15.0	32.5
§15.247	Ch.	1/ <mark>6</mark> /11	1/ <mark>6</mark> /11	1/6/11	6						
(2.4GHz)	mW	30/ <mark>30</mark> /29	18/ <mark>17</mark> /18	17/17/18	lower power						
U-NII-1	Ch.					36/40/ <mark>44</mark> /48	36/40/44/48	38/46	36/40/44/48	38/46	42
(W52)	mW					17/16/ <mark>16</mark> /16	17/16/16/16	lower power	16/16/16/16	lower power	lower power
U-NII-2A	Ch.					52/56/ <mark>60</mark> /64	52/56/60/64	54/62	52/56/60/64	54/62	58
(W53)	mW					16/16/ <mark>16</mark> /16	16/16/17/17	lower power	17/17/17/17	lower power	lower power
U-NII-2C	Ch.					100/118/ <mark>120</mark> /140	100/118/120/140	102/118/134	100/118/120/140	102/118/134	106/122
(W56)	mW					16/16/ <mark>16/</mark> 16	15/16/16/16	lower power	16/16/16/16	lower power	lower power
U-NII-3	Ch.					149 <mark>/157</mark> /165	149/157/165	151/159	149/157/165	151/159	155
(W58)	mW					16/ <mark>16</mark> /17	16/17/17	lower power	16/17/17	lower power	lower power

[Table A-2. Re	eported Sa	AR(1g) ar	nd test red	luction pla	m]						
802.11 M	lodes	b	g	1	1	a (*1)	n(HT)	8	ac(VHT)	
Ch. Bandwid	th [MHz]	20	20	20	40	20	20	40	20	40	80
Lowest data ra	ate [Mbps]	1	<u>6</u>	6.5	6.5	6 (*1)	6.5	13	7.2	15.0	32.5
§15.247	Ch.	1/ <mark>6</mark> /11	1/ <mark>6</mark> /11	1/6/11	6						
(2.4GHz)	mW	0.70		not required t ljusted SAR							
U-NII-1 (*2)	Ch.					36/40/44/48	36/40/44/48	38/46	36/40/44/48	38/46	42
(W52)	mW					*. U-NII-2A exclusion applied (*	2)				
U-NII-2A	Ch.					52/56/ <mark>60</mark> /64	52/56/60/64	54/62	52/56/60/64	54/62	58
(W53)	mW					0.76	-	lower power	-	lower power	lower power
U-NII-2C	Ch.					100 / 118 / 120 / 140	100/118/120/140	102/118/134	100/118/120/140	102/118/134	106/122
(W56)	mW					1.18 / 1.16 / 1.11 / 1.02	-	lower power	-	lower power	lower power
U-NII-3	Ch.					149 <mark>/157</mark> /165	149/157/165	151/159	149/157/165	151/159	155
(XXXEO)	***					0. =0					

^{*1. (}KDB248227 D01 (v02r01), clause 5.3.2) At same specified maximum output power mode, the lower order modulation, lowest data rate configuration (802.11a) is selected.

^{*2. (}KDB248227 D01 (v02r01), clause 5.3.1) Since highest reported SAR(1g) of U-NII-2A was ≤1.2 W/kg, SAR measurement of U-NII-1 band was omitted.

^{*3. (}KDB248227 D01 (v02r01), clause 5.2.2) SAR test of OFDM mode was reduced, because the estimate reported SAR(1g) of OFDM mode was ≤ 1.2 W/kg by using the highest reported SAR(1g) of DSSS mode

Test report No. : 10882639S-A Page : 8 of 78

Issued date : December 1, 2015

FCC ID : AZD233

SECTION 5: Uncertainty Assessment (SAR measurement)

Uncertainty of SAR measurement (2.4-6GHz) (*.ε&σ:≤±5%, DAK3.5, Tx:≈100% duty cycle) (v08)	1g SAR	10g SAR
Combined measurement uncertainty of the measurement system (k=1)	± 13.7%	± 13.6%
Expanded uncertainty (k=2)	± 27.4%	± 27.2%

	Error Description (2.4-6GHz) (v08)	Uncertainty Value	Probability distribution	Divisor	ci (1g)	ci (10g)	ui (1g)	ui (10g)	Vi, veff
A	Measurement System (DASY5)				` ` ` "		(std. uncertainty)	(std. uncertainty)	
1	Probe Calibration Error	±6.55 %	Normal	1	1	1	±6.55 %	±6.55 %	∞
2	Axial isotropy Error	±4.7 %	Rectangular	√3	√0.5	√0.5	±1.9 %	±1.9 %	∞
3	Hemispherical isotropy Error	±9.6 %	Rectangular	$\sqrt{3}$	√0.5	√0.5	±3.9 %	±3.9 %	∞
4		±4.7 %	Rectangular	$\sqrt{3}$	1	1	±2.7 %	±2.7 %	∞
5	Probe modulation response	±2.4 %	Rectangular	$\sqrt{3}$	1	1	±1.4 %	±1.4 %	∞
6	Sensitivity Error (detection limit)	±1.0 %	Rectangular	$\sqrt{3}$	1	1	±0.6 %	±0.6 %	∞
7	Boundary effects Error	±4.3%	Rectangular	$\sqrt{3}$	1	1	±2.5 %	±2.5 %	∞
8	Readout Electronics Error(DAE)	±0.3 %	Rectangular	√3	1	1	±0.3 %	±0.3 %	∞
9	Response Time Error	±0.8 %	Normal	1	1	1	±0.8 %	±0.8 %	∞
10	Integration Time Error (≈100% duty cycle)	±0 %	Rectangular	√3	1	1	0 %	0%	∞
11	RF ambient conditions-noise	±3.0 %	Rectangular	√3	1	1	±1.7 %	±1.7 %	∞
12	RF ambient conditions-reflections	±3.0 %	Rectangular	√3	1	1	±1.7 %	±1.7 %	∞
13	Probe positioner mechanical tolerance	±3.3 %	Rectangular	√3	1	1	±1.9 %	±1.9 %	∞
14	Probe Positioning with respect to phantom shell	±6.7 %	Rectangular	√3	1	1	±3.9 %	±3.9 %	∞
15	Max. SAR evaluation (Post-processing)	±4.0 %	Rectangular	$\sqrt{3}$	1	1	±2.3 %	±2.3 %	∞
В									
16	Device Holder or Positioner Tolerance	±3.6 %	Normal	1	1	1	±3.6 %	±3.6 %	5
17	Test Sample Positioning Error	±5.0 %	Normal	1	1	1	±5.0 %	±5.0 %	145
18	Power scaling	±0%	Rectangular	$\sqrt{3}$	1	1	±0 %	±0 %	∞
19	Drift of output power (measured, <0.2dB)	±2.3%	Rectangular	$\sqrt{3}$	1	1	±2.9 %	±2.9 %	∞
C	Phantom and Setup								
20	Phantom uncertainty (shape, thickness tolerances)	±7.5 %	Rectangular	$\sqrt{3}$	1	1	±4.3 %	±4.3 %	∞
21	Algorithm for correcting SAR (e',σ: ≤5%)	±1.2 %	Normal	1	1	0.84	±1.2 %	±0.97 %	∞
22	Measurement Liquid Conductivity Error (DAK3.5)	±3.0 %	Normal	1	0.78	0.71	±2.3 %	±2.1 %	7
23	Tribustar erriterite Erefunda T errintut (10) Error (Er in Erso)	±3.1 %	Normal	1	0.23	0.26	±0.7 %	±0.8 %	7
24	Liquid Conductivity-temp.uncertainty (≤2deg.C.)	±5.3 %	Rectangular	$\sqrt{3}$	0.78	0.71	±2.4 %	±2.2 %	∞
25	temperature (====gret)	±0.9 %	Rectangular	$\sqrt{3}$	0.23	0.26	±0.1 %	±0.1 %	∞
	Combined Standard Uncertainty						±13.7 %	±13.6 %	733
	Expanded Uncertainty (k=2)						±27.4 %	±27.2 %	

^{*.} Table of uncertainties are listed for ISO/IEC 17025.

^{*.} This measurement uncertainty budget is suggested by IEEE Std.1528(2013) and determined by Schmid & Partner Engineering AG (DASY5 Uncertainty Budget). Per KDB 865664 D01 (v01r03) SAR Measurement 100 MHz to 6 GHz Section 2.8.1., when the highest measured SAR(1g) within a frequency band is < 1.5W/kg, the extensive SAR measurement uncertainty analysis described in IEEE Std.1528 (2013) is not required in SAR reports submitted for equipment approval.

Test report No. : 10882639S-A
Page : 9 of 78
Issued date : December 1, 2015

FCC ID : AZD233

SECTION 6: Confirmation before testing

6.1 SAR reference power measurement (antenna terminal conducted power) / Worst data rate, worst channel determination (*. The power data measured by radio test was used for SAR test. Refer to radio test report: 10882638S-M&-N for more detail data information.)

Post Date Control		(To po	TOT CHILLE						Average		iaro test	ероги.				I action	information.)	
		Free	1	Data	Power		Duty	Duty	•		-	Peak	DΔR	-			SAR		Power
Mary Color Mary Color Mary Color Mary	Iode	1100	·l·	rate		cycle	factor		Re	sult	ΔRef.	power	IAK					Remarks	Tune
March Marc	1	MHzl	СН	[Mbps]	[-]	[%]	[dB]	[-]				[dB]	[dB]				Reduced		-up?
Mathematical Color	_	_	1							29.58		18.08					Reduced	*. ≤ 0.8W/kg (ch6)	-
March Marc				1														-	-
March Marc			11														Reduced	*. ≤ 0.8W/kg (ch6)	-
Mathematical Color	_		6														-	_	-
1477 6 1478 6 1479 1 1479 1																	Reduced	-	-
1970 1970			1														-	-	-
142 3 MCSW 10 987 006 210 1042 1102 404 2318 128 115 -1.08 x127 Rehated -1.08 115 1427 Rehated -1.08 127 Rehated -1.08 Rehat	T20																- Dadward	-	-
110 1437 6 MCS0 10 987 1005 101 1046 1036 206 2319 2343 330 11.5 -1.04 x1.27 Reduced -1.05 12.																	- Reduced	_	-
Section Sect	n –																Reduced	_	-
8 S200 A C C S94 O.3 N. O 12.05 S96 O.12 21.0 S91 S15 -1.47 X1.40 C X1.50	140	2452	9	MCS0	10	98.7	0.06	×1.01	10.40	10.96	-0.06	23.19	12.8	11.5	-1.10	×1.29	-	-	-
1982 1982 1984 1986 12		5180	36	6	12	99.4	0.03	×1.01	12.27	16.87	0.12	21.98	9.7	13.5	-1.23	×1.33	-	_	-
S540																	-	-	-
WS-95 S260 S2 G																	Reduced	*. ≤ 1.2W/kg (W53)	-
NSS SSN S S S S S S S																	- Reduced	* < 0.8W/kg (ch60)	-
S500 60 6																	-	. = 0.0 W/Ng (CHOU)	-
S500 100 6	W53)	5300	60	6	12	99.4	0.03	×1.01	12.11	16.26	ref	21.61	9.5	13.5	-1.39	×1.38		-	-
S560 112 6																		*. ≤ 0.8W/kg (ch60)	-
SS80 116 6 12 994 003 x10 12.05 503 ref 22.11 10.1 13.5 -1.45 x1.40 Tested - 5640 128 6 12 994 003 x1.01 12.02 15.92 0.03 21.12 91 13.5 -1.48 x1.41 Tested - 5660 128 6 12 994 003 x1.01 12.00 15.85 -0.05 21.13 91 13.5 -1.48 x1.41 Tested - 5700 140 6 12 994 003 x1.01 12.00 15.85 -0.05 21.13 91 13.5 -1.48 x1.41 Tested - 5700 140 6 12 994 003 x1.01 12.06 16.07 -0.11 21.99 99 13.5 -1.44 x1.39 Reduced - 508Wag(ch157) - 5825 165 6 12 994 003 x1.01 12.06 16.07 -0.11 21.99 99 13.5 -1.44 x1.39 Reduced - 508Wag(ch157) - 5825 165 6 12 994 003 x1.01 12.04 16.75 01.0 22.21 10.0 13.5 -1.33 x1.34 - 1.45	_																Tested	-	-
WS Section WS																	Tested	_	-
S640 128 6 12 994 003 x101 1202 1592 -0.03 21.12 91. 13.5 -1.48 x1.41 -																		-	-
S700 140 6 12 994 003 ×1.01 12.02 1592 0.03 155 955 13.55 -1.48 ×1.41 Tested												21.12					-	-	-
WS8 5745 149 6 12 994 0.03 ×1.01 12.06 16.07 0.11 21.99 99 13.5 -1.44 ×1.39 Reduced \$<0.8Wkg(chl57) \$525 165 6 12 994 0.03 ×1.01 12.01 16.06 0.03 21.98 98 13.5 -1.30 ×1.35 Tested \$<0.8Wkg(chl57) \$525 165 6 12 994 0.03 ×1.01 12.20 16.06 0.03 21.98 98 13.5 -1.30 ×1.35 Reduced \$<0.8Wkg(chl57) \$<0.8Wkg(ch																	- T 4 1	-	-
WSS 578 578 6																		* < 0.8W/kg (ch157)	-
S825 I65 6																		\(\sigma 0.8 \text{W/kg(\text{GH}\)5/})	-
No.																		*.≤0.8W/kg(ch157)	-
State Stat				MCS0	12	99.4	0.03							13.5			-	-	-
WS5 S240 44 MiCSO 12 994 0.03 x1.01 12.03 15.96 -0.11 21.94 99 13.5 -1.47 x1.40 -	T20																-	-	-
S260 S2 MCS0 12 994 0.03 ×1.01 12.23 16.71 -0.06 22.18 10.0 13.5 -1.27 ×1.34	V52)																Reduced	*. 11a was selected.	-
WS3 5280 56 MCS0 12 994 0.03 x1.01 12.10 16.22 0.19 20.86 8.8 13.5 -1.40 x1.38 -																	-	-	-
S300 60 MCS0 12 994 0.03 x1.01 12.29 16.94 ref 22.09 9.8 13.5 -1.21 x1.32 Reduced * 11a was selected.																	-	_	-
S500 100 MCS0 12 99.4 0.03 ×1.01 11.90 15.49 -0.09 22.27 10.4 13.5 -1.60 ×1.45 -	1		60	MCS0				×1.01		16.94		22.09					Reduced	*. 11a was selected.	-
S560 112 MCS0 12 99.4 0.03 ×1.01 11.88 15.42 -0.11 21.14 9.3 13.5 -1.62 ×1.45																	-	-	-
(W56)	_																	-	-
WS6 S600 120 MCS0 12 99.4 0.03 x1.01 11.99 15.81 0.00 21.41 9.4 13.5 -1.51 x1.42 Reduced *.11a was selected *.5660 132 MCS0 12 99.4 0.03 x1.01 11.93 15.81 0.00 21.14 9.4 13.5 -1.51 x1.42																			-
Secondary Seco	_																Reduced	*. 11a was selected.	-
S700	_																-	-	-
S745 149 MCS0 12 99.4 0.03 ×1.01 12.17 16.48 -0.06 22.76 10.6 13.5 -1.33 ×1.36 - -					12													-	-
(W58) 5785 157 MCS0 12 99.4 0.03 ×1.01 12.23 16.71 ref 22.27 10.1 13.5 -1.27 ×1.34 Reduced **.11a was selected.					12														-
S825 165 MCS0 12 99.4 0.03 x1.01 12.31 17.02 0.08 22.29 10.0 13.5 -1.19 x1.32 - -																		*. 11a was selected.	-
Secondary Color Secondary																	-	-	-
VHT20				MCS0			0.03										-	-	-
WS2 S220	TTOO																	-	-
Mathematical Nation Nation Mathematical Nation Nation Mathematical Nation Nation Nation Nation	V52)																	*. 11a was selected.	-
W53 S280 S6 MCS0 12 99.4 0.03 x1.01 12.19 16.56 -0.08 21.39 9.2 13.5 -1.31 x1.35 - -																		<u>-</u>	-
S300 60 MCS0 12 99.4 0.03 x1.01 12.29 16.94 ref 21.95 9.7 13.5 -1.21 x1.32 Reduced *.11a was selected.																		-	-
Solid Moso 12 99.4 0.03 x1.01 12.02 15.92 -0.04 22.27 10.3 13.5 -1.48 x1.41 - -	V53) _	5300	60	MCS0	12	99.4	0.03	×1.01	12.29	16.94	ref	21.95	9.7	13.5	-1.21	×1.32	Reduced	*. 11a was selected.	-
S560 112 MCS0 12 99.4 0.03 x1.01 11.97 15.74 -0.09 21.23 9.3 13.5 -1.53 x1.42 - -																		-	-
(W56)																		<u>-</u> L	-
(W56) 5600 120 MCS0 12 99.4 0.03 x1.01 11.97 15.74 -0.09 21.22 9.3 13.5 -1.53 x1.42 Reduced * 11a was selected. 5640 128 MCS0 12 99.4 0.03 x1.01 11.99 15.81 -0.07 21.15 9.2 13.5 -1.51 x1.42 - - 5660 132 MCS0 12 99.4 0.03 x1.01 11.94 15.63 -0.12 21.33 9.4 13.5 -1.56 x1.43 - - 5700 140 MCS0 12 99.4 0.03 x1.01 12.12 16.29 0.06 22.07 10.0 13.5 -1.38 x1.37 - - W58) 5785 157 MCS0 12 99.4 0.03 x1.01 12.13 16.33 -0.12 22.51 10.4 13.5 -1.37 x1.37 - - (W58) <	_																	_	-
Self-orange	_																	*. 11a was selected.	-
5700 140 MCS0 12 99.4 0.03 x1.01 12.12 16.29 0.06 22.07 10.0 13.5 -1.38 x1.37 - -		5640	128	MCS0	12	99.4	0.03	×1.01	11.99	15.81	-0.07	21.15	9.2	13.5	-1.51	×1.42		_	-
5745 149 MCS0 12 99.4 0.03 ×1.01 12.13 16.33 -0.12 22.51 10.4 13.5 -1.37 ×1.37 - -																		-	-
(W58) 5785 157 MCS0 12 99.4 0.03 ×1.01 12.25 16.79 ref 22.37 10.1 13.5 -1.25 ×1.33 Reduced *.11a was selected.																		-	-
																		* 11a was selected	-
					12	99.4	0.03	×1.01	12.27	16.87	0.02	22.10	9.8	13.5	-1.23	×1.33	-	. 11a was sciental.	-

Test report No. : 10882639S-A
Page : 10 of 78
Issued date : December 1, 2015

FCC ID : AZD233

				Power			Duty	A	Average				Target	power & fa	actor			
	Fre	20	Data	Setting	Duty		scaled		power		Peak	PAR	Target	Deviation	Tune	SAR		Power
Mode			rate	(soft)	cycle	factor	factor	Res	ault	ΔRef.	power		(including	from max	-up	Tested/	Remarks	Tune
	D 077 3	CILI	D 0 3	` ′	F0 / 7	F 170.1				Į	F 170.1	F 1753	variation)	(-2≤x<0)	factor	Reduced		-up?
	[MHz]	CH	[Mbps]	[-]	[%]	[dB]	[-]	[dBm]	[mW]	[dB]	[dB]	[dB]	[dBm]	[dB]	[-]			
n,HT40	5190	38	MCS0	9	98.8	0.06	×1.01	9.32	8.55	0.22	21.58	12.3	10.5	-1.18	×1.31	-	-	-
(W52)	5230	46	MCS0	9	98.8	0.06	×1.01	9.10	8.13	ref	21.42	12.3	10.5	-1.40	×1.38	Reduced	*. lower power	-
(W53)	5270	54	MCS0	9	98.8	0.06	×1.01	9.23	8.38	0.02	21.46	12.2	10.5	-1.27	×1.34	-	-	-
(1133)	5310	62	MCS0	9	98.8	0.06	×1.01	9.21	8.34	ref	21.15	11.9	10.5	-1.29	×1.35	Reduced	*. lower power	-
	5510	102	MCS0	9	98.8	0.06	×1.01	8.94	7.83	-0.03	20.80	11.9	10.5	-1.56	×1.43	-	-	-
	5550	110	MCS0	9	98.8	0.06	×1.01	8.97	7.89	ref	20.39	11.4	10.5	-1.53	×1.42	-	-	-
(W56)	5590	118	MCS0	9	98.8	0.06	×1.01	8.81	7.60	-0.16	20.36	11.6	10.5	-1.69	×1.48	Reduced	*. lower power	-
	5630	126	MCS0	9	98.8	0.06	×1.01	8.67	7.36	-0.30	19.47	10.8	10.5	-1.83	×1.52	-	-	-
	5670	134	MCS0	9	98.8	0.06	×1.01	9.05	8.04	0.08	21.03	12.0	10.5	-1.45	×1.40	-	-	-
(W58)	5755	151	MCS0	9	98.8	0.06	×1.01	9.18	8.28	-0.04	21.64	12.5	10.5	-1.32	×1.36	-	-	-
(1130)	5795	159	MCS0	9	98.8	0.06	×1.01	9.22	8.36	ref	21.36	12.1	10.5	-1.28	×1.34	Reduced	*. lower power	-
ac,VHT40	5190	38	MCS0	9	98.8	0.03	×1.01	9.29	8.49	ref	20.96	11.7	10.5	-1.21	×1.32	-	-	-
(W52)	5240	48	MCS0	9	98.8	0.03	×1.01	9.09	8.11	-0.20	20.80	11.7	10.5	-1.41	×1.38	Reduced	*. lower power	-
(W53)	5270	54	MCS0	9	98.8	0.03	×1.01	9.24	8.39	-0.09	20.57	11.3	10.5	-1.26	×1.34	-	-	-
(1133)	5310	62	MCS0	9	98.8	0.03	×1.01	9.33	8.57	ref	20.09	10.8	10.5	-1.17	×1.31	Reduced	*. lower power	-
	5510	102	MCS0	9	98.8	0.03	×1.01	8.80	7.59	-0.08	20.42	11.6	10.5	-1.70	×1.48	-	-	-
	5550	110	MCS0	9	98.8	0.03	×1.01	8.88	7.73	ref	20.24	11.4	10.5	-1.62	×1.45	-	-	-
(W56)	5590	118	MCS0	9	98.8	0.03	×1.01	8.79	7.57	-0.09	19.07	10.3	10.5	-1.71	×1.48	Reduced	*. lower power	-
	5630	126	MCS0	9	98.8	0.03	×1.01	8.78	7.55	-0.10	19.49	10.7	10.5	-1.72	×1.49	-	-	-
	5670	134	MCS0	9	98.8	0.03	×1.01	9.01	7.96	0.13	20.42	11.4	10.5	-1.49	×1.41	-	-	-
(W58)	5755	151	MCS0	9	98.8	0.03	×1.01	9.20	8.32	-0.02	20.49	11.3	10.5	-1.30	×1.35	-	-	-
(1150)	5795	159	MCS0	9	98.8	0.03	×1.01	9.22	8.36	ref	20.74	11.5	10.5	-1.28	×1.34	Reduced	*. lower power	-
ac,VHT80 (W52)	5210	42	MCS0	8	97.4	0.06	×1.01	8.22	6.64	-	19.71	11.5	9.5	-1.28	×1.34	Reduced	*. lower power	-
(W53)	5290	58	MCS0	8	97.4	0.06	×1.01	8.25	6.68	-	19.69	11.4	9.5	-1.25	×1.33	Reduced	*. lower power	-
(W56)	5530	106	MCS0	8	97.4	0.06	×1.01	7.95	6.24	ref	20.36	12.4	9.5	-1.55	×1.43	-	-	-
(W30)	5610	122	MCS0	8	97.4	0.06	×1.01	8.03	6.35	0.08	19.10	11.1	9.5	-1.47	×1.40	Reduced	*. lower power	-
(W58)	5775	155	MCS0	8	97.4	0.06	×1.01	8.30	6.76	-	19.74	11.4	9.5	-1.20	×1.32		*. lower power	-

^{*.} SAR test was applied. *. xx.xx highlight is shown the maximum measured output power.

*. Calculating formula: Average power-result: Results (dBm) = (P/M Reading, dBm)+(Cable loss, dB)+(Attenuator, dB)+(duty factor, dB)

Duty factor: (duty factor, dBm) = $10 \times \log(100/(duty \text{ cycle}, \%))$ Deviation form max.: (Power deviation, dB) = (results power (average, dBm)) - (Max.-specification output power (average, dBm)) Duty scaled factor: Duty cycle correction factor for obtained SAR value, Duty scaled factor [-] = 100(%)/(duty cycle, %)

Tune-up factor: Power tune-up factor for obtained SAR value, Tune-up factor [-] = 1/(10 ^(*Deviation from max., dB*//10))

- *. The ES201 of serial number: 5152 with which power was measured in EMC test was used for a SAR test.
- *. Date measured: August 7-10, 2015 / by: S. Takano, T. Hara / Place: No. 1 and No.5 shielded room. (Refer to Test report: 10882638S-M&-N.) (For some additional frequencies) September 3, 2015 / by: Hiroshi Naka / Place: preparation room of No. 7 shielded room. (24 deg C. / 55 %RH)
- *. Uncertainty of antenna port conducted test; Power measurement uncertainty above 1GHz for this test was: (\pm) 0.63 dB

^{*.} Freq.: Frequency, PAR: Peak average ratio ("Peak power"-"Average power", in dBm), Ch: channel, D/R: Data Rate, Higher-P.ch.: Higher power channel, Ref: Reference.

Test report No. : 10882639S-A Page : 11 of 78 : December 1, 2015 Issued date

FCC ID : AZD233

SECTION 7: SAR Measurement results

SAR test results (Wi-Fi, 2.4 GHz band) 7.1

Measurement date: September 28, 2015 Measurement by: Hiroshi Naka

[Liquid measurement]

Toward					L	iquid para	ameters (*	a)				ΔSAR Coefficients(*c		
Target	Liquid		Permittiv	ity (εr) [-]			Conducti	vity [S/m]		Town	Depth	ACAD	Correction	Date measured
Frequency	MHzl type Target Measured L					Toward	Mea	sured	Limit	Temp. [deg.C.]	-1	(1g) [%]		Date measured
[IVIIIZ]		Target	Meas.	Δεr [%]	(*b)	Target	Meas.	Δσ [%]	(*b)	[ucg.C.]	լուույ	(1g) [/0]	requireu:	
2437	Body	52.72	50.43	-4.4	-5% ≤ ET-meas. ≤0%	1.938	1.998	+3.1	0% ≤ σ-meas. ≤+5%	22.3	152	+2.48	not required	September 28, 2015 before SAR test

ISAR measurement results

			SA	R mea	surement	results						Rep	orted S	AR (1	g) [W/kg]		
	Frequency	Doto	EU	Γ setup		Power	SAF	R (1g) [V	V/kg]	SAR	Duty cycle		Out	put av	erage	SAR	
Mode		rate		Gap	Power	drift	Max.va	lue of m	ılti-peak	plot#in	corre	ction	pow	er corr	ection	Corrected	Remarks
	(Channel) [Mbps]		Position	[mm]	supply	[dB]	Meas.	ΔSAR [%]	ΔSAR corrected	Appendix 2-2	Duty [%]	Duty	Meas.		Tune-up		
Ct 1	(2 ACII)	***	(CAD 1.1	111.	DCCC)	<u> </u>		[/0]	correcteu		[70]	scaled	[dBm].	[uDIII]	lactor		
Step 1	(2.4GHz):	Wors	t SAR search b	y 11b(DSSS) mo	de.											
			Front	0	adaptor	-0.06	0.281	+2.48	n/a (*c)	Plot 1-2	99.9	×1.00	14.78	15.5	×1.18	0.332	-
11b	2437(6)	1	Front-right	0	adaptor	0.03	0.273	+2.48	n/a (*c)	Plot 1-3	99.9	×1.00	14.78	15.5	×1.18	0.322	-
110	2437(0)	1	Top(tip)	0	adaptor	-0.09	0.075	+2.48	n/a (*c)	Plot 1-4	99.9	×1.00	14.78	15.5	×1.18	0.089	-
			Left	0	adaptor	0.07	0.589	+2.48	n/a (*c)	Plot 1-1	99.9	×1.00	14.78	15.5	×1.18	0.695	Highest, 2.4GHz

Notes:

SAR test of OFDM mode was reduced, because the estimate reported SAR of OFDM mode was ≤ 1.2 W/kg by using the highest reported SAR of DSSS mode.

OFDM	Ma	ximum tune-	up toleranc	e limit	OFDM scaled	Dece	orted SAR(1g) value	Estimated SAR(1g) value:	Exclusion limit	Standalone SAR
mode	D	SSS	O.	FDM	factor [-]	D333 1ep	oned SAK(1g) value	OFDM [W/kg]	[W/kg]	test require?
mode	[dBm]	[mW] (a)	[dBm]	[mW] (b)	(b)/(a)×100	Setup	[W/kg]	Or Divi [w/kg]	[W/Kg]	test require?
11g	15.5	35.48	13.5	22.39	0.631	Left	0.721	0.455	≤ 1.2	No
n (HT20)	15.5	35.48	13.5	22.39	0.631	Left	0.721	0.455	≤ 1.2	No
n(40HT)	15.5	35.48	11.5	14.13	0.398	Left	0.721	0.287	≤ 1.2	No

Freq.: Frequency, Gap: It is the separation distance between the nearest position of platform outer surface and the bottom outer surface of phantom; Liq.temp: Liquid temperature; Max.: maximum, Meas.: Measured value; Ave.: Average; n/a: not applied.

During test, the EUT was operated with no interface cable and with DC power supplied from the host device which was operated with ac adaptor.

Calibration frequency of the SAR measurement probe (and used conversion factors)

2437 MHz 2450MHz within ±50MHz of calibration frequency 7.17 ±12.0%	SAR test frequency	Probe calibration frequency	Validity	Conversion factor	Uncertainty
	2437 MHz	2450MHz	within ±50MHz of calibration frequency	7.17	±12.0%

^{*.} The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

 $\Delta SAR(1g) = Cer \times \Delta er + C\sigma \times \Delta \sigma, \quad Cer = 7.854E + 4 \times f^3 + 9.402E - 3 \times f^2 - 2.742E - 2 \times f - 0.2026 / C\sigma = 9.804E - 3 \times f^3 - 8.661E - 2 \times f^2 + 2.981E - 2 \times f + 0.7829 = 0.0026 / C\sigma = 9.804E - 3 \times f^3 - 8.661E - 2 \times f^2 + 2.981E - 2 \times f + 0.7829 = 0.0026 / C\sigma = 9.804E - 3 \times f^3 - 8.661E - 2 \times f^2 + 2.981E - 2 \times f + 0.7829 = 0.0026 / C\sigma = 9.804E - 3 \times f^3 - 8.661E - 2 \times f^3 + 9.402E - 3 \times f^3 - 8.661E - 2 \times f^3 + 9.402E - 3 \times f^3 - 8.661E - 2 \times f^3 + 9.402E - 3 \times f^3 - 8.661E - 2 \times f^3 + 9.402E - 3 \times f^3 - 8.661E - 2 \times f^3 + 9.402E - 3 \times f^3 - 8.661E - 2 \times f^3 + 9.402E - 3 \times f^3 - 8.661E - 2 \times f^3 + 9.402E - 3 \times f^3 - 8.661E - 2 \times f^3 + 9.402E - 3 \times f^3 - 9.661E - 2 \times f^3 + 9.402E - 3 \times f^3 - 9.661E - 2 \times f^3 + 9.402E - 3 \times f^3 - 9.661E - 2 \times f^3 + 9.402E - 3 \times f^3 - 9.661E - 2 \times f^3 + 9.402E - 3 \times f^3 - 9.661E - 2 \times f^3 + 9.402E - 3 \times f^3 - 9.661E - 2 \times f^3 + 9.402E - 3 \times f^3 - 9.661E - 2 \times f^3 + 9.402E - 3 \times f^3 - 9.661E - 2 \times f^3 + 9.402E - 3 \times f^3 - 9.661E - 2 \times f^3 + 9.402E - 3 \times f^3 - 9.661E - 2 \times f^3 + 9.402E - 3 \times f^3 - 9.661E - 2 \times f^3 + 9.402E - 3 \times f^3 - 9.661E - 2 \times f^3 + 9.402E - 3 \times f^3 - 9.661E - 2 \times f^3 + 9.402E - 3 \times f^3 - 9.661E - 2 \times f^3 - 9.661E$ Calculating formula:

 Δ SAR corrected SAR (1g) (W/kg) = (Meas. SAR(1g) (W/kg)) × (100 - (Δ SAR(%)) / 100

Reported SAR (1g) (W/kg) = (Measured SAR (1g) (W/kg)) \times (Duty scaled) \times (Tune-up factor) *d. Calculating formula:

Duty scaled = Duty scaled factor: Duty cycle correction factor for obtained SAR value, Duty scaled factor [-] = 100(%) / (duty cycle, %)

Tune-up factor: Power tune-up factor for obtained SAR value, Tune-up factor [-] = $1/(10^{\circ}("Deviation from max., dB"/10))$

(Clause 5.2, 2.4GHz SAR Procedures, in KDB248227 D01 (v02r01))

5.2.1 802.11b DSSS SAR Test Requirements

SAR is measured for 2.4 GHz 802.11b DSSS using either a fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:

- When the reported SAR of the highest measured maximum output power channel (section 3.1) for the exposure configuration is ≤0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- When the reported SAR is > 0.8 W/kg, SAR is required for that exposure configuration using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.

5.2.2 2.4 GHz 802.11g/n OFDM SAR Test Exclusion Requirements

When SAR measurement is required for 2.4 GHz 802.11g/n OFDM configurations, the measurement and test reduction procedures for OFDM are applied (section 5.3, including sub-sections). SAR is not required for the following 2.4 GHz OFDM conditions.

- When KDB Publication 447498 SAR test exclusion applies to the OFDM configuration.
- 2) When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.

UL Japan, Inc. Shonan EMC Lab.

^{*}a. The target value is a parameter defined in Appendix A of KDB865664 D01 (v01r03), the dielectric parameters suggested for head and body tissue simulating liquid

are given at 2000, 2450 and 3000 MHz. Parameters for the frequencies 2000-3000 MHz were obtained using linear interpolation.

*b. Refer to KDB865664 D01 (v01r03), item 2), Clause 2.6; "When nominal tissue dielectric parameters are recorded in the probe calibration data; for example, only target values and tolerance are reported, the measured α and α of the liquid used in routine measurements must be: $\underline{\leq}$ the target α values and also within 5% of the required target dielectric parameters.

^{*}c. The coefficients are parameters defined in clause E.3.3.2, IEEE Std 1528(2013). Since the measured liquid parameters were \leq the target σ values and also within 5% of the required target dielectric parameters, the measured SAR was not compensated by \(\Delta SAR \) coefficients (*. Clause 2) of 2.6, KDB865664 D01 (v01r03)).

Test report No. : 10882639S-A
Page : 12 of 78
Issued date : December 1, 2015
Revised date : December 21, 2015 (-r01)

FCC ID : AZD233

7.2 SAR test result (Wi-Fi, 5 GHz band)

Measurement date: September 29 and 30, 2015 Measurement by: Hiroshi Naka

[Liquid measurement]

Toward		Liquid parameters (*a)								ΔSAR Co	efficients(*c)			
Target Frequency	Liquid		Permittivi	ity (er) [-]			Conducti	vity [S/m]		Tomp	Depth	ΔSAR	Correction	Date measured
[MHz]	type Toward	Target	Meas	sured	Limit	Toward	Mea	sured	Limit	Temp. [deg.C.]	[mm]	(1g) [%]		Date measured
[IVIIIZ]		Target	Meas.	Δεr [%]	(*b)	Target	Meas.	Δσ [%]	(*b)	[ucg.C.]	լուույ	(1g)[/0]	requireu:	
5500		48.61	46.74	-3.8		5.650	5.822	+3.1			9 146	+0.67	not required.	
5580	Body	48.50	46.68	-3.8	-5%≤	5.743	5.936	+3.4	0%≤	22.9		+0.60	not required.	September 29, 2015
5600	40	48.47	46.64	-3.8		5.766	5.955	+3.3		22.9	140	+0.61	not required.	before SAR test
5700			48.34	46.46	-3.9	ET-meas. ≤ 0%	5.883	6.085	+3.4	σ-meas. ≤+5%			+0.62	not required.
5300	Body	48.88	47.05	-3.8	<u> </u>	5.416	5.537	+2.2	= 13/0	22.9	146	+0.69	not required.	September 30, 2015
5785	Douy	48.22	46.32	-3.9	:	5.982	6.236	+4.2	:	22.9	140	+0.59	not required.	before SAR test

[SAR measurement results]

*. Initial test was determined by the manufacture's detail drawing for antenna location of platform

". Initial test was determined by the manufacture's detail drawing for antenna location of platform.																											
	SAR measurement results										Reported SAR (1g) [W/kg]																
	Frequency		EU	T setu		Power				SAR plot#in	Duty cycle correction		Output average power correction			SAR	Remarks										
Mode	(Channel)	rate [Mbps]	Position	Gap [mm]	Power supply	drift [dB]	Meas.		ΔSAR corrected	Appendix 2-2	Duty [%]	Duty scaled	Meas. [dBm].	Max. [dBm]	Tune-up factor	Corrected (*d)											
Step 2	Step 2 (5GHz): Worst SAR search; W53 band (UNII-2A, 5260 MHz-5320 MHz)																										
			Left	0	adaptor	-0.18	0.304	+0.69	n/a (*c)	Plot 2-1	99.4	×1.01	12.11	13.5	×1.38	0.424	-										
	5200((0)		Front-right	0	adaptor	-0.17	0.353	+0.69	n/a (*c)	Plot 2-2	99.4	×1.01	12.11	13.5	×1.38	0.492	-										
11a	5300(60)	6	Front	0	adaptor	-0.04	0.543	+0.69	n/a (*c)	Plot 2-3	99.4	×1.01	12.11	13.5	×1.38	0.757	Highest w53										
			Top(tip)	0	adaptor	-0.06	0.396	+0.69	n/a (*c)	Plot 2-4	99.4	×1.01	12.11	13.5	×1.38	0.552											
Step 3	Step 3 (5GHz): Worst SAR search; W56 band (UNII-2C, 5500 MHz-5700 MHz)																										
	5580(116) 5580(100) 5700(140)	6	Front	0	adaptor	-0.03	0.778	+0.61	n/a (*c)	Plot 3-2	99.4	×1.01	12.02	13.5	×1.41	1.108											
			6	6	Front	0	adaptor	-0.05	0.821	+0.60	n/a (*c)	Plot 3-3	99.4	×1.01	12.05	13.5	×1.40	1.161	-								
					6	6	6	6	6				Left	0	adaptor	-0.20	0.378	+0.60	n/a (*c)	Plot 3-4	99.4	×1.01	12.05	13.5	×1.40	0.534	
11a										Front-right	0	adaptor	-0.20	0.554	+0.60	n/a (*c)	Plot 3-5	99.4	×1.01	12.05	13.5	×1.40	0.783				
											Top(tip)	0	adaptor	-0.13	0.513	+0.60	n/a (*c)	Plot 3-6	99.4	×1.01	12.05	13.5	×1.40	0.725			
		5500(100)		Front	0	adaptor	-0.05	0.832	+0.67	n/a (*c)	Plot 3-1	99.4	×1.01	12.06	13.5	×1.39	1.168	>0.8W/kg(*1)									
		/		Front	U	adaptor	-0.03	0.713	+0.62	n/a (*c)	Plot 3-7	99.4	×1.01	12.02	13.5	×1.41	1.015	-									
Step 4	(5GHz): V	Vorst S	SAR search; W	/58 ban	d (UNII-3, 5	5745 MI	Hz~5825]	MHz)																			
					Left	0	adaptor	-0.07	0.237	+0.59	n/a (*c)	Plot 4-1	99.4	×1.01	12.17	13.5	×1.36	0.326	-								
110	5785(157)	6	Front-right	0	adaptor	-0.07	0.405	+0.59	n/a (*c)	Plot 4-2	99.4	×1.01	12.17	13.5	×1.36	0.556	-										
114		0	Front	0	adaptor	0.03	0.573	+0.59	n/a (*c)	Plot 4-3	99.4	×1.01	12.17	13.5	×1.36		Highest w58										
			Top(tip)	0	adaptor	-0.09	0.312	+0.59	n/a (*c)	Plot 4-4	99.4	×1.01	12.17	13.5	×1.36	0.429	-										
Step 5	(5GHz): S	AR M	easurement V	ariabili	ty (*1)																						
11a	5500(100)	6	Front	0	adaptor	-0.05	0.842	+0.67	n/a (*c)	Plot 5-1	99.4	×1.01	12.06	13.5	×1.39		Highest, w56, Highest, 5Ghz										

Notes

- *. (KDB248227 D01 (v02r01), clause 5.3.1) Since highest reported SAR(1g) of UNII-2A was <1.2 W/kg, SAR measurement of UNII-1 band was omitted.
- *. Freq.: Frequency; Gap: It is the separation distance between the nearest position of platform outer surface and the bottom outer surface of phantom; Liq.temp: Liquid temperature; Max.: maximum, Meas.: Measured value; Ave.: Average; n/a: not applied.
- *. During test, the EUT was operated with no interface cable and with DC power supplied from the host device which was operated with ac adaptor.

*. Calibration frequency of the SAR measurement probe (and used conversion factors)

SAR test frequency	Probe calibration frequency	Validity	Conversion factor	Uncertainty
5300 MHz	5250 MHz	within ±110 MHz of calibration frequency	4.53	±13.1 %
5500, 5580, 5600, 5700 MHz	5600 MHz	within ±110 MHz of calibration frequency	3.78	±13.1 %
5785 MHz	5750 MHz	within ±110 MHz of calibration frequency	4.06	±13.1 %

^{*.} The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

 $Calculating \ formula: \quad \Delta SAR(1g) = Cer \times \Delta er + C\sigma \times \Delta \sigma, \quad Cer = 7.854E + 4 \times f^2 + 9.402E - 3 \times f^2 - 2.742E - 2 \times f 0.2026 / C\sigma = 9.804E - 3 \times f^3 - 8.661E - 2 \times f^2 + 2.981E - 2 \times f + 0.7829 = 0.0026 / C\sigma = 9.804E - 3 \times f^3 - 8.661E - 2 \times f^2 + 2.981E - 2 \times f + 0.7829 = 0.0026 / C\sigma = 9.804E - 3 \times f^3 - 8.661E - 2 \times f^3 - 8.661$

 $\Delta SAR \ corrected \ SAR \ (1g) \ (W/kg) = (Meas. \ SAR (1g) \ (W/kg)) \times (100 - (\Delta SAR (\%)) / \ 100 = (Meas. \ SAR (1g) \ (W/kg)) \times (100 - (Meas. \ SAR (1g) \ (W/kg)) \times (100 - (Meas. \ SAR (1g) \ (W/kg)) \times (100 - (Meas. \ SAR (1g) \ (W/kg))) \times (100 - (Meas. \$

*d. Calculating formula: Reported SAR (1g) $(W/kg) = (Measured SAR (1g) (W/kg)) \times (Duty scaled) \times (Tune-up factor)$

Duty scaled = Duty scaled factor: Duty cycle correction factor for obtained SAR value, Duty scaled factor [-] = 100(%) / (duty cycle, %)

Tune-up factor: Power tune-up factor for obtained SAR value, Tune-up factor $[-] = 1/(10^{\circ} ("Deviation from max., dB"/10))$

(cont'd)

^{*}a. The target value is a parameter defined in Appendix A of KDB865664 D01 (v01r03), the dielectric parameters suggested for head and body tissue simulating liquid are given at 3000 and 5800 MHz. Parameters for the frequencies 3000-5800 MHz were obtained using linear interpolation. Above 5800MHz were obtained using linear extrapolation.

^{*}b. Refer to KDB865664 D01 (v01r03), item 2), Clause 2.6; "When nominal tissue dielectric parameters are recorded in the probe calibration data; for example, only target values and tolerance are reported, the measured εr and σ of the liquid used in routine measurements must be: the target σ values and also within 5% of the required target dielectric parameters."

^{*}c. The coefficients are parameters defined in clause E.3.3.2, IEEE Std 1528(2013). Since the measured liquid parameters were ≤ the target σ and ≥ the target σ values and also within 5% of the required target dielectric parameters, the measured SAR was not compensated by ΔSAR coefficients (*. Clause 2) of 2.6, KDB865664 DOI (v01r03)).

Test report No. : 10882639S-A Page : 13 of 78

FCC ID

Issued date : December 1, 2015

: AZD233

(cont'd)

(Clause 5: SAR TEST PROCEDURE, in KDB248227 D01 (v02r01))

5.1.1 Initial Test Position SAR Test Reduction Procedure

- 1) When the reported SAR of the initial test position is ≤ 0.4 W/kg, further SAR measurement is not required for the other (remaining) test positions in that exposure configuration and 802.11 transmission mode combination within the frequency band or aggregated band. SAR is also not required for that exposure configuration in the subsequent test configuration(s).
- 2) When the reported SAR of the initial test position is > 0.4 W/kg, SAR is repeated for the 802.11 transmission mode configuration tested in the initial test position using subsequent highest extrapolated or estimated 1-g SAR conditions determined by area scans or next closest/smallest test separation distance and maximum RF coupling test positions based on manufacturer justification, on the highest maximum output power channel, until the reported SAR is ≤ 0.8 W/kg or all required test positions (left, right, touch, tilt or subsequent surfaces and edges) are tested.
- 3) For all positions/configurations tested using the initial test position and subsequent test positions, when the reported SAR is > 0.8 W/kg, SAR is measured for these test positions/configurations on the subsequent next highest measured output power channel(s) until the reported SAR is ≤ 1.2 W/kg or all required channels are tested.

*1. SAR Measurement Variability

In accordance with published RF Exposure KDB procedure 865664 D01 (v01r03) SAR measurement 100 MHz to 6 GHz. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~10% from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Mode	Freq.	Data	EUT setup	Measured SAR (1g) [W/kg]		Largest to Smallest	Remarks			
Wiouc	[MHz]	rate	ECT scup	Original	Repeated	SAR Ratio	ixtiiai ks			
11a	5500	6Mbps	Front	0.832	0.842	1 012	*. Second Repeated Measurement is not required since the ratio of the largest to smallest SAR for the original and first repeated measurement is not > 1.20.			