

Document Revision History

Date	Revision	Comments
$2 / 13 / 2020$	A	Initial release
$4 / 23 / 2020$	B	Update section 9.0

Table of Contents

Part 1 of 2

1.0 Introduction 5
2.0 FCC MPE Summary 5
3.0 Abbreviations / Definitions 5
4.0 Referenced Standards and Guidelines 6
5.0 Power Density Limits 6
$6.0 \quad \mathrm{~N}_{\mathrm{c}}$ Test Channels 8
7.0 Measurement Equipment 8
8.0 Measurement System Uncertainty Levels 8
9.0 Product and System Description 9
10.0 Additional Options and Accessories 10
11.0 Test Set-Up Description 10
12.0 Method of Measurement for DVR with trunk mounted antenna(s) 11
12.1 External/Bystander vehicle MPE measurements 11
12.2 Internal/Passenger vehicle MPE measurements 11
13.0 Method of Measurement APX6500 7/800 MHz Mobile radio with roof mounted antenna(s) 12
13.1 External/Bystander vehicle MPE measurements 12
13.2 Internal/Passenger vehicle MPE measurements 12
14.0 MPE Variability Requirement for External/Bystander vehicle MPE measurement 13
15.0 MPE Calculations 13
16.0 Antenna Summary 14
17.0 Test Results Summary 15
17.1 MPE Test Results Summary for APX6500 7/800 MHz Mobile radio and DVR VHF 15
17.2 MPE Test Results for Bluetooth and WLAN 16
17.3 Simultaneous Transmission 18
18.0 Conclusion 24
19.0 User Instructions Considerations 25
Appendix A - Antenna Locations, Test Distances, and Cable Losses 26
Appendix B - Probe Calibration Certificates 33
Appendix C - Photos of Assessed Antennas 39

Part 2 of 2

Appendices

Appendix D - MPE Test Results Summary for APX6500 7/800 MHz .. 2
Appendix E - MPE Test Results Summary for Companion Device (DVR VHF) 18
Appendix F - MPE Measurement Results for APX6500 7/800 MHz.. 28
Appendix G - MPE Measurement Results for Companion Device (DVR VHF) 57

1.0 Introduction

This report details the test setup, test equipment and test results of Maximum Permissible Exposure (MPE) performed at Motorola Solutions' outside test site for APX6500 7/800 MHz (FCC ID: AZ492FT7124) and Companion Device DVRSVHF (FCC ID: LO6-DVRSVHF).

2.0 FCC MPE Summary

Table 1

APX6500 7/800 MHz band (FCC ID: AZ492FT7124) Roof Mounted Antenna					
Equipment Class	Frequency Band (MHz)	Passenger		Bystander	
	Power Density $\left(\mathrm{mw} / \mathrm{cm}^{2}\right)$	Highest \% of Limit	Power Density $\left(\mathrm{mw} / \mathrm{cm}^{2}\right)$	Highest \% of Limit	
	$7 / 800$ (769-775; 799-824; 851-869)	0.029	5.5%	0.070	12.2%
DTS	WLAN (2412-2462)	0.018	1.77%	0.018	1.77%
NII	WLAN (5180-5825)	0.007	0.67%	0.007	0.67%
DSS	BT (2402-2480)	0.005	0.50%	0.005	0.50%

Companion Mobile DVR VHF (FCC ID: LO6-DVRSVHF) Trunk Mounted Antenna					
Equipment Class	Frequency Band (MHz)	Passenger		Bystander	
		$\begin{aligned} & \text { Power } \\ & \text { Density } \\ & \left(\mathrm{mw} / \mathrm{cm}^{2}\right) \end{aligned}$	Highest \% of Limit	Power Density (mw/ cm^{2})	Highest \% of Limit
TNB	150.8-173.4	0.230	114.8\%	0.042	21.0\%
Simultaneous Transmissions					
Simultaneous Transmissions conditions		Passenger		Bystander	
		Highest Combine \% of limit		Highest Combine \% of limit	
APX6500 (7/800 MHz band) + WLAN + DVR VHF		122.1\%		27.7\%	

Note: Result in bold required SAR simulation.

3.0 Abbreviations / Definitions

CNR: Calibration Not Required
CW: Continuous Wave
DUT: Device Under Test
EME: Electromagnetic Energy
FM: Frequency Modulation
MPE: Maximum Permissible Exposure
GPS: Global Positioning System
LMR: Land Mobile Radio
SAR: Specific Absorption Rate
NA: Not Applicable
BS: Bystander
PB: Passenger Back seat

PF: Passenger Front seat
PTT: Push to Talk
WLAN: Wireless Local Area Network
TDMA: Time Division Multiple Access

4.0 Referenced Standards and Guidelines

This product is designed to comply with the following applicable national and international standards and guidelines.

- United States Federal Communications Commission, Code of Federal Regulations; Rule Part 47CFR § 1.1310, § 2.1091 (d) and § 2.1093 for RF Exposure, where applicable.
- Federal Communications Commission, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields", OET Bulletin 65 (Edition 97-01), FCC, Washington, D.C.: August 1997.
- Institute of Electrical and Electronics Engineers (IEEE) C95.1-2019
- American National Standards Institute (ANSI) / Institute of Electrical and Electronics Engineers (IEEE) C95. 1-1992. Specific to FCC rules and regulations.
- Institute of Electrical and Electronics Engineers (IEEE) C95.3-2002
- International Commission on Non-Ionizing Radiation Protection (ICNIRP) 1998
- Ministry of Health (Canada) Safety Code 6 (2015), Limits of Human Exposure to Radio frequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz
- RSS-102 (Issue 5) - Radio Frequency (RF) Exposure Compliance of Radio communication Apparatus (All Frequency Bands)
- FCC KDB - 447498 D01 General RF Exposure Guidance v06
- FCC KDB - 865664 D02 RF Exposure Reporting v01r02

5.0 Power Density Limits

Table 2 - Occupational / Controlled Exposure Limits

Frequency Range (MHz)	FCC OET Bulletin 65/ 47CFR $\S 1.1310$	ICNIRP	IEEE C95.1 2019	$\begin{gathered} \text { RSS-102 } \\ \text { Issue } 52015 \\ \hline \end{gathered}$
	$\mathrm{mW} / \mathrm{cm}^{\wedge} 2$	W/m^2	W/m^2	W/m^2
10-20				10.0
20-48				$44.72 / f^{0.5}$
30-300	1.0			
48-100				6.455
10-400		10.0		
100-400			10.0	
100-6,000				$0.6455 f^{0.5}$
$300-1,500$	$\mathrm{f} / 300$			

Table 2 - Occupational / Controlled Exposure Limits (Con't.)

Frequency Range (MHz)	FCC OET Bulletin 65/ 47CFR $\S 1.1310$	ICNIRP	IEEE C95.1 2019	$\begin{gathered} \text { RSS-102 } \\ \text { Issue } 52015 \\ \hline \end{gathered}$
	$\mathrm{mW} / \mathrm{cm}^{\wedge} 2$	W/m^2	W/m^2	W/m^2
400-2,000		f/40	f/40	
1,500-100,000	5.0			
2,000-300,000		50.0	50.0	
6,000-15,000				50.0
15000-150,000				50.0
150000-300,000				$3.33 \times 10^{-4} f$

Table 3 - General Population / Uncontrolled Exposure Limits

| $\begin{array}{c}\text { Frequency Range } \\ \text { (MHz) }\end{array}$ | $\begin{array}{c}\text { FCC OET } \\ \text { Bulletin 65/ } \\ \text { 47CFR } \\ \text { § 1.1310 }\end{array}$ | | ICNIRP | $\begin{array}{c}\text { IEEE } \\ \text { C95.1 } \\ \text { 2019 }\end{array}$ |
| :---: | :---: | :---: | :---: | :---: | \(\left.\begin{array}{c}RSS-102

Issue 5 2015\end{array}\right]\)

6.0 N_{c} Test Channels

The number of test channels is determined by using Equation 1 below. This equation is available in FCC's KDB 447498. The test channels are appropriately spaced across the antenna's frequency range.

Equation 1 - Number of test channels
$\mathrm{N}_{\mathrm{c}}=$ Round $\left\{\left[100\left(\mathrm{f}_{\text {high }}-\mathrm{f}_{\text {low }}\right) / \mathrm{f}_{\mathrm{c}}\right]^{0.5} \mathrm{x}\left(\mathrm{f}_{\mathrm{c}} / 100\right)^{0.2}\right\}$
where N_{c} is the number of test channels, f figh and f fow are the highest and lowest frequencies within the transmission band, f_{c} is the mid-band frequency, and frequencies are in MHz.

7.0 Measurement Equipment

Table 4 - Equipment

Equipment Type	Model \#	SN	Calibration Date	Calibration Due Date
Automobile	Volvo 240-1988	NA	NA	NA
Survey Meter	ETS Model HI-2200	00086316		
Probe - E-Field	ETS Model E100	00206767	$7 / 2 / 2018$	$7 / 2 / 2019$
Probe-H-Field	ETS Model H200	00206937		

E-field measurements are in $\mathrm{mW} / \mathrm{cm}^{2}$.
H field measurements are in A / m.

8.0 Measurement System Uncertainty Levels

Table 5 - Uncertainty Budget for Near Field Probe Measurements

	Tol. $\mathbf{(\pm}$ $\%)$	Prob .	Dist.	Divisor	$(\pm \%)$	
$\boldsymbol{u}_{\boldsymbol{i}}$			$\boldsymbol{v}_{\boldsymbol{i}}$			
Measurement System	7.1	N	1.00	7.1	50.4	∞
Probe Calibration	0.0	N	1.00	0.0	0.0	\ngtr
Survey Meter Calibration	8.0	R	1.73	4.6	21.33	∞
Hemispherical Isotropy	5.0	R	1.73	2.9	8.33	∞
Linearity	1.0	R	1.73	0.6	0.33	∞
Pulse Response	3.0	R	1.73	1.7	3.00	∞
RF Ambient Noise	8.0	R	1.73	4.6	21.33	∞
RF Reflections	10.0	R	1.73	5.8	33.333	∞
Probe Positioning					0.00	
Test sample Related	3.0	N	1.00	3.0	9.0	∞
Antenna Positioning	5.0	R	1.73	2.9	8.33	∞
Power drift	4.8	N	1.00	4.8	23.04	∞
Bystander measurement uncertainty	8.1	N	1.00	8.1	65.61	∞
Passenger measurement uncertainty		RSS		15.6	15.6	∞
Combined Standard Uncertainty						
Expanded Uncertainty (95\% CONFIDENCE LEVEL)	$k=2$		31	31		

9.0 Product and System Description

APX6500 7/800 MHz operates in the LMR bands using either frequency modulation (FM) with 100% transmit duty cycle or TDMA signals with maximum of 50% transmit duty cycle. For conservative assessment, FM signal was tested. A duty factor of 50% applies for PTT operation mode.

This device also incorporates a Class 1 Bluetooth device which is a Frequency Hopping Spread Spectrum (FHSS) technology. The Bluetooth radio modem is used to wireless link audio accessories. The maximum actual transmission duty cycle is imposed by the Bluetooth standard. The maximum duty cycle for BT is 100%. Bluetooth Low Energy (BT LE) intended to reduce power consumption.

This device also contains WLAN technology for data capabilities over $802.11 \mathrm{~b} / \mathrm{g} / \mathrm{h} 2.4 \mathrm{GHz}$ and $802.11 \mathrm{a} / \mathrm{n} /$ ac 5 GHz wireless networks.

MOBEXCOM DVR VHF is Digital Vehicular Repeater (DVR) manufactured by Futurecom System Group. At standalone the DVR operates at a maximum power up to 20W, but when the DVR is interfaced to the APX6500 $7 / 800 \mathrm{MHz}$ Mobile radio, the maximum power is 6 W as listed in Table 6. For more detailed information refer to the Product Safety and RF Energy Exposure Booklet for DVR.

Table 6 below summarizes the technologies, bands, maximum duty cycles and maximum output powers. Maximum output powers are defined as upper limit of the production line final test station.

Table 6 - Bands, Duty Cycle and Maximum power

Technologies	Bands (MHz)		Duty Cycle (\%)	Max Power (W)	
$\begin{gathered} \text { APX6500 } \\ (7 / 800 \mathrm{MHz}) \end{gathered}$	762-805; 806-870 (7/800 band)	762-805	50 (PTT)	36	
		806-870	50 (PTT)	42	
	BT 2402-2480		100	0.0112	
	BT LE 2402-2480		100	0.0063	
	WLAN 2400 - 2462 (802.11b/g/n)		100	0.0398 (802.11b)	
			0.0158 (802.11g)		
			0.0126 (802.11n)		
	WLAN 5180-5825 (802.11 a/n/ac)			100	0.0158
DVR VHF	136-174			100	6

This test report covers the RF exposure performance of the APX6500 7/800 MHz FCC ID: AZ492FT7124 interfaced with, and transmitting simultaneously with Companion device (DVR VHF) FCC ID: LO6-DVRSVHF. DVR operate in repeater; transmit with duty cycle up to 100%. A duty factor of 50% applies for APX $65007 / 800 \mathrm{MHz}$ with PTT operating mode.

Table 7 lists the simultaneous transmission conditions.

$$
\text { Table } 7 \text { - Simultaneous transmission conditions }
$$

Simultaneous transmission conditions	APX6500 7/800 MHz	DVR VHF
APX6500 7/800 MHz + DVR VHF	x	x

Note:
x : Simultaneous transmitting antennas

This device will be marketed to and used by employees solely for work-related operations. User training is the responsibility of the organizations that employ the individuals using the occupational device. The Product Safety and RF Energy Exposure Booklet for Digital Vehicular Repeater Systems (DVRS) contains all the information necessary to inform the organization and its employees in safe usage and for creating training materials or conducting instructional sessions for those employees.

Accordingly this product is classified as Occupational/Controlled Exposure. However, in accordance with FCC requirements, the passengers inside the vehicle and the bystanders external to the vehicle are evaluated to the General Population/Uncontrolled Exposure Limits.
(Note that "Bystanders" as used herein are people other than operator)

10.0 Additional Options and Accessories

Not available.

11.0 Test Set-Up Description

Assessments were performed with APX6500 7/800 MHz Mobile radio and Companion device (DVR VHF) installed in the test vehicle, at the specified distances and test locations indicated in sections 12.0, 13.0 and Appendix A.

All antennas described in Table 8 were considered in order to develop the test plan for this product. Antennas were installed and tested per their appropriate mount locations (Roof / Trunk) and defined test channels. The DVR antenna mounted at center of the trunk (for external/bystander measurement) or toward the center of the trunk at a minimum 85 cm from backseat passenger (for Internal/passenger measurement), and the APX6500 7/800 MHz Mobile radio antennas are mounted at the center of the roof.

The system was tested using a low-loss 16^{\prime} Teflon RG58A/U cable attaching the radio to the transmit antenna. This cable is shorter and lower attenuation than the 17 ' RG58A/U cables supplied in the customer kits for connecting the radio to the transmit antenna. The cable used in
the test setup also has lower attenuation over the test frequency range than the cable provided in the customer kits. The use of a shorter cable with lower attenuation in the test setup ensures that the test data is more conservative with regards to the actual installation. Cable losses are reported in Appendix A.

12.0 Method of Measurement for DVR with trunk mounted antenna(s)

12.1 External/Bystander vehicle MPE measurements

Initially the DVR antenna is located at the center of the trunk. Refer to Appendix A for antenna location and distance.

MPE measurements for bystander (BS) conditions are determined by taking the average of (10) measurements in a 2 m vertical line for each of the (5) bystander test locations indicated in Appendix A with 20 cm height increments, with the distance of 90 cm from the test vehicle's body, as stated in the user manual. The measurement probe is positioned orthogonal to antenna (typically parallel to ground with a vertically mounted antenna) and aimed directly at the antenna's axis. These measurements are representative of persons other than the operator standing next to the vehicle.

12.2 Internal/Passenger vehicle MPE measurements

The DVR antenna is located toward the center of the trunk at a minimum 85 cm from backseat passenger. Refer to Appendix A for antenna location and distance.

MPE measurements for passenger front seat (PF) and backseat (PB) conditions are determined by taking the average of the (3) measurements (Head, Chest, and Lower Trunk) inside the vehicle for both the front and back seats.

The backseat is a bench seat and therefore each position (Head, Chest \& Lower Trunk) were scanned across (horizontally) the seat starting from the middle of the seat to the edge of the seat stopping 20 cm from the vehicle door. Similar process was used in the front bucket seat.

The probe handle is oriented parallel (horizontal) to the ground and pointed towards the back of the vehicle. The probe handle is not oriented normal to the seat surface. The probe head (incorporating the field sensors) is scanned continuously (using the max-hold function available in the meter) along three test axes which are parallel to the seat angle (intended as the line determined by the intersection of the plane of the seat and the plane of the backrest) and are 20 cm from the seat surface. One test axis is at the Head height, another is at the Chest height, and another is at the Lower Trunk height. The maximum field level value recorded for each test axis is logged. The MPE is determined by averaging these three maximum values regardless of the geometrical location where they were observed. For instance, the locations of the three maxima may lie on different vertical (relative to ground) lines.

This approach leads to results that are representative of the exposure of vehicle occupants since it is based on an average across the body portions closest to the antenna for trunk mount positions, and is conservatively biased because the highest results for each test axis are combined, e.g. the highest head exposure could be in the middle of the seat while the highest lower trunk exposure could be

13.0 Method of Measurement APX6500 7/800 MHz Mobile radio with roof mounted antenna(s)

The installation requirements for this radio indicate that in multiple single-band antenna configurations and the antennas should be installed at the center of the roof.

13.1 External/Bystander vehicle MPE measurements

Antenna is located at the center of the roof. (Refer to Appendix A for antenna location and distance)

MPE measurements for bystander (BS) conditions are determined by taking the average of (10) measurements in a 2 m vertical line for each of the (5) bystander test locations indicated in Appendix A with 20 cm height increments at the test distance of 90 cm from the test vehicle body.
The measurement probe is positioned orthogonal to antenna (typically parallel to ground with a vertically mounted antenna) and aimed directly at the antenna's axis. These measurements are representative of persons other than the operator standing next to the vehicle.

13.2 Internal/Passenger vehicle MPE measurements

Antenna is located at the center of the roof. (Refer to Appendix A for antenna location and distance)

MPE measurements for passenger front seat (PF) and backseat (PB) conditions are determined by taking the average of the (3) measurements (Head, Chest, and Lower Trunk) inside the vehicle for both the front and back seats.

The backseat is a bench seat and therefore each position (Head, Chest \& Lower Trunk) were scanned across (horizontally) the seat starting from the middle of the seat to the edge of the seat stopping 20 cm from the vehicle door. Similar process was used in the front bucket seat.

The probe handle is oriented parallel (horizontal) to the ground and pointed towards the back of the vehicle. The probe handle is not oriented normal to the seat surface. The probe head (incorporating the field sensors) is scanned continuously (using the maxhold function available in the meter) along three test axes which are parallel to the seat angle (intended as the line determined by the intersection of the plane of the seat and the plane of the backrest) and are 20 cm from the seat surface. One test axis is at the Head height, another is at the Chest height, and another is at the Lower Trunk height. The maximum field level value recorded for each test axis is logged. The MPE is determined by averaging these three maximum values regardless of the geometrical location where they were observed. For instance, the locations of the three maxima may lie on different vertical (relative to ground) lines.

This approach leads to results that are representative of the exposure of vehicle occupants since it is based on an average across the body portions closest to the antenna
for both trunk and roof mount positions, and is conservatively biased because the highest results for each test axis are combined, e.g. the highest head exposure could be in the middle of the seat while the highest lower trunk exposure could be closer to the door.

14.0 MPE Variability Requirement for External/Bystander vehicle MPE measurement

If all the MPE bystander measurements for a particular antenna are below 50% of the FCC MPE limit, no variability testing for that antenna is required.

If one or more MPE bystander measurements for a particular is between $50-80 \%$ of the MPE limit, with no results $>80 \%$, variability testing shall be done on the single worst case for that antenna.

For any MPE bystander measurement above 80% of the MPE limit, variability testing shall be done for all of such configuration. When SAR simulation is performed for a particular antenna configuration to determine compliance, variability measurements are not required for that antenna configuration.

15.0 MPE Calculations

The final MPE results for APX6500 7/800 MHz Mobile radio and Companion device (DVR VHF) are presented in section 17.0. These results are based on 50% duty cycle for APX6500 $7 / 800 \mathrm{MHz}$ (PTT operation) and 100% duty cycle for DVR VHF (repeater operation).

Below is an explanation of how the MPE results are calculated. Refer to Appendix F for APX6500 7/800 MHz; Appendix G for Companion device (DVR VHF).

External to vehicle (Bystander) - 10 measurements are averaged over the body
(Avg_over_body).
Internal to vehicle (Passengers) - 3 measurements are averaged over the body (Avg_over_body).
The Average over Body test methodology is consistent with IEEE/ANSI C95.3-2002 guidelines.

Therefore;

Equation 2 - Power Density Calculation (Calc._P.D.)

Calc._P.D. $=($ Avg_over_body $) *($ probe_frequency_cal_factor $) *\left(d u t y _c y c l e\right)$
Note 1: The highest "average" cal factors from the calibration certificates were selected for the applicable frequency range. Linear interpretation was used to determine "probe_frequency_cal_factor" for the specific test frequencies.

Note 2: The E-field probe calibration certificate's frequency cal factors were determined by measuring V/m. The survey meter's results were measured in power density ($\mathrm{mW} / \mathrm{cm}^{2}$) and therefore the "probe_frequency_cal_factor" was squared in equation 2 to account for these results.

Note 3: The H-field probe calibration certificate's frequency cal factors were determined by measuring A/m. The survey meter's results were measured in A/m and therefore the "Avg_over_body" A/m results were converted to power density ($\mathrm{mW} / \mathrm{cm}^{2}$) using the equation 3. H-field measurements are only applicable to frequencies below 300 MHz .

Equation 3 - Converting $\mathbf{A / m}$ to $\mathbf{m W} / \mathbf{c m}^{\wedge} \mathbf{2}$

$m W / \mathrm{cm}^{\wedge} 2=(A / m)^{\wedge} 2 * 37.699$

Equation 4 - Power Density Maximum Calculation
Max_Calc._P.D. $=$ P.D._calc $* \frac{\text { max_output_power }}{\text { initial_output_power }}$
Note 4: For initial output power $>$ max_output_power; max_output_power $/$ initial output power $=1$

16.0 Antenna Summary

Table below summarizes the tested or evaluated antennas and their descriptions, mount location (roof/trunk), overlap of FCC bands, number of test channels per FCC KDB 447498 ($\mathrm{FCC} \mathrm{N} \mathrm{N}_{\mathrm{c}}$). This information was used to determine the test configurations presented in this report.

Table 8

Antenna No.	Antenna Model	Frequency Range (MHz)	Physical Length (cm)	Gain (dBi)	Remarks	Mount Location (Roof/ Trunk)	Overlap FCC Bands (MHz)	$\begin{gathered} \text { FCC } \\ \mathbf{N}_{\mathbf{c}} \end{gathered}$
APX6500 7/800 MHz								
1	HAF4013A	762-870	6.1	5.15	1/4 wave	R	$\begin{aligned} & 769-775 ; \\ & 799-824 ; \\ & 851-869 \\ & \hline \end{aligned}$	9
2	HAF4014A	762-870	57.7	5.15		R	$\begin{aligned} & \hline 769-775 ; \\ & 799-824 ; \\ & 851-869 \\ & \hline \end{aligned}$	9
3	HAF4016A	762-870	9	2.15	1/4 wave	R	$\begin{aligned} & \hline 769-775 ; \\ & 799-824 ; \\ & 851-869 \\ & \hline \end{aligned}$	9
4	HAF4017A	762-870	34.5	5.15		R	$\begin{aligned} & \hline 769-775 ; \\ & 799-824 ; \\ & 851-869 \\ & \hline \end{aligned}$	9
5	PMAN5100A	2400-2500	5.7 (L) x 1.9 (W)	3.0		Glass mount	2412-2462	3
6	PMAN5101A	$\begin{gathered} 2400-2500 / \\ 4900-5900 \\ \hline \end{gathered}$	5.4 (L) $\times 1.32$ (W)	$\begin{gathered} \hline 2.7 / \\ 0.2 \\ \hline \end{gathered}$		Glass mount	$\begin{gathered} \hline 2412-2462 ; \\ 5180-5825 \\ \hline \end{gathered}$	3
7	AN000163A01	$\begin{gathered} 2400-2500 / \\ 4900-5900 \\ \hline \end{gathered}$	7	$\begin{gathered} \hline 3.5 / \\ 3.3 \\ \hline \end{gathered}$	Monopole	Roof/ Trunk	$\begin{gathered} 2412-2462 ; \\ 5180-5825 \\ \hline \end{gathered}$	3
8	AN000163A05	$\begin{gathered} 2400-2500 / \\ 4900-5900 \\ \hline \end{gathered}$	7	$\begin{gathered} 2.5 / \\ 1.6 \\ \hline \end{gathered}$	Monopole	Roof/ Trunk	$\begin{gathered} 2412-2462 ; \\ 5180-5825 \end{gathered}$	3
DVR VHF								
9	HAD4006A	136-144	52.0	2.15	1/4 wave	Trunk	NA	0
10	HAD4007A	144-150.8	49.0	2.15	1/4 wave	Trunk	150.8	1
11	HAD4008A	150.8-162	45.5	2.15	1/4 wave	Trunk	150.8-162	3
12	HAD4009A	162-174	43.0	2.15	1/4 wave	Trunk	162-173.4	3

17.0 Test Results Summary

17.1 MPE Test Results Summary for APX6500 7/800 MHz Mobile radio and DVR VHF

Refer to the following appendices for MPE test results for each test configuration: antenna location, test positions (BS1-Bystander test location \#1, BS2-Bystander test location \#2, BS3Bystander test location \#3, BS4-Bystander test location \#4, BS5-Bystander test location \#5, PBPassenger Backseat, PF-Passenger Front seat), E/H field measurements, antenna model \& freq. range, maximum output power, initial power, TX frequency, max calculated power density results, applicable FCC specification limits and $\%$ of the applicable specification limits.

- Appendix D for APX6500 7/800 MHz
- Appendix E for Companion Device (DVR VHF)

Table 9 summarized the highest maximum calculated power density and highest $\%$ of the applicable specification limit for each standalone transmitters (APX6500 7/800 MHz Mobile radio and DVR VHF).

Table 9

Test Positions	$\begin{gathered} \text { APX6500 } \\ \text { (FCC ID: AZ492FT7124) } \end{gathered}$		DVR VHF(FCC ID: LO6-DVRSVHF)	
	Power Density ($\mathrm{mw} / \mathrm{cm}^{2}$)	Highest \% of Limit	Power Density ($\mathrm{mw} / \mathrm{cm}^{2}$)	Highest \% of Limit
FCC US				
Passenger, Front Seat (PF)	0.018	3.40\%	0.036	18.00\%
Passenger, Back Seat (PB)	0.029	5.50\%	0.230	114.80\%
Bystander \#1 (BS-1)	0.070	12.20\%	0.013	6.40\%
Bystander \#2 (BS-2)	0.040	7.40\%	0.022	10.90\%
Bystander \#3 (BS-3)	0.030	4.90\%	0.042	21.00\%
Bystander \#4 (BS-4)	0.020	2.90\%	0.041	20.50\%
Bystander \#5 (BS-5)	0.020	3.80\%	0.022	10.90\%
ISED Canada				
Passenger, Front Seat (PF)	0.018	7.20\%	0.036	27.80\%
Passenger, Back Seat (PB)	0.029	11.60\%	0.230	177.90\%
Bystander \#1 (BS-1)	0.070	25.80\%	0.015	11.60\%
Bystander \#2 (BS-2)	0.040	15.50\%	0.022	16.80\%
Bystander \#3 (BS-3)	0.030	10.40\%	0.042	32.50\%
Bystander \#4 (BS-4)	0.020	6.10\%	0.041	31.70\%
Bystander \#5 (BS-5)	0.020	8.00\%	0.022	17.00\%

17.2 MPE Test Results for Bluetooth and WLAN

Antenna PMAN5100A and PMAN5101A was intended for mounting on the windshield of the vehicle. These antennas should be installed close to the top, and on the front windshield only. Antennas AN000163A01 and AN000163A05 support WLAN $2.4 \mathrm{GHz} / 5 \mathrm{GHz}$ should be installed at roof or trunk of the vehicle. WLAN 2.4 GHz and 5 GHz will not transmit simultaneously.

MPE calculation was use to determine power density for these transmitters due to lower power. According to FCC's OET Bulletin 65 Edition 97-01 Section 2, calculations can be made to predict RF field strength and power density levels around typical RF sources. Equation (5) is generally accurate in far-field of an antenna.

Equation 5 - Power Density Calculation

$$
S=\frac{P_{t} G}{4 \Pi d^{2}} F
$$

Equation (5) accounts for the maximum duty cycle of the signal, and the factor, F , to provide a worst-case prediction of power density per FCC OET Bulletin 65, Edition 97-01 1997.

Where: $\quad \mathrm{S}=$ power density
$\mathrm{P}_{\mathrm{t}}=$ maximum output power scaled by the maximum duty cycle of the signal
$\mathrm{G}=$ power gain of the antenna in the direction of interest relative to an isotropic radiator
d = distance from antenna
$\mathrm{F}=$ Enhancement factor [1 or 2.56 for predicting ground-level field strength]
Table 11 summarized the MPE calculation for each standalone transmitter bands, Bluetooth and WLAN.

Table 10

Notes:

1) Distance from antenna (d), 20 cm for more conservative estimation.
2) Cable loss (L), all cable loss include in antenna gain, so should be 0 dB .
3) Enhancement Factor (F), 1 (Ground reflection already factor in during antenna characterization)

17.3 Simultaneous Transmission

APX6500 7/800 MHz will transmit simultaneously with Companion device (DVR VHF); refer to Table 7 for all simultaneous transmission conditions.

The combine MPE results for APX6500 7/800 MHz and Companion device (DVR VHF) were calculated base on the percent of MPE limit for each applicable test channels according to the formula below. This is due to the signals emitted by each individual transmitter are statistically uncorrelated; the collective compliance of the transmitters is determined by summing the individual ratios between actual measured power density (S) and maximum allowed MPE exposure. Compliance is achieved if the total exposure (T) is less than one.

Formula:

$$
T=\frac{S_{1}}{M P E_{1}}+\frac{S_{2}}{M P E_{2}}+\ldots<1
$$

The highest combined power density percentage of the applicable specification limits are indicating in table 11.

Table 11- Highest Combine MPE \% of limits

Test Positions	$\begin{gathered} \text { APX6500 } \\ \text { (FCC ID: AZ492FT7124) } \end{gathered}$		DVR VHF (FCC ID: LO6DVRSVHF)	APX6500 + WLAN + DVR VHF	
	7/800 (762-870 MHz)	WLAN	$\begin{gathered} \text { VHF } \\ (136-174 \mathrm{MHz}) \end{gathered}$		
	[1] Highest \% of Limit	[2] Highest \% of Limit	[3] Highest \% of Limit	$[1]+[2]+[3]$ Combine \% of Limit	Table No.
FCC US					
Passenger, Front Seat (PF)	3.4\%	1.77\%	18.0\%	23.2\%	
Passenger, Back Seat (PB)	5.5\%	1.77\%	114.8\%	122.1\%	12
Bystander \#1 (BS-1)	12.2\%	1.77\%	6.4\%	20.4\%	
Bystander \#2 (BS-2)	7.4\%	1.77\%	10.9\%	20.1\%	
Bystander \#3 (BS-3)	4.9\%	1.77\%	21.0\%	27.7\%	
Bystander \#4 (BS-4)	2.9\%	1.77\%	20.5\%	25.2\%	
Bystander \#5 (BS-5)	3.8\%	1.77\%	10.9\%	16.5\%	
ISED Canada					
Passenger, Front Seat (PF)	7.2\%	3.30\%	27.8\%	38.3\%	
Passenger, Back Seat (PB)	11.6\%	3.30\%	177.9\%	192.8\%	13
Bystander \#1 (BS-1)	25.8\%	3.30\%	11.6\%	40.7\%	
Bystander \#2 (BS-2)	15.5\%	3.30\%	16.8\%	35.6\%	
Bystander \#3 (BS-3)	10.4\%	3.30\%	32.5\%	46.2\%	
Bystander \#4 (BS-4)	6.1\%	3.30\%	31.7\%	41.1\%	
Bystander \#5 (BS-5)	8.0\%	3.30\%	17.0\%	28.3\%	

Note: Refer to indicated table no. for result in bold to determine configurations that require SAR simulations.

Table 12 (a) - Combined MPE \% of FCC US limit (Passenger, Back Seat) (APX6500 7/800 MHz_E Field \& Companion Device DVR VHF_E Field)

					DVRS VHF Antenna (Trunk Mounted)						
			E/H Field		E Field						
			DVRS Antenna		$\begin{array}{\|c} \text { HAD4007A, } \\ 1 / 4 \text { Wave } \\ (144-150.8 \mathrm{MHz}) \end{array}$	HAD4008A, $1 / 4$ Wave ($\mathbf{1 5 0 . 8}$-162MHz)			HAD4009A, 1/4 Wave ($\mathbf{1 6 2 - 1 7 4 M H z)}$		
			DVR Freq (MHz)		150.8000	150.8000	156.4000	162.0000	162.0000	167.7000	173.4000
$\begin{gathered} \text { (roof } \\ \text { Mounted) } \end{gathered}$	E/H Field	APX6500 Antenna (Roof Mounted)	LMR Freq (MHz)	\% of FCC Limit	51.4	49.0	68.4	114.8	86.2	80.3	92.3
	E Field	HAF4013A, $\mathbf{1 / 4}$ Wave, (762-870MHz)	769.0125	5.0	56.37	53.97	73.37	*119.77	91.17	85.27	97.27
			772.0000	5.3	56.67	54.27	73.67	*120.07	91.47	85.57	97.57
			774.9875	5.4	56.77	54.37	73.77	*120.17	91.57	85.67	97.67
			799.0125	4.7	56.07	53.67	73.07	*119.47	90.87	84.97	96.97
			811.5000	4.3	55.67	53.27	72.67	*119.07	90.47	84.57	96.57
			823.9875	4.7	56.07	53.67	73.07	*119.47	90.87	84.97	96.97
			851.0125	3.0	54.37	51.97	71.37	*117.77	89.17	83.27	95.27
			860.5000	3.6	54.97	52.57	71.97	*118.37	89.77	83.87	95.87
			868.9875	3.2	54.57	52.17	71.57	*117.97	89.37	83.47	95.47
			769.0125	2.1	53.47	51.07	70.47	*116.87	88.27	82.37	94.37
			772.0000	2.1	53.47	51.07	70.47	*116.87	88.27	82.37	94.37
			774.9875	2.0	53.37	50.97	70.37	*116.77	88.17	82.27	94.27
			799.0125	2.8	54.17	51.77	71.17	*117.57	88.97	83.07	95.07
		HAF4014A, 1/4	811.5000	3.7	55.07	52.67	72.07	*118.47	89.87	83.97	95.97
			823.9875	4.1	55.47	53.07	72.47	*118.87	90.27	84.37	96.37
			851.0125	3.7	55.07	52.67	72.07	*118.47	89.87	83.97	95.97
			860.5000	3.1	54.47	52.07	71.47	*117.87	89.27	83.37	95.37
			868.9875	3.6	54.97	52.57	71.97	*118.37	89.77	83.87	95.87
			769.0125	5.3	56.67	54.27	73.67	*120.07	91.47	85.57	97.57
			772.0000	5.1	56.47	54.07	73.47	*119.87	91.27	85.37	97.37
			774.9875	5.1	56.47	54.07	73.47	*119.87	91.27	85.37	97.37
			799.0125	4.7	56.07	53.67	73.07	*119.47	90.87	84.97	96.97
		HAF4016A, 1/4 Wave, (762-870MHz)	811.5000	4.0	55.37	52.97	72.37	*118.77	90.17	84.27	96.27
			823.9875	5.2	56.57	54.17	73.57	*119.97	91.37	85.47	97.47
			851.0125	3.4	54.77	52.37	71.77	*118.17	89.57	83.67	95.67
			860.5000	3.3	54.67	52.27	71.67	*118.07	89.47	83.57	95.57
			868.9875	3.4	54.77	52.37	71.77	*118.17	89.57	83.67	95.67
			769.0125	7.0	58.37	55.97	75.37	*121.77	93.17	87.27	99.27
			772.0000	7.3	58.67	56.27	75.67	*122.07	93.47	87.57	99.57
			774.9875	7.3	58.67	56.27	75.67	*122.07	93.47	87.57	99.57
			799.0125	6.8	58.17	55.77	75.17	*121.57	92.97	87.07	99.07
		HAF4017A, 1/4 Wave, (762-870MHz)	811.5000	5.6	56.97	54.57	73.97	*120.37	91.77	85.87	97.87
			823.9875	5.7	57.07	54.67	74.07	*120.47	91.87	85.97	97.97
			851.0125	3.9	55.27	52.87	72.27	*118.67	90.07	84.17	96.17
			860.5000	5.1	56.47	54.07	73.47	*119.87	91.27	85.37	97.37
			868.9875	3.8	55.17	52.77	72.17	*118.57	89.97	84.07	96.07

Notes:

* Configurations require SAR simulations.

Table 12 (b) - Combined MPE \% of FCC US limit (Passenger, Back Seat) (APX6500 7/800 MHz_E Field \& Companion Device DVR VHF_H Field)

					DVRS VHF Antenna (Trunk Mounted)						
			E/H Field		H Field						
			DVRS Antenna		$\begin{aligned} & \text { HAD4007A, } \\ & 1 / 4 \text { Wave } \\ & (144-150.8 \mathrm{MHz}) \end{aligned}$	HAD4008A, $1 / 4$ Wave ($\mathbf{1 5 0 . 8}-162 \mathrm{MHz}$)			HAD4009A, 1/4 Wave ($\mathbf{1 6 2 - 1 7 4 M H z)}$		
			DVR Freq (MHz)		150.8000	150.8000	156.4000	162.0000	162.0000	167.7000	173.4000
(roof Mounted)	E/H Field	APX6500 Antenna (Roof Mounted)	LMR Freq (MHz)	\% of FCC Limit	47.9	37.8	71.2	87.3	59.5	79.3	46.5
	E Field	HAF4013A, $1 / 4$ Wave, (762-870MHz)	769.0125	5.0	52.87	42.77	76.17	92.27	64.47	84.27	51.47
			772.0000	5.3	53.17	43.07	76.47	92.57	64.77	84.57	51.77
			774.9875	5.4	53.27	43.17	76.57	92.67	64.87	84.67	51.87
			799.0125	4.7	52.57	42.47	75.87	91.97	64.17	83.97	51.17
			811.5000	4.3	52.17	42.07	75.47	91.57	63.77	83.57	50.77
			823.9875	4.7	52.57	42.47	75.87	91.97	64.17	83.97	51.17
			851.0125	3.0	50.87	40.77	74.17	90.27	62.47	82.27	49.47
			860.5000	3.6	51.47	41.37	74.77	90.87	63.07	82.87	50.07
			868.9875	3.2	51.07	40.97	74.37	90.47	62.67	82.47	49.67
			769.0125	2.1	49.97	39.87	73.27	89.37	61.57	81.37	48.57
			772.0000	2.1	49.97	39.87	73.27	89.37	61.57	81.37	48.57
			774.9875	2.0	49.87	39.77	73.17	89.27	61.47	81.27	48.47
			799.0125	2.8	50.67	40.57	73.97	90.07	62.27	82.07	49.27
		HAF4014A, 1/4 Wave, (762-870MHz)	811.5000	3.7	51.57	41.47	74.87	90.97	63.17	82.97	50.17
			823.9875	4.1	51.97	41.87	75.27	91.37	63.57	83.37	50.57
			851.0125	3.7	51.57	41.47	74.87	90.97	63.17	82.97	50.17
			860.5000	3.1	50.97	40.87	74.27	90.37	62.57	82.37	49.57
			868.9875	3.6	51.47	41.37	74.77	90.87	63.07	82.87	50.07
			769.0125	5.3	53.17	43.07	76.47	92.57	64.77	84.57	51.77
			772.0000	5.1	52.97	42.87	76.27	92.37	64.57	84.37	51.57
			774.9875	5.1	52.97	42.87	76.27	92.37	64.57	84.37	51.57
			799.0125	4.7	52.57	42.47	75.87	91.97	64.17	83.97	51.17
		HAF4016A, 1/4 Wave, (762-870MHz)	811.5000	4.0	51.87	41.77	75.17	91.27	63.47	83.27	50.47
			823.9875	5.2	53.07	42.97	76.37	92.47	64.67	84.47	51.67
			851.0125	3.4	51.27	41.17	74.57	90.67	62.87	82.67	49.87
			860.5000	3.3	51.17	41.07	74.47	90.57	62.77	82.57	49.77
			868.9875	3.4	51.27	41.17	74.57	90.67	62.87	82.67	49.87
			769.0125	7.0	54.87	44.77	78.17	94.27	66.47	86.27	53.47
			772.0000	7.3	55.17	45.07	78.47	94.57	66.77	86.57	53.77
			774.9875	7.3	55.17	45.07	78.47	94.57	66.77	86.57	53.77
			799.0125	6.8	54.67	44.57	77.97	94.07	66.27	86.07	53.27
		HAF4017A, 1/4 Wave, (762-870MHz)	811.5000	5.6	53.47	43.37	76.77	92.87	65.07	84.87	52.07
			823.9875	5.7	53.57	43.47	76.87	92.97	65.17	84.97	52.17
			851.0125	3.9	51.77	41.67	75.07	91.17	63.37	83.17	50.37
			860.5000	5.1	52.97	42.87	76.27	92.37	64.57	84.37	51.57
			868.9875	3.8	51.67	41.57	74.97	91.07	63.27	83.07	50.27

Table 13 (a) - Combined MPE \% of ISED Canada limit (Passenger, Back Seat) (APX6500 7/800 MHz_E Field \& Companion Device DVR VHF_E Field)

					DVRS VHF Antenna (Trunk Mounted)									
			E/H Field		E Field									
			DVRS Antenna		HAD4006A, 1/4 Wave (136144 MHz)		HAD4007A, 1/4 Wave ($144-150.8 \mathrm{MHz})$		HAD4008A, $1 / 4$ Wave ($150.8-162 \mathrm{MHz}$)			HAD4009A, 1/4 Wave ($\mathbf{1 6 2 - 1 7 4 M H z)}$		
			DVR Freq (MHz)		140.0000	144.0000	144.0000	150.8000	150.8000	156.4000	162.0000	162.0000	167.7000	173.4000
(roof Mounted)	E/H Field	APX6500 Antenna (Roof Mounted)	LMR Freq (MHz)	\% of FCC Limit	151.5	129.8	113.0	79.7	75.9	106.0	177.9	133.6	124.4	143.0
	E Field	HAF4013A, 1/4 Wave, ($762-870 \mathrm{MHz})$	769.0125	9.9	*161.4	*139.7	*122.9	89.6	85.8	\#115.9	*187.8	*143.5	*134.3	*152.9
			772.0000	10.7	*162.2	*140.5	*123.7	90.4	86.6	\#116.7	*188.6	*144.3	*135.1	*153.7
			774.9875	10.7	*162.2	*140.5	*123.7	90.4	86.6	\#116.7	*188.6	*144.3	*135.1	*153.7
			799.0125	9.5	*161	*139.3	*122.5	89.2	85.4	\#115.5	*187.4	*143.1	*133.9	*152.5
			811.5000	8.5	*160	*138.3	*121.5	88.2	84.4	\#114.5	*186.4	*142.1	*132.9	*151.5
			823.9875	9.4	*160.9	*139.2	*122.4	89.1	85.3	\#115.4	*187.3	*143	*133.8	*152.4
			851.0125	6.0	*157.5	*135.8	*119	85.7	81.9	\#112	*183.9	*139.6	*130.4	*149
			860.5000	7.2	*158.7	*137	*120.2	86.9	83.1	\#113.2	*185.1	*140.8	*131.6	*150.2
			868.9875	6.4	*157.9	*136.2	*119.4	86.1	82.3	\#112.4	*184.3	*140	*130.8	*149.4
			769.0125	3.9	*155.4	*133.7	*116.9	83.6	79.8	\#109.9	*181.8	*137.5	*128.3	*146.9
			772.0000	3.9	*155.4	*133.7	*116.9	83.6	79.8	\#109.9	*181.8	*137.5	*128.3	*146.9
			774.9875	3.8	*155.3	*133.6	*116.8	83.5	79.7	\#109.8	*181.7	*137.4	*128.2	*146.8
			799.0125	5.5	*157	*135.3	*118.5	85.2	81.4	\#111.5	*183.4	*139.1	*129.9	*148.5
		Wave, (762-870MHz)	811.5000	7.4	*158.9	*137.2	*120.4	87.1	83.3	\#113.4	*185.3	*141	*131.8	*150.4
			823.9875	8.3	*159.8	*138.1	*121.3	88	84.2	\#114.3	*186.2	*141.9	*132.7	*151.3
			851.0125	7.3	*158.8	*137.1	*120.3	87	83.2	\#113.3	*185.2	*140.9	*131.7	*150.3
			860.5000	6.1	*157.6	*135.9	*119.1	85.8	82	\#112.1	*184	*139.7	*130.5	*149.1
			868.9875	7.3	*158.8	*137.1	*120.3	87	83.2	\#113.3	*185.2	*140.9	*131.7	*150.3
			769.0125	10.6	*162.1	* 140.4	*123.6	90.3	86.5	\#116.6	*188.5	*144.2	*135	*153.6
			772.0000	10.1	*161.6	*139.9	*123.1	89.8	86	\#116.1	*188	*143.7	*134.5	*153.1
			774.9875	10.1	*161.6	*139.9	*123.1	89.8	86	\#116.1	*188	*143.7	*134.5	*153.1
			799.0125	9.5	*161	*139.3	*122.5	89.2	85.4	\#115.5	*187.4	*143.1	*133.9	*152.5
		Wave, (762-870MHz)	811.5000	7.9	*159.4	*137.7	*120.9	87.6	83.8	\#113.9	*185.8	*141.5	*132.3	*150.9
			823.9875	10.5	*162	* 140.3	*123.5	90.2	86.4	\#116.5	*188.4	*144.1	*134.9	*153.5
			851.0125	6.8	*158.3	*136.6	*119.8	86.5	82.7	\#112.8	*184.7	*140.4	*131.2	*149.8
			860.5000	6.6	*158.1	*136.4	*119.6	86.3	82.5	\#112.6	*184.5	*140.2	*131	*149.6
			868.9875	6.7	*158.2	*136.5	*119.7	86.4	82.6	\#112.7	*184.6	*140.3	*131.1	*149.7
			769.0125	14.2	*165.7	*144	*127.2	93.9	90.1	\#120.2	*192.1	*147.8	*138.6	*157.2
			772.0000	14.8	*166.3	*144.6	*127.8	94.5	90.7	\#120.8	*192.7	*148.4	*139.2	*157.8
			774.9875	14.9	*166.4	* 144.7	*127.9	94.6	90.8	\#120.9	*192.8	*148.5	*139.3	*157.9
			799.0125	13.9	*165.4	*143.7	*126.9	93.6	89.8	\#119.9	*191.8	*147.5	*138.3	*156.9
		HAF4017A, 1/4 Wave, (762-870MHz)	811.5000	11.4	*162.9	*141.2	*124.4	91.1	87.3	\#117.4	*189.3	*145	*135.8	*154.4
			823.9875	11.7	*163.2	*141.5	*124.7	91.4	87.6	\#117.7	*189.6	*145.3	*136.1	*154.7
			851.0125	7.9	*159.4	*137.7	*120.9	87.6	83.8	\#113.9	*185.8	*141.5	*132.3	*150.9
			860.5000	10.5	*162	*140.3	*123.5	90.2	86.4	\#116.5	*188.4	*144.1	*134.9	*153.5
			868.9875	7.7	*159.2	*137.5	*120.7	87.4	83.6	\#113.7	*185.6	*141.3	*132.1	*150.7

Notes:

* Configurations require SAR simulations.
\# Configurations already covered in other Table 13 with higher MPE percentage.

Table 13 (b) - Combined MPE \% of ISED Canada limit (Passenger, Back Seat) (APX6500 7/800 MHz_E Field \& Companion Device DVR VHF_H Field)

					DVRS VHF Antenna (Trunk Mounted)									
			E/H Field		H Field									
			DVRS Antenna		HAD4006A, 1/4 Wave (136-144MHz)		HAD4007A, $1 / 4$ Wave ($144-150.8 \mathrm{MHz})$		HAD4008A, $1 / 4$ Wave ($150.8-162 \mathrm{MHz}$)			HAD4009A, 1/4 Wave (162-174MHz)		
			DVR Freq (MHz)		140.0000	144.0000	144.0000	150.8000	150.8000	156.4000	162.0000	162.0000	167.7000	173.4000
(roof Mounted)	E/H Field	APX6500 Antenna (Roof Mounted)	LMR Freq (MHz)	\% of FCC Limit	85.8	72.2	57.6	74.2	58.6	110.3	135.2	92.2	122.9	72.0
	E Field	HAF4013A, 1/4Wave, (762-870MHz)	769.0125	9.9	95.7	82.1	67.5	84.1	68.5	*120.2	\#145.1	\#102.1	\#132.8	81.9
			772.0000	10.7	96.5	82.9	68.3	84.9	69.3	*121	\#145.9	\#102.9	\#133.6	82.7
			774.9875	10.7	96.5	82.9	68.3	84.9	69.3	*121	\#145.9	\#102.9	\#133.6	82.7
			799.0125	9.5	95.3	81.7	67.1	83.7	68.1	*119.8	\#144.7	\#101.7	\#132.4	81.5
			811.5000	8.5	94.3	80.7	66.1	82.7	67.1	*118.8	\#143.7	\#100.7	\#131.4	80.5
			823.9875	9.4	95.2	81.6	67	83.6	68	*119.7	\#144.6	\#101.6	\#132.3	81.4
			851.0125	6.0	91.8	78.2	63.6	80.2	64.6	*116.3	\#141.2	98.2	\#128.9	78
			860.5000	7.2	93	79.4	64.8	81.4	65.8	*117.5	\#142.4	99.4	\#130.1	79.2
			868.9875	6.4	92.2	78.6	64	80.6	65	*116.7	\#141.6	98.6	\#129.3	78.4
			769.0125	3.9	89.7	76.1	61.5	78.1	62.5	*114.2	\#139.1	96.1	\#126.8	75.9
			772.0000	3.9	89.7	76.1	61.5	78.1	62.5	*114.2	\#139.1	96.1	\#126.8	75.9
			774.9875	3.8	89.6	76	61.4	78	62.4	*114.1	\#139	96	\#126.7	75.8
			799.0125	5.5	91.3	77.7	63.1	79.7	64.1	*115.8	\#140.7	97.7	\#128.4	77.5
		Wave, (762-870MHz)	811.5000	7.4	93.2	79.6	65	81.6	66	*117.7	\#142.6	99.6	\#130.3	79.4
			823.9875	8.3	94.1	80.5	65.9	82.5	66.9	*118.6	\#143.5	\#100.5	\#131.2	80.3
			851.0125	7.3	93.1	79.5	64.9	81.5	65.9	*117.6	\#142.5	99.5	\#130.2	79.3
			860.5000	6.1	91.9	78.3	63.7	80.3	64.7	*116.4	\#141.3	98.3	\#129	78.1
			868.9875	7.3	93.1	79.5	64.9	81.5	65.9	*117.6	\#142.5	99.5	\#130.2	79.3
			769.0125	10.6	96.4	82.8	68.2	84.8	69.2	*120.9	\#145.8	\#102.8	\#133.5	82.6
			772.0000	10.1	95.9	82.3	67.7	84.3	68.7	*120.4	\#145.3	\#102.3	\#133	82.1
			774.9875	10.1	95.9	82.3	67.7	84.3	68.7	*120.4	\#145.3	\#102.3	\#133	82.1
			799.0125	9.5	95.3	81.7	67.1	83.7	68.1	*119.8	\#144.7	\#101.7	\#132.4	81.5
		Wave, (762-870MHz)	811.5000	7.9	93.7	80.1	65.5	82.1	66.5	*118.2	\#143.1	\#100.1	\#130.8	79.9
			823.9875	10.5	96.3	82.7	68.1	84.7	69.1	*120.8	\#145.7	\#102.7	\#133.4	82.5
			851.0125	6.8	92.6	79	64.4	81	65.4	*117.1	\#142	99	\#129.7	78.8
			860.5000	6.6	92.4	78.8	64.2	80.8	65.2	*116.9	\#141.8	98.8	\#129.5	78.6
			868.9875	6.7	92.5	78.9	64.3	80.9	65.3	*117	\#141.9	98.9	\#129.6	78.7
			769.0125	14.2	\#100	86.4	71.8	88.4	72.8	*124.5	\#149.4	\#106.4	\#137.1	86.2
			772.0000	14.8	\#100.6	87	72.4	89	73.4	*125.1	\#150	\#107	\#137.7	86.8
			774.9875	14.9	\#100.7	87.1	72.5	89.1	73.5	*125.2	\#150.1	\#107.1	\#137.8	86.9
			799.0125	13.9	99.7	86.1	71.5	88.1	72.5	*124.2	\#149.1	\#106.1	\#136.8	85.9
		HAF4017A, 1/4 Wave, (762-870MHz)	811.5000	11.4	97.2	83.6	69	85.6	70	*121.7	\#146.6	\#103.6	\#134.3	83.4
			823.9875	11.7	97.5	83.9	69.3	85.9	70.3	*122	\#146.9	\#103.9	\#134.6	83.7
			851.0125	7.9	93.7	80.1	65.5	82.1	66.5	*118.2	\#143.1	\#100.1	\#130.8	79.9
			860.5000	10.5	96.3	82.7	68.1	84.7	69.1	*120.8	\#145.7	\#102.7	\#133.4	82.5
			868.9875	7.7	93.5	79.9	65.3	81.9	66.3	${ }^{*} 118$	\#142.9	99.90	\#130.6	79.7

Notes:

* Configurations require SAR simulations.
\# Configurations already covered in other Table 13 with higher MPE percentage.

18.0 Conclusion

The assessment for APX6500 7/800 MHz and Companion device (DVR VHF) were performed as indicates in section 17.1 with an output power range listed in Table 6 . The maximum allowable output power is equal to the upper limit of the final test factory transmit power specification listed in Table 6. The highest power density results for APX6500 7/800 MHz and Companion device (DVR VHF) scaled to maximum allowable power output are indicated in Table 14 (FCC US) and Table 15 (ISED Canada) for internal/passenger of to the vehicle, and external/bystander to the vehicle.

These MPE results herein demonstrate compliance to FCC Occupation/Controlled Exposure limit. However, FCC rules required compliance for Passengers and Bystanders to FCC General Population / Uncontrolled limits. Maximum Combined MPE percentage in bold exceed General Population / Uncontrolled limit.

Table 14 - Maximum MPE RF Exposure Summary (FCC US)

APX6500 7/800 MHz band (FCC ID: AZ492FT7124) Roof Mounted Antenna					
Equipment Class	Frequency Band (MHz)	Passenger		Bystander	
		Power Density ($\mathrm{mw} / \mathrm{cm}^{2}$)	Highest \% of Limit	Power Density (mw/cm ${ }^{2}$)	Highest \% of Limit
TNB	7/800 (769-775; 799-824; 851-869)	0.029	5.5\%	0.070	12.2\%
DTS	WLAN (2412-2462)	0.018	1.77\%	0.018	1.77\%
NII	WLAN (5180-5825)	0.007	0.67\%	0.007	0.67\%
DSS	BT (2402-2480)	0.005	0.50\%	0.005	0.50\%
Companion Mobile DVR VHF (FCC ID: LO6-DVRSVHF) Trunk Mounted Antenna					
Equipment Class	Frequency Band (MHz)	Passenger		Bystander	
		Power Density ($\mathrm{mw} / \mathrm{cm}^{2}$)	Highest \% of Limit	Power Density ($\mathrm{mw} / \mathrm{cm}^{2}$)	Highest \% of Limit
TNB	150.8-173.4	0.230	114.8\%	0.042	21.0\%
Simultaneous Transmissions					
Simultaneous Transmissions conditions		Passenger		Bystander	
		Highest Combine \% of limit		Highest Combine \% of limit	
APX6500 (7/800 MHz band) + WLAN + DVR VHF		122.1\%		27.7\%	

Note: Result in bold required SAR simulation.

Table 15 - Maximum MPE RF Exposure Summary (ISED Canada)

APX6500 7/800 MHz band (IC: 109U-92FT7124) Roof Mounted Antenna				
Frequency Band (MHz)	Passenger		Bystander	
	Power Density ($\mathrm{mw} / \mathrm{cm}^{2}$)	Highest \% of Limit	Power Density ($\mathrm{mw} / \mathrm{cm}^{2}$)	Highest \% of Limit
7/800MHz Band (769-775; 799-824; 851-869)	0.029	11.6\%	0.07	25.80\%
2.4GHz WLAN (2412-2462)	0.018	3.30\%	0.018	3.30\%
5GHz WLAN (5180-5825)	0.007	0.75\%	0.007	0.75\%
BT (2402-2480)	0.005	0.93\%	0.005	0.93\%
Companion Mobile DVR VHF (IC: 2098-DVRSVHF) Trunk Mounted Antenna				
Frequency Band (MHz)	Passenger		Bystander	
	Power Density ($\mathrm{mw} / \mathrm{cm}^{2}$)	Highest \% of Limit	Power Density ($\mathrm{mw} / \mathrm{cm}^{2}$)	Highest \% of Limit
138-174	0.230	177.9\%	0.042	32.5\%
Simultaneous Transmissions				
Simultaneous Transmissions conditions	Passenger		Bystander	
	Highest Combine \% of limit		Highest Combine \% of limit	
APX6500 (7/800MHz band) + WLAN + DVR VHF	192.8\%		46.2\%	

Note: Result in bold required SAR simulation.

Although MPE is a convenient method of demonstrating RF Exposure requirements, SAR is recognized as the "basic restriction". For those configurations indicate with "*" in Table 12, Table 13, compliance to the General Population / Uncontrolled SAR 1 g limit of $1.6 \mathrm{~W} / \mathrm{kg}$ is demonstrated through SAR computational analysis.

The computational results show that this APX $65007 / 800 \mathrm{MHz}$ device, when used with Companion device DVR VHF and specified antennas, exhibit a maximum combine SAR are indicated in the Table 16.

Table 16

	Exposure Conditions	Combined SAR (W/kg)	
		WB	
FCC	Passenger Back	0.75	0.023
ISED Canada	Passenger Back	0.74	0.022

19.0 User Instructions Considerations

In order to facilitate the requirements for occupational exposure limits, the Safety Manual for this radio requires the radio operator to maintain 90 cm in all directions between the vehicle and external persons while transmitting.

Appendix A - Antenna Locations, Test Distances, and Cable Losses

1. Roof (center)
2. Trunk (85 cm from back of the back seat)
3. Trunk (center)

Passenger Antenna mounting

Nominal dimension for Trunk Plate (W x L): $138 \mathrm{~cm} \times 72 \mathrm{~cm}$

Notes:
1.) Antenna location A1: APX mobile radio roof antenna mounting locations for passenger back and front testing.
2.) Antenna location A2: DVR trunk antenna mounting locations for passenger back and front testing
3.) Total distance between trunk mount antenna and rear passenger is 85 cm

Bystander Antenna mounting

Note:
1.) Antenna location A1: APX mobile radio roof antenna mounting locations for passenger and bystander testing
2.) Antenna location A2: DVR trunk antenna mounting locations for bystander testing
3.) Bystander location BS2: Center point of the bystander test location BS1 and test location BS3
4.) Bystander location BS (1-5): 90cm away from the vehicle body. Apply for both roof and trunk testing

Seat scan areas
(Applicable to both front and back seats)

```
Meter - Probe
\square]- Probe diameter is }5.5\textrm{cm
```


MPE Test Configuration

Cable Losses

Test Cable

Teflon RG58A/U Loss Per 100 Feet
$160 \mathrm{MHz}-5 \mathrm{~dB}$
$450 \mathrm{MHz}-9 \mathrm{~dB}$
$1 \mathrm{GHz}-13.8 \mathrm{~dB}$

Customer Cable

RG-58A/U Loss Per 100 Feet (For LMR)
$136 \mathrm{MHz}-5.5 \mathrm{~dB}$
$450 \mathrm{MHz}-9.6 \mathrm{~dB}$
$900 \mathrm{MHz}-13.9 \mathrm{~dB}$

PFP 240 Loss Per 100 Feet (For BT/WLAN)
$2500 \mathrm{MHz}-12.9 \mathrm{~dB}$

Appendix B - Probe Calibration Certificates

Service Test Report
 QAF 1126, 03/11

Report ID: 125391

ลlETS-LINDGREN
Tracking 1 S000043s 11
Equipment Check
Atentedty ac Date az-Jul-18 aswais-lidpuentim

Reference: S 000043311
Customer: Motorola Solutions Malaysia Sdn. Bhd. - 2A, Medan Bayan Lepas, Baymen Lepas Technoplex, 11900 Bayan Lupas, Pulau Pinang, Malaysia

The instrument listed below has been tested and verified to Internal Quality Standards. Test data is Attached. Equipment used during instrument testing is controlled by laboratory compliance with ISO/IEC 17025-2005 and ANSI/NCSL Z540-1-1994 using ETS-Lindgren Quality Management System internal procedures.

Manufacturer	ETS-Lindgren
Instrument Type	RF Survey Meter
Model	HI-2200
Serial Number/ID	00086316

Status in

In Tolerance
Date Completed
02-Jul-18
Status Out
Compliant with Internal Quality Standards

Remarks

Tested with customer E100 00206767 and customer H200 00206937.

I would like to take this opportunity to express our appreciation for using ETS-Lindgren for your EMI test equipment services and I am looking forward to continued business with your organization. Please feel free to contact our offices at (512) 531-6400, if you have any questions regarding this report.

Date Attested: 02-Jul-18

Cert I.D:: 125390

ה $\# E T S-L I N D G R E N$
 An ESCO Technologies Company
 1301 Arrow Point Drive

 Cedar Park, Texas 78613(512) 531-6400

Certificate of Calibration Conformance
 Page 1 of 3

The instrument identifled below has been individually calibrated in compliance with the following standard(s):
IEEE 1309-2013, Institute of Electrical and Electronics Engineers, Standard for Calloration of Electromagnetic Fieid Sensors and Probes, Excluding Antennas from 9 kHz to 40 GHz

CALIBRATION REPORT

Electric Field Sensor
Electric Field Sensor

Model	S/N
E100	00206767
HI-2200	00086316

Date: $\quad 02$ Jul 2018

Frequency Response			New instrument _ Oher _ Out of Telerance 8 Within Tolarance	
Frequency		Nominal Field		
Response		Field	Cal Factor*	Deviation
	MHz	V/m	(EappledfEIndicated)	dB
1	1	20	1.05	-0.42
2	15	20	0.98	0.15
3	30	20	0.99	0.13
4	75	20	0.99	0.10
5	100	20	0.99	0.05
6	150	20	0.99	0.07
7	200	20	0.98	0.15
8	250	20	0.98	0.15
9	300	20	0.97	0.25
10	400	20	1.04	-0.33
11	500	20	0.93	0.65
12	600	20	0.93	0.67
13	700	20	0.98	0.21
14	800	20	1.00	0.03
15	900	20	1.03	-0.22
16	1000	20	1.01	-0.10
17	2000	20	1.05	-0.41
18	2450	20	1.04	-0.37
19	3000	20	1.07	-0.61
20	3500	20	1.02	-0.20
21	4000	20	1.03	-0.23
22	4500	20	1.10	-0.81
23	5000	20	1.34	-2.57
24	5500	20	1.49	-3.45
25	6000	20	1.49	-3.48

* Corrected elpotric field values (V/m) can be obtained by mulfiplying the Cal Factor with the indicated

E ferd readinga.
Linearity
maximum inearity deviation is 0.58 de
(measurements taken from $0.3 \mathrm{~V} / \mathrm{m}$ to $800 \mathrm{~V} / \mathrm{m}$ at 27.12 MHz)

Test Conditions

Calibration performed at ambient room temperatura: $23 \pm 3^{\circ} \mathrm{C}$

Page 2 of 3

PROBE ROTATIONAL RESPONSE

Model	E100
S/N	00206767
Report	S000043311
Date	Date of Calibration 02 July 2018
Time	$03: 24: 41 \mathrm{PM}$
Isotropy *	$+0.177 \mathrm{~dB} /-0.177 \mathrm{~dB}$

Figure 1: Probe Isotropic Response Chart.
Isotropic response is measured in a $20 \mathrm{~V} / \mathrm{m}$ field at 400 MHz
*Isotropy is the maximum deviation from the geometric mean as defined by IEEE 1309-2013.
Page 3 of 3

Cert I.D.: 125467

1301 Arrow Point Drive Cedar Park, Texas 78613
(512) 531-6400

הiETS.LINDGREN
Track\# S000043311 Ltd Cal By SS Dai 02-Jul-18 Next Cal Due
www.ets-lindgren.com

Certificate of Calibration Conformance
Page 1 of 2
The instrument identified below has been individually calibrated in compliance with the following standard(s):
IEEE 1309-2013, Institute of Electrical and Electronics Engineers, Standard for Calibration of Electromagnetic Field Sensors and Probes, Excluding Antennas from 9 kHz to 40 GHz

CALIBRATION REPORT

Magnetic Field Sensor

Model	S/N
H200	00206937
$H I-2200$	00086316

Date: 27 Jun 2018

00086316

- New Instrument
_ Other
_ Out of Tolerance

Frequency Response
_ Out of Tolerance

$\begin{array}{c}\text { Frequency } \\ \text { Response }\end{array}$	$\begin{array}{c}\text { Nominal } \\ \text { Field }\end{array}$					
	MHz	A/m	Cal Factor*	(Eapplied/Eindicated)	$]$	Deviation
:---:						
1						

* Corrected magnetic field values $(\mathrm{A} / \mathrm{m})$ can be obtained by multiplying the Cal Factor with the indicated H field readings.

Linearity

maximum linearity deviation is 1.19 dB
(measurements taken from $30 \mathrm{~mA} / \mathrm{m}$ to $9 \mathrm{~A} / \mathrm{m}$ at 27.12 MHz)

Test Conditions

Calibration performed at ambient room temperature: $23 \pm 3^{\circ} \mathrm{C}$
The above sensor was calibrated to factory specifications. This calibration is performed per IEEE 1309 standard. All equipment used are traceable to US National Institute of Standards and Technology (NIST).

Appendix C - Photos of Assessed Antennas

(All antennas mounted to the vehicle with magnetic mount base)

APX 6500 7/800 MHz

Antenna kit numbers: (From Left to Right) HAF4013A, HAF4014A, HAF4016A and HAF4017A

Companion Device (DVR VHF)

VHF Antenna kit numbers, from left to right;
HAD4006A, HAD4007A, HAD4008A, HAD4009A

