

DECLARATION OF COMPLIANCE: MPE ASSESSMENT Part 1 of 2

EME Test Laboratory	Date of Report:	June 29, 2011
8000 West Sunrise Blvd	Report Revision:	0
Fort Lauderdale, FL 33322	Report ID:	SR9298_MPE rpt_APX7500_UHF R2 &
Tore Enddordaro, TER 00022		VHF 15W Motorcycle Rev O 06292011

Responsible Engineer:	Stephen C. Whalen (Principal Staff EME Test Engineer)
Report author:	Stephen C. Whalen (Principal Staff EME Test Engineer)
Date(s) Tested:	UHFR2 - 11/12/2010 & 1/28/2011; VHF - 5/9/2011
Manufacturer/Location:	Motorola, Schaumburg, IL
Date submitted for test:	03/01/2011
DUT Description:	APX7500 Dual Band UHF R2 15W (450 - 520MHz) & VHF 15W
	(136-174MHz) Motorcycle Mount Option
Test TX mode(s):	CW
Max. Power output:	18W
TX Frequency Bands:	450-520MHz & 136-174MHz
Signaling type:	Analog, APCO 25, and TDMA 1:2 (F2)
Model(s) Tested	M30SSS9PW1AN with G67 motorcycle option
	M30KSS9PW1AN with G67 motorcycle option
Model(s) Certified:	M30TSS9PW1AN (MHUT1010A) with G67 motorcycle option
Serial Number(s):	CAI09018Z9 (M30KSS9PW1AN with G67 motorcycle option)
	QMKNJ030 (M30SSS9PW1AN with G67 motorcycle option)
Classification:	Occupational/Controlled Environment
FCC ID: AZ492FT7047	Part 22 & 90 UHF (450-512MHz) & VHF (150.8-173.4MHz) MPE
	results outside of Part 90 & 22 are not applicable for FCC
	compliance demonstration.
IC: 109U-92FT7047	UHF (450-470MHz) & VHF (138-174MHz)

Based on the information and the testing results provided herein, the undersigned certifies that when used as stated in the operating instructions supplied, said product complies with the national and international reference standards and guidelines listed in section 3.0 of this report. This report shall not be reproduced without written approval from an officially designated representative of the Motorola EME Laboratory. I attest to the accuracy of the data and assume full responsibility for the completeness of these measurements. This reporting format is consistent with the suggested guidelines of the TIA TSB-159 April 2006 The results and statements contained in this report pertain only to the device(s) evaluated herein.

> Signature on file Deanna Zakharia EME Lab Senior Resource Manager and Laboratory Director

Certification Date: 06/30/2011

Approval Date: 06/30/2011

Certification No.: L1110639P

Document Revision History

Date	Revision	Comments
06/29/2011	0	Initial release

Part 1 of 2: MPE Assessment for 450-520MHz Part 2 of 2: MPE Assessment for 136-174MHz

Part 1 of 2

Table of Contents

1.0	Introduction
2.0	Abbreviations / Definitions
3.0	Referenced Standards and Guidelines4
4.0	Power Density Limits
5.0	N _c Test Channels
6.0	Measurement Equipment
7.0	Measurement System Uncertainty Levels
8.0	Product and System Description
9.0	Additional Options and Accessories7
10.0	Test Set-Up Description7
11.0	Method of Measurement for motorcycle mounted antenna(s)
12.0	11.1Bystander vehicle MPE measurements811.2Operator vehicle MPE measurements8MPE Calculations9
13.0	Antenna Summary
14.0	Test Results Summary10
15.0	Conclusion
	Appendix A - Illustration of Antenna Location and Test Distances.12Appendix B - Probe Calibration Certificates14Appendix C - Photos of Assessed Antennas19Appendix D - MPE Measurement Results20

1.0 Introduction

This report details the test setup, test equipment and test results of Maximum Permissible Exposure (MPE) performed at Motorola's outside test site for product model M30TSS9PW1AN (MHUT1010A) with G67 motorcycle option.

2.0 Abbreviations / Definitions

APCO: Association of Public-Safety Communications Officials
BS: Bystander
C4FM: Compatible 4-Level Frequency Modulation
CNR: Calibration Not Required
CQPSK: Compatible Quadrature Phase Shift Keying
CW: Continues Wave
DUT: Device Under Test
EME: Electromagnetic Energy
F2: 2 slot Time Division Multiple Access
FM: Frequency Modulation
MPE: Maximum Permissible Exposure
NA: Not Applicable
OP: Operator
PTT: Push to Talk
TDMA: Time Division Multiple Access

3.0 Referenced Standards and Guidelines

This product is designed to comply with the following applicable national and international standards and guidelines.

- United States Federal Communications Commission, Code of Federal Regulations; Rule Part 47CFR § 1.1310, § 2.1091 (d) and § 2.1093 for RF Exposure, where applicable.
- Federal Communications Commission, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields", OET Bulletin 65, Supplement C (Edition 01-01), FCC, Washington, D.C.: June 2001.
- American National Standards Institute (ANSI) / Institute of Electrical and Electronics Engineers (IEEE) C95. 1-1999
- American National Standards Institute (ANSI) / Institute of Electrical and Electronics Engineers (IEEE) C95. 1-1992. Specific to FCC rules and regulations.
- Institute of Electrical and Electronics Engineers (IEEE) C95.1-2005
- Institute of Electrical and Electronics Engineers (IEEE) C95.3-2002
- International Commission on Non-Ionizing Radiation Protection (ICNIRP) 1998
- Ministry of Health (Canada) Safety Code 6 (2009), Limits of Human Exposure to Radio frequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz

4.0 Power Density Limits

Frequency	FCC OET Bulletin 65 Supplement C	ICNIRP	IEEE C95.1 1992/1999	IEEE C95.1 2005	RSS 102 issue 4 - 2010
Range (MHz)	mW/cm^2	W/m^2	mW/cm^2	W/m^2	W/m^2
30 - 300	1.0				*10.0
10 - 400		10.0			
100 - 300			1.0	10.0	
300 - 1,500	f/300				f/30
300 - 3,000			f/300	f/30	
400 - 2,000		f/40			
1,500 - 15,000					50.0
1,500 - 100,000	5.0				
2,000 - 300,000		50.0			
3,000 - 300,000			10.0	100.0	

Table 1 – Occupational / Controlled Exposure Limits

*Power density limit is applicable at frequencies greater than 100MHz

Frequency	FCC OET Bulletin 65 Supplement C	ICNIRP	IEEE C95.1 1992/1999	IEEE C95.1 2005	RSS 102 issue 4 – 2010
Range (MHz)	mW/cm^2	W/m^2	mW/cm^2	W/m^2	W/m^2
30 - 300	0.2				*2.0
10 - 400		2.0			
100 - 300			0.2		
100 - 400				2.0	
300 - 1,500	f/1,500				f/150
400 - 2,000		f/200		f/200	
300 - 15,000			f/1,500		
1,500 - 15,000					10.0
1,500 - 100,000	1.0				
2,000 - 100,000				10.0	
2,000 - 300,000		10.0			

*Power density limit is applicable at frequencies greater than 100MHz

5.0 N_c Test Channels

The number of test channels are determined by using Equation 1 below. This equation is available in FCC's KDB 447498. The test channels are appropriately spaced across the antenna's frequency range.

 $\begin{array}{l} Equation \ 1-Number \ of \ test \ channels \\ N_{c} = Round \ \left\{ [100(f_{high} - f_{low})/f_{c}]^{0.5} \ x \ (f_{c} \ / \ 100)^{0.2} \right\} \end{array}$

where N_c is the number of test channels, f_{high} and f_{low} are the highest and lowest frequencies within the transmission band, f_c is the mid-band frequency, and frequencies are in MHz.

6.0 Measurement Equipment

Equipment Type	Model #	SN	Calibration Date	Calibration Due Date
Motorcycle	2005 Kawasaki KZ1000	NA	NA	NA
Survey Meter Probe – E-Field	ETS Model HI-2200 ETS Model E100	00086887 00126277	07/15/2010	07/15/2011

 Table 3 - Equipment

E-field measurements are in mW/cm^2.

7.0 Measurement System Uncertainty Levels

	Tol.	Prob.		\boldsymbol{u}_i	
	(± %)	Dist.	Divisor	(±%)	<i>v</i> _i
Measurement System					
Probe Calibration	6.0	Ν	1.00	6.0	8
Survey Meter Calibration	3.0	Ν	1.00	3.0	8
Hemispherical Isotropy	8.0	R	1.73	4.6	8
Linearity	5.0	R	1.73	2.9	8
Pulse Response	1.0	R	1.73	0.6	8
RF Ambient Noise	3.0	R	1.73	1.7	8
RF Reflections	8.0	R	1.73	4.6	8
Probe Positioning	10.0	R	1.73	5.8	8
Test sample Related					
Antenna Positioning	3.0	Ν	1.00	3.0	8
Power drift	5.0	R	1.73	2.9	8
Combined Standard Uncertainty		RSS		12.2	8
Expanded Uncertainty (95% CONFIDENCE LEVEL)		k=2		24	

Table 4 - Uncertainty Budget for Near Field Probe Measurements

8.0 Product and System Description

Model M30TSS9PW1AN (MHUT1010A) with G67 motorcycle option is a mobile transceiver that utilizes analog, APCO 25 & F2 digital two-way radio communications. The analog modulation scheme uses Frequency Modulation (FM). APCO 25 & F2 digital modes use C4FM of CQPSK family of modulation (Compatible 4-Level Frequency Modulation of Compatible Quadrature Phase Shift Keying). F2 is a TDMA 1:2 protocol that allocates portions of the RF signal by dividing time into two slots (2 slots TDMA). Transmission from a unit or base station is accommodated in time-slot lengths of 30 milliseconds and frame lengths of 60 milliseconds. This product supports voice in analog mode, and both voice and data modes in digital mode.

The maximum duty cycle for TDMA is 1:2 (50%) and is controlled by software. The FM signal is continuous. However, because of hand shaking or Push-To-Talk (PTT) between users and/or base stations a conservative 50% duty cycle is applied. The TDMA mode was not tested because its duty cycle is inherently 50% and would include an additional 50% duty cycle for PTT.

The intended use of the radio is PTT while the device is properly installed on a motorcycle.

This device will be marketed to and used by employees solely for work-related operations, such as public safety agencies, e.g. police, fire and emergency medical. User training is the responsibility of these agencies which can be expected to employ the usage instructions, safety information and operational cautions set forth in the user's manual, instructional sessions or other means.

Accordingly this product is classified as Occupational/Controlled Exposure. However, in accordance with FCC requirements, the bystanders are evaluated to the General Population/ Uncontrolled Exposure Limits, and the operator is evaluated to the Occupational/Controlled Exposure Limits.

(Note that "Bystanders" as used herein are people other than operator)

9.0 Additional Options and Accessories

Refer to Table 5 for complete list of tested antennas.

10.0 Test Set-Up Description

Assessments were performed with mobile radio installed on the test vehicle while engine was at idle, at the specified distances and test locations indicated in section 11.0 and Appendix A.

All antennas described in Table 5 were considered in order to develop the test plan for this product. Antennas were installed and tested per their defined test channels.

11.0 Method of Measurement for motorcycle mounted antenna(s)

11.1 Bystander vehicle MPE measurements

Antenna is located at the rear of the test vehicle. Refer to Appendix A for antenna location with respect to the bystander.

MPE measurements for bystander (BS) conditions are determined by taking the average of (10) measurements in a 2m vertical line for the bystander test location indicated in Appendix A with 20cm height increments, with antenna to probe sensor separation distance of 60cm directly behind the vehicle. The separation distance used for testing is defined from the antenna where as the RF safety booklet defines the same distance from the vehicle body to ensure that the assessment is applicable to other vehicles. The measurement probe is positioned orthogonal to antenna (typically parallel to ground with a vertically mounted antenna) and aimed directly at the antenna's axis. These measurements are representative of persons other than the operator standing next to the vehicle.

11.2 Operator vehicle MPE measurements

Antenna is located at the rear of the test vehicle. Refer to Appendix A for antenna location with respect to the operator.

MPE measurements for operator (OP) conditions are determined by taking the average of the (3) measurements (Head, Chest and Lower Trunk) at the standard test distance of 30cm from the operators' seat area.

The measurement probe is oriented parallel (horizontal) to the ground and positioned above the motorcycle operator's seat. The probe head is pointed towards the back of the vehicle and aimed directly at the antenna's axis while maintaining a twenty (20) centimeter separation distance between the probe sensor and reradiating structures. These (3) measurements are representative of the operator.

Note; Motorola's weather proof enclosures provide 30cm separation distance from the antenna to the enclosure's edge. Refer to the installation manual for universal mounting options.

12.0 MPE Calculations

The final MPE results for this mobile radio are presented in section 14.0 Tables 6 & 7. These results are based on 50% duty cycle for PTT.

Below is an explanation of how the MPE results are calculated. Refer to Appendix D for MPE measurement results and calculations.

Bystander -10 measurements are averaged over the body (*Avg_over_body*). Operator - 3 measurements are averaged over the body (*Avg_over_body*).

The Average over Body test methodology is consistent with IEEE/ANSI C95.3-2002 guidelines.

Therefore;

Equation 2 – Power Density Calculation (*Calc._P.D.*)

Calc._P.D. = (*Avg_over_body*)*(*probe_frequency_cal_factor*)*(*duty_cycle*)

Note1: The highest "average" cal factors from the calibration certificates were selected for the applicable frequency range. Linear interpretation was used to determine "probe_frequency_cal_factor" for the specific test frequencies.

Note 2: The E-field probe calibration certificate's frequency cal factors were determined by measuring V/m. The survey meter's results were measured in power density (mW/cm^2) and therefore the "probe_frequency_cal_factor" was squared in equation 2 to account for these results.

Note 3: The H-field probe calibration certificate's frequency cal factors were determined by measuring A/m. The survey meter's results were measured in A/m and therefore the "Avg_over_body" A/m results were converted to power density (mW/cm^2) using the equation 3. H-field measurements are only applicable to frequencies below 300MHz.

Equation 3 – Converting A/m to mW/cm^2

 $mW/cm^2 = (A/m)^2 * 37.699$

Equation 4 – Power Density Maximum Calculation

Max_Calc._P.D. = *P.D._calc* * $\frac{max_output_power}{initial_output_power}$

Note 4: For initial output power> max_output_power; max_output_power / initial output power = 1

13.0 Antenna Summary

Table 5 below summarizes the tested antennas, overlap of FCC bands and the number of test channels per FCC KDB 447498. This information was used to determine the test configurations presented in this report.

#	Antenna Model	Frequency Range (MHz)	Physical Length (cm)	Gain (dBi)	Remarks	Overla p FCC Bands	N _c Test Channels (KDB 447498)
					1/4 wave,		
1	HAE6033A	450-482	15.0	2.15	wire	450-482	4
					1/4 wave,		
2	HAE6034A	482-520	14.0	2.15	wire	482-512	3
					1/4 wave,		
3	HAE6035A	450 - 512	8.3	2.15	cylinder	450-512	5

Table 5	Table	5
---------	-------	---

14.0 Test Results Summary

The following tables below summarize the MPE results for each test configuration: test positions (BS-Bystander, OP-Operator), E/H field measurements, antenna model & freq. range, maximum output power, initial power, TX frequency, max calculated power density results, applicable FCC/IEEE/ICNIRP specification limits and % of the applicable specification limits.

Test Position	E/H field	Antenna Model	Max Pwr (W)	Initial Pwr (W)	Tx Freq (MHz)	Max Calc. P.D. (mW/ cm^2)	FCC Limit	% To Spec Limit	ICNIRP Limit	% To Spec Limit
				17.4	450.0125	0.08	0.30	28	0.23	37
		HAE6033A,	18	17.4	460.0000	0.08	0.31	25	0.23	34
	450-482MHz	10	17.2	471.0000	0.07	0.31	24	0.24	31	
				17.5	481.9875	0.08	0.32	26	0.24	34
BS		HAE6034A, 482-512MHz	18	17.5	482.0125	0.08	0.32	25	0.24	33
				17.5	497.0000	0.10	0.33	29	0.25	39
				17.6	511.9875	0.09	0.34	25	0.26	34
	Е			17.3	512.0125	0.09	NA	NA	0.26	34
				17.4	516.0125	0.09	NA	NA	0.26	33
				17.3	519.9875	0.08	NA	NA	0.26	31
				17.4	450.0125	0.08	0.30	26	0.23	35
				17.4	465.5000	0.08	0.31	26	0.23	35
		HAE6035A, 450 - 512MHz	18	17.5	481.0125	0.07	0.32	22	0.24	29
				17.5	496.5000	0.07	0.33	21	0.25	28
				17.6	511.9875	0.07	0.34	21	0.26	28

Table 6 - Bystander MPE assessment to General Population / Uncontrolled Exposure Limits

Test frequencies that are outside the relevant FCC frequency allocations are presented in blue font.

Test Position	E/H field	Antenna Model	Max Pwr (W)	Initial Pwr (W)	Tx Freq (MHz)	Max Calc. P.D. (mW/ cm^2)	FCC Limit	% To Spec Limit	ICNIRP Limit	% To Spec Limit
				17.4	450.0125	0.35	1.50	24	1.13	31
		HAE6033A,	18	17.4	460.0000	0.40	1.53	26	1.15	34
		450-482MHz	10	17.2	471.0000	0.38	1.57	24	1.18	33
				17.5	481.9875	0.40	1.61	25	1.20	33
	E		18	17.5	482.0125	0.39	1.61	24	1.21	32
		HAE6034A, 482-512MHz		17.5	497.0000	0.33	1.66	20	1.24	27
				17.6	511.9875	0.41	1.71	24	1.28	32
OP				17.3	512.0125	0.42	NA	NA	1.28	33
				17.4	516.0125	0.43	NA	NA	1.29	33
				17.3	519.9875	0.42	NA	NA	1.30	32
				17.4	450.0125	0.36	1.50	24	1.13	32
				17.4	465.5000	0.44	1.55	28	1.16	37
		HAE6035A, 450 - 512MHz	18	17.5	481.0125	0.42	1.60	26	1.20	35
				17.5	496.5000	0.32	1.66	19	1.24	26
				17.6	511.9875	0.37	1.71	22	1.28	29

 Table 7 - Operator MPE assessment to Occupational / Controlled Exposure Limits

Test frequencies that are outside the relevant FCC frequency allocations are presented in blue font.

15.0 Conclusion

The assessments for this device were performed with an output power range as indicated in section 14.0 Tables 6 & 7. The maximum allowable output power is equal to the upper limit of the final test factory transmit power specification of 18W. The highest power density results for the mobile device scaled to the maximum allowable power output are indicated in Tables 8 and 9 for operator and bystander to the vehicle.

Table 8: RF Exposure Results for FCC Part 90 (450-512 MHz)

	UHF R2 Band
Operator - Max Calculated Power Density	0.44mW/cm ²
Bystander - Max Calculated Power Density	0.10mW/cm ²

Table 9: RF Exposure Results (450-520MHz)

	UHF R2 Band
Operator - Max Calculated Power Density	0.44mW/cm ²
Bystander - Max Calculated Power Density	0.10mW/cm ²

These MPE results herein demonstrate compliance to the FCC/IEEE/ICNIRP Occupational/Controlled Exposure limit. FCC rules require compliance for Bystanders to the FCC General Population/Uncontrolled limits.

Appendix A - Illustration of Antenna Location and Test Distances

Note that the Lower Trunk distance measurement distance from the antenna (45cm) allows achieving 20cm distance from reradiating objects.

Appendix B - Probe Calibration Certificates

Cert I.D.: 79630

(512) 531-6498

Next Cal Due www.sts-lindgren.com

Certificate of Calibration Conformance

The instrument identifed below has been individually calibrated in compliance with the following standard(s):

IEEE 1309 - 2005, Institute of Electrical and Electronics Engineers, Standard for Calibration of Electromagnetic Field Sensors and Probes, Excluding Antennas from 9 kHz to 40 GHz

Environment: Laboratory MTE is maintained in a temperature controlled environment with ambient conditions from 18 to 28 C, relative humidity less than 90%. The instrument under test has been calibrated in a suitable environment using an EMCO TEM Cell 5101C, GTEM! 5305 and an RF Shielded EMC Chamber which is conducive to maintaining accurate and reliable measurement quality.

Manufacturer:	ETS-Lindgren	Opera	ating Range:	100kHz - 5GHz
Model Number:	E100	Instru	iment Type:	Isotropic Probe > 1 GHz
Serial Number/ ID:	00126277	Date	Code:	
Tracking Number:	S000019628	Alterr	nate ID:	
Date Completed:	15-Jul-10	Custo	omer:	AGILENT/MOTOROLA (FL)
Test Type:	Standard Field, Field S	Strength		
Calibration Uncertainty: k=2. (95% Confidence Level)	Std Field Method	10kHz - 18000 MHz, +/-0.7 dB, 2	6.5GHz - 40GH	lz,+/- 0.95 dB

Test Remarks: Replaced broken probe head sn 00083370 with sn 00126277. Provided customer specified frequencies.

Calibration Traceability: All Measuring and Test Equipment (M/TE) identified below are traceable to the National Institute for Standards and Technology (NIST). Calibration Laboratory and Quality System controls are compliant with ISO/IEC 17025-2005.

Standards and Ed Make / Model / Na	uipment Used: me / S/N / Reca	Condition of Instrument						
Hewlett Packard	437B	HP Power Meter	3125U12370	15-Jun-11	upon receipt.			
Fluke	6060B	RF Signal Generator	5690204	15-Jun-11	INOP			
Marconi	2022	Signal Generator	119019/077	25-Sep-10	On Release:			
Agilent	E4419B	Power Meter	MY45104171	16-Jun-11	In Tolerance to Internal Quality Standards			
Rohde & Schwarz	857.8008.02	Power Meter NRVD	100451	11-Mar-11				
Hewlett Packard	83620B	Signal Generator	3722A00541	25-Sep-10				

Calibration Completed By

Alan Schifferdecker, Calibration Technician

Attested and Issued on 15-Jul-10 Richard Goodlow, Calibration Supervisor

This document provides traceability of measurements to recognized national standards using controlled processes at the ETS-Lindgren Calibration Laboratory. Uncertainties listed are derived from the methods described by NIST Tech Note 1297. This certificate and report may not be reproduced, except in full, without the written approval of ETS-Lindgren Calibration Laboratory in accordance with ISO/IEC 17025-2005. QAF 1127 (06/07)

METS · LINDGREN ~

Frequency Response Calibration Factors Model E100 Serial Number 00126277 Date of Calibration 14 Jul 2010

Frequency	Applied	S Pro	be Reading	國家的主义		Correction F	actor	a alag is a s
(MH2)/2/	·哈V/me	X					2 Z	AVA
1.00	7.99	6.73	6.65	6.64	1.19	1.20	1.20	1.20
1.00	19.86	16.88	16.46	16.75	1.18	1.21	1.19	1.19
1.00	69.83	58.57	57.16	57.94	1.19	1.22	1.21	1.21
1.00	124.10	104.33	101.84	103.29	1.19	1.22	1.20	1,20
15.00	7.98	7.87	7.89	7.76	1.01	1.01	1.03	1.02
15.00	20.02	19.90	19.66	19.57	1.01	1.02	1.02	1.02
15.00	69.73	68.75	68.03	67.93	1.01	1.02	1.03	1.02
15.00	125.10	123.58	122.44	121.98	1.01	1.02	1.03	1.02
30.00	7.98	8.00	8.02	7.92	1.00	0.99	1.01	1.00
30.00	20.13	20.26	20.02	19.95	0.99	1.01	1.01	1.00
30.00	70.33	69.96	69.20	69.16	1.01	1.02	1.02	1.01
30.00	125.54	125.61	124.27	124.22	1.00	1.01	1.01	1.01
75.00	8.00	8.02	8.09	7.92	1.00	0.99	1.01	1.00
75.00	19.99	20.13	19.98	19.76	0.99	1.00	1.01	1.00
75.00	70.36	69.86	69.30	68.86	1.01	1.02	1.02	1.01
75.00	125.15	125.40	124.63	123.68	1.00	1.00	1.01	1.00
100.00	7.96	7.97	8.01	7.88	1.00	0.99	1.01	1.00
100.00	19.88	19.91	19.74	19.61	1.00	1.01	1.01	1.01
100.00	69.57	69.51	68.99	68.72	1.00	1.01	1.01	1.01
100.00	124.96	124.36	123.49	122.96	1.00	1.01	1.02	1.01
150.00	8.01	8.06	8.15	7.96	0.99	0.98	1.01	0.99
150.00	19.95	20.28	20.15	19.91	0.98	0.99	1.00	0.99
150.00	69.89	69.62	69.33	68.78	1.00	1.01	1.02	1.01
150.00	124.33	125.18	124.63	123.79	0.99	1.00	1.00	1.00
200.00	8.00	8.45	8.63	8.33	0.95	0.93	0.96	0.95
200.00	20.01	21.13	21.27	20.72	0.95	0.94	0.97	0.95
200.00	69.87	73.33	73.78	72.18	0.95	0.95	0.97	0.96
200.00	124.17	129.74	130.72	127.78	0.96	0.95	0.97	0.96
250.00	8.01	8.19	8.12	8.13	0.98	0.99	0.99	0.98
250.00	20.01	20.51	20.01	20.27	0.98	1.00	0.99	0.99
250.00	69.83	71.26	69.62	70.60	0.98	1.00	0.99	0.99
250.00	125.43	127.92	125.29	127.07	0.98	1.00	0.99	0.99
300.00	8.01	8.15	8.10	8.06	0.98	0.99	0.99	0.99
300.00	19.94	20.39	20.06	20.16	0.98	0.99	0.99	0.99
300.00	69.60	70.46	69.32	69.88	0.99	1.00	1.00	1.00
300.00	125.08	126.92	124.75	125.61	0.99	1.00	1.00	0.99
400.00	8.02	8.14	8.13	8.06	0.98	0.99	0.99	0.99
400.00	19.87	20.24	19.93	19.94	0.98	1.00	1.00	0.99
400.00	69.66	70.49	69.46	69.77	0.99	1.00	1.00	1.00
400.00	124.99	127.20	125.29	125.73	0.98	1.00	0.99	0.99
500.00	8.04	8.01	8.13	7.92	1.00	0.99	1.02	1.00
500.00	19.98	19.97	19.95	19.63	1.00	1.00	1.02	1.01
500.00	70.28	69.96	69.96	69.11	1.00	1.00	1.02	1.01
500.00	124.86	124.41	124.25	122.86	1.00	1.00	1.02	1.01
600.00	8.00	7.72	7.73	7.65	1.04	1.04	1.05	1.04
600.00	19.95	19.30	19.03	19.07	1.03	1.05	1.05	1.04
600.00	69.83	67.03	64.80	65.25	1.04	1.08	1.07	1.06
600.00	125.49	121.42	119.78	120.36	1.03	1.05	1.04	1.04

Page 2 of 4

METS · LINDGREN

Frequency Response Calibration Factors Model E100 Serial Number 00126277 Date of Calibration 14 Jul 2010

Frequency	Applied	Pr	obe Readin	9.		Correctio	n Factor	C. Metrick T. (T.)
(MHz)	V/m	<u> </u>	<u> </u>	1-1- 2	X	<u> </u>	- Z	Avg
700.00	8.06	7.63	7.53	7.57	1.06	1.07	1.06	1.06
700.00	20.05	18.94	18.46	18.74	1.06	1.09	1.07	1.07
700.00	70.48	66.13	64.14	65.29	1.07	1.10	1.08	1.08
700.00	124.23	117.32	114.56	116.78	1.06	1.08	1.06	1.07
800.00	7.97	7.37	7.39	7.27	1.08	1.08	1.10	1.09
800.00	19.93	18.50	18.31	18.29	1.08	1.09	1.09	1.09
800.00	69.90	64.64	64.92	64.77	1.08	1.08	1.08	1.08
800.00	124.55	115.81	114.68	114.76	1.08	1.09	1.09	1.08
900.00	8.01	7.85	7.93	7.71	1.02	1.01	1.04	1.02
900.00	19.90	19.74	19.73	19.30	1.01	1.01	1.03	1.02
900.00	70.29	69.02	68.60	67.71	1.02	1.02	1.04	1.03
900.00	124.72	123.49	122.93	121.00	1.0 1	1.01	1.03	1.02
1000.00	8.00	8.16	8.06	8.08	0.98	0.99	0.99	0.99
1000.00	19.91	20.37	1 9.7 4	20.07	0.98	1.01	0.99	0.99
1000.00	69.79	70.93	68.52	69.98	0.98	1.02	1.00	1.00
1000.00	124.52	127.44	123.83	125.80	0.98	1.01	0.99	0.99
2000.00	20.07	19.68	19.26	19.58	1.02	1.04	1.03	1.03
2450.00	20.02	19.58	1 9.47	18.99	1.02	1.03	1.05	1.03
3000.00	19.99	20.23	1 8.92	20.34	0.99	1.06	0.98	1.01
3500.00	20.03	20.44	20.24	20.40	0.98	0.99	0.98	0.98
4000.00	20.47	20.59	19.87	20.88	0.99	1.03	0.98	1.00
5000.00	20.07	14.70	15.34	16.37	1.37	1.31	1.23	1.30
5500.00	19.74	15.36	15.43	14.11	1.28	1.28	1.40	1.32
6000.00	19.94	13.34	15.14	14.53	1.49	1.32	1.37	1.39

METS · LINDGREN

PROBE ROTATIONAL RESPONSE

Isotropic response measured in a 20 V/m field at 400 MHz

Page 4 of 4

Appendix C - Photos of Assessed Antennas

(Refer to Exhibit 7B)

Appendix D – MPE Measurement Results

SR9298

MPE measurement data for Bystander

		D.U	.T. Info.				Prob	e Info.															
		Ant		Max	Initial			Probe												DUT Max			
Ant	Ant. Model/	Gain	Tx Freq	Pwr	Pwr	Test	E/H	Cal.	Test					Bystande	r (BS) Pos	itions				TX	Avg. over Body	Calc. P.D.	Max Calc. P.D.
Loc.	Desc.	(dBi)	(MHz)	(W)	(W)	Mode	Field	Factor	Pos.	20 cm	40 cm	60 cm	80 cm	100 cm	120 cm	140 cm	160 cm	180 cm	200 cm	Factor	(mW/ cm^2)	(mW/ cm^2)	(mW/ cm^2)
	HAE6033A																						
MC	450-482MHz	2.15	450.0125	18	17.4	CW	Е	1.01	BS	0.06	0.07	0.08	0.13	0.27	0.34	0.29	0.19	0.10	0.06	0.5	0.159	0.08	0.08
	HAE6033A,																						
MC	450-482MHz	2.15	460	18	17.4	CW	Е	1.01	BS	0.08	0.09	0.08	0.13	0.26	0.31	0.25	0.16	0.09	0.04	0.5	0.149	0.08	0.08
MC	HAE6033A, 450-482MHz	2.15	471	18	17.2	CW	Е	1.01	BS	0.08	0.08	0.06	0.13	0.26	0.30	0.23	0.14	0.08	0.04	0.5	0.140	0.07	0.07
MC	HAE6033A, 450-482MHz	2.15	481 9875	18	17.5	CW	F	1.02	BS	0.08	0.07	0.05	0.14	0.29	0.34	0.28	0.17	0.10	0.06	0.5	0.158	0.08	0.08
MC	450-46214112	2.15	401.2075	10	17.5	Cm	L	1.02	15	0.00	0.07	0.05	0.14	0.27	0.54	0.20	0.17	0.10	0.00	0.5	0.156	0.00	0.00
	HAE6034A,																						
MC	482-512MHz	2.15	482.0125	18	17.5	CW	Е	1.02	BS	0.08	0.07	0.06	0.15	0.27	0.32	0.26	0.16	0.10	0.06	0.5	0.153	0.08	0.08
	HAE6034A,						_																
MC	482-512MHz	2.15	497	18	17.5	CW	E	1.02	BS	0.05	0.03	0.04	0.18	0.34	0.39	0.33	0.23	0.16	0.09	0.5	0.184	0.09	0.10
MC	HAE0034A, 482-512MHz	2.15	511 9875	18	17.6	CW	F	1.03	BS	0.07	0.03	0.06	0.20	0.32	0.34	0.27	0.17	0.11	0.07	0.5	0.164	0.08	0.09
MC	HAE6034A.	2.15	511.7075	10	17.0	Cm	L	1.05	15	0.07	0.05	0.00	0.20	0.52	0.54	0.27	0.17	0.11	0.07	0.5	0.104	0.00	0.09
MC	482-512MHz	2.15	512.0125	18	17.3	CW	Е	1.03	BS	0.07	0.03	0.06	0.20	0.31	0.34	0.26	0.18	0.11	0.07	0.5	0.163	0.08	0.09
	HAE6034A,																						
MC	482-512MHz	2.15	516.0125	18	17.4	CW	Е	1.04	BS	0.06	0.04	0.07	0.21	0.30	0.34	0.24	0.17	0.10	0.06	0.5	0.159	0.08	0.09
MC	HAE6034A,	2.15	510 0975	10	17.2	CW	F	1.04	DC	0.07	0.05	0.07	0.20	0.21	0.22	0.22	0.12	0.08	0.05	0.5	0.150	0.08	0.08
MC	462-312IVITIZ	2.13	519.9875	10	17.5	CW	Е	1.04	БЗ	0.07	0.05	0.07	0.20	0.51	0.52	0.22	0.15	0.08	0.03	0.5	0.130	0.08	0.08
	HAE6035A,																						
MC	450 - 512MHz	2.15	450.0125	18	17.4	CW	Е	1.01	BS	0.08	0.08	0.10	0.12	0.26	0.30	0.27	0.17	0.09	0.05	0.5	0.152	0.08	0.08
	HAE6035A,																						
MC	450 - 512MHz	2.15	465.5	18	17.4	CW	Е	1.01	BS	0.10	0.12	0.09	0.13	0.30	0.32	0.24	0.13	0.07	0.04	0.5	0.154	0.08	0.08
MC	HAE6035A, 450 - 512MHz	2.15	481.0125	18	17.5	CW	Е	1.02	BS	0.11	0.11	0.06	0.13	0.24	0.27	0.19	0.12	0.07	0.05	0.5	0.135	0.07	0.07
MC	HAE6035A, 450 - 512MHz	2.15	496.5	18	17.5	CW	E	1.02	BS	0.10	0.07	0.04	0.13	0.26	0.25	0.19	0.13	0.10	0.07	0.5	0.134	0.07	0.07
	HAE6035A,	2.10	19010		1710	0	-	1.02	20	0.10	0.07	0.07	0.10	0.20	0.20	0.15	0.10	0.10	0.07	0.0	0.101	0.07	0.07
MC	450 - 512MHz	2.15	511.9875	18	17.6	CW	Е	1.03	BS	0.08	0.04	0.04	0.16	0.25	0.27	0.20	0.14	0.09	0.07	0.5	0.134	0.07	0.07

MPE calculations are defined in section 12.0.

D.U.T. Info. Probe Info. Max Calc. **Operator (MC) Positions** Avg. over Max Pwr Initial Pwr Test Lower DUT Max. P.D. Ant. Model/ Ant. Gain Tx Freq Test E/H Probe Cal. Body Calc. P.D. Ant Desc. (dBi) (MHz) (W) (W) Mode Field Factor Pos. Head Chest Trunk TX Factor (mW/ cm^2) (mW/ cm^2) (mW/ cm^2) Loc. HAE6033A, 450-482MHz CW MC 2.15 450.0125 18 17.4 Е 1.01 OP 0.34 1.05 0.64 0.5 0.677 0.34 0.35 HAE6033A, 450-482MHz 2.15 460 18 17.4 CW Е 1.01 OP 0.42 1.11 0.74 0.5 0.757 0.38 0.40 MC HAE6033A, 450-482MHz 471 18 17.2 CW Е 1.01 OP 0.38 1.05 0.75 0.5 0.727 0.37 0.38 MC 2.15 HAE6033A, 450-482MHz CW Е MC 2.15 481.9875 18 17.5 1.02 OP 0.44 1.14 0.70 0.5 0.760 0.39 0.40 HAE6034A, 482-512MHz CW MC 2.15 482.0125 18 17.5 Е 1.02 OP 0.44 1.09 0.69 0.5 0.740 0.38 0.39 HAE6034A, MC 482-512MHz 2.15 497 18 17.5 CW Е 1.02 OP 0.38 1.01 0.51 0.5 0.633 0.32 0.33 HAE6034A, MC 482-512MHz 2.15 511.9875 18 17.6 CW Е 1.03 OP 0.47 1.19 0.68 0.5 0.780 0.40 0.41 HAE6034A. MC 482-512MHz 2.15 512.0125 18 17.3 CW Е 1.03 OP 0.46 1.18 0.69 0.5 0.777 0.40 0.42 HAE6034A, 482-512MHz 516.0125 CW Е 1.04 0.45 1.23 0.803 0.42 MC 2.15 18 17.4OP 0.73 0.5 0.43 HAE6034A, 482-512MHz 1.22 MC 2.15 519.9875 18 17.3 CW Е 1.04 OP 0.44 0.68 0.5 0.780 0.41 0.42 HAE6035A, MC 450 - 512MHz 2.15 450.0125 18 17.4 CW Е 1.01 OP 0.36 0.99 0.72 0.5 0.690 0.35 0.36 HAE6035A, 450 - 512MHz CW Е OP 0.48 0.84 0.42 0.44 MC 2.15 465.5 18 17.4 1.01 1.18 0.5 0.833 HAE6035A, 450 - 512MHz 481.0125 18 17.5 CW Е 1.02 OP 0.50 1.20 0.71 0.5 0.803 0.42 MC 2.15 0.41 HAE6035A, MC 450 - 512MHz 2.15 496.5 18 17.5 CW Е 1.02 OP 0.40 0.98 0.47 0.5 0.617 0.31 0.32 HAE6035A, MC 450 - 512MHz 2.15 511.9875 18 17.6 CW Е 1.03 OP 0.44 1.08 0.59 0.5 0.703 0.36 0.37

MPE measurement data for Operator

MPE calculations are defined in section 12.0.