

MOTOROLA SOLUTIONS

TESTING CERT # 2518.01

DECLARATION OF COMPLIANCE: MPE/SAR ASSESSMENT Part 1 of 2

EME Test Laboratory 8000 West Sunrise Blvd Fort Lauderdale, FL. 33322	Date of Report: January 17, 2012 Report Revision: O Report ID: SR9338 MPE Auto rpt APX7500 UHF R1 & UHF R2 Rev O 01172012
--	--

Responsible Engineer: Stephen C. Whalen (Principal Staff EME Test Engineer) *scw 1/17/2012*
Report author: Stephen C. Whalen (Principal Staff EME Test Engineer)
Date(s) Tested: UHF R1 test dates - 5/27/2010, 6/2/2010, 6/3/2010, 6/22/2010, 6/25/2010, 7/1/2010, & 7/29/2011; 8/1/2011
Manufacturer/Location: Motorola Solutions, Penang
Date submitted for test: 05/31/2011
DUT Description: APX7500 Dual Band UHF R1 40W (380-470MHz) & UHF R2 45W (450 - 485MHz), 40W (485-512MHz), 25W (512-520MHz)
Test TX mode(s): CW
Max. Power output: 48W (380-470MHz) & 54W (450-485MHz), 48W (485-512MHz), 30W (512-520MHz)
TX Frequency Bands: 380-470MHz & 450-520MHz
Signaling type: Analog, APCO 25, and TDMA 1:2 (F2)
Model(s) Tested: M30QSS9PW1AN (FCC ID AZ492FT4894)
Model(s) Certified: M30TSS9PW1AN (MHUE1002A)
Serial Number(s): 123ABC4567
Classification: Occupational/Controlled Environment
FCC ID: AZ492FT4904
Part 22 & 90 UHF R1 (406.1-470MHz) & UHF R2 (450-512MHz).
Results outside FCC bands are not applicable for FCC compliance demonstration.

Based on the information and the testing results provided herein, the undersigned certifies that when used as stated in the operating instructions supplied, said product complies with the national and international reference standards and guidelines listed in section 3.0 of this report. This report shall not be reproduced without written approval from an officially designated representative of the Motorola Solutions Inc. EME Laboratory.

I attest to the accuracy of the data and assume full responsibility for the completeness of these measurements.

This reporting format is consistent with the suggested guidelines of the TIA TSB-159 April 2006

The results and statements contained in this report pertain only to the device(s) evaluated herein.

Kim Anh Llonda
For Deanna Zakharia
EME Lab Senior Resource Manager and
Laboratory Director

Approval Date: *1/18/2012*

Certification Date:

Certification No.:

Document Revision History

Date	Revision	Comments
01/17/2012	O	Initial release

Part 1 of 2: MPE Assessment for 380-470MHz
Part 2 of 2: MPE Assessment for 450-520MHz

Part 1 of 2

Table of Contents

1.0	Introduction.....	4
2.0	Abbreviations / Definitions.....	4
3.0	Referenced Standards and Guidelines	4
4.0	Power Density Limits	5
5.0	N _c Test Channels.....	6
6.0	Measurement Equipment	6
7.0	Measurement System Uncertainty Levels	6
8.0	Product and System Description.....	7
9.0	Additional Options and Accessories.....	7
10.0	Test Set-Up Description.....	7
11.0	Method of Measurement with trunk mounted antenna(s).....	8
11.1	External/Bystander vehicle MPE measurements	8
11.2	Internal/Passenger vehicle MPE measurements.....	8
12.0	Method of Measurement with roof mounted antenna(s)	9
12.1	External/Bystander vehicle MPE measurements	9
12.2	Internal/Passenger vehicle MPE measurements.....	9
13.0	MPE Calculations	10
14.0	Antenna Summary	11
15.0	Test Results Summary	11
16.0	Conclusion	18
	Appendix A - Illustration of Antenna Locations and Test Distances	19
	Appendix B - Probe Calibration Certificates.....	22
	Appendix C - Photos of Assessed Antennas.....	33
	Appendix D – MPE Measurement Results	34
	Appendix E - SAR Simulation Report.....	47

1.0 Introduction

This report details the test setup, test equipment and test results of Maximum Permissible Exposure (MPE) performed at Motorola Solutions' outside test site and Specific Absorption Rate (SAR) simulations for product model M30TSS9PW1AN (MHUE1002A).

2.0 Abbreviations / Definitions

APCO: Association of Public-Safety Communications Officials
 BS: Bystander
 C4FM: Compatible 4-Level Frequency Modulation
 CNR: Calibration Not Required
 CQPSK: Compatible Quadrature Phase Shift Keying
 CW: Continuous Wave
 DUT: Device Under Test
 EME: Electromagnetic Energy
 F2: 2 slot Time Division Multiple Access
 FM: Frequency Modulation
 MPE: Maximum Permissible Exposure
 NA: Not Applicable
 PB: Passenger Backseat
 PF: Passenger Front seat
 PTT: Push to Talk
 SAR: Specific Absorption Rate
 TDMA: Time Division Multiple Access

3.0 Referenced Standards and Guidelines

This product is designed to comply with the following applicable national and international standards and guidelines.

- United States Federal Communications Commission, Code of Federal Regulations; Rule Part 47CFR § 1.1310, § 2.1091 (d) and § 2.1093 for RF Exposure, where applicable.
- Federal Communications Commission, “Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields”, OET Bulletin 65, Supplement C (Edition 01-01), FCC, Washington, D.C.: June 2001.
- American National Standards Institute (ANSI) / Institute of Electrical and Electronics Engineers (IEEE) C95. 1-1999
- American National Standards Institute (ANSI) / Institute of Electrical and Electronics Engineers (IEEE) C95. 1-1992. Specific to FCC rules and regulations.
- Institute of Electrical and Electronics Engineers (IEEE) C95.3-2002
- International Commission on Non-Ionizing Radiation Protection (ICNIRP) 1998

4.0 Power Density Limits

Table 1 – Occupational / Controlled Exposure Limits

Frequency Range (MHz)	FCC OET Bulletin 65 Supplement C	ICNIRP	IEEE C95.1 1992/1999	IEEE C95.1 2005
	mW/cm ²	W/m ²	mW/cm ²	W/m ²
30 - 300	1.0			
10 - 400		10.0		
100 - 300			1.0	10.0
300 - 1,500	f/300			
300 - 3,000			f/300	f/30
400 - 2,000		f/40		
1,500 - 15,000				
1,500 - 100,000	5.0			
2,000 - 300,000		50.0		
3,000 - 300,000			10.0	100.0

Table 2 – General Population / Uncontrolled Exposure Limits

Frequency Range (MHz)	FCC OET Bulletin 65 Supplement C	ICNIRP	IEEE C95.1 1992/1999	IEEE C95.1 2005
	mW/cm ²	W/m ²	mW/cm ²	W/m ²
30 – 300	0.2			
10 – 400		2.0		
100 – 300			0.2	
100 – 400				2.0
300 – 1,500	f/1,500			
400 – 2,000		f/200		f/200
300 – 15,000			f/1,500	
1,500 – 15,000				
1,500 – 100,000	1.0			
2,000 – 100,000				10.0
2,000 – 300,000		10.0		

5.0 N_c Test Channels

The number of test channels are determined by using Equation 1 below. This equation is available in FCC's KDB 447498. The test channels are appropriately spaced across the antenna's frequency range.

Equation 1 – Number of test channels

$$N_c = \text{Round} \{ [100(f_{\text{high}} - f_{\text{low}})/f_c]^{0.5} \times (f_c / 100)^{0.2} \}$$

where N_c is the number of test channels, f_{high} and f_{low} are the highest and lowest frequencies within the transmission band, f_c is the mid-band frequency, and frequencies are in MHz.

6.0 Measurement Equipment

Table 3 - Equipment

Equipment Type	Model #	SN	Calibration Date	Calibration Due Date
Automobile	2003 Ford Crown Victoria, 4-Door	NA	NA	NA
*Survey Meter *Probe – E-Field	ETS Model HI-2200 ETS Model E100	00086316 00109011	10/22/2009	10/22/2010
**Survey Meter **Probe – E-Field	ETS Model HI-2200 ETS Model E100	00086316 00109011	01/04/2011	01/04/2012

E-field measurements are in mW/cm².

*Test dates; 5/27/2010, 6/2/2010, 6/3/2010, 6/22/2010, 6/25/2010 & 7/1/2010

**Test dates; 7/29/2011; 8/1/2011

7.0 Measurement System Uncertainty Levels

Table 4 - Uncertainty Budget for Near Field Probe Measurements

	Tol. (\pm %)	Prob. Dist.	Divisor	u_i (\pm %)	v_i
Measurement System					
Probe Calibration	6.0	N	1.00	6.0	∞
Survey Meter Calibration	3.0	N	1.00	3.0	∞
Hemispherical Isotropy	8.0	R	1.73	4.6	∞
Linearity	5.0	R	1.73	2.9	∞
Pulse Response	1.0	R	1.73	0.6	∞
RF Ambient Noise	3.0	R	1.73	1.7	∞
RF Reflections	8.0	R	1.73	4.6	∞
Probe Positioning	10.0	R	1.73	5.8	∞
Test sample Related					
Antenna Positioning	3.0	N	1.00	3.0	∞
Power drift	5.0	R	1.73	2.9	∞
Combined Standard Uncertainty		RSS		12.2	∞
Expanded Uncertainty (95% CONFIDENCE LEVEL)		$k=2$		24	

8.0 Product and System Description

Model M30TSS9PW1AN (MHUE1002A) is a mobile transceiver that utilizes analog, APCO 25 & F2 digital two-way radio communications. The analog modulation scheme uses Frequency Modulation (FM). APCO 25 & F2 digital modes use C4FM of CQPSK family of modulation (Compatible 4-Level Frequency Modulation of Compatible Quadrature Phase Shift Keying). F2 is a TDMA 1:2 protocol that allocates portions of the RF signal by dividing time into two slots (2 slots TDMA). Transmission from a unit or base station is accommodated in time-slot lengths of 30 milliseconds and frame lengths of 60 milliseconds. This product supports voice in analog mode, and both voice and data modes in digital mode.

The maximum duty cycle for TDMA is 1:2 (50%) and is controlled by software. The FM signal is continuous. However, because of hand shaking or Push-To-Talk (PTT) between users and/or base stations a conservative 50% duty cycle is applied. The TDMA mode was not tested because its duty cycle is inherently 50% and would include an additional 50% duty cycle for PTT.

The intended use of the radio is PTT while the device is properly installed in a vehicle with an external antenna mounted at the roof or trunk.

This device will be marketed to and used by employees solely for work-related operations, such as public safety agencies, e.g. police, fire and emergency medical. User training is the responsibility of these agencies which can be expected to employ the usage instructions, safety information and operational cautions set forth in the user's manual, instructional sessions or other means.

Accordingly this product is classified as Occupational/Controlled Exposure. However, in accordance with FCC requirements, the passengers inside the vehicle and the bystanders external to the vehicle are evaluated to the General Population/Uncontrolled Exposure Limits.

(Note that "Bystanders" as used herein are people other than operator)

9.0 Additional Options and Accessories

Refer to Table 5 for complete list of tested antennas.

10.0 Test Set-Up Description

Assessments were performed with mobile radio installed in the test vehicle while engine was at idle, at the specified distances and test locations indicated in sections 11.0, 12.0 and Appendix A.

All antennas described in Table 5 were considered in order to develop the test plan for this product. Antennas were installed and tested per their appropriate mount locations (Roof / Trunk) and defined test channels.

11.0 Method of Measurement with trunk mounted antenna(s)

11.1 External/Bystander vehicle MPE measurements

Antenna is located at the center of the trunk. Refer to Appendix A for antenna location and distance.

MPE measurements for bystander (BS) conditions are determined by taking the average of (10) measurements in a 2 m vertical line for each of the (3) bystander test locations indicated in Appendix A with 20 cm height increments, with antenna to probe sensor separation distances of 90 cm directly behind vehicle, 104 cm (45 degree radial) and 110.5 cm (90 degree radial). The separation distance used for testing is defined from the antenna where as the RF safety booklet defines the same distance from the vehicle body to ensure that the assessment is applicable to other vehicles. The measurement probe is positioned orthogonal to antenna (typically parallel to ground with a vertically mounted antenna) and aimed directly at the antenna's axis. These measurements are representative of persons other than the operator standing next to the vehicle.

Each of the offered antennas mounted at the center of the trunk were assessed at the rear of the vehicle while maintaining a minimum of twenty (20) centimeter separation distance between the probe sensor and vehicle body. The worst case antenna was then tested at a 45° radial at the corner of the trunk, and 90° radial at the side of the trunk.

Note: The distance from the centered trunk-mounted antenna to the rear edge of the vehicle is 42cm and the distance from the rear edge of the vehicle to the survey probe sensor is 48cm.

11.2 Internal/Passenger vehicle MPE measurements

Antenna is located toward the center of the trunk at a minimum 85cm from backseat passenger. Users are instructed, per installation manual, to mount antennas on the roof only if a minimum 85cm cannot be achieved. Refer to Appendix A for antenna location and distance.

MPE measurements for passenger front seat (PF) and backseat (PB) conditions are determined by taking the average of the (3) measurements (Head, Chest, and Lower Trunk) inside the vehicle for both the front and back seats.

The backseat is a bench seat and therefore each position (Head, Chest & Lower Trunk) were scanned across (horizontally) the seat starting from the middle of the seat to the edge of the seat stopping 20 cm from the vehicle door. Similar process was used in the front bucket seat.

The probe handle is oriented parallel (horizontal) to the ground and pointed towards the back of the vehicle. The probe handle is not oriented normal to the seat surface. The probe head (incorporating the field sensors) is scanned continuously (using the max-hold function available in the meter) along three test axes which are parallel to the seat angle (intended as the line determined by the intersection of the plane of the seat and the plane of the backrest) and are 20 cm from the seat surface. One test axis is at the Head height, another is at the Chest height, and another is at the Lower Trunk height. The maximum field level value recorded for each test axis is logged. The MPE is determined by averaging these three maximum values regardless of the geometrical location where they were observed. For instance, the locations of the three maxima may lie on different vertical

(relative to ground) lines.

This approach leads to results that are representative of the exposure of vehicle occupants since it is based on an average across the body portions closest to the antenna for both trunk and roof mount positions, and is conservatively biased because the highest results for each test axis are combined, e.g. the highest head exposure could be in the middle of the seat while the highest lower trunk exposure could be closer to the door.

12.0 Method of Measurement with roof mounted antenna(s)

12.1 External/Bystander vehicle MPE measurements

Antenna is located at the center of the roof. Refer to Appendix A for antenna location and distance.

MPE measurements for bystander (BS) conditions are determined by taking the average of (10) measurements in a 2m vertical line for the test location indicated in Appendix A with 20cm increments at the test distance of 117cm from the antenna under test. The measurement probe is positioned orthogonal to antenna (typically parallel to ground with a vertically mounted antenna) and aimed directly at the antenna's axis. These measurements are representative of persons other than the operator standing next to the vehicle.

Note: Actual test distance was approximately 117cm from centered roof-mounted antenna to the probe element (97cm from antenna to edge of car door and 20cm from the edge of the car door to the survey probe sensor); this is the closest distance that can be achieved to a centered roof-mounted antenna used for MPE compliance assessment herein.

12.2 Internal/Passenger vehicle MPE measurements

Antenna is located at the center of the roof. Refer to Appendix A for antenna location and distance.

MPE measurements for passenger front seat (PF) and backseat (PB) conditions are determined by taking the average of the (3) measurements (Head, Chest, and Lower Trunk) inside the vehicle for both the front and back seats.

The backseat is a bench seat and therefore each position (Head, Chest & Lower Trunk) were scanned across (horizontally) the seat starting from the middle of the seat to the edge of the seat stopping 20 cm from the vehicle door. Similar process was used in the front bucket seat.

The probe handle is oriented parallel (horizontal) to the ground and pointed towards the back of the vehicle. The probe handle is not oriented normal to the seat surface. The probe head (incorporating the field sensors) is scanned continuously (using the max-hold function available in the meter) along three test axes which are parallel to the seat angle (intended as the line determined by the intersection of the plane of the seat and the plane of the backrest) and are 20 cm from the seat surface. One test axis is at the Head height, another is at the Chest height, and another is at the Lower Trunk height. The maximum field level value recorded for each test axis is logged. The MPE is determined by averaging these three maximum values regardless of the geometrical location where they were observed. For instance, the locations of the three maxima may lie on different vertical (relative to ground) lines.

This approach leads to results that are representative of the exposure of vehicle occupants since it is based on an average across the body portions closest to the antenna for both trunk and roof mount positions, and is conservatively biased because the highest results for each test axis are combined, e.g. the highest head exposure could be in the middle of the seat while the highest lower trunk exposure could be closer to the door.

13.0 MPE Calculations

The final MPE results for this mobile radio are presented in section 15.0 Tables 6 - 9. These results are based on 50% duty cycle for PTT.

Below is an explanation of how the MPE results are calculated. Refer to Appendix D for MPE measurement results and calculations.

External to vehicle (Bystander) - 10 measurements are averaged over the body (*Avg_over_body*).
Internal to vehicle (Passengers) - 3 measurements are averaged over the body (*Avg_over_body*).

The Average over Body test methodology is consistent with IEEE/ANSI C95.3-2002 guidelines.

Therefore;

Equation 2 – Power Density Calculation (*Calc._P.D.*)

$$\text{Calc._P.D.} = (\text{Avg_over_body}) * (\text{probe_frequency_cal_factor}) * (\text{duty_cycle})$$

Note 1: The highest “average” cal factors from the calibration certificates were selected for the applicable frequency range. Linear interpretation was used to determine “probe_frequency_cal_factor” for the specific test frequencies.

Note 2: The E-field probe calibration certificate’s frequency cal factors were determined by measuring V/m. The survey meter’s results were measured in power density (mW/cm²) and therefore the “probe_frequency_cal_factor” was squared in equation 2 to account for these results.

Note 3: The H-field probe calibration certificate’s frequency cal factors were determined by measuring A/m. The survey meter’s results were measured in A/m and therefore the “Avg_over_body” A/m results were converted to power density (mW/cm²) using the equation 3. H-field measurements are only applicable to frequencies below 300MHz.

Equation 3 – Converting A/m to mW/cm²

$$\text{mW/cm}^2 = (\text{A/m})^2 * 37.699$$

Equation 4 – Power Density Maximum Calculation

$$\text{Max_Calc._P.D.} = \text{P.D._calc} * \frac{\text{max_output_power}}{\text{initial_output_power}}$$

Note 4: For initial output power > max_output_power; max_output_power / initial output power = 1

14.0 Antenna Summary

Table 5 below summarizes the tested antennas and their descriptions, mount location (roof/trunk), overlap of FCC bands, number of test channels per FCC KDB 447498 (FCC N_c) and actual number of tested channels (Actual N_c). This information was used to determine the test configurations presented in this report.

Table 5

#	Antenna Model	Frequency Range (MHz)	Physical Length (cm)	Gain (dBi)	Remarks	Mount Location (Roof/Trunk)	Overlap FCC Bands	FCC N_c	Actual N_c
1	HAE6012A	380-433	18.0	2.15	1/4 wave, wire	R	406.1-433	3	3
2	HAE4003A	450-470	16.0	2.15	1/4 wave, wire	R	450-470	3	3
3	HAE6011A	380-433	91.5	7.15	5/8 wave, trap-loaded	R/T	406.1-433	3	3
4	HAE4011A	450-470	72.5	5.65	1/2 wave, trap-loaded	R/T	450-470	3	3
5	*RAE4014ARB	445 - 470	92.7 90.5 89.0	7.15	5/8 wave, trap-loaded	R/T	445-470	3	3
6	HAE6010A	380-433	63.0	5.65	1/2 wave, trap-loaded	R/T	406.1-433	3	3
7	HAE6013A	380-470	29.0	4.15	1/2 wave, wire	R/T	406.1-470	5	5
8	HAE6031A	380 - 520	28.0	4.15	1/2 wave, wire	R/T	406.1-470	5	5

* Antennas trimmed per test frequency.

15.0 Test Results Summary

The following tables below summarize the MPE results for each test configuration: antenna location, test positions (BS-Bystander, PB-Passenger Backseat, PF-Passenger Front seat), E/H field measurements, angle, antenna model & freq. range, maximum output power, initial power, TX frequency, max calculated power density results, applicable FCC/IEEE specification limits and % of the applicable specification limits.

Table 6
Bystander MPE assessment for roof mounted antennas

Trunk/ Roof	Test Position	E/H field	Angle (Degree)	Antenna Model	Max Pwr (W)	Initial Pwr (W)	Tx Freq (MHz)	Calc. P.D. (mW/ cm^2)	FCC Limit	% To Spec Limit
Roof	BS	E	NA	HAE6012A (380-433MHz)	48	47.8	406.5000	0.05	0.27	19.0%
						47.4	419.5000	0.06	0.28	20.5%
						47.0	432.9875	0.05	0.29	16.0%
				HAE4003A (450-470MHz)	48					
						46.6	450.0125	0.06	0.30	20.8%
						47.8	460.0125	0.06	0.31	19.2%
				HAE6011A (380-433MHz)	48	46.6	469.9875	0.06	0.31	17.9%
						47.8	406.5000	0.03	0.27	12.0%
						47.4	419.5000	0.03	0.28	10.5%
				HAE4011A (450-470MHz)	48	47.0	432.9875	0.01	0.29	3.4%
						46.6	450.0125	0.05	0.30	17.6%
				RAE4014ARB (445-470MHz)	48	47.1	460.0125	0.04	0.31	13.7%
						46.6	469.9875	0.03	0.31	9.4%
				HAE6010A (380-433MHz)	48	47.3	445.0125	0.03	0.30	9.4%
						47.0	457.5000	0.02	0.31	5.5%
						46.6	469.9875	0.00	0.31	1.0%
				HAE6013A (380-470MHz)	48					
						47.8	406.5000	0.03	0.27	11.8%
						47.4	419.5000	0.03	0.28	11.6%
				HAE6031A (380-520MHz)	48	47.0	432.9875	0.03	0.29	10.8%
						47.8	406.5000	0.06	0.27	22.1%
				HAE6013A (380-470MHz)	48	47.5	425.0125	0.06	0.28	19.7%
						46.9	438.0125	0.04	0.29	12.9%
						47.0	454.0125	0.04	0.30	12.6%
				HAE6031A (380-520MHz)	48	46.6	469.9875	0.03	0.31	9.9%
						47.8	406.5000	0.06	0.27	21.7%
				HAE6031A (380-520MHz)	48	47.5	425.0125	0.06	0.28	21.0%
						46.9	438.0125	0.06	0.29	19.1%
						47.0	454.0125	0.06	0.30	20.7%
				HAE6031A (380-520MHz)	48	46.6	469.9875	0.05	0.31	16.1%

Note 1 – Data highlighted was used for FCC ID AZ492FT4894 in July 2010 (original filing) and August 2010 (class II PC). Remaining data was taken in 2011 with the same radio model from FCC ID AZ492FT4894.

Table 7
Passenger MPE assessment to for roof mounted antennas

Trunk/ Roof	Test Position	E/H field	Angle (Degree)	Antenna Model	Max Pwr (W)	Initial Pwr (W)	Tx Freq (MHz)	Calc. P.D. (mW/ cm^2)	FCC Limit	% To Spec Limit
Roof	PB	E	NA	HAE6012A (380-433MHz)	48	47.8	406.5000	0.12	0.27	43.0%
						47.4	419.5000	0.03	0.28	11.1%
						47.0	432.9875	0.02	0.29	7.8%
				HAE4003A (450-470MHz)	48	46.6	450.0125	0.04	0.30	13.7%
						47.8	460.0125	0.02	0.31	7.3%
						46.6	469.9875	0.02	0.31	6.9%
				HAE6011A (380-433MHz)	48	47.8	406.5000	0.02	0.27	5.8%
						47.4	419.5000	0.00	0.28	1.8%
						47.0	432.9875	0.00	0.29	0.0%
				HAE4011A (450-470MHz)	48	46.6	450.0125	0.00	0.30	1.6%
						47.1	460.0125	0.00	0.31	0.5%
						46.6	469.9875	0.00	0.31	0.5%
				RAE4014ARB (445-470MHz)	48	47.3	445.0125	0.00	0.30	0.5%
						47.0	457.5000	0.00	0.31	0.0%
						46.6	469.9875	0.00	0.31	0.0%
				HAE6010A (380-433MHz)	48	47.8	406.5000	0.13	0.27	48.2%
						47.4	419.5000	0.04	0.28	14.0%
						47.0	432.9875	0.03	0.29	9.5%
				HAE6013A (380-470MHz)	48	47.8	406.5000	0.08	0.27	30.8%
						47.5	425.0125	0.04	0.28	13.0%
						46.9	438.0125	0.02	0.29	5.7%
						47.0	454.0125	0.02	0.30	5.0%
						46.6	469.9875	0.01	0.31	3.7%
				HAE6031A (380-520MHz)	48	47.8	406.5000	0.08	0.27	29.1%
						47.5	425.0125	0.04	0.28	13.6%
						46.9	438.0125	0.03	0.29	9.7%
						47.0	454.0125	0.03	0.30	8.3%
						46.6	469.9875	0.02	0.31	6.4%

Note 1 – Data highlighted was used for FCC ID AZ492FT4894 in July 2010 (original filing) and August 2010 (class II PC). Remaining data was taken in 2011 with the same radio model from FCC ID AZ492FT4894.

Table 7 (continued)
Passenger MPE assessment for roof mounted antennas

Trunk/ Roof	Test Position	E/H field	Angle (Degree)	Antenna Model	Max Pwr (W)	Initial Pwr (W)	Tx Freq (MHz)	Calc. P.D. (mW/ cm^2)	FCC Limit	% To Spec Limit
Roof	PF	E	NA	HAE6012A (380-433MHz)	48	47.8	406.5000	0.03	0.27	11.6%
						47.4	419.5000	0.01	0.28	4.1%
						47.0	432.9875	0.01	0.29	3.4%
				HAE4003A (450-470MHz)	48	46.6	450.0125	0.02	0.30	8.2%
						47.8	460.0125	0.03	0.31	10.0%
						46.6	469.9875	0.02	0.31	6.9%
				HAE6011A (380-433MHz)	48	47.8	406.5000	0.00	0.27	0.0%
						47.4	419.5000	0.00	0.28	0.0%
						47.0	432.9875	0.00	0.29	0.0%
				HAE4011A (450-470MHz)	48	46.6	450.0125	0.00	0.30	1.6%
						47.1	460.0125	0.00	0.31	1.6%
						46.6	469.9875	0.00	0.31	0.0%
				RAE4014ARB (445-470MHz)	48	47.3	445.0125	0.00	0.30	0.0%
						47.0	457.5000	0.00	0.31	0.0%
						46.6	469.9875	0.00	0.31	0.0%
				HAE6010A (380-433MHz)	48	47.8	406.5000	0.03	0.27	10.4%
						47.4	419.5000	0.02	0.28	6.4%
						47.0	432.9875	0.01	0.29	3.4%
				HAE6013A (380-470MHz)	48	47.8	406.5000	0.03	0.27	10.1%
						47.5	425.0125	0.02	0.28	6.2%
						46.9	438.0125	0.01	0.29	2.9%
						47.0	454.0125	0.01	0.30	3.3%
						46.6	469.9875	0.01	0.31	3.2%
				HAE6031A (380-520MHz)	48	47.8	406.5000	0.03	0.27	10.1%
						47.5	425.0125	0.02	0.28	6.2%
						46.9	438.0125	0.01	0.29	4.0%
						47.0	454.0125	0.02	0.30	6.1%
						46.6	469.9875	0.02	0.31	7.4%

Note 1 – Data highlighted was used for FCC ID AZ492FT4894 in July 2010 (original filing) and August 2010 (class II PC). Remaining data was taken in 2011 with the same radio model from FCC ID AZ492FT4894.

Table 8
Bystander MPE assessment for trunk mounted antennas

Trunk/ Roof	Test Position	E/H field	Angle (Degree)	Antenna Model	Max Pwr (W)	Initial Pwr (W)	Tx Freq (MHz)	Calc. P.D. (mW/ cm^2)	FCC Limit	% To Spec Limit
Trunk	BS	E	0	HAE6011A (380-433MHz)	48	47.8	406.5000	0.06	0.27	23.9%
						47.4	419.5000	0.05	0.28	18.8%
						47.0	432.9875	0.02	0.29	8.4%
				HAE4011A (450-470MHz)	48	46.6	450.0125	0.08	0.30	26.5%
						47.1	460.0125	0.08	0.31	25.8%
						46.6	469.9875	0.05	0.31	16.7%
				RAE4014ARB (445-470MHz)	48	47.3	445.0125	0.05	0.30	18.4%
						47.0	457.5000	0.05	0.31	14.9%
						46.6	469.9875	0.02	0.31	6.5%
				HAE6010A (380-433MHz)	48	47.8	406.5000	0.08	0.27	30.1%
						47.4	419.5000	0.09	0.28	31.1%
						47.0	432.9875	0.08	0.29	27.1%
				HAE6013A (380-470MHz)	48	47.8	406.5000	0.10	0.27	36.1%
						47.5	425.0125	0.14	0.28	50.3%
						46.9	438.0125	0.10	0.29	34.9%
						47.0	454.0125	0.08	0.30	25.1%
						46.6	469.9875	0.07	0.31	22.6%
				HAE6031A (380-520MHz)	48	47.8	406.5000	0.10	0.27	37.2%
						47.5	425.0125	0.13	0.28	44.7%
						46.9	438.0125	0.15	0.29	51.2%
						47.0	454.0125	0.12	0.30	40.7%
						46.6	469.9875	0.10	0.31	30.9%
	45	HAE6031A (380-520MHz)	48	46.9	438.0125		0.11	0.29		38.5%
	90	HAE6031A (380-520MHz)	48	46.9	438.0125		0.10	0.29		33.0%

Note 1 – Data highlighted was used for FCC ID AZ492FT4894 in July 2010 (original filing) and August 2010 (class II PC). Remaining data was taken in 2011 with the same radio model from FCC ID AZ492FT4894.

Table 9
Passenger MPE assessment for trunk mounted antennas

Trunk/ Roof	Test Position	E/H field	Angle (Degree)	Antenna Model	Max Pwr (W)	Initial Pwr (W)	Tx Freq (MHz)	Calc. P.D. (mW/ cm^2)	FCC Limit	% To Spec Limit
Trunk	PB	E	NA	HAE6011A (380-433MHz)	48	47.8	406.5000	0.17	0.27	62.7%
						47.4	419.5000	0.06	0.28	22.2%
						47.0	432.9875	0.01	0.29	5.0%
				HAE4011A (450-470MHz)	48	46.6	450.0125	0.19	0.30	63.2%
						47.1	460.0125	0.16	0.31	52.1%
						46.6	469.9875	0.08	0.31	26.0%
				RAE4014ARB (445-470MHz)	48	47.3	445.0125	0.06	0.30	19.2%
						47.0	457.5000	0.02	0.31	5.4%
						46.6	469.9875	0.00	0.31	0.0%
				HAE6010A (380-433MHz)	48	47.8	406.5000	0.23	0.27	84.8%
						47.4	419.5000	0.09	0.28	31.0%
						47.0	432.9875	0.10	0.29	33.6%
				HAE6013A (380-470MHz)	48	47.8	406.5000	0.34	0.27	*126.3%
						47.5	425.0125	0.18	0.28	64.9%
						46.9	438.0125	0.16	0.29	55.0%
						47.0	454.0125	0.22	0.30	71.6%
						46.6	469.9875	0.14	0.31	44.1%
				HAE6031A (380-520MHz)	48	47.8	406.5000	0.36	0.27	*132.8%
						47.5	425.0125	0.19	0.28	68.3%
						46.9	438.0125	0.24	0.29	82.4%
						47.0	454.0125	0.33	0.30	*108.0%
						46.6	469.9875	0.19	0.31	61.7%

Note 1 – Data highlighted was used for FCC ID AZ492FT4894 in July 2010 (original filing) and August 2010 (class II PC). Remaining data was taken in 2011 with the same radio model from FCC ID AZ492FT4894.

Note 2 - * Results required SAR simulations.

Table 9 (continued)
Passenger MPE assessment for trunk mounted antennas

Trunk/ Roof	Test Position	E/H field	Angle (Degree)	Antenna Model	Max Pwr (W)	Initial Pwr (W)	Tx Freq (MHz)	Calc. P.D. (mW/ cm^2)	FCC Limit	% To Spec Limit
Trunk	PF	E	NA	HAE6011A (380-433MHz)	48	47.8	406.5000	0.03	0.27	9.9%
						47.4	419.5000	0.01	0.28	5.3%
						47.0	432.9875	0.00	0.29	1.1%
				HAE4011A (450-470MHz)	48	46.6	450.0125	0.04	0.30	14.8%
						47.1	460.0125	0.04	0.31	13.8%
						46.6	469.9875	0.03	0.31	8.5%
				RAE4014ARB (445-470MHz)	48	47.3	445.0125	0.01	0.30	3.3%
						47.0	457.5000	0.00	0.31	1.6%
						46.6	469.9875	0.00	0.31	0.0%
				HAE6010A (380-433MHz)	48	47.8	406.5000	0.05	0.27	18.6%
						47.4	419.5000	0.03	0.28	12.3%
						47.0	432.9875	0.02	0.29	8.4%
				HAE6013A (380-470MHz)	48	47.8	406.5000	0.07	0.27	27.3%
						47.5	425.0125	0.04	0.28	14.1%
						46.9	438.0125	0.04	0.29	12.0%
						47.0	454.0125	0.05	0.30	17.6%
						46.6	469.9875	0.05	0.31	17.0%
				HAE6031A (380-520MHz)	48	47.8	406.5000	0.08	0.27	27.9%
						47.5	425.0125	0.04	0.28	15.2%
						46.9	438.0125	0.04	0.29	13.2%
						47.0	454.0125	0.08	0.30	25.9%
						46.6	469.9875	0.06	0.31	19.1%

Note 1 – Data highlighted was used for FCC ID AZ492FT4894 in July 2010 (original filing) and August 2010 (class II PC). Remaining data was taken in 2011 with the same radio model from FCC ID AZ492FT4894.

16.0 Conclusion

The assessments for this device were performed with an output power range as indicated in section 15.0 Tables 6 - 9. The maximum allowable output power is equal to the upper limit of the final test factory transmit power specification of 48W (380 - 470MHz). The highest power density results for the mobile device scaled to the maximum allowable power output are indicated in the Table 10 for internal/passenger to the vehicle, and external/bystander to the vehicle.

Table 10: Maximum MPE RF Exposure Summary

Designator	Frequency (MHz)	Passenger (mW/cm ²)	Bystander (mW/cm ²)
FCC	406.1-470	*0.36	0.15

These MPE results herein demonstrate compliance to the FCC/IEEE Occupational/Controlled Exposure limit. FCC rules require compliance for Passengers and Bystanders to the FCC General Population/Uncontrolled limits. Although MPE is a convenient method of demonstrating compliance, SAR is recognized as the "basic restriction". For those configurations exceeding the MPE limit noted * in section 15 Tables 6 thru 9, compliance to the FCC SAR General Population/ Uncontrolled limit of 1.6mW/g is demonstrated in Appendix E via SAR computational analysis.

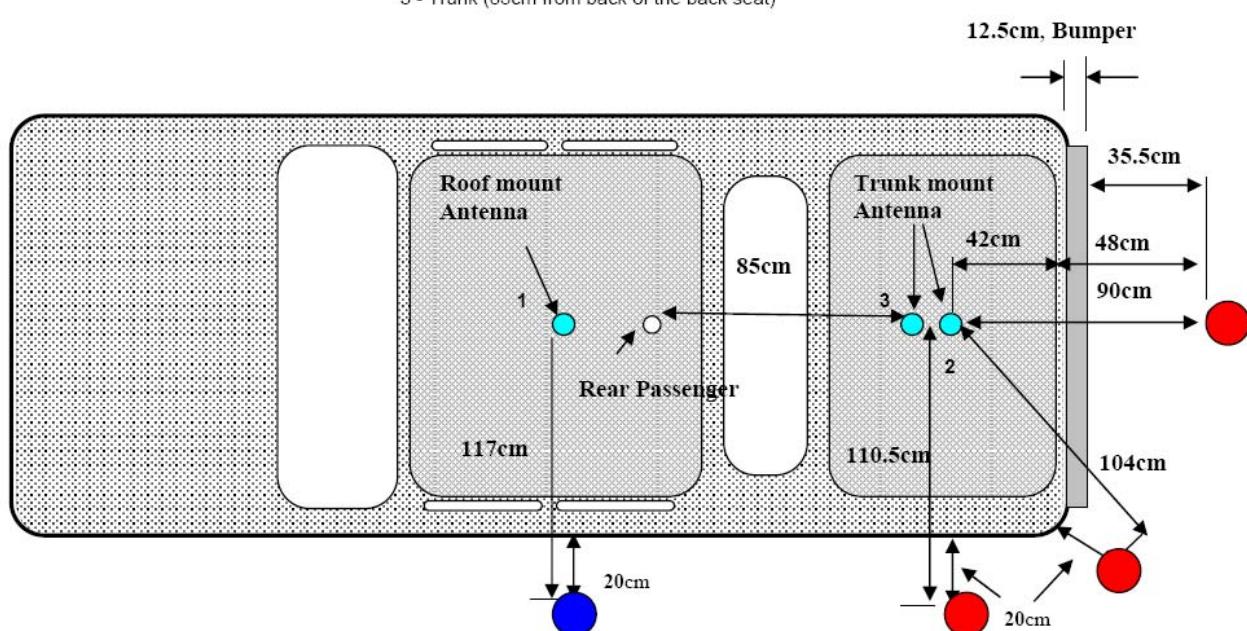
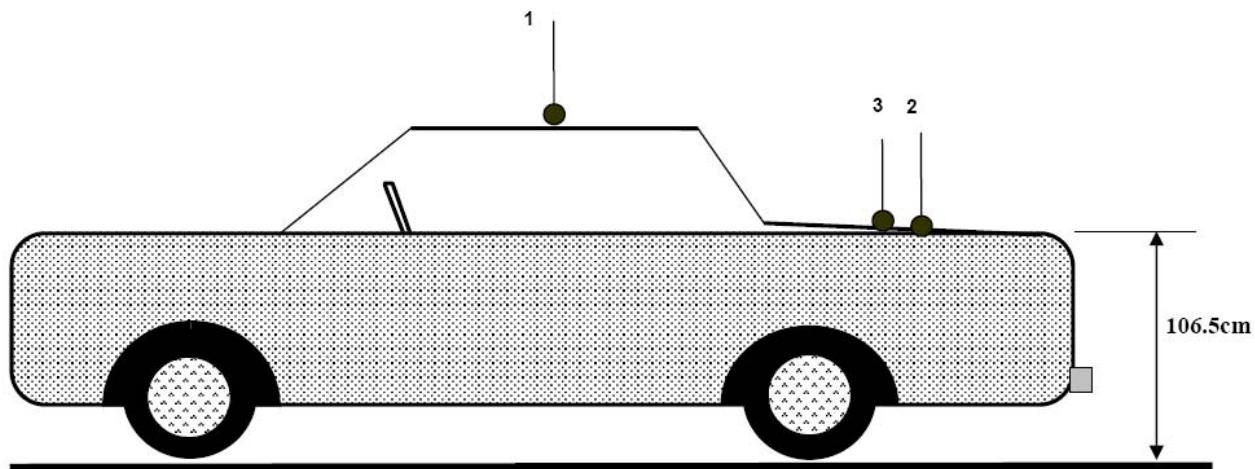


The computational results show that this device, when used with the offered antennas in accordance with the user manual instructions, exhibits the maximum average SAR values as indicated in the table below.

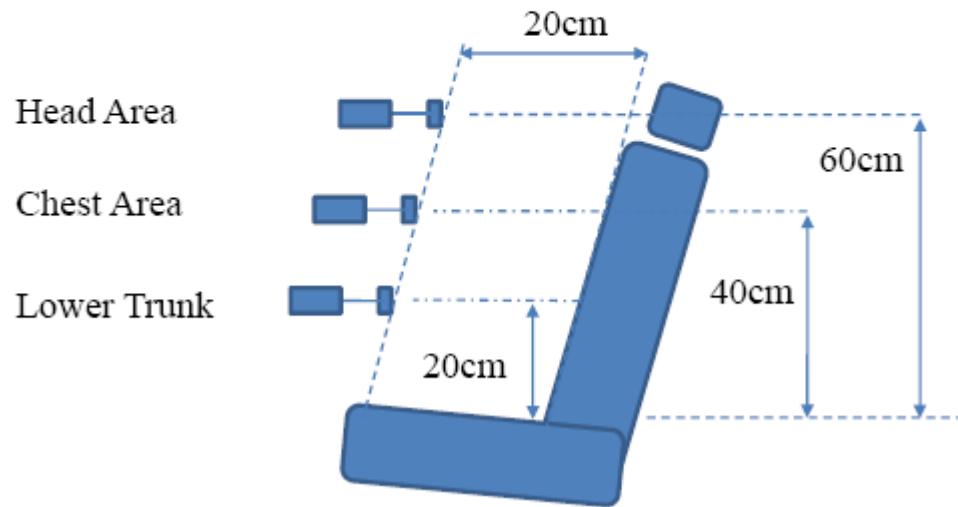
Table 11: Maximum Average SAR Summary

Designator	Frequency (MHz)	SAR 1g (mW/g)	SAR 10g (mW/g)
FCC	406.5	0.58	0.35

Appendix A - Illustration of Antenna Locations and Test Distances

90cm Trunk Distance

By-Stander Test Locations


- Roof Mount
- Trunk Mount

Note: The distance from the centered trunk-mounted antenna to the edge of the vehicle is 42cm and the distance from the edge of the vehicle to the survey probe sensor is 48cm.

Seat scan areas
(Applicable to both front and back seats)

Meter - Probe

 Probe diameter is 5.5cm

Appendix B - Probe Calibration Certificates

Service Test Report
QAF 1126, 06/07
Report ID: 75744

ETS-LINDGREN
An ESCO Technologies Company
Tracking # S000017735
Equipment Check
Attested by JT Date: 22-Oct-09
www.ets-lindgren.com

Certificate of Test Conformance

Page 1 of 1

Reference: S 000017735

Customer: MOTOROLA INC. (FL)

The instrument listed below has been tested and verified to Internal Quality Standards. Test data is Not Applicable. Equipment used during instrument testing is controlled by laboratory compliance with ISO/IEC 17025-2005 using ETS-Lindgren Quality Management System internal procedures.

<u>Manufacturer</u>	ETS-Lindgren	<u>Status In</u>
<u>Instrument Type</u>	RF Survey Meter	Other
<u>Model</u>	HI-2200	<u>Date Completed</u>
<u>Serial Number/ID</u>	00086316	22-Oct-09
<u>Remarks</u>	Compliant with Internal Quality Standards	

Secured mounting screw on LCD to remove lines - Functional Test Performed.

I would like to take this opportunity to express our appreciation for using ETS-Lindgren for your EMI test equipment services and I am looking forward to continued business with your organization. Please feel free to contact our offices at (512) 531-6400, if you have any questions regarding this report.

Sincerely,

Justin Tarr

Calibration Supervisor

Date Attested: 22-Oct-09

Cert I.D.: 75742

An ESCO Technologies Company
1301 Arrow Point Drive
Cedar Park, Texas 78613
(512) 531-6498

ETS-LINDGREN
An ESCO Technologies Company
Track# S000017735 Ltd Cal
By MR Date 22-Oct-09
Next Cal Due _____
www.ets-lindgren.com

Certificate of Calibration Conformance

Page 1 of 4

The instrument identified below has been individually calibrated in compliance with the following standard(s):

IEEE 1309 - 2005, Institute of Electrical and Electronics Engineers, Standard for Calibration of Electromagnetic Field Sensors and Probes, Excluding Antennas from 9 kHz to 40 GHz

Environment: Laboratory MTE is maintained in a temperature controlled environment with ambient conditions from 18 to 28 C, relative humidity less than 90%. The instrument under test has been calibrated in a suitable environment using an EMCO TEM Cell 5101C, GTEM! 5305 and an RF Shielded EMC Chamber which is conducive to maintaining accurate and reliable measurement quality.

Manufacturer:	ETS-Lindgren	Operating Range:	100kHz - 5GHz
Model Number:	E100	Instrument Type:	Isotropic Probe > 1 GHz
Serial Number/ ID:	00109011	Date Code:	
Tracking Number:	S000017735	Alternate ID:	
Date Completed:	22-Oct-09	Customer:	MOTOROLA INC. (FL)
Test Type:	Standard Field, Field Strength		
Calibration Uncertainty:	Std Field Method	10kHz - 18000 MHz, +/-0.7 dB, 26.5GHz - 40GHz, +/- 0.95 dB	
	k=2, (95% Confidence Level)		

Test Remarks: Special calibration - Additional field levels added.

Calibration Traceability: All Measuring and Test Equipment (M/TE) identified below are traceable to the National Institute for Standards and Technology (NIST). Calibration Laboratory and Quality System controls are compliant with ISO/IEC 17025-2005.

Standards and Equipment Used:

Make / Model / Name / S/N / Recall Date	Condition of Instrument Upon Receipt:
Rohde & Schwarz 857.8008.0 Power Meter NRVD 828110/019 10-Feb-10	In Tolerance to Internal Quality Standards
Hewlett Packard 437B HP Power Meter 3110A03972 09-Jan-10	In Tolerance to Internal Quality Standards
Fluke 6060B RF Signal Generator 5690204 11-Jun-10	In Tolerance to Internal Quality Standards
Marconi 2022 Signal Generator 119019/077 25-Sep-10	In Tolerance to Internal Quality Standards
Rohde & Schwarz 857.8008.0 Power Meter NRVD 100451 18-Nov-09	In Tolerance to Internal Quality Standards
Hewlett Packard 83620B Signal Generator 3722A00541 25-Sep-10	In Tolerance to Internal Quality Standards

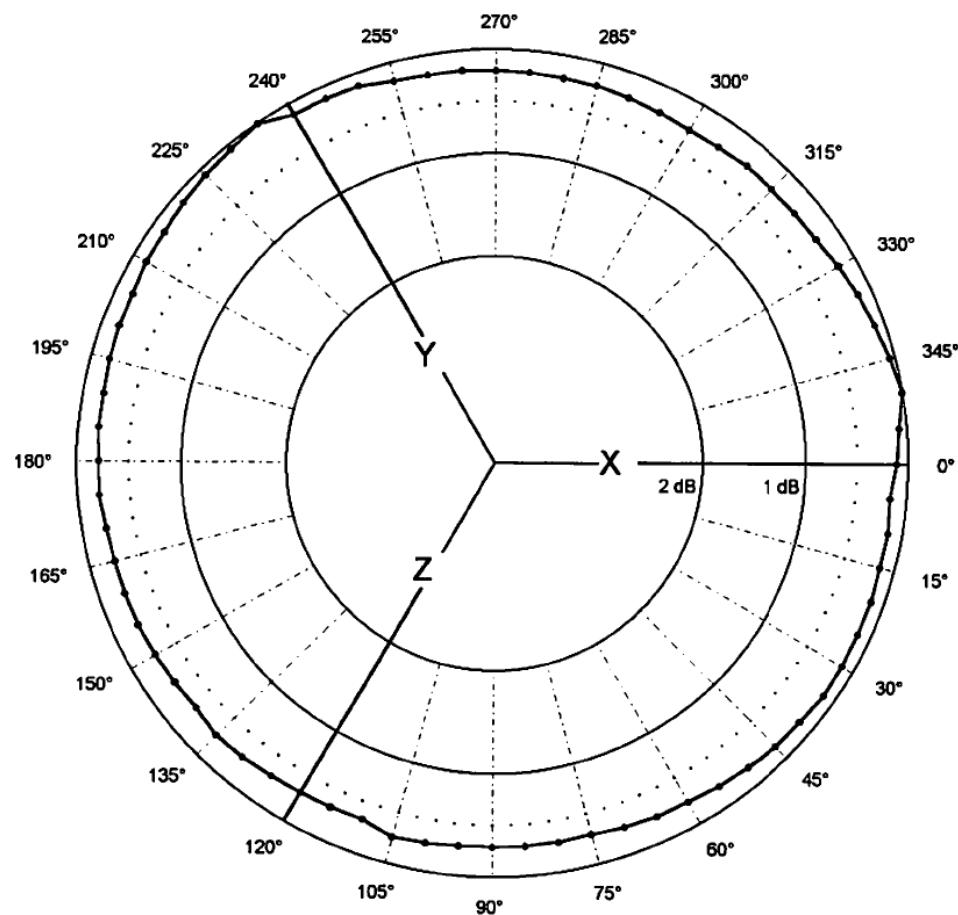
Calibration Completed By
Maynard Reich, Calibration Technician

Attested and Issued on 22-Oct-09
Justin Tarr, Calibration Supervisor

This document provides traceability of measurements to recognized national standards using controlled processes at the ETS-Lindgren Calibration Laboratory. Uncertainties listed are derived from the methods described by NIST Tech Note 1297. This certificate and report may not be reproduced, except in full, without the written approval of ETS-Lindgren Calibration Laboratory in accordance with ISO/IEC 17025-2005. QAF 1127 (06/07)

Frequency Response Calibration Factors
Model E100 Serial Number 00109011
Date of Calibration 21 Oct 2009

Frequency (MHz)	Applied V/m	Probe Reading			Correction Factor			
		X	Y	Z	X	Y	Z	Avg
1.00	7.64	7.02	7.79	6.94	1.14	1.04	0.98	1.05
1.00	19.82	16.71	17.11	16.74	1.18	1.16	1.18	1.18
1.00	71.15	57.93	59.53	58.16	1.23	1.19	1.22	1.22
1.00	125.11	100.56	104.03	102.13	1.24	1.20	1.23	1.22
15.00	7.95	8.17	8.28	8.18	0.98	0.96	0.97	0.97
15.00	19.94	19.63	19.98	19.65	1.02	1.00	1.01	1.01
15.00	70.00	67.78	68.81	67.94	1.03	1.02	1.03	1.03
15.00	124.61	120.61	122.69	121.30	1.03	1.02	1.03	1.03
30.00	7.95	8.49	8.59	8.45	0.93	0.93	0.94	0.93
30.00	19.81	19.99	20.29	20.08	1.00	0.97	0.98	0.98
30.00	69.87	69.71	70.67	70.11	1.00	0.99	1.00	1.00
30.00	124.31	124.11	125.93	125.11	1.00	0.99	0.99	0.99
75.00	8.06	8.62	8.75	8.77	0.94	0.93	0.91	0.92
75.00	19.92	20.32	20.71	20.76	0.97	0.96	0.96	0.97
75.00	69.19	71.16	72.25	72.19	0.97	0.96	0.96	0.96
75.00	123.17	126.65	128.70	128.37	0.97	0.96	0.96	0.96
100.00	7.99	8.30	8.54	8.58	0.96	0.95	0.92	0.94
100.00	19.72	20.02	20.31	20.50	0.98	0.97	0.96	0.97
100.00	70.01	70.85	71.90	72.15	0.99	0.97	0.97	0.98
100.00	126.58	128.59	130.29	130.10	0.98	0.97	0.97	0.98
150.00	8.05	8.13	8.26	8.36	0.99	0.98	0.95	0.98
150.00	19.93	20.03	20.39	20.66	0.99	0.98	0.96	0.98
150.00	69.87	70.30	71.46	71.94	0.99	0.98	0.97	0.98
150.00	124.91	126.00	127.53	128.17	0.99	0.98	0.97	0.98
200.00	8.07	8.50	8.67	8.69	0.95	0.94	0.92	0.94
200.00	19.86	20.80	21.21	21.58	0.96	0.94	0.92	0.94
200.00	69.73	73.51	74.90	75.46	0.95	0.93	0.92	0.93
200.00	125.11	132.11	134.58	134.95	0.95	0.93	0.93	0.93
250.00	8.00	8.33	8.42	8.60	0.96	0.95	0.93	0.95
250.00	20.02	20.72	21.00	21.43	0.97	0.95	0.93	0.95
250.00	70.08	72.35	73.13	74.05	0.97	0.96	0.95	0.96
250.00	123.93	128.09	129.47	130.20	0.97	0.96	0.95	0.96
300.00	8.02	8.27	8.40	8.57	0.97	0.95	0.94	0.95
300.00	19.96	20.48	20.79	21.31	0.98	0.96	0.94	0.96
300.00	69.80	71.54	72.40	73.40	0.98	0.96	0.95	0.96
300.00	125.31	129.68	131.16	131.92	0.97	0.96	0.95	0.96
400.00	7.97	8.30	8.34	8.56	0.97	0.95	0.93	0.95
400.00	20.00	20.54	20.92	21.48	0.97	0.96	0.93	0.95
400.00	70.16	71.90	72.88	73.99	0.98	0.96	0.95	0.96
400.00	126.35	129.28	131.06	132.12	0.98	0.96	0.96	0.97
500.00	7.99	8.01	8.18	8.39	1.00	0.98	0.95	0.97
500.00	20.01	20.00	20.41	20.98	1.00	0.98	0.95	0.98
500.00	69.97	69.80	71.05	72.15	1.00	0.98	0.97	0.99
500.00	124.82	125.16	127.11	128.22	1.00	0.98	0.97	0.98
600.00	8.05	8.00	8.13	8.36	1.01	0.99	0.96	0.99
600.00	19.91	19.62	19.99	20.62	1.01	1.00	0.97	0.99
600.00	70.04	68.89	69.92	71.17	1.02	1.00	0.98	1.00
600.00	126.51	124.61	126.45	127.20	1.02	1.00	0.99	1.00


Frequency Response Calibration Factors
 Model E100 Serial Number 00109011
 Date of Calibration 21 Oct 2009

Frequency (MHz)	Applied V/m	Probe Reading			Correction Factor			
		X	Y	Z	X	Y	Z	Avg
700.00	8.00	7.97	8.10	8.33	1.00	0.99	0.96	0.98
700.00	19.96	19.73	20.08	20.70	1.01	0.99	0.96	0.99
700.00	70.92	70.15	71.10	72.40	1.01	1.00	0.98	1.00
700.00	126.17	124.81	126.29	127.81	1.01	1.00	0.99	1.00
800.00	8.03	7.80	7.94	8.18	1.03	1.01	0.98	1.01
800.00	20.00	19.25	19.67	20.30	1.04	1.02	0.99	1.01
800.00	70.11	67.44	68.66	69.87	1.04	1.02	1.01	1.02
800.00	124.80	120.51	122.51	123.68	1.04	1.02	1.01	1.02
900.00	8.00	7.62	7.82	8.04	1.05	1.02	1.00	1.02
900.00	20.12	19.05	19.57	20.18	1.06	1.03	1.00	1.03
900.00	69.94	66.19	67.78	68.96	1.06	1.03	1.01	1.03
900.00	124.54	118.24	120.95	121.59	1.05	1.03	1.02	1.04
1000.00	7.99	8.48	8.65	9.01	0.94	0.92	0.89	0.92
1000.00	19.88	21.08	21.49	22.22	0.94	0.92	0.89	0.92
1000.00	70.09	74.27	75.51	76.80	0.94	0.93	0.91	0.93
1000.00	126.71	134.43	136.66	137.97	0.94	0.93	0.92	0.93
2000.00	20.27	19.59	20.78	20.88	1.03	0.98	0.97	0.99
2450.00	19.89	18.55	19.38	19.12	1.07	1.03	1.04	1.05
3000.00	20.20	19.52	20.35	21.43	1.03	0.99	0.94	0.99
3500.00	19.95	20.73	22.23	21.00	0.96	0.90	0.95	0.94
4000.00	20.49	21.32	21.67	21.70	0.96	0.95	0.94	0.95
5000.00	20.26	16.24	17.62	17.17	1.25	1.15	1.18	1.19
5500.00	19.77	15.77	16.06	14.83	1.25	1.23	1.33	1.27
6000.00	19.99	14.67	16.77	16.40	1.36	1.19	1.22	1.26

PROBE ROTATIONAL RESPONSE

Model E100
S/N 00109011
Date 22-Oct-2009
Time 07:40:55
Variation 0.39 dB

• Isotropic response measured in a 20 V/m field at 400 MHz

Service Test Report
QAF 1126, 06/07
Report ID: 82515

ETS-LINDGREN
An ESCO Technologies Company
Tracking # 8000021038
Equipment Check
Attested by RG Date: 04-Jan-11
www.ets-lindgren.com

Certificate of Test Conformance

Page 1 of 1

Reference: S 000021039

Customer: AGILENT/MOTOROLA (FL)

The instrument listed below has been tested and verified to Internal Quality Standards. Test data is Not Applicable. Equipment used during instrument testing is controlled by laboratory compliance with ISO/IEC 17025-2005 using ETS-Lindgren Quality Management System internal procedures.

<u>Manufacturer</u>	ETS-Lindgren	<u>Status In</u>	
<u>Instrument Type</u>	RF Survey Meter	<u>In Tolerance</u>	
<u>Model</u>	HI-2200	<u>Date Completed</u>	04-Jan-11
<u>Serial Number/ID</u>	00086316	<u>Status Out</u>	Compliant with Internal Quality Standards

Remarks

Performed functional test with customer probes.

I would like to take this opportunity to express our appreciation for using ETS-Lindgren for your EMI test equipment services and I am looking forward to continued business with your organization. Please feel free to contact our offices at (512) 531-6400, if you have any questions regarding this report.

Sincerely,

Richard Goodlow

Calibration Supervisor

Date Attested: 04-Jan-11

An ESCO Technologies Company

1301 Arrow Point Drive
Cedar Park, Texas 78613
(512) 531-6498

Cert I.D.: 82513

ETS-LINDGREN
An ESCO Technologies Company
Track# S000021039 Ltd Cal
By AS Date 04-Jan-11
Next Cal Due _____
www.ets-lindgren.com

Certificate of Calibration Conformance

Page 1 of 4

The instrument identified below has been individually calibrated in compliance with the following standard(s):

IEEE 1309 - 2005, Institute of Electrical and Electronics Engineers, Standard for Calibration of Electromagnetic Field Sensors and Probes, Excluding Antennas from 9 kHz to 40 GHz

Environment: Laboratory MTE is maintained in a temperature controlled environment with ambient conditions from 18 to 28 C, relative humidity less than 90%. The instrument under test has been calibrated in a suitable environment using an EMCO TEM Cell 5101C, GTEM! 5305 and an RF Shielded EMC Chamber which is conducive to maintaining accurate and reliable measurement quality.

Manufacturer:	ETS-Lindgren	Operating Range:	100kHz - 5GHz
Model Number:	E100	Instrument Type:	Isotropic Probe > 1 GHz
Serial Number/ ID:	00109011	Date Code:	
Tracking Number:	S000021039	Alternate ID:	
Date Completed:	04-Jan-11	Customer:	AGILENT/MOTOROLA (FL)
Test Type:	Standard Field, Field Strength		
Calibration Uncertainty:	Std Field Method k=2, (95% Confidence Level)	10kHz - 18000 MHz, +/-0.7 dB, 26.5GHz - 40GHz, +/- 0.95 dB	

Test Remarks: Provided specific frequencies per customer request.

Calibration Traceability: All Measuring and Test Equipment (M/TE) identified below are traceable to the National Institute for Standards and Technology (NIST). Calibration Laboratory and Quality System controls are compliant with ISO/IEC 17025-2005.

Standards and Equipment Used:

Make / Model / Name / S/N / Recall Date				Condition of Instrument Upon Receipt:
Hewlett Packard 437B	HP Power Meter	3125U12370	15-Jun-11	In Tolerance to Internal Quality Standards
Fluke 6060B	RF Signal Generator	5690204	15-Jun-11	
Marconi 2022	Signal Generator	119019/077	23-Sep-11	On Release:
Agilent E4419B	Power Meter	MY45104171	23-Sep-11	In Tolerance to Internal Quality Standards
Rohde & Schwarz 857.8008.02	Power Meter NRVD	100451	11-Mar-11	
Hewlett Packard 83650L	Synthesized Sweep Gen	3844A00422	29-Jan-11	

Alan Schifferdecker
Calibration Completed By

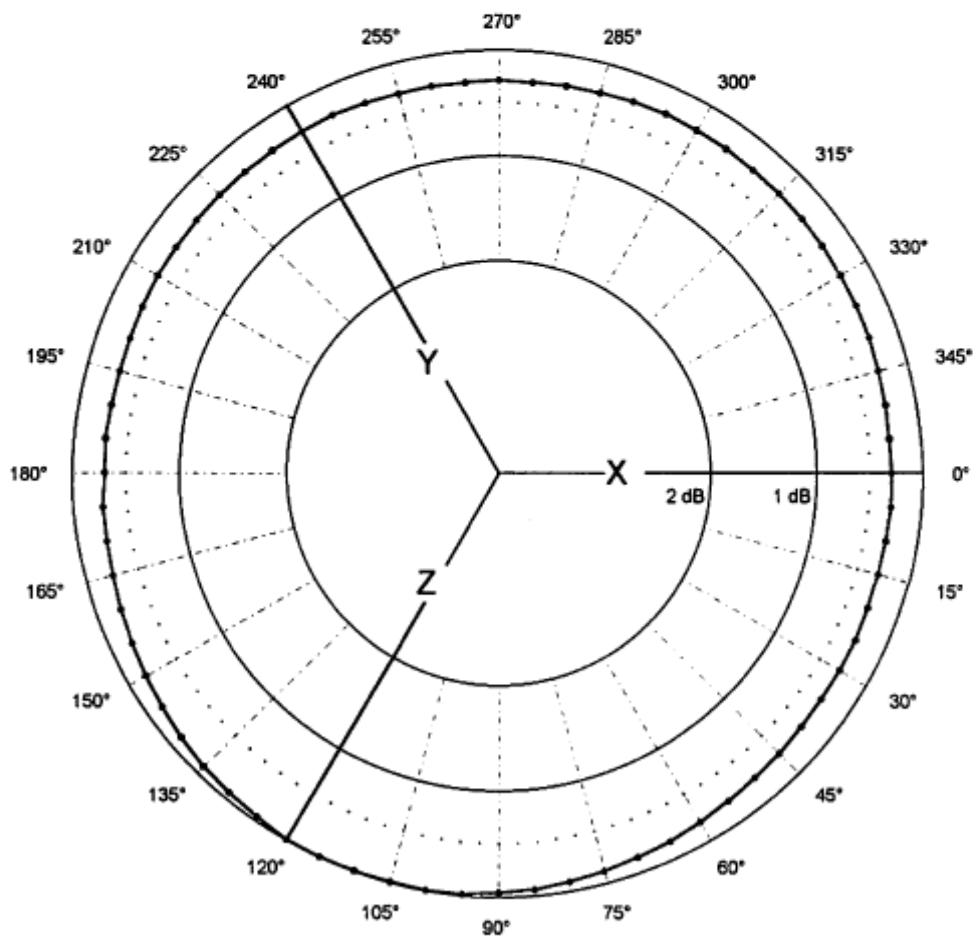
Alan Schifferdecker, Calibration Technician

Richard Goodlow
Attested and Issued on 04-Jan-11
Richard Goodlow, Calibration Supervisor

This document provides traceability of measurements to recognized national standards using controlled processes at the ETS-Lindgren Calibration Laboratory. Uncertainties listed are derived from the methods described by NIST Tech Note 1297. This certificate and report may not be reproduced, except in full, without the written approval of ETS-Lindgren Calibration Laboratory in accordance with ISO/IEC 17025-2005, QAF 1127 (06/07)

Frequency Response Calibration Factors
 Model E100 Serial Number 00109011
 Date of Calibration 4 Jan 2011

Frequency (MHz)	Applied V/m	Probe Reading			Correction Factor			
		X	Y	Z	X	Y	Z	Avg
1.00	8.01	6.72	6.81	6.79	1.19	1.18	1.19	1.18
1.00	19.91	16.99	17.06	16.81	1.18	1.16	1.18	1.17
1.00	69.94	57.57	58.72	57.39	1.21	1.19	1.22	1.21
1.00	124.57	101.46	104.06	102.37	1.23	1.20	1.22	1.21
15.00	7.96	7.86	7.90	7.83	1.01	1.01	1.02	1.01
15.00	20.05	19.63	19.82	19.48	1.02	1.01	1.03	1.02
15.00	70.00	69.10	69.69	68.73	1.01	1.00	1.02	1.01
15.00	124.88	122.58	123.22	122.40	1.02	1.01	1.02	1.02
30.00	7.98	8.01	8.05	7.96	1.00	0.99	1.00	1.00
30.00	19.92	19.97	19.95	19.75	1.00	1.00	1.01	1.00
30.00	70.27	70.84	71.25	70.61	0.99	0.99	1.00	0.99
30.00	125.59	125.86	126.38	125.94	1.00	0.99	1.00	1.00
75.00	7.98	8.06	8.10	8.14	0.99	0.98	0.98	0.98
75.00	19.98	20.08	20.34	20.37	0.99	0.98	0.98	0.99
75.00	69.66	71.26	71.78	71.67	0.98	0.97	0.97	0.97
75.00	124.36	126.52	127.22	126.98	0.98	0.98	0.98	0.98
100.00	8.00	8.31	8.35	8.32	0.97	0.96	0.95	0.96
100.00	19.94	20.43	20.62	20.69	0.98	0.97	0.96	0.97
100.00	69.60	71.97	72.44	72.45	0.97	0.96	0.96	0.96
100.00	124.78	129.20	129.68	129.76	0.97	0.96	0.96	0.96
150.00	8.03	8.22	8.28	8.36	0.98	0.97	0.96	0.97
150.00	20.04	20.29	20.56	20.74	0.99	0.97	0.97	0.98
150.00	69.71	71.24	71.85	72.06	0.98	0.97	0.97	0.97
150.00	124.96	127.79	128.59	128.81	0.98	0.97	0.97	0.97
200.00	7.96	8.42	8.54	8.67	0.95	0.93	0.92	0.93
200.00	19.94	20.85	21.26	21.50	0.96	0.94	0.93	0.94
200.00	69.91	73.96	75.03	75.43	0.94	0.93	0.93	0.93
200.00	125.22	132.74	134.34	135.14	0.94	0.93	0.93	0.93
250.00	8.01	8.24	8.23	8.39	0.97	0.97	0.96	0.97
250.00	19.97	20.34	20.44	20.74	0.98	0.98	0.96	0.97
250.00	69.73	72.74	71.86	72.46	0.97	0.97	0.96	0.96
250.00	124.77	129.17	128.53	129.40	0.97	0.97	0.97	0.97
300.00	7.99	8.19	8.22	8.40	0.97	0.97	0.95	0.97
300.00	19.98	20.29	20.42	20.78	0.99	0.98	0.96	0.98
300.00	69.98	72.15	72.24	72.93	0.97	0.97	0.96	0.97
300.00	125.38	130.27	130.16	131.02	0.96	0.96	0.96	0.96
400.00	7.98	8.15	8.17	8.34	0.98	0.98	0.95	0.97
400.00	19.89	20.07	20.26	20.67	0.99	0.98	0.96	0.98
400.00	69.66	71.58	71.93	72.74	0.97	0.97	0.96	0.97
400.00	124.82	128.40	128.45	129.35	0.97	0.97	0.96	0.97
500.00	8.01	7.90	8.00	8.20	1.01	1.00	0.98	1.00
500.00	20.01	19.58	19.94	20.36	1.02	1.00	0.98	1.00
500.00	70.01	69.21	70.57	70.91	1.01	1.00	0.98	1.00
500.00	124.92	123.45	124.93	125.25	1.01	1.00	0.99	1.00
600.00	8.00	7.74	7.78	7.97	1.03	1.03	1.00	1.02
600.00	19.99	19.16	19.35	19.81	1.04	1.03	1.01	1.03
600.00	69.71	67.99	68.18	68.96	1.03	1.02	1.01	1.02
600.00	125.01	121.68	121.62	123.11	1.03	1.03	1.02	1.02


Frequency Response Calibration Factors
Model E100 Serial Number 00109011
Date of Calibration 4 Jan 2011

Frequency (MHz)	Applied V/m	Probe Reading			Correction Factor			
		X	Y	Z	X	Y	Z	Avg
700.00	7.98	7.54	7.55	7.75	1.06	1.06	1.03	1.05
700.00	19.95	18.65	18.77	19.21	1.07	1.06	1.04	1.06
700.00	70.29	66.67	66.74	67.70	1.05	1.05	1.04	1.05
700.00	125.03	118.33	118.33	119.37	1.05	1.06	1.05	1.05
800.00	8.02	7.36	7.46	7.65	1.09	1.08	1.05	1.07
800.00	20.01	18.20	18.51	18.79	1.10	1.09	1.06	1.08
800.00	70.11	64.66	65.16	66.08	1.09	1.08	1.06	1.07
800.00	124.54	114.33	115.44	115.49	1.09	1.08	1.08	1.08
900.00	8.01	7.73	7.90	8.11	1.04	1.01	0.99	1.01
900.00	20.03	19.06	19.57	20.19	1.05	1.02	1.00	1.02
900.00	70.05	67.21	68.79	69.68	1.04	1.02	1.01	1.02
900.00	125.46	120.34	121.90	123.03	1.05	1.03	1.02	1.03
1000.00	8.01	8.03	8.09	8.31	1.00	0.99	0.96	0.98
1000.00	19.92	19.81	19.86	20.44	1.01	1.00	0.98	0.99
1000.00	69.72	69.27	70.09	71.56	1.00	1.00	0.97	0.99
1000.00	125.71	124.36	124.64	125.68	1.01	1.01	1.00	1.01
2000.00	20.37	20.04	19.84	20.46	1.02	1.03	1.00	1.01
2450.00	20.04	18.11	19.40	19.62	1.11	1.03	1.02	1.05
3000.00	19.97	19.95	19.47	19.27	1.00	1.03	1.04	1.02
3500.00	19.93	20.40	22.00	20.96	0.98	0.91	0.95	0.94
4000.00	20.05	20.37	19.96	20.00	0.98	1.00	1.00	1.00
5000.00	19.80	14.46	15.77	14.64	1.37	1.26	1.35	1.33
5500.00	19.98	15.05	15.28	15.18	1.33	1.31	1.32	1.32
6000.00	20.07	13.45	15.63	15.58	1.49	1.28	1.29	1.35

PROBE ROTATIONAL RESPONSE

Model E100
S/N 00109011
Date 04-Jan-2011
Time 14:33:16
Variation 0.31 dB

- Isotropic response measured in a 20 V/m field at 400 MHz

Appendix C - Photos of Assessed Antennas

(Refer to Exhibit 7B)

Appendix D – MPE Measurement Results

MPE measurement data for Bystander

D.U.T. Info.							Probe Info.		Test Pos.	Bystander (BS) Positions										DUT Max. TX Factor	Avg. over Body (mW/cm ²)	Calc. P.D. (mW/cm ²)	Max Calc. P.D. (mW/cm ²)	
Ant Loc.	Ant. Model/ Desc.	Ant. Gain (dBi)	Tx Freq (MHz)	Max Pwr (W)	Initial Pwr (W)	Test Mode	E/H Field	Probe Cal. Factor		20 cm	40 cm	60 cm	80 cm	100 cm	120 cm	140 cm	160 cm	180 cm	200 cm					
										BS	0.00	0.00	0.00	0.02	0.05	0.09	0.17	0.22	0.27	0.27				
Roof	HAE6012A (380-433MHz)	2.15	406.5000	48	47.8	CW	E	0.94		0.00	0.00	0.00	0.02	0.05	0.09	0.17	0.22	0.27	0.27	0.5	0.109	0.051	0.05	
Roof	HAE6012A (380-433MHz)	2.15	419.5000	48	47.4	CW	E	0.97	BS	0.01	0.01	0.02	0.03	0.05	0.11	0.17	0.23	0.27	0.27	0.5	0.117	0.057	0.06	
Roof	HAE6012A (380-433MHz)	2.15	432.9875	48	47.0	CW	E	0.95	BS	0.00	0.00	0.01	0.03	0.05	0.09	0.12	0.17	0.23	0.25	0.5	0.095	0.045	0.05	
Roof	HAE4003A (450-470MHz)	2.15	450.0125	48	46.6	CW	E	0.96	BS	0.00	0.00	0.01	0.04	0.06	0.12	0.16	0.24	0.30	0.33	0.5	0.126	0.060	0.06	
Roof	HAE4003A (450-470MHz)	2.15	460.0125	48	47.8	CW	E	0.96	BS	0.00	0.00	0.01	0.05	0.08	0.12	0.15	0.22	0.29	0.30	0.5	0.122	0.059	0.06	
Roof	HAE4003A (450-470MHz)	2.15	469.9875	48	46.6	CW	E	0.97	BS	0.00	0.00	0.01	0.05	0.05	0.09	0.13	0.20	0.28	0.31	0.5	0.112	0.054	0.06	
Roof	HAE6011A (380-433MHz)	7.15	406.5000	48	47.8	CW	E	0.94	BS	0.00	0.00	0.00	0.00	0.00	0.01	0.04	0.12	0.24	0.28	0.5	0.069	0.032	0.03	
Roof	HAE6011A (380-433MHz)	7.15	419.5000	48	47.4	CW	E	0.97	BS	0.00	0.00	0.00	0.00	0.00	0.01	0.04	0.12	0.21	0.22	0.5	0.060	0.029	0.03	
Roof	HAE6011A (380-433MHz)	7.15	432.9875	48	47.0	CW	E	0.95	BS	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.03	0.07	0.09	0.5	0.020	0.010	0.01	
Roof	HAE4011A (450-470MHz)	5.65	450.0125	48	46.6	CW	E	0.96	BS	0.00	0.00	0.00	0.00	0.01	0.04	0.10	0.23	0.35	0.34	0.5	0.107	0.051	0.05	
Roof	HAE4011A (450-470MHz)	5.65	460.0125	48	47.1	CW	E	0.96	BS	0.00	0.00	0.00	0.00	0.01	0.03	0.07	0.17	0.28	0.3	0.5	0.086	0.041	0.04	
Roof	HAE4011A (450-470MHz)	5.65	469.9875	48	46.6	CW	E	0.97	BS	0.00	0.00	0.00	0.00	0.00	0.02	0.04	0.11	0.21	0.21	0.5	0.059	0.029	0.03	
Roof	RAE4014ARB (445-470MHz)	7.15	445.0125	48	47.3	CW	E	0.96	BS	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.07	0.20	0.29	0.5	0.057	0.027	0.03	
Roof	RAE4014ARB (445-470MHz)	7.15	457.5000	48	47.0	CW	E	0.96	BS	0.00	0.00	0.00	0.00	0.00	0.01	0.04	0.12	0.17	0.5	0.034	0.016	0.02		
Roof	RAE4014ARB (445-470MHz)	7.15	469.9875	48	46.6	CW	E	0.97	BS	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.04	0.5	0.006	0.003	0.00		

MPE calculations are defined in section 13.0.

MPE measurement data for Bystander

D.U.T. Info.							Probe Info.		Test Pos.	Bystander (BS) Positions										DUT Max. TX Factor	Avg. over Body (mW/cm ²)	Calc. P.D. (mW/cm ²)	Max Calc. P.D. (mW/cm ²)
Ant Loc.	Ant. Model/ Desc.	Ant. Gain (dBi)	Tx Freq (MHz)	Max Pwr (W)	Initial Pwr (W)	Test Mode	E/H Field	Probe Cal. Factor		20 cm	40 cm	60 cm	80 cm	100 cm	120 cm	140 cm	160 cm	180 cm	200 cm				
										BS	0.01	0.01	0.02	0.03	0.07	0.12	0.16	0.12	0.07	0.07			
Roof	HAE6010A (380-433MHz)	5.65	406.5000	48	47.8	CW	E	0.94		0.01	0.01	0.02	0.03	0.07	0.12	0.16	0.12	0.07	0.07	0.5	0.068	0.032	0.03
Roof	HAE6010A (380-433MHz)	5.65	419.5000	48	47.4	CW	E	0.97	BS	0.01	0.01	0.02	0.05	0.08	0.13	0.14	0.09	0.06	0.07	0.5	0.066	0.032	0.03
Roof	HAE6010A (380-433MHz)	5.65	432.9875	48	47.0	CW	E	0.95	BS	0.01	0.01	0.01	0.05	0.08	0.14	0.13	0.10	0.04	0.07	0.5	0.064	0.030	0.03
Roof	HAE6013A (380-470MHz)	4.15	406.5000	48	47.8	CW	E	0.96	BS	0.02	0.01	0.02	0.02	0.04	0.10	0.22	0.27	0.28	0.26	0.5	0.124	0.060	0.06
Roof	HAE6013A (380-470MHz)	4.15	425.0125	48	47.5	CW	E	0.95	BS	0.00	0.00	0.01	0.03	0.06	0.13	0.18	0.23	0.27	0.25	0.5	0.116	0.055	0.06
Roof	HAE6013A (380-470MHz)	4.15	438.0125	48	46.9	CW	E	0.98	BS	0.00	0.00	0.01	0.02	0.04	0.06	0.10	0.15	0.19	0.18	0.5	0.075	0.037	0.04
Roof	HAE6013A (380-470MHz)	4.15	454.0125	48	47.0	CW	E	0.98	BS	0.00	0.00	0.01	0.02	0.04	0.08	0.12	0.15	0.17	0.17	0.5	0.076	0.037	0.04
Roof	HAE6013A (380-470MHz)	4.15	469.9875	48	46.6	CW	E	0.97	BS	0.00	0.00	0.00	0.02	0.02	0.06	0.08	0.13	0.16	0.15	0.5	0.062	0.030	0.03
Roof	HAE6031A (380-520MHz)	4.15	406.5000	48	47.8	CW	E	0.96	BS	0.02	0.01	0.02	0.02	0.05	0.10	0.20	0.27	0.28	0.25	0.5	0.122	0.059	0.06
Roof	HAE6031A (380-520MHz)	4.15	425.0125	48	47.5	CW	E	0.95	BS	0.00	0.00	0.01	0.04	0.07	0.13	0.19	0.22	0.29	0.29	0.5	0.124	0.059	0.06
Roof	HAE6031A (380-520MHz)	4.15	438.0125	48	46.9	CW	E	0.98	BS	0.01	0.01	0.01	0.03	0.05	0.09	0.15	0.22	0.27	0.27	0.5	0.111	0.054	0.06
Roof	HAE6031A (380-520MHz)	4.15	454.0125	48	47.0	CW	E	0.98	BS	0.01	0.01	0.01	0.04	0.06	0.14	0.19	0.24	0.27	0.28	0.5	0.125	0.061	0.06
Roof	HAE6031A (380-520MHz)	4.15	469.9875	48	46.6	CW	E	0.97	BS	0.00	0.00	0.01	0.03	0.05	0.09	0.13	0.19	0.25	0.26	0.5	0.101	0.049	0.05

MPE calculations are defined in section 13.0.

MPE measurement data for Passenger

Ant Loc.	Ant. Model/ Desc.	D.U.T. Info.					Probe Info.		Test Pos.	Passenger Positions			DUT Max. TX Factor	Avg. over Body (mW/ cm2)	Calc. P.D. (mW/ cm2)	Max Calc. P.D. (mW/ cm2)
		Ant. Gain (dBi)	Tx Freq (MHz)	Max Pwr (W)	Initial Pwr (W)	Test Mode	E/H Field	Probe Cal. Factor		Head	Chest	Lower Trunk				
Roof	HAE6012A (380-433MHz)	2.15	406.5000	48	47.8	CW	E	0.94	PB	0.23	0.22	0.29	0.5	0.247	0.116	0.12
Roof	HAE6012A (380-433MHz)	2.15	419.5000	48	47.4	CW	E	0.97	PB	0.06	0.07	0.06	0.5	0.063	0.031	0.03
Roof	HAE6012A (380-433MHz)	2.15	432.9875	48	47.0	CW	E	0.95	PB	0.02	0.02	0.10	0.5	0.047	0.022	0.02
Roof	HAE4003A (450-470MHz)	2.15	450.0125	48	46.6	CW	E	0.96	PB	0.07	0.07	0.11	0.5	0.083	0.040	0.04
Roof	HAE4003A (450-470MHz)	2.15	460.0125	48	47.8	CW	E	0.96	PB	0.04	0.06	0.04	0.5	0.047	0.022	0.02
Roof	HAE4003A (450-470MHz)	2.15	469.9875	48	46.6	CW	E	0.97	PB	0.03	0.05	0.05	0.5	0.043	0.021	0.02
Roof	HAE6011A (380-433MHz)	7.15	406.5000	48	47.8	CW	E	0.94	PB	0.04	0.03	0.03	0.5	0.033	0.016	0.02
Roof	HAE6011A (380-433MHz)	7.15	419.5000	48	47.4	CW	E	0.97	PB	0.01	0.01	0.01	0.5	0.010	0.005	0.00
Roof	HAE6011A (380-433MHz)	7.15	432.9875	48	47.0	CW	E	0.95	PB	0.00	0.00	0.00	0.5	0.000	0.000	0.00
Roof	HAE4011A (450-470MHz)	5.65	450.0125	48	46.6	CW	E	0.96	PB	0.01	0.01	0.01	0.5	0.010	0.005	0.00
Roof	HAE4011A (450-470MHz)	5.65	460.0125	48	47.1	CW	E	0.96	PB	0.00	0.01	0.00	0.5	0.003	0.002	0.00
Roof	HAE4011A (450-470MHz)	5.65	469.9875	48	46.6	CW	E	0.97	PB	0.00	0.00	0.01	0.5	0.003	0.002	0.00
Roof	RAE4014ARB (445-470MHz)	7.15	445.0125	48	47.3	CW	E	0.96	PB	0.00	0.00	0.01	0.5	0.003	0.002	0.00
Roof	RAE4014ARB (445-470MHz)	7.15	457.5000	48	47.0	CW	E	0.96	PB	0.00	0.00	0.00	0.5	0.000	0.000	0.00
Roof	RAE4014ARB (445-470MHz)	7.15	469.9875	48	46.6	CW	E	0.97	PB	0.00	0.00	0.00	0.5	0.000	0.000	0.00

MPE calculations are defined in section 13.0.

MPE measurement data for Passenger

D.U.T. Info.							Probe Info.		Test Pos.	Passenger Positions			DUT Max. TX Factor	Avg. over Body (mW/cm ²)	Calc. P.D. (mW/cm ²)	Max Calc. P.D. (mW/cm ²)
Ant Loc.	Ant. Model/ Desc.	Ant. Gain (dBi)	Tx Freq (MHz)	Max Pwr (W)	Initial Pwr (W)	Test Mode	E/H Field	Probe Cal. Factor		Head	Chest	Lower Trunk				
										Test Pos.	Head	Chest	Lower Trunk			
Roof	HAE6010A (380-433MHz)	5.65	406.5000	48	47.8	CW	E	0.94	PB	0.26	0.25	0.32	0.5	0.277	0.130	0.13
Roof	HAE6010A (380-433MHz)	5.65	419.5000	48	47.4	CW	E	0.97	PB	0.07	0.10	0.07	0.5	0.080	0.039	0.04
Roof	HAE6010A (380-433MHz)	5.65	432.9875	48	47.0	CW	E	0.95	PB	0.03	0.04	0.10	0.5	0.057	0.027	0.03
Roof	HAE6013A (380-470MHz)	4.15	406.5000	48	47.8	CW	E	0.96	PB	0.19	0.14	0.19	0.5	0.173	0.083	0.08
Roof	HAE6013A (380-470MHz)	4.15	425.0125	48	47.5	CW	E	0.95	PB	0.06	0.07	0.10	0.5	0.077	0.036	0.04
Roof	HAE6013A (380-470MHz)	4.15	438.0125	48	46.9	CW	E	0.98	PB	0.02	0.03	0.05	0.5	0.033	0.016	0.02
Roof	HAE6013A (380-470MHz)	4.15	454.0125	48	47.0	CW	E	0.98	PB	0.02	0.05	0.02	0.5	0.030	0.015	0.02
Roof	HAE6013A (380-470MHz)	4.15	469.9875	48	46.6	CW	E	0.97	PB	0.01	0.02	0.04	0.5	0.023	0.011	0.01
Roof	HAE6031A (380-520MHz)	4.15	406.5000	48	47.8	CW	E	0.96	PB	0.18	0.13	0.18	0.5	0.163	0.078	0.08
Roof	HAE6031A (380-520MHz)	4.15	425.0125	48	47.5	CW	E	0.95	PB	0.06	0.08	0.10	0.5	0.080	0.038	0.04
Roof	HAE6031A (380-520MHz)	4.15	438.0125	48	46.9	CW	E	0.98	PB	0.04	0.05	0.08	0.5	0.057	0.028	0.03
Roof	HAE6031A (380-520MHz)	4.15	454.0125	48	47.0	CW	E	0.98	PB	0.03	0.09	0.03	0.5	0.050	0.025	0.03
Roof	HAE6031A (380-520MHz)	4.15	469.9875	48	46.6	CW	E	0.97	PB	0.02	0.04	0.06	0.5	0.040	0.019	0.02

MPE calculations are defined in section 13.0.

MPE measurement data for Passenger

D.U.T. Info.							Probe Info.		Test Pos.	Passenger Positions			DUT Max. TX Factor	Avg. over Body (mW/cm2)	Calc. P.D. (mW/cm2)	Max Calc. P.D. (mW/cm2)	
Ant Loc.	Ant. Model/ Desc.	Ant. Gain (dBi)	Tx Freq (MHz)	Max Pwr (W)	Initial Pwr (W)	Test Mode	E/H Field	Probe Cal. Factor		Head	Chest	Lower Trunk					
Roof	HAE6012A (380-433MHz)	2.15	406.5000	48	47.8	CW	E	0.94	PF	0.03	0.07	0.10	0.5	0.067	0.031	0.03	
Roof	HAE6012A (380-433MHz)	2.15	419.5000	48	47.4	CW	E	0.97	PF	0.03	0.01	0.03	0.5	0.023	0.011	0.01	
Roof	HAE6012A (380-433MHz)	2.15	432.9875	48	47.0	CW	E	0.95	PF	0.02	0.02	0.02	0.5	0.020	0.010	0.01	
Roof	HAE4003A (450-470MHz)	2.15	450.0125	48	46.6	CW	E	0.96	PF	0.05	0.08	0.02	0.5	0.050	0.024	0.02	
Roof	HAE4003A (450-470MHz)	2.15	460.0125	48	47.8	CW	E	0.96	PF	0.08	0.06	0.05	0.5	0.063	0.030	0.03	
Roof	HAE4003A (450-470MHz)	2.15	469.9875	48	46.6	CW	E	0.97	PF	0.05	0.03	0.05	0.5	0.043	0.021	0.02	
Roof	HAE6011A (380-433MHz)	7.15	406.5000	48	47.8	CW	E	0.94	PF	0.00	0.00	0.00	0.5	0.000	0.000	0.00	
Roof	HAE6011A (380-433MHz)	7.15	419.5000	48	47.4	CW	E	0.97	PF	0.00	0.00	0.00	0.5	0.000	0.000	0.00	
Roof	HAE6011A (380-433MHz)	7.15	432.9875	48	47.0	CW	E	0.95	PF	0.00	0.00	0.00	0.5	0.000	0.000	0.00	
Roof	HAE4011A (450-470MHz)	5.65	450.0125	48	46.6	CW	E	0.96	PF	0.01	0.02	0.00	0.5	0.010	0.005	0.00	
Roof	HAE4011A (450-470MHz)	5.65	460.0125	48	47.1	CW	E	0.96	PF	0.01	0.01	0.01	0.5	0.010	0.005	0.00	
Roof	HAE4011A (450-470MHz)	5.65	469.9875	48	46.6	CW	E	0.97	PF	0.00	0.00	0.00	0.5	0.000	0.000	0.00	
Roof	RAE4014ARB (445-470MHz)	7.15	445.0125	48	47.3	CW	E	0.96	PF	0.00	0.00	0.00	0.5	0.000	0.000	0.00	
Roof	RAE4014ARB (445-470MHz)	7.15	457.5000	48	47.0	CW	E	0.96	PF	0.00	0.00	0.00	0.5	0.000	0.000	0.00	
Roof	RAE4014ARB (445-470MHz)	7.15	469.9875	48	46.6	CW	E	0.97	PF	0.00	0.00	0.00	0.5	0.000	0.000	0.00	

MPE calculations are defined in section 13.0.

MPE measurement data for Passenger

D.U.T. Info.							Probe Info.		Test Pos.	Passenger Positions			DUT Max. TX Factor	Avg. over Body (mW/cm2)	Calc. P.D. (mW/cm2)	Max Calc. P.D. (mW/cm2)
Ant Loc.	Ant. Model/ Desc.	Ant. Gain (dBi)	Tx Freq (MHz)	Max Pwr (W)	Initial Pwr (W)	Test Mode	E/H Field	Probe Cal. Factor		Head	Chest	Lower Trunk				
Roof	HAE6010A (380-433MHz)	5.65	406.5000	48	47.8	CW	E	0.94	PF	0.05	0.07	0.06	0.5	0.060	0.028	0.03
Roof	HAE6010A (380-433MHz)	5.65	419.5000	48	47.4	CW	E	0.97	PF	0.04	0.02	0.05	0.5	0.037	0.018	0.02
Roof	HAE6010A (380-433MHz)	5.65	432.9875	48	47.0	CW	E	0.95	PF	0.01	0.02	0.03	0.5	0.020	0.010	0.01
Roof	HAE6013A (380-470MHz)	4.15	406.5000	48	47.8	CW	E	0.96	PF	0.05	0.06	0.06	0.5	0.057	0.027	0.03
Roof	HAE6013A (380-470MHz)	4.15	425.0125	48	47.5	CW	E	0.95	PF	0.02	0.04	0.05	0.5	0.037	0.017	0.02
Roof	HAE6013A (380-470MHz)	4.15	438.0125	48	46.9	CW	E	0.98	PF	0.02	0.02	0.01	0.5	0.017	0.008	0.01
Roof	HAE6013A (380-470MHz)	4.15	454.0125	48	47.0	CW	E	0.98	PF	0.02	0.01	0.03	0.5	0.020	0.010	0.01
Roof	HAE6013A (380-470MHz)	4.15	469.9875	48	46.6	CW	E	0.97	PF	0.02	0.02	0.02	0.5	0.020	0.010	0.01
Roof	HAE6031A (380-520MHz)	4.15	406.5000	48	47.8	CW	E	0.96	PF	0.05	0.05	0.07	0.5	0.057	0.027	0.03
Roof	HAE6031A (380-520MHz)	4.15	425.0125	48	47.5	CW	E	0.95	PF	0.02	0.05	0.04	0.5	0.037	0.017	0.02
Roof	HAE6031A (380-520MHz)	4.15	438.0125	48	46.9	CW	E	0.98	PF	0.03	0.02	0.02	0.5	0.023	0.011	0.01
Roof	HAE6031A (380-520MHz)	4.15	454.0125	48	47.0	CW	E	0.98	PF	0.04	0.02	0.05	0.5	0.037	0.018	0.02
Roof	HAE6031A (380-520MHz)	4.15	469.9875	48	46.6	CW	E	0.97	PF	0.06	0.07	0.01	0.5	0.047	0.023	0.02

MPE calculations are defined in section 13.0.

MPE measurement data for Bystander

D.U.T. Info.							Probe Info.		Test Pos.	Bystander (BS) Positions										DUT Max. TX Factor	Avg. over Body (mW/cm ²)	Calc. P.D. (mW/cm ²)	Max Calc. P.D. (mW/cm ²)
Ant Loc.	Ant. Model/ Desc.	Ant. Gain (dBi)	Tx Freq (MHz)	Max Pwr (W)	Initial Pwr (W)	Test Mode	E/H Field	Probe Cal. Factor		20 cm	40 cm	60 cm	80 cm	100 cm	120 cm	140 cm	160 cm	180 cm	200 cm				
Trunk	HAE6011A (380-433MHz)	7.15	406.5000	48	47.8	CW	E	0.94	BS	0.01	0.01	0.01	0.01	0.07	0.27	0.44	0.33	0.15	0.07	0.5	0.137	0.064	0.06
Trunk	HAE6011A (380-433MHz)	7.15	419.5000	48	47.4	CW	E	0.97	BS	0.01	0.01	0.02	0.02	0.07	0.23	0.32	0.25	0.10	0.04	0.5	0.107	0.052	0.05
Trunk	HAE6011A (380-433MHz)	7.15	432.9875	48	47.0	CW	E	0.95	BS	0.00	0.00	0.00	0.00	0.03	0.11	0.16	0.13	0.06	0.01	0.5	0.050	0.024	0.02
Trunk	HAE4011A (450-470MHz)	5.65	450.0125	48	46.6	CW	E	0.96	BS	0.00	0.00	0.01	0.03	0.19	0.42	0.50	0.29	0.09	0.08	0.5	0.161	0.077	0.08
Trunk	HAE4011A (450-470MHz)	5.65	460.0125	48	47.1	CW	E	0.96	BS	0.00	0.00	0.01	0.05	0.19	0.41	0.48	0.31	0.10	0.07	0.5	0.162	0.078	0.08
Trunk	HAE4011A (450-470MHz)	5.65	469.9875	48	46.6	CW	E	0.97	BS	0.00	0.00	0.01	0.03	0.11	0.25	0.32	0.20	0.07	0.06	0.5	0.105	0.051	0.05
Trunk	RAE4014ARB (445-470MHz)	7.15	445.0125	48	47.3	CW	E	0.96	BS	0.00	0.00	0.01	0.01	0.02	0.20	0.36	0.31	0.13	0.08	0.5	0.112	0.054	0.05
Trunk	RAE4014ARB (445-470MHz)	7.15	457.5000	48	47.0	CW	E	0.96	BS	0.00	0.00	0.00	0.00	0.01	0.11	0.24	0.29	0.20	0.08	0.5	0.093	0.045	0.05
Trunk	RAE4014ARB (445-470MHz)	7.15	469.9875	48	46.6	CW	E	0.97	BS	0.00	0.00	0.00	0.00	0.00	0.01	0.06	0.13	0.14	0.07	0.5	0.041	0.020	0.02

MPE calculations are defined in section 13.0.

MPE measurement data for Bystander

D.U.T. Info.						Probe Info.		Test Pos.	Bystander (BS) Positions										DUT Max. TX Factor	Avg. over Body (mW/cm ²)	Calc. P.D. (mW/cm ²)	Max Calc. P.D. (mW/cm ²)	
Ant Loc.	Ant. Model/ Desc.	Ant. Gain (dBi)	Tx Freq (MHz)	Max Pwr (W)	Initial Pwr (W)	Test Mode	E/H Field	Probe Cal. Factor	20 cm	40 cm	60 cm	80 cm	100 cm	120 cm	140 cm	160 cm	180 cm	200 cm					
Trunk	HAE6010A (380-433MHz)	5.65	406.5000	48	47.8	CW	E	0.94	BS	0.13	0.07	0.13	0.16	0.22	0.09	0.06	0.19	0.32	0.36	0.5	0.173	0.081	0.08
Trunk	HAE6010A (380-433MHz)	5.65	419.5000	48	47.4	CW	E	0.97	BS	0.09	0.07	0.12	0.19	0.27	0.14	0.17	0.14	0.27	0.31	0.5	0.177	0.086	0.09
Trunk	HAE6010A (380-433MHz)	5.65	432.9875	48	47.0	CW	E	0.95	BS	0.00	0.04	0.13	0.22	0.34	0.18	0.09	0.13	0.23	0.25	0.5	0.161	0.076	0.08
Trunk	HAE6013A (380-470MHz)	4.15	406.5000	48	47.8	CW	E	0.96	BS	0.08	0.06	0.08	0.13	0.31	0.37	0.37	0.31	0.21	0.11	0.5	0.203	0.097	0.10
Trunk	HAE6013A (380-470MHz)	4.15	425.0125	48	47.5	CW	E	0.95	BS	0.10	0.04	0.12	0.20	0.44	0.59	0.60	0.47	0.28	0.13	0.5	0.297	0.141	0.14
Trunk	HAE6013A (380-470MHz)	4.15	438.0125	48	46.9	CW	E	0.98	BS	0.04	0.02	0.07	0.14	0.28	0.39	0.41	0.33	0.23	0.12	0.5	0.203	0.099	0.10
Trunk	HAE6013A (380-470MHz)	4.15	454.0125	48	47.0	CW	E	0.98	BS	0.02	0.02	0.07	0.14	0.24	0.29	0.29	0.22	0.15	0.08	0.5	0.152	0.074	0.08
Trunk	HAE6013A (380-470MHz)	4.15	469.9875	48	46.6	CW	E	0.97	BS	0.02	0.03	0.09	0.14	0.23	0.28	0.27	0.18	0.11	0.07	0.5	0.142	0.069	0.07
Trunk	HAE6031A (380-520MHz)	4.15	406.5000	48	47.8	CW	E	0.96	BS	0.08	0.06	0.09	0.14	0.30	0.39	0.38	0.32	0.21	0.12	0.5	0.209	0.100	0.10
Trunk	HAE6031A (380-520MHz)	4.15	425.0125	48	47.5	CW	E	0.95	BS	0.07	0.04	0.11	0.19	0.39	0.51	0.53	0.43	0.26	0.11	0.5	0.264	0.125	0.13
Trunk	HAE6031A (380-520MHz)	4.15	438.0125	48	46.9	CW	E	0.98	BS	0.05	0.04	0.10	0.20	0.41	0.54	0.59	0.52	0.34	0.19	0.5	0.298	0.146	0.15
Trunk	HAE6031A (380-520MHz)	4.15	454.0125	48	47.0	CW	E	0.98	BS	0.04	0.04	0.12	0.23	0.36	0.43	0.47	0.37	0.26	0.14	0.5	0.246	0.121	0.12
Trunk	HAE6031A (380-520MHz)	4.15	469.9875	48	46.6	CW	E	0.97	BS	0.02	0.04	0.10	0.18	0.28	0.34	0.36	0.28	0.22	0.12	0.5	0.194	0.094	0.10
45 (corner)																							
Trunk	HAE6031A (380-520MHz)	4.15	438.0125	48	46.9	CW	E	0.98	BS	0.06	0.06	0.15	0.14	0.29	0.41	0.45	0.35	0.21	0.12	0.5	0.224	0.110	0.11
90 (side)																							
Trunk	HAE6031A (380-520MHz)	4.15	438.0125	48	46.9	CW	E	0.98	BS	0.08	0.06	0.12	0.08	0.18	0.32	0.39	0.35	0.22	0.12	0.5	0.192	0.094	0.10

MPE calculations are defined in section 13.0.

MPE measurement data for Passenger

D.U.T. Info.							Probe Info.		Test Pos.	Passenger Positions			DUT Max. TX Factor	Avg. over Body (mW/cm ²)	Calc. P.D. (mW/cm ²)	Max Calc. P.D. (mW/cm ²)
Ant Loc.	Ant. Model/ Desc.	Ant. Gain (dBi)	Tx Freq (MHz)	Max Pwr (W)	Initial Pwr (W)	Test Mode	E/H Field	Probe Cal. Factor		Head	Chest	Lower Trunk				
Trunk	HAE6011A (380-433MHz)	7.15	406.5000	48	47.8	CW	E	0.94	PB	0.42	0.23	0.43	0.5	0.360	0.169	0.17
Trunk	HAE6011A (380-433MHz)	7.15	419.5000	48	47.4	CW	E	0.97	PB	0.23	0.09	0.06	0.5	0.127	0.061	0.06
Trunk	HAE6011A (380-433MHz)	7.15	432.9875	48	47.0	CW	E	0.95	PB	0.04	0.05	0.00	0.5	0.030	0.014	0.01
Trunk	HAE4011A (450-470MHz)	5.65	450.0125	48	46.6	CW	E	0.96	PB	0.68	0.21	0.26	0.5	0.383	0.184	0.19
Trunk	HAE4011A (450-470MHz)	5.65	460.0125	48	47.1	CW	E	0.96	PB	0.56	0.19	0.23	0.5	0.327	0.157	0.16
Trunk	HAE4011A (450-470MHz)	5.65	469.9875	48	46.6	CW	E	0.97	PB	0.18	0.21	0.10	0.5	0.163	0.079	0.08
Trunk	RAE4014ARB (445-470MHz)	7.15	445.0125	48	47.3	CW	E	0.96	PB	0.26	0.09	0.00	0.5	0.117	0.056	0.06
Trunk	RAE4014ARB (445-470MHz)	7.15	457.5000	48	47.0	CW	E	0.96	PB	0.06	0.02	0.02	0.5	0.033	0.016	0.02
Trunk	RAE4014ARB (445-470MHz)	7.15	469.9875	48	46.6	CW	E	0.97	PB	0.00	0.00	0.00	0.5	0.000	0.000	0.00

MPE calculations are defined in section 13.0.

MPE measurement data for Passenger

D.U.T. Info.							Probe Info.		Test Pos.	Passenger Positions			DUT Max. TX Factor	Avg. over Body (mW/cm2)	Calc. P.D. (mW/cm2)	Max Calc. P.D. (mW/cm2)
Ant Loc.	Ant. Model/ Desc.	Ant. Gain (dBi)	Tx Freq (MHz)	Max Pwr (W)	Initial Pwr (W)	Test Mode	E/H Field	Probe Cal. Factor		Head	Chest	Lower Trunk				
Trunk	HAE6010A (380-433MHz)	5.65	406.5000	48	47.8	CW	E	0.94	PB	0.68	0.37	0.41	0.5	0.487	0.229	0.23
Trunk	HAE6010A (380-433MHz)	5.65	419.5000	48	47.4	CW	E	0.97	PB	0.32	0.11	0.10	0.5	0.177	0.086	0.09
Trunk	HAE6010A (380-433MHz)	5.65	432.9875	48	47.0	CW	E	0.95	PB	0.29	0.25	0.06	0.5	0.200	0.095	0.10
Trunk	HAE6013A (380-470MHz)	4.15	406.5000	48	47.8	CW	E	0.96	PB	0.90	0.58	0.65	0.5	0.710	0.341	0.34
Trunk	HAE6013A (380-470MHz)	4.15	425.0125	48	47.5	CW	E	0.95	PB	0.57	0.43	0.15	0.5	0.383	0.182	0.18
Trunk	HAE6013A (380-470MHz)	4.15	438.0125	48	46.9	CW	E	0.98	PB	0.62	0.24	0.10	0.5	0.320	0.157	0.16
Trunk	HAE6013A (380-470MHz)	4.15	454.0125	48	47.0	CW	E	0.98	PB	0.81	0.26	0.23	0.5	0.433	0.212	0.22
Trunk	HAE6013A (380-470MHz)	4.15	469.9875	48	46.6	CW	E	0.97	PB	0.34	0.31	0.18	0.5	0.277	0.134	0.14
Trunk	HAE6031A (380-520MHz)	4.15	406.5000	48	47.8	CW	E	0.96	PB	0.95	0.55	0.74	0.5	0.747	0.358	0.36
Trunk	HAE6031A (380-520MHz)	4.15	425.0125	48	47.5	CW	E	0.95	PB	0.68	0.42	0.11	0.5	0.403	0.192	0.19
Trunk	HAE6031A (380-520MHz)	4.15	438.0125	48	46.9	CW	E	0.98	PB	0.93	0.36	0.15	0.5	0.480	0.235	0.24
Trunk	HAE6031A (380-520MHz)	4.15	454.0125	48	47.0	CW	E	0.98	PB	1.22	0.42	0.32	0.5	0.653	0.320	0.33
Trunk	HAE6031A (380-520MHz)	4.15	469.9875	48	46.6	CW	E	0.97	PB	0.41	0.51	0.24	0.5	0.387	0.188	0.19

MPE calculations are defined in section 13.0.

MPE measurement data for Passenger

D.U.T. Info.								Probe Info.		Test Pos.	Passenger Positions			DUT Max. TX Factor	Avg. over Body (mW/cm ²)	Calc. P.D. (mW/cm ²)	Max Calc. P.D. (mW/cm ²)
Ant Loc.	Ant. Model/ Desc.	Ant. Gain (dBi)	Tx Freq (MHz)	Max Pwr (W)	Initial Pwr (W)	Test Mode	E/H Field	Probe Cal. Factor	Head	Chest	Lower Trunk						
									Test Pos.	Head	Chest	Lower Trunk					
Trunk	HAE6011A (380-433MHz)	7.15	406.5000	48	47.8	CW	E	0.94	PF	0.06	0.03	0.08	0.5	0.057	0.027	0.03	
Trunk	HAE6011A (380-433MHz)	7.15	419.5000	48	47.4	CW	E	0.97	PF	0.04	0.01	0.04	0.5	0.030	0.015	0.01	
Trunk	HAE6011A (380-433MHz)	7.15	432.9875	48	47.0	CW	E	0.95	PF	0.02	0.00	0.00	0.5	0.007	0.003	0.00	
Trunk	HAE4011A (450-470MHz)	5.65	450.0125	48	46.6	CW	E	0.96	PF	0.09	0.11	0.07	0.5	0.090	0.043	0.04	
Trunk	HAE4011A (450-470MHz)	5.65	460.0125	48	47.1	CW	E	0.96	PF	0.09	0.04	0.13	0.5	0.087	0.042	0.04	
Trunk	HAE4011A (450-470MHz)	5.65	469.9875	48	46.6	CW	E	0.97	PF	0.04	0.06	0.06	0.5	0.053	0.026	0.03	
Trunk	RAE4014ARB (445-470MHz)	7.15	445.0125	48	47.3	CW	E	0.96	PF	0.03	0.02	0.01	0.5	0.020	0.010	0.01	
Trunk	RAE4014ARB (445-470MHz)	7.15	457.5000	48	47.0	CW	E	0.96	PF	0.01	0.01	0.01	0.5	0.010	0.005	0.00	
Trunk	RAE4014ARB (445-470MHz)	7.15	469.9875	48	46.6	CW	E	0.97	PF	0.00	0.00	0.00	0.5	0.000	0.000	0.00	

MPE calculations are defined in section 13.0.

MPE measurement data for Bystander

D.U.T. Info.							Probe Info.		Test Pos.	Passenger Positions			DUT Max. TX Factor	Avg. over Body (mW/cm ²)	Calc. P.D. (mW/cm ²)	Max Calc. P.D. (mW/cm ²)
Ant Loc.	Ant. Model/ Desc.	Ant. Gain (dBi)	Tx Freq (MHz)	Max Pwr (W)	Initial Pwr (W)	Test Mode	E/H Field	Probe Cal. Factor		Head	Chest	Lower Trunk				
Trunk	HAE6010A (380-433MHz)	5.65	406.5000	48	47.8	CW	E	0.94	PF	0.09	0.09	0.14	0.5	0.107	0.050	0.05
Trunk	HAE6010A (380-433MHz)	5.65	419.5000	48	47.4	CW	E	0.97	PF	0.08	0.03	0.10	0.5	0.070	0.034	0.03
Trunk	HAE6010A (380-433MHz)	5.65	432.9875	48	47.0	CW	E	0.95	PF	0.06	0.05	0.04	0.5	0.050	0.024	0.02
Trunk	HAE6013A (380-470MHz)	4.15	406.5000	48	47.8	CW	E	0.96	PF	0.12	0.15	0.19	0.5	0.153	0.074	0.07
Trunk	HAE6013A (380-470MHz)	4.15	425.0125	48	47.5	CW	E	0.95	PF	0.12	0.08	0.05	0.5	0.083	0.040	0.04
Trunk	HAE6013A (380-470MHz)	4.15	438.0125	48	46.9	CW	E	0.98	PF	0.13	0.04	0.04	0.5	0.070	0.034	0.04
Trunk	HAE6013A (380-470MHz)	4.15	454.0125	48	47.0	CW	E	0.98	PF	0.11	0.10	0.11	0.5	0.107	0.052	0.05
Trunk	HAE6013A (380-470MHz)	4.15	469.9875	48	46.6	CW	E	0.97	PF	0.10	0.13	0.09	0.5	0.107	0.052	0.05
Trunk	HAE6031A (380-520MHz)	4.15	406.5000	48	47.8	CW	E	0.96	PF	0.12	0.16	0.19	0.5	0.157	0.075	0.08
Trunk	HAE6031A (380-520MHz)	4.15	425.0125	48	47.5	CW	E	0.95	PF	0.10	0.08	0.09	0.5	0.090	0.043	0.04
Trunk	HAE6031A (380-520MHz)	4.15	438.0125	48	46.9	CW	E	0.98	PF	0.13	0.04	0.06	0.5	0.077	0.038	0.04
Trunk	HAE6031A (380-520MHz)	4.15	454.0125	48	47.0	CW	E	0.98	PF	0.18	0.16	0.13	0.5	0.157	0.077	0.08
Trunk	HAE6031A (380-520MHz)	4.15	469.9875	48	46.6	CW	E	0.97	PF	0.10	0.10	0.16	0.5	0.120	0.058	0.06

MPE calculations are defined in section 13.0.

Appendix E - SAR Simulation Report

COMPUTATIONAL EME COMPLIANCE ASSESSMENT OF THE APX7500, MODEL M30TSS9PW1AN (MHUE1002A) MOBILE RADIO

January 17, 2012

Giorgi Bit-Babik, Ph.D., and Antonio Faraone, Ph.D.

Motorola Corporate EME Research Lab, Plantation, Florida

Kim Uong, BSEE

EME laboratory, Motorola Solutions Inc., Plantation, Florida

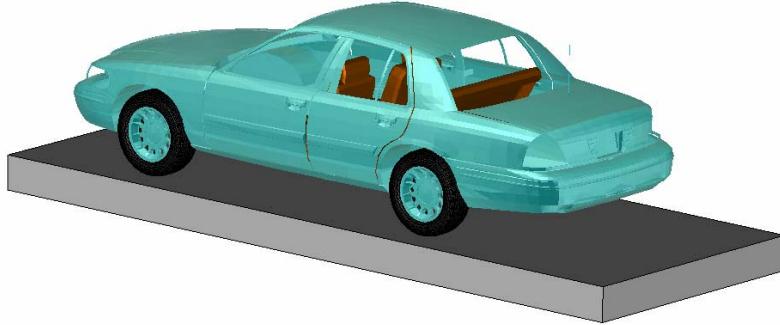
Introduction

This report summarizes the computational [numerical modeling] analysis performed to document compliance of the APX7500 Dual Band UHF R1 and UHF R2, Model Number M30TSS9PW1AN (MHUE1002A) mobile radio and vehicle-mounted antennas with the Federal Communications Commission (FCC) guidelines for human exposure to radio frequency (RF) emissions. The radio operates in the 380 - 470 MHz and 450-520 MHz frequency bands.

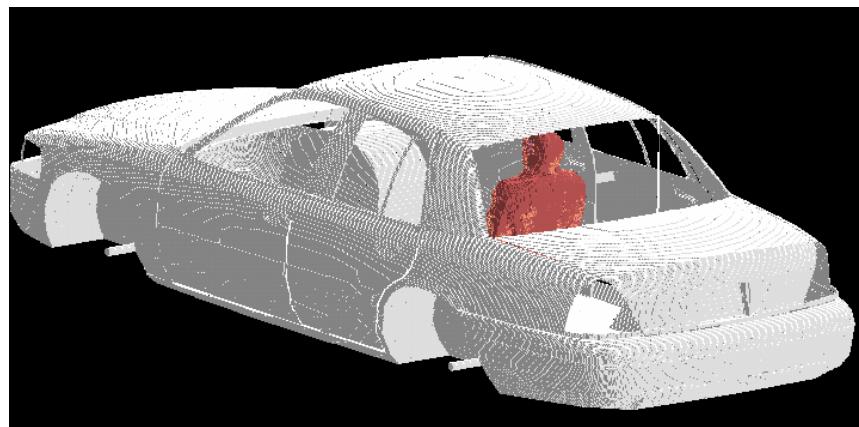
This computational analysis supplements the measurements conducted to evaluate the compliance of the exposure from this mobile radio with respect to applicable *maximum permissible exposure* (MPE) limits. All test conditions (3 in total) that did not conform with applicable MPE limits were analyzed to determine whether those conditions complied with the *specific absorption rate* (SAR) limits for general public exposure (1.6 W/kg averaged over 1 gram of tissue and 0.08 W/kg averaged over the whole body) set forth in FCC guidelines, which are based on the IEEE C95.1-1999 standard [1]. The same test conditions were also analyzed to determine compliance with the SAR limits set forth in the ICNIRP [3] guidelines and IEEE Std. C95.1-2005 standard [4] (2.0 W/kg averaged over 10 gram of tissue and 0.08 W/kg averaged over the whole

body). In total 6¹ independent simulations have been performed addressing exposure of passenger to the UHF R1 mobile radio with trunk-mount antennas. For all simulations a commercial code based on Finite-Difference-Time-Domain (FDTD) methodology was employed to carry out the computational analysis. It is well established and recognized within the scientific community that SAR is the primary dosimetric quantity used to evaluate the human body's absorption of RF energy and that MPEs are in fact derived from SAR. Accordingly, the SAR computations provide a scientifically valid and more relevant estimate of human exposure to RF energy.

Method


The simulation code employed is XFDTD™ v7.1, by Remcom Inc., State College, PA. This computational suite features a heterogeneous full body standing model (High Fidelity Body Mesh), derived from the so-called Visible Human [2], discretized in 3 mm voxels. The dielectric properties of 23 body tissues are automatically assigned by XFDTD™ at any specific frequency. The “seated” man model was obtained from the standing model by modifying the articulation angles at the hips and the knees. Details of the computational method and model are provided in the Appendix to this report.

The car model has been imported into XFDTD™ from the CAD file of a sedan car having dimensions 4.98 m (L) x 1.85 m (W) x 1.18 m (H), and discretized with maximum resolution of 5 mm. The Figure 1 below show both the CAD model and the photo of the actual car. This CAD model has been incorporated into the IEC/IEEE 62704-2 draft standard.


¹ The number of individual simulations includes: 6 passenger simulations (the center and side location at the back seat in 3 test conditions).

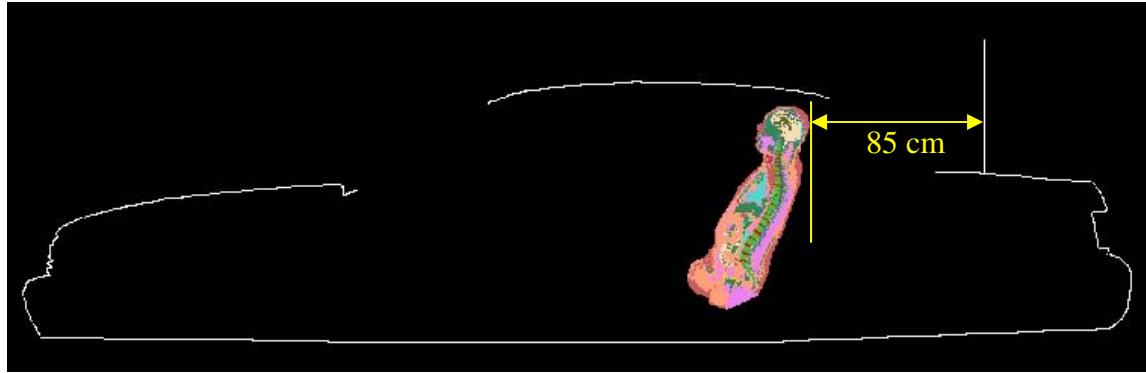


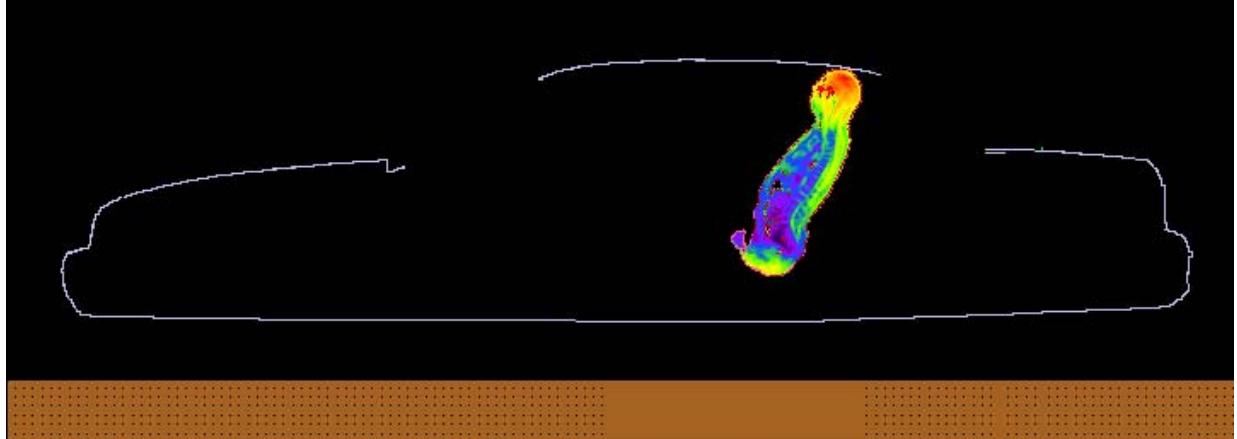
Figure 1: The photo picture of the car used in field measurements and the corresponding CAD model used in simulations

For passenger exposure, the antenna position is on the trunk and the distance of trunk mounted antenna from the passenger head when the passenger is located in the center of the back seat was set at 85 cm, to replicate the experimental conditions used in MPE measurements. According to the IEC/IEEE 62704-2 draft standard (December 2010) for exposure simulations from vehicle mount antennas the lossy dielectric slab with 30 cm thickness, dielectric constant of 8 and conductivity of 0.01 S/m has been introduced in the computational model to properly account for the effect of the ground (pavement) on exposure.

Figure 2 shows some of the XFDTD™ computational models used for passenger exposure to trunk mounted antennas

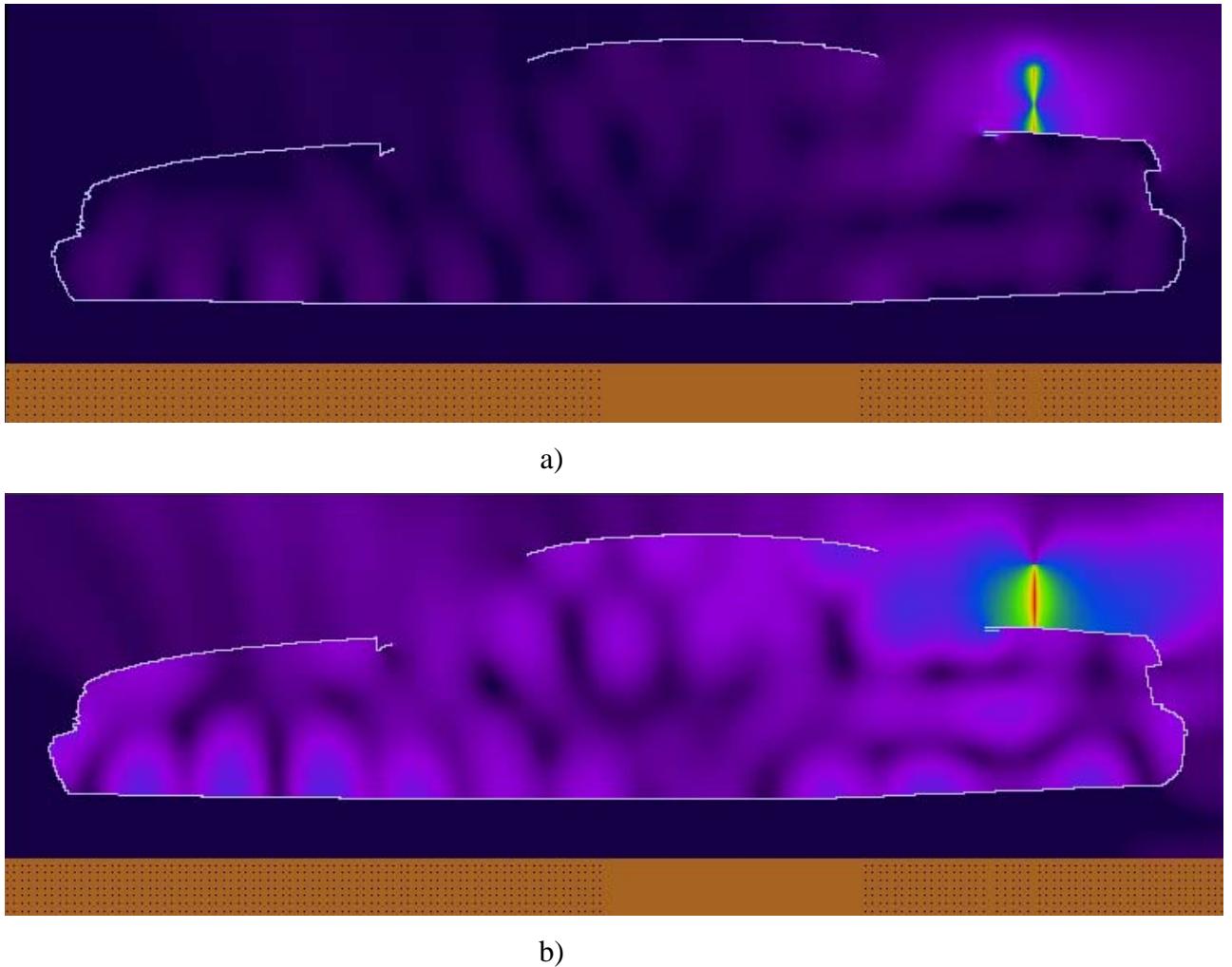
Figure 2: Passenger model exposed to a trunk-mount antenna: XFDTD geometry.
The antenna is mounted at 85 cm from the passenger located in the center of the back seat.

The computational code employs a time-harmonic excitation to produce a steady state electromagnetic field in the exposed body. Subsequently, the corresponding SAR distribution is automatically processed in order to determine the whole-body, 1-g, and 10-g average SAR. The maximum average output power from mobile radio antenna is 48 W. Since the ohmic losses in the cable and in the car materials, as well as the mismatch losses at the antenna feed-point, are neglected, and source-based time averaging (50% talk time) is employed, all computational results are normalized to half of it, i.e., 24 W average net output power.


Results of SAR computations for car passengers

The test conditions requiring SAR computations are summarized in Table I, together with the antenna data, the SAR results, and power density (P.D.) as obtained from the measurements in the corresponding test conditions. The conditions are for antennas mounted on the trunk. The antenna length in Table I includes the 1.8 cm magnetic mount base used in measurements to position the antenna on the vehicle. The same length was used in simulation model. The passenger is located in the center or on the side of the rear seat. The passenger model is surrounded by air, as the seat, which is made out of poorly conductive fabrics, is not included in the computational model. All the transmit frequency, antenna length, and passenger location combinations reported in Table I have been simulated individually.

Table I: Results of the SAR computations for passenger exposure (50% talk-time).


Mount location	Antenna Kit #	Antenna length	Freq [MHz]	P.D. (mW/cm ²)	Exposure location	SAR [W/kg]		
						1-g	10-g	WB
Trunk	HAE6013A	30.8 cm	406.5	0.342	Center	0.478	0.337	0.0137
					Side	0.573	0.351	0.0125
Trunk	HAE6031A	29.8 cm	406.5 Fig. 3 & 4	0.360	Center	0.459	0.312	0.0133
					Side	0.575	0.354	0.0125
			454.0	0.327	Center	0.495	0.349	0.0199
					Side	0.386	0.242	0.0155

The SAR distribution in the passenger model in the exposure condition that gave highest 1-g SAR is reported in Figure 3 (406.5 MHz, passenger in the side of the back seat, HAE6031A antenna).

Figure 3. SAR distribution at 406.5 MHz in the passenger located on the side of the back seat, produced by the trunk-mount HAE6031A antenna. The contour plot in the figure is relative to the plane where the peak 1-g average SAR for this exposure condition occurs.

The two pictures below in Figure 4 show the E and H field distributions in the plane of the antenna corresponding to the condition in Figure 3.

Figure 4. (a) E-field distribution corresponding to exposure condition of Figure 3, and (b) H-field distribution corresponding to exposure condition of Figure 3.

The overall maximum peak 1-g SAR in all simulated conditions is 0.575 W/kg, less than the 1.6 W/kg limit, while the overall maximum peak 10-g SAR is 0.354 W/kg, less than the 2.0 W/kg limit. The maximum whole-body average SAR is 0.0199 W/kg, less than the 0.08 W/kg limit.

Conclusions

Under the test conditions described for evaluating passenger exposure to the RF electromagnetic fields emitted by vehicle-mounted antennas used in conjunction with this mobile radio product, the present analysis shows that the computed SAR values are compliant with the FCC exposure limits for the general public as well as with the corresponding ICNIRP and IEEE Std. C95.1-2005 SAR limits.

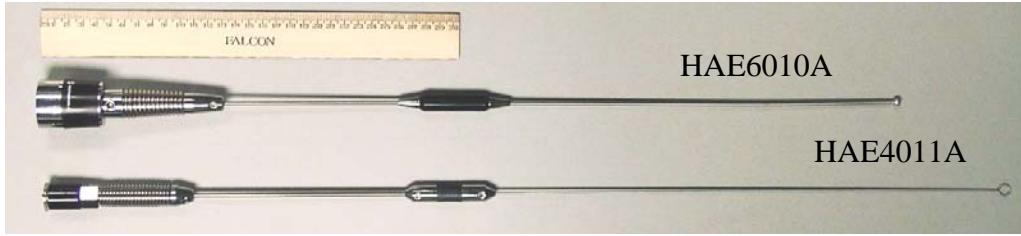
References

- [1] IEEE Standard C95.1-1999. *IEEE Standard for Safety Levels with Respect to Human Exposure to RF Electromagnetic Fields, 3 kHz to 300 GHz.*
- [2] http://www.nlm.nih.gov/research/visible/visible_human.html
- [3] ICNIRP (International Commission on Non-Ionising Radiation Protection). 1998. *Guidelines for limiting exposure to time-varying electric, magnetic and electromagnetic fields (up to 300 GHz).* Health Phys. 74:494–522.
- [4] IEEE. 2005. *IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz,* IEEE Std C95.1-2005

APPENDIX: SPECIFIC INFORMATION FOR SAR COMPUTATIONS

This appendix follows the structure outlined in Appendix B.III of the Supplement C to the FCC OET Bulletin 65. Most of the information regarding the code employed to perform the numerical computations has been adapted from the draft IEC/IEEE 62704-1 and 62704-2 standards, and from the XFDTD™ v5.3, v6.4, and v7.1 User Manuals. Remcom Inc., owner of XFDTD™, is kindly acknowledged for the help provided.

1) Computational resources

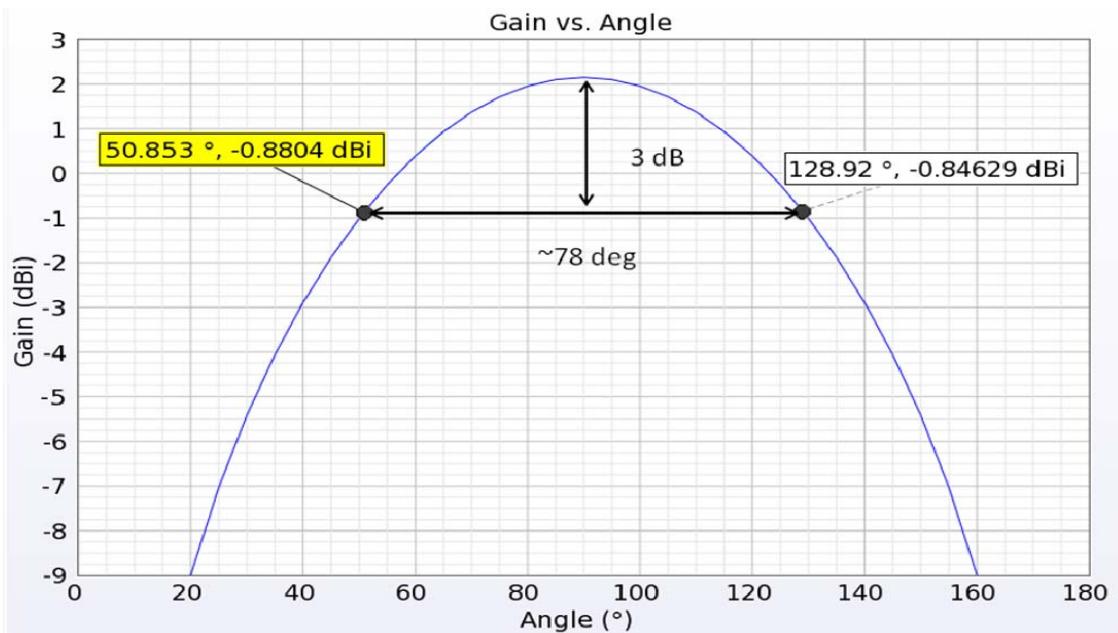
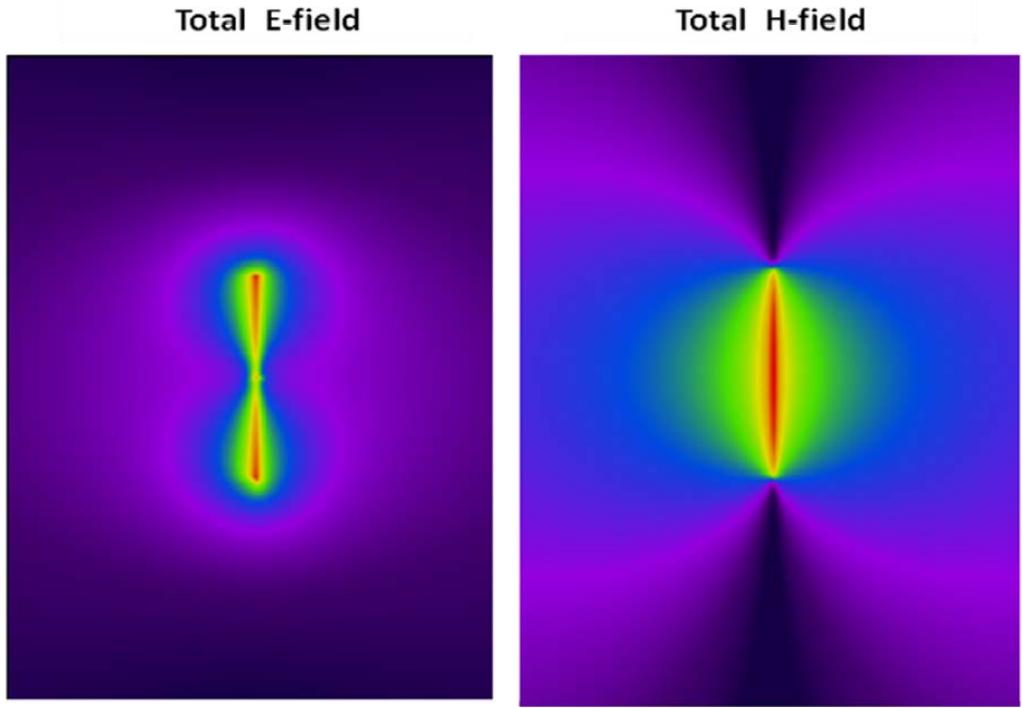

- a) A multiprocessor system equipped with two Intel Xeon X5570 quad-core CPUs and four Tesla C1060 GPUs was employed for all simulations.
- b) The memory requirement was from 7 GB to 12 GB. Using the above-mentioned system with 8-cores operating concurrently, the typical simulation would run for 3-5 hours and with all four GPUs activated by the XFDTD version 7.1 this time would be from 30-90 min.

2) FDTD algorithm implementation and validation

- a) We employed a commercial code (XFDTD™ v7.1, by Remcom Inc.) that implements the Yee's FDTD formulation [1]. The solution domain was discretized according to a rectangular grid with an adaptive 3-10 mm step in all directions. Sub-gridding was not used. Seven-layer PML absorbing boundary conditions are set at the domain boundary to simulate free space radiation processes. The excitation is a lumped voltage generator with 50-ohm source impedance. The code allows selecting *wire objects* without specifying their radius. We used a wire to represent the antenna. The car body is modeled by solid metal. We did not employ the “thin wire” algorithm since within the adaptive grid the minimum resolution of 5 mm was specified and used to model the antenna and the antenna wire radius was never smaller than one-fifth of the voxel dimension. In fact, the XFDTD™ manual specifies that “In most cases, standard PEC material will serve well as a wire. However, in cases where the wire radius is important to the calculation and is less than 1/4 the length of the average cell edge, the thin wire material may be used to accurately simulate the correct wire diameter.” The maximum voxel dimension in the plane normal to the antenna in all our simulations was 5 mm, and the antenna radius is always at least 1 mm (1 mm for the short quarter-wave antennas and 1.5 mm for the long gain antennas), so there was no need to specify a “thin wire” material.

Because the field impinges on the bystander or passenger model at a distance of several tens of voxels from the antenna, the details of antenna wire modeling are not expected to have significant impact on the exposure level.

Some antennas have inductive loading coils located in the mid section as shown in the picture below of the HAE 6010A and HAE 4011A antenna examples.

The X-ray of the reactive loads of the HAE4011A and HAE6010A antennas is also presented in the next pictures below. Those elements are significantly shorter than the length of the antenna and are about 1/40 of the wavelength at center operating frequency. They were modeled as lumped reactive elements. The comparison with measurements and validity of such simulation model has been summarized in [9].

b) XFDTD™ is one of the most widely employed commercial codes for electromagnetic simulations. It has gone through extensive validation and has proven its accuracy over time in many different applications. One example is provided in [3].

We carried out a validation of the code algorithm by running the canonical test case involving a half-wave wire dipole. The dipole is 0.475 times the free space wavelength at 400 MHz, i.e., about 35.5 cm long. The discretization used to model the dipole was 5 mm. Also in this case, the “thin wire” model was not needed. The following picture shows XFDTD™ outputs regarding the antenna feed-point impedance ($75.5 + j 11.9$ ohm), as well as qualitative distributions of the total E and H fields near the dipole. The radiation pattern is shown as well (one lobe in elevation). As expected, the 3 dB beamwidth is about 78 degrees. The computed results are in good agreement with the known analytical results for the half -wave dipole antenna which could be found in [10].

This validation ensures that the input impedance calculation is carried out correctly in XFDTD™, thereby enabling accurate estimates of the radiated power. It further ensures that the wire model employed in XFDTD™, which we used to model the antennas, produces physically meaningful current and fields distributions. Both these aspects ensure that the field quantities are correctly computed both in terms of absolute amplitude and relative distribution.

3) Computational parameters

a) The following table reports the main parameters of the FDTD model employed to perform our computational analysis:

PARAMETER	X	Y	Z
Voxel size	3-10 mm	3-10 mm	1-10 mm
Minimum domain dimensions employed for passenger computations with the trunk-mount antennas	383	861	537
Maximum domain dimensions employed for bystander computations with the trunk-mount antennas	449	791	709
Time step	About 0.7 of the Courant limit (typically 5 ps)		
Objects separation from FDTD boundary (mm)	>200	>200	>200
Number of time steps	Enough to reach at least -50 dB convergence		
Excitation	Sinusoidal (not less than 10 periods)		

4) Phantom model implementation and validation

a) The FDTD mesh of a male human body was created using digitized data in the form of transverse color images. The data is from the *visible human project* sponsored by the National Library of Medicine (NLM) and is available via the Internet (http://www.nlm.nih.gov/research/visible/visible_human.html). The male data set consists of MRI, CT and anatomical images. Axial MRI images of the head and neck and longitudinal sections of the rest of the body are available at 4 mm intervals. The MRI images have 256 pixel by 256 pixel resolution. Each pixel has 12 bits of gray tone resolution. The CT data consists of axial CT scans of the entire body taken at 1 mm intervals at a resolution of 512 pixels by 512 pixels where each pixel is made up of 12 bits of gray tone. The axial anatomical images are 2048 pixels by 1216 pixels where each pixel is defined by 24 bits of color. The anatomical cross sections are also at 1 mm intervals and coincide with the CT axial images. There are 1871 cross sections. The XFDTD™ High Fidelity Body Mesh uses 3x3x3 mm cells and has dimensions 136 x 87 x 397. Dr. Michael Smith and Dr. Chris Collins of the Milton S. Hershey Medical Center, Hershey, Pa, created the High Fidelity Body mesh. Details of body model creation are given in the *methods* section in [5]. The body mesh contains 23 tissues materials. Measured values for the tissue parameters for a broad frequency range are included with the mesh data. The correct values are interpolated from the table of measured data and entered into the appropriate mesh variables. The tissue conductivity and permittivity variation *vs.* frequency is included in the XFDTD™ calculation by a multiple-pole approximation to the Cole-Cole approximated tissue parameters reported in [11].

a) The XFDTD™ High Fidelity Body Mesh model correctly represents the anatomical structure and the dielectric properties of body tissues, so it is appropriate for determining the highest exposure expected for normal device operation.

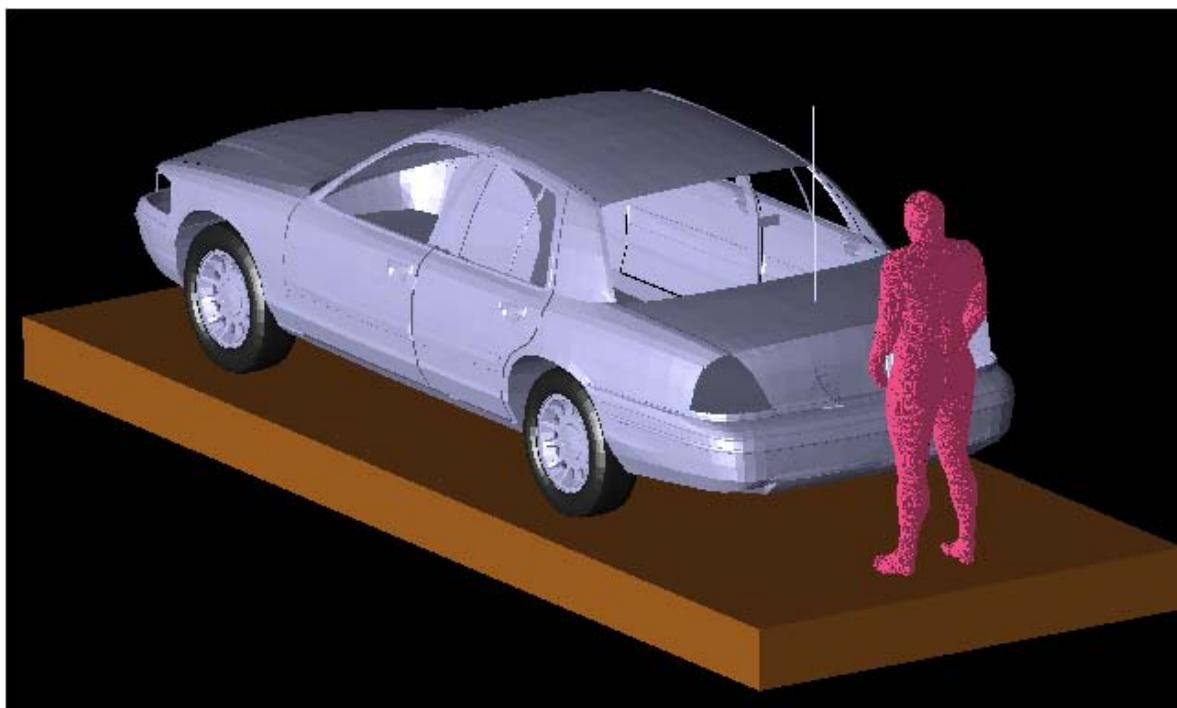
b) One example of the accuracy of XFDTD™ for computing SAR has been provided in [6]. The study reported in [6] is relative to a large-scale benchmark of measurement and computational tools carried out within the IEEE Standards Coordinating Committee 34, Sub-Committee 2.

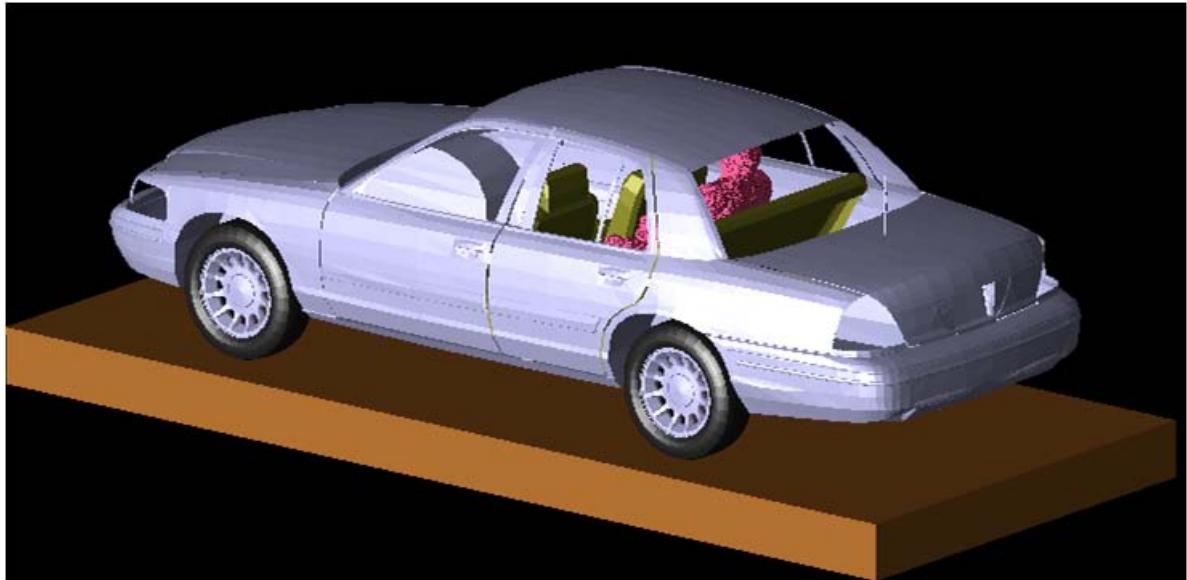
5) Tissue dielectric parameters

a) The following table reports the dielectric properties used by XFDTD™ for the 23 body tissue materials in the High Fidelity Body Mesh at 450 MHz.

#	Tissue	ϵ_r	σ (S/m)	Density (kg/m ³)
1	skin	41.5	0.57	1125
2	tendon, pancreas, prostate, aorta, liver, other	50.3	0.76	1151
3	fat, yellow marrow	5.02	0.05	943
4	cortical bone	13.4	0.11	1850
5	cancellous bone	21.0	0.23	1080
6	blood	57.2	1.72	1057
7	muscle, heart, spleen, colon, tongue	63.5	0.99	1059
8	gray matter, cerebellum	54.1	0.88	1035.5
9	white matter	39.7	0.54	1027.4
10	CSF	68.9	2.32	1000
11	sclera/cornea	54.4	1.04	1151
12	vitreous humor	68.3	1.56	1000
13	bladder	17.6	0.31	1132
14	nerve	35.5	0.50	1112
15	cartilage	43.4	0.66	1171
16	gall bladder bile	76.5	1.62	928
17	thyroid	59.8	0.82	1035.5
18	stomach/esophagus	74.4	1.13	1126
19	lung	52.8	0.72	563
20	kidney	57.0	1.16	1147
21	testis	65.2	1.13	1158
22	lens	51.9	0.71	1163
23	small intestine	73.7	2.07	1153

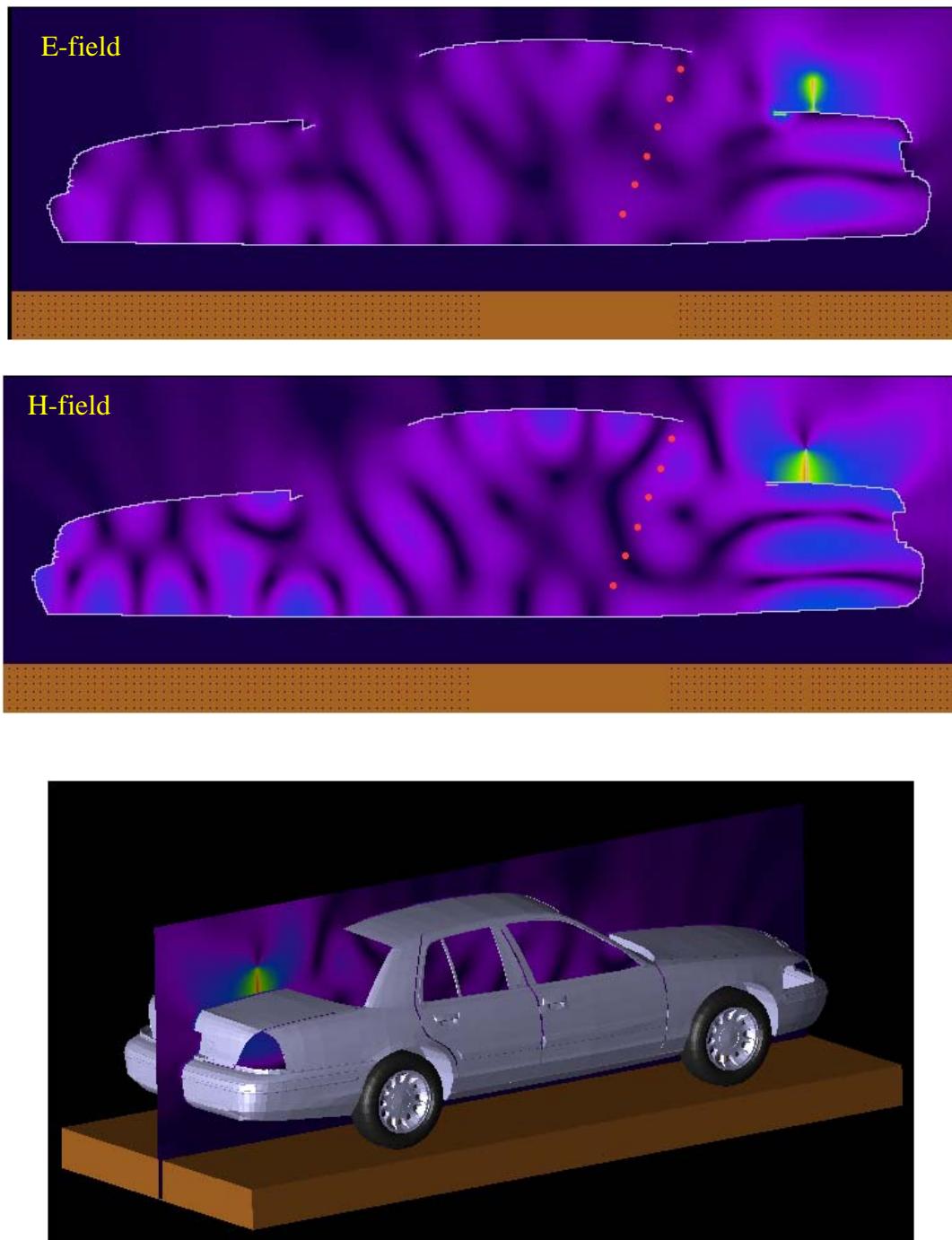
b) The tissue types and dielectric parameters used in the SAR computation are appropriate for determining the highest exposure expected for normal device operation, because they are derived from measurements performed on real biological tissues (XFDTD, Reference Manual Version 6.4, Remcom, Inc.).


c) The tabulated list of the dielectric parameters used in phantom models is provided at point 5(a). As regards the device (car plus antenna), we used perfect electric conductors.


6) Transmitter model implementation and validation

a) The essential features that must be modeled correctly for the particular test device model to be valid are:

- Car body. The car model is very similar to the car used for MPE measurements, so as to be able to correlate measured and simulated field values. This car model has been developed for the SAR computational draft standard IEC/IEEE 62704-2.
- Antenna. We used a straight wire, even when the gain antenna has a base coil for tuning. All the coil does is compensating for excess capacitance due to the antenna being slightly longer than half a wavelength. We do not need to do that in the model, as we used normalization with respect to the net radiated power, which is determined by the input resistance only. In this way, we neglect mismatch losses and artificially produce an overestimation of the SAR, thereby introducing a conservative bias in the model. In case of low profile vertical monopole antenna (HAE6016A) which has an additional horizontal metal circular disk at the tip, the disk was included in the model and well represented in 5 mm resolution mesh.
- Antenna location. We used the same location, relative to the edge of the car trunk, the backseat, or the roof, used in the MPE measurements. The following pictures show a lateral and a perspective view of the bystander and passenger model.



The car model is constituted by perfect electric conductor and does not include wheels in order to reduce its complexity. The passenger model is surrounded by air, as the seat, which is made out of poorly conductive fabrics, is not included in the computational model. The passenger and bystander models were validated for similar antenna and frequency conditions by comparing the MPE measurements at UHF frequencies (421.5 MHz and 425 MHz) for similar antennas used for a UHF mobile radio. The comparison results are presented below, according to following definitions for the equivalent power densities (based on E or H-field):

$$S_E = \frac{|\mathbf{E}|^2}{2\eta}, \quad S_H = \frac{\eta}{2}|\mathbf{H}|^2, \quad \eta = 377 \Omega$$

Passenger with 17.5 cm monopole antenna (HAE4002A 421.5 MHz)

The following figure of the test model shows the car model, where the red dots individuate the back seat, as it can be observed from the other figure showing the cross section of the passenger. The comparison has been performed by taking the average of the computed steady-state field values at the six dotted locations, corresponding to the head, chest, and legs along the red dots line, and comparing them with the average of the MPE measurements performed at the head, chest and legs locations. Such a comparison is carried out at the same average power level (22 W, including the 50% duty factor) used in the MPE measurements.

The equivalent power density (S) is computed from the E-field and the H-field separately. The following table reports the E-field values computed by XFDTD™ at the six locations, and the corresponding power density.

Location Number	E-field, V/m	Eq. Power Density 1.0 V source	Scaled Power Dens. 22 W output, mW/cm ²
1	3.11E-01	1.28E-04	1.56E-01
2	4.16E-01	2.29E-04	2.79E-01
3	5.25E-01	3.65E-04	4.45E-01
4	3.86E-01	1.98E-04	2.41E-01
5	3.84E-01	1.96E-04	2.39E-01
6	6.01E-01	4.80E-04	5.85E-01
Equivalent average Power Density			3.24E-01

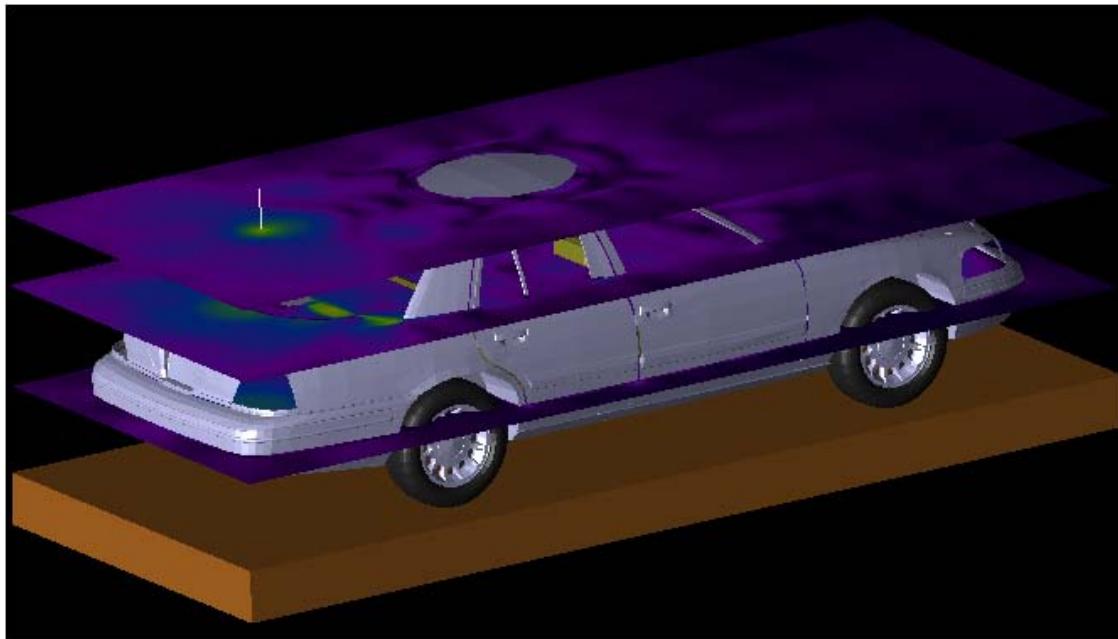
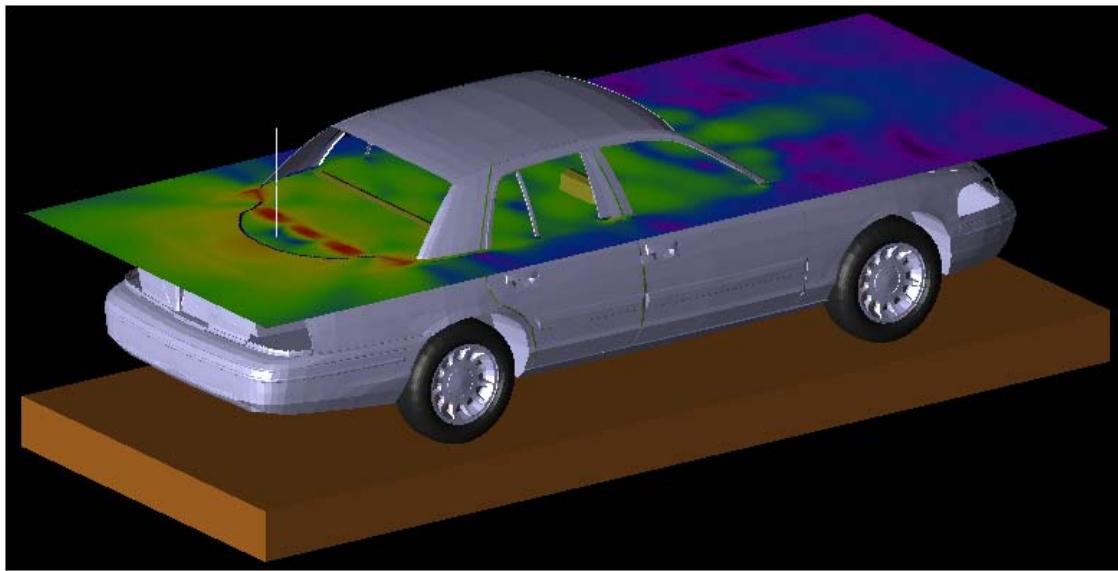
Location Number	H-field, Weber/m ²	Eq. Power Density 1.0 V source	Scaled Power Dens. 22 W output, mW/cm ²
1	1.34E-03	3.37E-04	4.11E-01
2	1.08E-03	2.21E-04	2.70E-01
3	5.59E-04	5.89E-05	7.18E-02
4	5.45E-04	5.60E-05	6.82E-02
5	5.45E-04	5.59E-05	6.82E-02
6	5.23E-04	5.16E-05	6.29E-02
Equivalent average Power Density			1.59E-01

The radiated power (considering the mismatch to the 50 ohm unitary voltage source) is 1.81E-3 W, therefore a factor equal to 12188 is required to scale up to 22 W radiated. The corresponding scaled-up power densities are reported in the tables above, which show that the simulation overestimates the average power density from the MPE measurements (0.297 mW/cm²), as derived from the measured E-field reported in the following table:

Position	SE (meas), 22 W output mW/cm ²
Head	0.38
Chest	0.33
Lower Trunk	0.16

The simulations tend to overestimate the average power density levels, which is understandable since there are no ohmic losses and perfect impedance matching is enforced in the computational models. Based on these results, we conclude that the simulation will produce slight exposure overestimates (about 9%).

b) Descriptions and illustrations showing the correspondence between the modeled test device and the actual device, with respect to shape, size, dimensions and near-field radiating characteristics, are found in the main report.



c) Verification that the test device model is equivalent to the actual device for predicting the SAR distributions descends from the fact that the car and antenna size and location in the numerical model correspond to those used in the measurements.

d) The peak SAR is in the neck region for the passenger, which is in line with MPE measurements and predictions.

Passenger with 63.5 cm monopole antenna (HAE6010A 425 MHz)

The following figures show the car model with the field distribution in the horizontal planes where the MPE measurements have been performed. The comparison has been performed by taking the average of the computed steady-state field values at the three locations, corresponding to the head, chest, and lower trunk, and comparing them with the average of the MPE measurements performed at the head, chest and lower trunk locations. Such a comparison is carried out at the same average power level (61.5 W, including the 50% duty factor) used in the MPE measurements.

The equivalent power density (S) is computed from the E-field. The following table reports the E-field values computed by XFDTD™ at the three locations, and the corresponding power density.

Location Number	E-field, V/m	Eq. Power Density 1.0 V source	Scaled Power Dens. 61.5 W output, mW/cm ²
1	2.26E-01	6.76E-05	0.74
2	3.60E-01	1.72E-04	1.89
3	1.40E-01	2.59E-05	0.28
Equivalent average Power Density			0.97

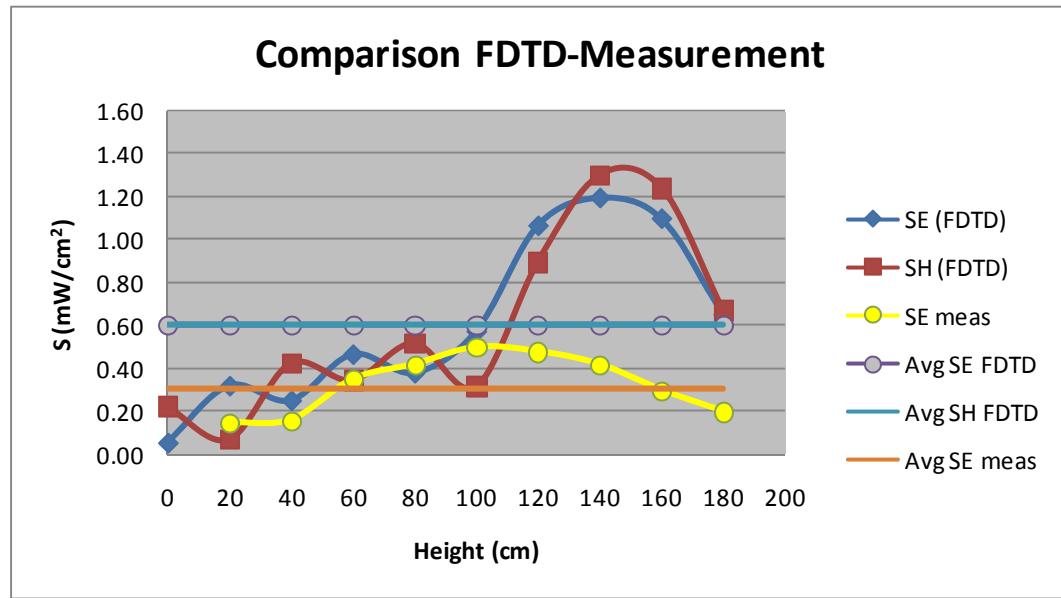
The corresponding scaled-up power densities are reported in the tables above, which show that the simulation overestimates the average power density from the MPE measurements (0.52 mW/cm^2), as derived from the measured E-field reported in the following table:

Position	SE (meas), 60 W output mW/cm^2
Head	0.72
Chest	0.64
Lower Trunk	0.19

The simulations tend to overestimate the average power density levels, which is understandable since there are no ohmic losses and perfect impedance matching is enforced in the computational models. Based on these results, we conclude that the simulation will produce exposure overestimates (about 88%).

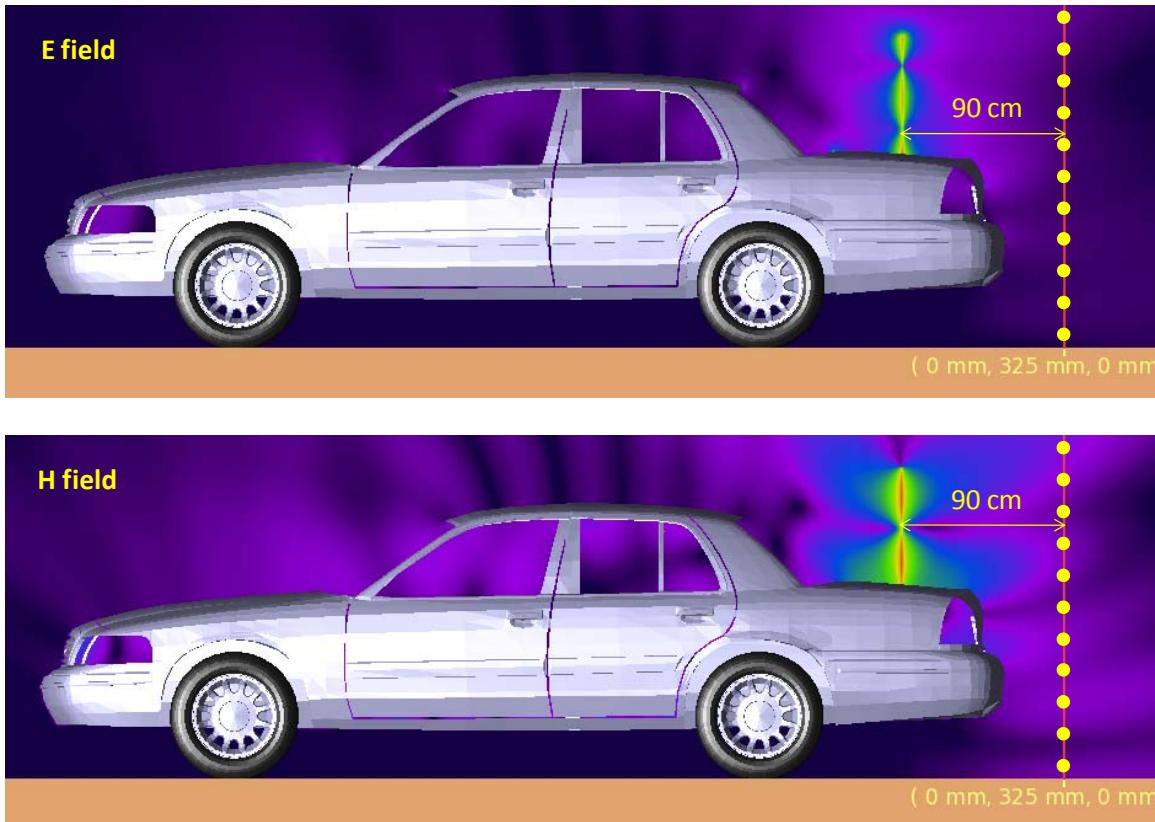
Bystander with 29 cm monopole antenna (HAE6013A 425 MHz)

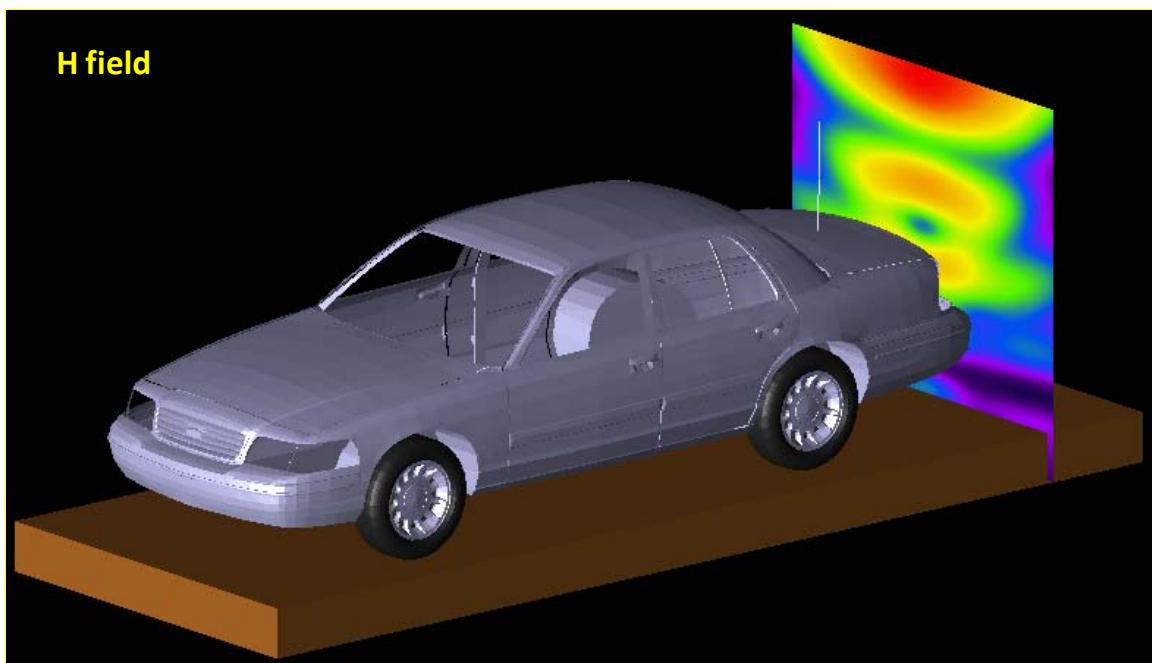
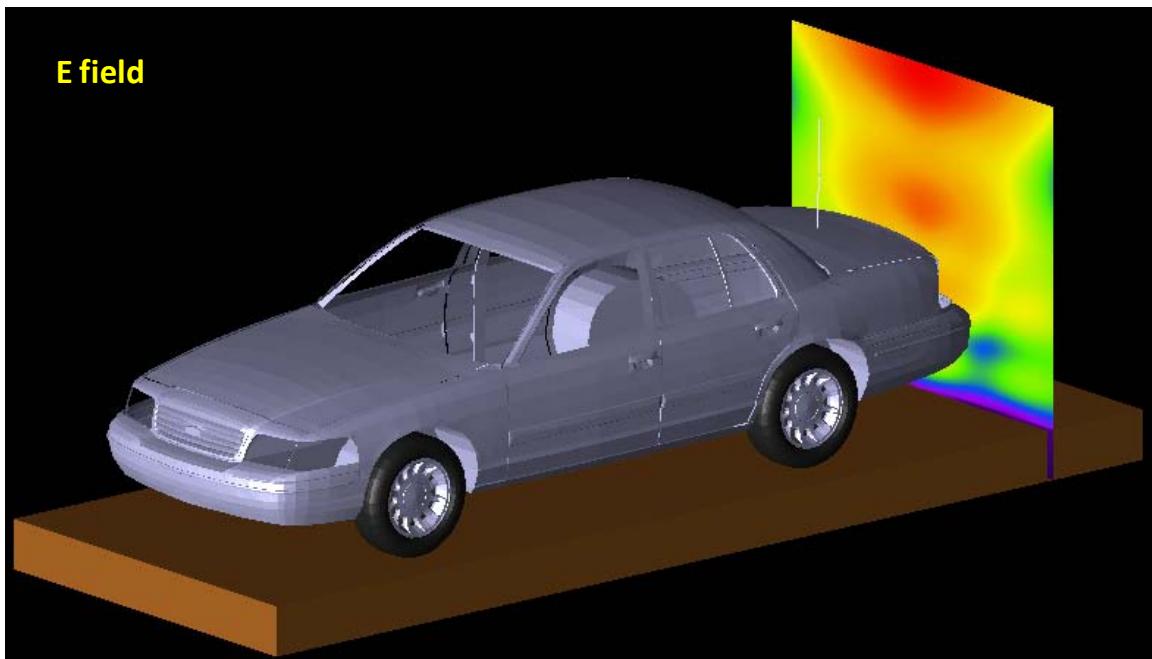
The following figures show the E-field and H-field distributions across a vertical plane passing for the antenna and cutting the car in half. As done in the measurements, the MPE is computed from both E-field and H-field distributions, along the yellow dotted line at 10 points spaced 20 cm apart from each other up to 2 m in height. These lines and the field evaluation points are approximately indicated in the figures. The E-field and H-field distributions in the vertical plane placed at 90 cm from the antenna, behind the case, are shown as well. The points where the fields are sampled to determine the equivalent power density (S) are approximately indicated by the white dots. A picture of the antenna is not reported because it is identical to the HAE6013A.



The following table reports the field values computed by XFDTD™ for the 1.0 V source and the corresponding power density values. The average exposure levels are computed as well.

Height (cm)	E (V/m)	S _E (W/m ²)	H (A/m)	S _H (W/m ²)
0	5.67E-02	4.27E-06	3.11E-04	1.83E-05
20	1.40E-01	2.59E-05	1.78E-04	5.96E-06
40	1.24E-01	2.03E-05	4.29E-04	3.47E-05
60	1.69E-01	3.79E-05	3.88E-04	2.84E-05
80	1.52E-01	3.08E-05	4.74E-04	4.24E-05
100	1.87E-01	4.65E-05	3.71E-04	2.59E-05
120	2.56E-01	8.67E-05	6.23E-04	7.31E-05
140	2.71E-01	9.73E-05	7.50E-04	1.06E-04
160	2.60E-01	8.94E-05	7.33E-04	1.01E-04
180	2.00E-01	5.31E-05	5.40E-04	5.50E-05
Average S_E		4.92E-05	Average S_H	

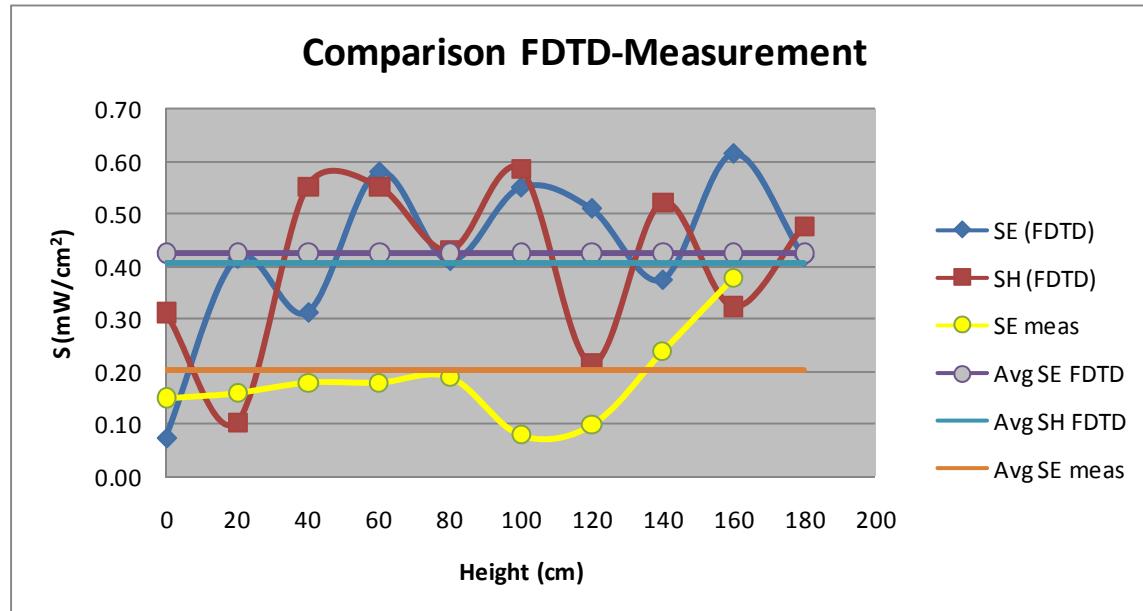

Since the conducted power during the MPE measurement was 123 W the calculated power density was then scaled up for 61.5 W radiated power (taking into account 50% talk time). This model does not include the mismatch loss, loss in the cable and finite conductivity of the car surface and as represents a conservative model for exposure assessment. The scaled-up power density values for 61.5 W radiated power are 6.03 W/m² (E), and 6.02 W/m² (H), that correspond to 0.603 mW/cm² (E), and 0.602 mW/cm² (H). Measurements yielded average power density of 0.309 mW/cm² (E), which shows that the calculated power density is overestimated. The following graph shows a comparison between the measured power density and the simulated one, based on E or H fields, normalized to 61.5 W radiated power.

Bystander with 63.5 cm monopole antenna (HAE6010A 425 MHz)

The following figures show the E-field and H-field distributions across a vertical plane passing for the antenna and cutting the car in half. As done in the measurements, the MPE is computed from both E-field and H-field distributions, along the yellow dotted

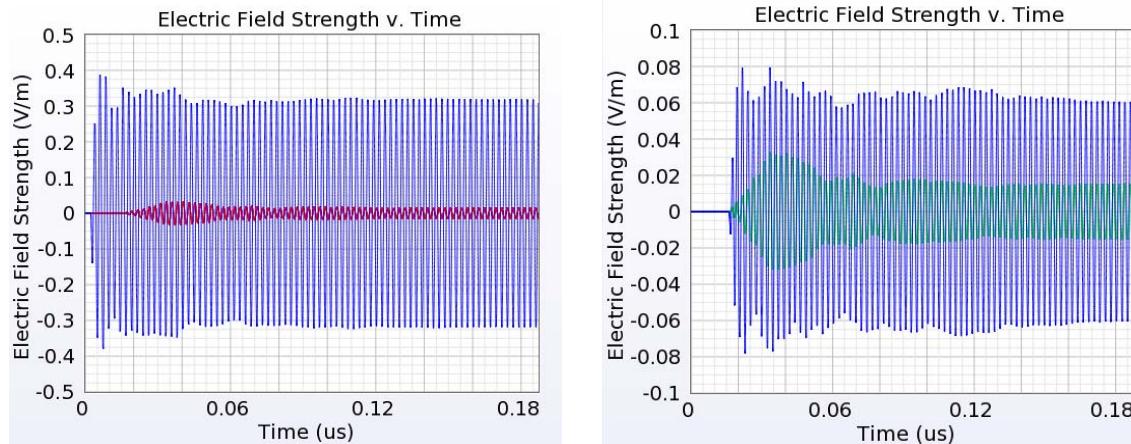
line at 10 points spaced 20 cm apart from each other up to 2 m in height. These lines and the field evaluation points are approximately indicated in the figures. The E-field and H-field distributions in the vertical plane placed at 90 cm from the antenna, behind the case, are shown as well. The points where the fields are sampled to determine the equivalent power density (S) are approximately indicated by the white dots. A picture of the antenna is not reported because it is identical to the HAE6010A.



The following table reports the field values computed by XFDTD™ and the corresponding power density values. The average exposure levels are computed as well.

Height (cm)	E (V/m)	S _E (W/m ²)	H (A/m)	S _H (W/m ²)
0	7.55E-02	7.56E-06	4.13E-04	3.21E-05
20	1.79E-01	4.27E-05	2.37E-04	1.06E-05
40	1.56E-01	3.21E-05	5.49E-04	5.69E-05
60	2.12E-01	5.96E-05	4.84E-04	5.69E-05
80	1.78E-01	4.22E-05	5.65E-04	4.42E-05
100	2.07E-01	5.66E-05	3.43E-04	6.03E-05
120	1.99E-01	5.25E-05	5.34E-04	2.21E-05
140	1.70E-01	3.85E-05	4.20E-04	5.37E-05
160	2.18E-01	6.32E-05	5.10E-04	3.33E-05
180	1.80E-01	4.30E-05	8.15E-04	4.90E-05
Average S_E		4.38E-05	Average S_H	

Since the conducted power during the MPE measurement was 123 W the calculated power density was then scaled up for 61.5 W radiated power (taking into account 50% talk time). This model does not include the mismatch loss, loss in the cable and finite conductivity of the car surface and as represents a conservative model for exposure assessment. The scaled-up power density values for 61.5 W radiated power are 4.26 W/m² (E), and 4.07 W/m² (H), that correspond to 0.426 mW/cm² (E), and 0.407 mW/cm² (H). Measurements yielded average power density of 0.204 mW/cm² (E), which shows that the calculated power density is overestimated. The following graph shows a comparison between the measured power density and the simulated one, based on E or H fields, normalized to 61.5 W radiated power.



7) Test device positioning

- a) A description of the device test positions used in the SAR computations is provided in the SAR report.
- b) Illustrations showing the separation distances between the test device and the phantom for the tested configurations are provided in the SAR report.

8) Steady state termination procedures

a) The criteria used to determine that sinusoidal steady-state conditions have been reached throughout the computational domain for terminating the computations are based on the monitoring of field points to make sure they converge. The simulation projects were set to automatically track the field values throughout computational domain by means of XFDTD simulation control feature which ensures that “*convergence is reached when near-zone data shows a constant amplitude sine wave – when all transients have died down and the only variation left is sinusoidal. In this case “convergence” is tested on the average electric field in the space for its deviation from a pure sine wave. XFDTD automatically places points throughout the space for this purpose.*” [XFDTD Reference Manual, version. 6.4 and version 7.1]. This convergence threshold was set to -50 dB. In addition for at least one passenger and one bystander exposure condition, we placed one “field sensor” near the antenna, others between the body and the domain boundary at different locations, and one inside the head of the model. In all simulations, isotropic E-field sensors were placed at opposite sides of the computational domain. We used isotropic E and H field “sensors”, meaning that all three components of the fields are monitored at these points. The following figures show an example of the time waveforms at the field point sensors in two points of the computational domain. We selected points close to antenna as well as furthest one. The highest field levels are observed for the higher index point, as it is closer to the antenna. In all cases, the field reaches the steady-state condition.

- c) The XFDTD™ algorithm determines the field phasors by using the so-called “two-equations two-unknowns” method. Details of the algorithm are explained in [7].

9) Computing peak SAR from field components

- a) The twelve E-field phasors at the edges of each Yee voxel are combined to yield the SAR associated to that voxel. In particular, the average is performed on the SAR values computed at the 12 edges of each voxel. Notice that in XFDTD™ the dielectric tissue properties are assigned to the voxel edges, thereby allowing said averaging procedure.
- b) The IEEE Standards Coordinating Committee TC34, Sub-Committee 2 draft standard P1529 (June 2000) discusses several algorithms for volumetric SAR averaging. It states that “It is observed that while the 12 components algorithm is the most appropriate from the mathematical point of view, the differences in 1g SAR calculated with either the 12 or 6 component methods are negligible for practical mesh resolutions (below 5mm). On the other hand, it is shown that the 3 components approach may lead to significant errors.” XFDTD™ employs the 12-component method, which is the one recommended in the draft standard, thus providing the best achievable accuracy.

10) One-gram averaged SAR procedures

- a) XFDTD™ computes the Specific Absorption Rate (SAR) in each complete cell containing lossy dielectric material and with a non-zero material density. To be considered a complete cell, the twelve cell edges must belong to lossy dielectric materials. The averaging calculation uses an interpolation scheme for finding the averages. Cubical spaces centered on a cell are formed and the mass and average SAR of the sample cubes are found. The size of the sample cubes increases until the total mass of the enclosed exceeds either 1 or 10 grams. The mass and average SAR value of each cube is saved and used to interpolate the average SAR values at either 1 or 10 grams. The interpolation is performed using two methods (polynomial fit and rational function fit) and the one with the lowest error is chosen. The sample cube must meet some conditions to be considered valid. The cube may contain some non-tissue cells, but some checks are performed on the distribution of the non-tissue cells. A valid cube will not contain an entire side or corner of non-tissue cells.
- b) The sample cube increases in odd-numbered steps (1x1x1, 3x3x3, 5x5x5, etc) to remain centered on the desired cell. Since the visible human model employed herein has 5 mm resolution, the one-gram SAR is computed by averaging first over 1x1x1 voxels, corresponding to 0.125 cm³ (not enough yet), and then over a 3x3x3 voxel cube, corresponding to about 3.4 cm³, which is enough to include 1-g, and finally over a 5x5x5 voxel cube, corresponding to about 15.6 cm³, which includes 10-g. The 1-g average SAR is computed by interpolating these three data points. This procedure is repeated in the surroundings of each voxel that is constituted by lossy materials, so as to determine the 1-g and/or 10-g SAR distributions.
- c) As mentioned at points 10(a) and 10(b), the 1- gram average SAR is determined by interpolating the average SAR for the 1x1x1 , 3x3x3, and the 5x5x5 data points,

corresponding to 0.125 cm^3 , 3.4 cm^3 , and 15.6 cm^3 , respectively. Because the interpolation is carried out across three data points, the error introduced should be negligible because the interpolating curve crosses exactly the data points.

11) Total computational uncertainty – We derived an estimate for the uncertainty of FDTD methods in evaluating SAR by referring to [6]. In Fig. 7 in [6] it is shown that the deviation between SAR estimates using the XFDTD™ code and those measured with a compliance system are typically within 10% when the probe is away from the phantom surface so that boundary effects are negligible. In that example, the simulated SAR always exceeds the measured SAR.

As discussed in 6(a), a conservative bias has been introduced in the model so as to reduce concerns regarding the computational uncertainty related to the car modeling, antenna modeling, and phantom modeling. The results of the comparison between measurements and simulations presented in 6(a) suggest that the present model produces an overestimate of the exposure between 4% and 36%. Such a conservative bias should eliminate the need for including uncertainty considerations in the SAR assessment.

12) Test results for determining SAR compliance

- a) Illustrations showing the SAR distribution of dominant peak locations produced by the test transmitter, with respect to the phantom and test device, are provided in the SAR report.
- b) The input impedance and the total power radiated under the impedance match conditions that occur at the test frequency are provided by XFDTD™. XFDTD™ computes the input impedance by following the method outlined in [8], which consists in performing the integration of the steady-state magnetic field around the feed point edge to compute the steady-state feed point current (I), which is then used to divide the feed-gap steady-state voltage (V). The net average radiated power is computed as

$$P_{XFDTD} = \frac{1}{2} \operatorname{Re} \{ VI^* \}$$

Both the input impedance and the net average radiated power are provided by XFDTD™ at the end of each individual simulation.

We normalize the SAR to such a power, thereby obtaining SAR per radiated Watt (*normalized SAR*) values for the whole body and the 1-g SAR. Finally, we multiply such normalized SAR values times the max power rating of the device under test. In this way, we obtain the exposure metrics for 100% talk-time, i.e., without applying source-based time averaging.

- c) For mobile radios, 50% source-based time averaging is applied by multiplying the SAR values determined at point 12(b) times a 0.5 factor.

REFERENCES

[1] K. S. Yee, "Numerical Solution of Initial Boundary Value Problems Involving Maxwell's Equations in Isotropic Media," *IEEE Transactions on Antennas and Propagation*, vol. 14, no. 3, 302-307, March 1966.

[2] Z. P. Liao, H. L. Wong, G. P. Yang, and Y. F. Yuan, "A transmitting boundary for transient wave analysis," *Scientia Sinica*, vol. 28, no. 10, pp 1063-1076, Oct. 1984.

[3] Validation exercise: Mie sphere. Remcom Inc. (enclosed PDF)

 Remcom.pdf

[4] NEC-Win PRO™ v 1.1, Nittany Scientific, Inc., Riverton, UT.

[5] C. M. Collins and M. B. Smith, "Calculations of B1 distribution, SNR, and SAR for a surface coil against an anatomically-accurate human body model," *Magn. Reson. Med.*, 45:692-699, 2001. (enclosed TIF)

 Collins & Smith.pdf

[6] Martin Siegbahn and Christer Törnevik, "Measurements and FDTD Computations of the IEEE SCC 34 Spherical Bowl and Dipole Antenna," Report to the IEEE Standards Coordinating Committee 34, Sub-Committee 2, 1998. (enclosed PDF)

 Ericsson.pdf

[7] C. M. Furse and O. P. Gandhi, "Calculation of electric fields and currents induced in a millimeter-resolution human model at 60 Hz using the FDTD method with a novel time-to-frequency-domain conversion," Antennas and Propagation Society International Symposium, 1996. (enclosed PDF)

 Furse & Gandhi.pdf

[8] *The Finite Difference Time Domain Method for Electromagnetics*, Chapter 14.2, by K. S. Kunz and R. J. Luebbers, CRC Press, Boca Raton, Florida, 1993.

[9] *Validation of Mobile Antenna Modeling by Comparison with Near-field Measurements*,” Report to the IEEE Standards Coordinating Committee 34, Subcommittee 2, 2006. (enclosed PDF)

IEEE1528_2_vld.pdf

[10] *Antenna Theory: analysis and design*, Chapter 4, by C. A. Balanis, 2nd ed. John Wiley & Sons, Inc.

[11] S. Gabriel, R. W. Lau, and C. Gabriel. 1996. The dielectric properties of biological tissues: III. Parametric models for the frequency spectrum of tissues. *Phys. Med. Biol.* 41:2271–2293.