

SAMM 826

DECLARATION OF COMPLIANCE SAR ASSESSMENT Part 1 of 3

Motorola Solutions Inc.
EME Test Laboratory

[otorola Solutions Malaysia Sdn]

Motorola Solutions Malaysia Sdn Bhd Plot 2A, Medan Bayan Lepas,

Mukim 12 SWD 11900 Bayan Lepas Penang, Malaysia.

Date of Report: 07/30/2024

Report Revision: C

Responsible Engineer: Alfred Hoe Kean Loon (EME Engineer) **Report Author:** Alfred Hoe Kean Loon (EME Engineer)

Date/s Tested: 4/8/2024 - 4/10/2024, 4/18/2024 - 4/22/2024, 4/25/2024-5/6/2024, 5/09/2024,

5/15/2024, 5/17/2024 - 5/22/2024, 5/31/2024-6/3/2024, 6/8/2024

Manufacturer: Motorola Solutions Malaysia Sdn. Bhd.

Manufacturer Location: Plot 2A, Medan Bayan Lepas, Mukim 12 SWD, 11900 Bayan Lepas, Penang,

Malaysia

DUT Description: Handheld Portable – APX N70 Single Band VHF Portable Radio, Model 4.5

Test TX mode(s): CW (PTT), WLAN2.4GHz, WLAN5GHz, LTE, NFC

Max. Power output:Refer table 3Nominal Power:Refer table 3Tx Frequency Bands:Refer table 3Signaling type:Refer table 3Model(s) Tested:H35KET9PW8ANModel(s) Certified:Refer 1.0 Introduction

(HVIN/PMN)

Serial Number(s): 022TAF1517, 022TAF1510

Classification: Occupational/Controlled Environment

Firmware Version (FVIN): D03.75.46

Applicant Name: Motorola Solutions Inc.

Applicant Address: Plot 2A, Medan Bayan Lepas, Mukim 12 SWD, 11900 Bayan Lepas, Penang,

Malaysia

FCC ID: AZ489FT7149

This report contains results that are immaterial for FCC equipment approval, which

are clearly identified.

FCC Test Firm Registration 823256

Number:

IC: 109U-89FT7149

This report contains results that are immaterial for ISED equipment approval,

which are clearly identified.

24843

IC Test Site registration:

The test results clearly demonstrate compliance with Occupational/Controlled Environment RF Exposure limits of 8 W/kg averaged over 1 gram per the requirements of FCC 47 CFR § 2.1093 and RSS-102 (Issue 5)

Based on the information and the testing results provided herein, the undersigned certifies that when used as stated in the operating instructions supplied, said product complies with the national and international reference standards and guidelines listed in section 4.0 of this report (no deviation from standard methods). This report shall not be reproduced without written approval from an officially designated representative of the Motorola Solutions Inc EME Laboratory.

I attest to the accuracy of the data and assume full responsibility for the completeness of these measurements. This reporting format is consistent with the suggested guidelines of the TIA TSB-150 December 2004. The results and statements contained in this report pertain only to the device(s) evaluated.

Saw Sun Hock (Approval Signatory) Approved Date: 07/30/2024

Part 1 of 3

1.0	Introd	uction	5
2.0	FCC S	AR Summary	5
3.0	Abbre	viations / Definitions	5
4.0	Refere	enced Standards and Guidelines	6
5.0	SAR L	Limits	7
6.0	Descri	ption of Device Under Test (DUT)	7
7.0	Option	nal Accessories and Test Criteria	9
	7.1	Antennas	9
	7.2	Battery	10
	7.4	Audio Accessories	11
8.0	Descri	ption of Test System	13
	8.1	Descriptions of Robotics/Probes/Readout Electronics	13
	8.2	Description of Phantom(s)	14
	8.3	Description of Simulated Tissue	14
9.0	Additi	onal Test Equipment	15
10.0	SAR N	Measurement System Validation and Verification for LMR and WLAN	16
	10.1	System Validation	16
	10.2	System Verification	17
	10.3	Equivalent Tissue Test Results	18
11.0	Enviro	onmental Test Conditions	20
12.0	DUT	Γest Setup and Methodology	20
	12.1	Measurements	20
	12.2	DUT Configuration(s)	21
	12.3	DUT Positioning Procedures	21
		12.3.1 Body	21
		12.3.2 Head	21
		12.3.3 Face	21

	12.4	DUT Test Channels	22
	12.5	SAR Result Scaling Methodology	22
	12.6	DUT Test Plan	22
13.0	DUT 7	Test Data for LMR	23
	13.1	LMR assessments at the Body for 150.8-173.4MHz band	23
	13.2	LMR assessments at the Face for 150.8-173.4MHz band	29
	13.3	Assessment for outside FCC Frequency range	30
	13.4	Assessment for ISED, Canada	31
14.0	DUT 7	Test Data for WLAN	32
	14.1	WLAN assessments for WLAN 2.4GHz (802.11 b/g/n)	32
	14.2	WLAN assessments for WLAN 5.0 GHz (802.11 a/n/ac)	36
	14.3	Assessment exclusion for BT	43
	14.4	Assessment exclusion for NFC	44
15.0	Shorte	ned Scan Assessment	45
16.0	Simult	aneous Transmission	45
	16.1	Simultaneous Transmission Exclusion for BT	46
	16.2	Simultaneous Transmission for LMR, BT, WLAN 2.4GHz and 5GHz	47
17.0	Results	s Summary	47
18.0	Variab	ility Assessment	48
19.0	Systen	n Uncertainty	48

APPENDICES

- A Measurement Uncertainty Budget
- B Probe Calibration Certificates
- C Dipole Calibration Certificates

Part 2 of 3

- 1.0 System Validation for LTE
- 2.0 System Verification for LTE
- 3.0 Equivalent Tissue Test Results for LTE
- 4.0 DUT Test Positions Photos
 - 4.1 SAR Assessments for LTE band 12 (699-716 MHz)
 - 4.2 SAR Assessments for LTE band 13 (777-787 MHz)
 - 4.3 SAR Assessments for LTE band 14 (788-798 MHz)
 - 4.4 SAR Assessments for LTE band 4 (1710-1755 MHz)
 - 4.5 SAR Assessments for LTE band 2 (1850-1910 MHz)

Part 3 of 3

- D System Verification Check Scans
- E DUT Scans
- F Shorten Scan of Highest SAR Configuration
- G DUT Test Position Photos
- H DUT, Body worn and audio accessories Photos

Report Revision History

Date	Revision	Comments			
07/03/2024	A	Initial release			
07/12/2024	В	Update Firmware Version (FVIN)			
		• • • • • • • • • • • • • • • • • • • •			
07/30/2024	С	Update Manufacturer Name			
		1			

1.0 Introduction

This report details the utilization, test setup, test equipment, and test results of the Specific Absorption Rate (SAR) measurements performed at the Motorola Solutions Inc. EME Test Laboratory for handheld portable model number H35KET9PW8AN. This device is classify as Occupational/Controlled Environment and models certified are list as below:

Model / Hardware Version ID Number (HVIN)	Product Marketing Name (PMN)	Description
H35KET9PW8AN	APX N70	APX N70 VHF MODEL 4.5 PORTABLE
H35KET9PW8AN-H	APX N70	APX N70 VHF MODEL 4.5 PORTABLE (UL Model)

2.0 FCC SAR Summary

Table 1

Equipment Class	Frequency band (MHz)	Max Calc at Body (W/kg) 1g-SAR	Max Calc at Face (W/kg) 1g-SAR
TENTE	150.8 – 173.4MHz	1.91	1.62
TNF	(LMR)		
	LTE B12	0.091	0.057
	LTE B13	0.081	0.064
PCF	LTE B14	0.102	0.068
	LTE B4	0.025	0.146
	LTE B2	0.091	0.057
*DSS	2402-2480MHz	NA	NA
ממעי	(Bluetooth)	NA	NA
DTS	2412-2462MHz	0.035	0.217
DIS	(WLAN 2.4GHz)	0.033	0.217
NII	5180 – 5825MHz	0.036	0.677
1111	(WLAN 5GHz)	0.030	0.077
Highest Si	multaneous Results	2.01	2.30

^{*}Results not required per KDB (refer to sections 14.3 and 16.1)

3.0 Abbreviations / Definitions

BT: Bluetooth

CNR: Calibration Not Required

CW: Continuous Wave

DSS Part 15 Spread Spectrum Transmitter

DUT: Device Under Test

DTS Digital Transmission System

EME: Electromagnetic Energy

FHSS: Frequency Hopping Spread Spectrum

FM: Frequency Modulation LMR: Land Mobile Radio LTE: Long Term Evolution

NA: Not Applicable

OFDM: Orthogonal Frequency Division Multiplexing

PTT: Push to Talk

QPSK: Quadrature Pulse Shift Key

RB: Resource Blocks

RSM: Remote Speaker Microphone SAR: Specific Absorption Rate

TDMA: Time Division Multiple Access

TNF: Licensed Non-Broadcast Transmitter Held to Face

16QAM: 16 State Quadrature Amplitude Modulation

NFC: Near Field Communication

Audio accessories: These accessories allow communication while the DUT is worn on the body.

Body worn accessories: These accessories allow the DUT to be worn on the body of the user.

Maximum Power: Defined as the upper limit of the production line final test station

4.0 Referenced Standards and Guidelines

This product is designed to comply with the following applicable national and international standards and guidelines.

- Federal Communications Commission, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields", OET Bulletin 65, FCC, Washington, D.C.: 1997.
- Institute of Electrical and Electronics Engineers (IEEE) C95.1-2019
- International Commission on Non-Ionizing Radiation Protection (ICNIRP) 2020
- Ministry of Health (Canada) Safety Code 6 (2015), Limits of Human Exposure to Radio frequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz
- RSS-102 (Issue 5) Radio Frequency (RF) Exposure Compliance of Radio communication Apparatus (All Frequency Bands)
- Australian Communications Authority Radio communications (Electromagnetic Radiation Human Exposure) Standard (2014)
- ANATEL, Brazil Regulatory Authority, Resolution No 700 of September 28, 2018 "Approves the Regulation on the Assessment of Human Exposure to Electric, Magnetic and Electromagnetic Fields Associated with the Operation of Radio communication Transmitting Stations.
- IEC/IEEE 62209-1528-2020- Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and bodymounted wireless communication devices Part 1528: Human models, instrumentation, and procedures (Frequency range of 4 MHz to 10 GHz)
- FCC KDB 643646 D01 SAR Test for PTT Radios v01r03
- FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04
- FCC KDB 865664 D02 RF Exposure Reporting v01r02
- FCC KDB 447498 D01 General RF Exposure Guidance v06
- FCC KDB 941225 D05 SAR for LTE Devices v02r05
- FCC KDB 941225 D01 3G SAR Procedures v03r01
- FCC KDB 248227 D01 802.11 Wi-Fi SAR v02r02
- FCC KDB 648474 D04 Handset SAR v01r03

5.0 SAR Limits

Table 2

	SAR (W/kg)			
EXPOSURE LIMITS	(General Population /	(Occupational /		
EAI OSURE LIVILIS	Uncontrolled Exposure	Controlled Exposure		
	Environment)	Environment)		
Spatial Average - ANSI -	0.08	0.4		
(averaged over the whole body)				
Spatial Peak - ANSI -	1.6	8.0		
(averaged over any 1-g of tissue)				
Spatial Peak – ICNIRP/ANSI -	4.0	20.0		
(hands/wrists/feet/ankles averaged over 10-g)				
Spatial Peak - ICNIRP -	2.0	10.0		
(Head and Trunk 10-g)				

6.0 Description of Device Under Test (DUT)

This portable device operates in the LMR bands using frequency modulation (FM) incorporating traditional simplex two-way radio transmission protocol. This device also contains WLAN, LTE technologies for data applications and Bluetooth technology for short-range wireless devices.

The LMR bands in this device operate in a half-duplex system. A half-duplex system only allows the user to transmit or receive. This device cannot transmit and receive simultaneously. The user must stop transmitting in order to receive a signal or listen for a response, regardless of PTT button or use of voice activated audio accessories. This type of operation, along with the RF safety booklet, which instructs the user to transmit no more than 50% of the time, justifies the use of 50% duty factor for this device.

This device also incorporates GFSK Bluetooth transmission device, which is a Frequency Hopping Spread Spectrum (FHSS) technology. The Bluetooth radio modem is used to wireless link audio accessories. The Bluetooth imposes the maximum actual transmission duty cycle.

Table 3 below summarizes the technologies, bands, maximum duty cycles and maximum output powers. Maximum output powers are defined as upper limit of the production line final test station.

Table 3

Technologies	Band	Transmission Duty Cycle Conducted (Average Detector) Position			ge Detector) Power
	(MHz)		(%)	Nominal Power	Max Power
LMR	136-174	FM	*50	6 W	6.6 W
WLAN 802.11 b (22 MHz)		DSSS	99.97	125.9 mW	141.25 mW
(1)WLAN 802.11 g (20 MHz)	2412-2462		99.80		
(1)WLAN 802.11 n (20 MHz)		OFDM	94.36	79.4 mW	89.1 mW
(40 MHz)	2422-2452		99.80		
WLAN 802.11 a (20 MHz)			99.80	(UNII-1, UNII-2A, UNII-2C, UNII-3) 63.09 mW	(UNII-1, UNII-2A, UNII-2C, UNII-3) 79.43mW
WLAN 802.11 n/ac (20 MHz)			95.59	(UNII-1, UNII-2A, UNII-2C, UNII-3) 63.09 mW	(UNII-1, UNII-2A, UNII-2C, UNII-3) 79.43mW
WLAN 802.11 n/ac (40 MHz)	5180-5825	OFDM	99.60	(UNII-1) 63.09mW (Chn 38 – 15.85mW) (UNII-2A) 63.09mW (Chn 62 – 12.59mW) (UNII-2C) 63.09mW (Chn 104 – 25.12mW) (UNII-3) 63.09mW	(UNII-1) 79.43mW (Chn 38 – 19.95mW) (UNII-2A) 79.43mW (Chn 62 – 15.84mW) (UNII-2C) 79.43mW(Chn 104 – 31.62mW (UNII-3) 79.43mW
(4)WLAN 802.11 ac (80 MHz)			96.15	(UNII-1) 15.84mW (UNII-2A) 7.94mW (UNII-2C) 63.09mW (Chn 106 - 15.84mW) (UNII-3) 63.09mW	(UNII-1) 19.95mW (UNII-2A) 10mW (UNII-2C) 79.43mW (Chn 106 - 19.95mW) (UNII-3) 79.43mW
LTE Band 2	1850-1910	QPSK, 16QAM	100		
LTE Band 4	1710-1755	QPSK, 16QAM	100		
LTE Band 12	699-716	QPSK, 16QAM	100	100 52 mW	252 mW
LTE Band 13	777-787	QPSK, 16QAM	100	199.53 mW	252 mW
LTE Band 14	788-798	QPSK, 16QAM	100		
LTE Band 17	704-716	QPSK, 16QAM	100		
NFC	13.56	NFC	100	NA	35 mW

Table 3 (Continued)

Tachnalagias	Band	Transmission	Duty Cycle	Conducted (Avera	ge Detector) Power
Technologies	(MHz)	1 ransinission	(%)	Nominal Power	Max Power
BT 1.5	2400-2485	GFSK	78	15.8 mW	19.95 mW
BT LE	2400-2485	GFSK	62.68	4 mW	5.01 mW

Note -

(1) EME tested WLAN 2.4 GHz 802.11b (22MHz) at 141.25 mW (Highest max conducted average power as stated in the table above). The new power of WLAN 802.11b/g/n will be implement in Production unit are 802.11b is 56.2 mW, 802.11g/n (20MHz) is 44.6 mW and 802.11n (40MHz) is 56.2 mW for Low and Mid channel while 28.2 mW for High channel.

The intended operating positions are "at the face" with the DUT at least 1 inch from the mouth, and "at the body" by means of the offered body worn accessories. Body worn audio and PTT operation is accomplished by means of optional remote accessories that are connected to the radio. Operation at the body without an audio accessory attached is possible by means of BT accessories.

7.0 Optional Accessories and Test Criteria

This device is offered with optional accessories. All accessories were individually evaluated during the test plan creation to determine if testing was required per the guidelines outlined in "SAR Test Reduction Considerations for Occupational PTT Radios" FCC KDB 643646 to assess compliance of this device. The following sections identify the test criteria and details for each accessory category. Refer to Exhibit 7B for antenna separation distances.

7.1 Antennas

Table 4

Antenna No.	Antenna Models	Description	Selected for test	Tested
1	AN000414A01	VHF ¹ / ₄ Wave Antenna (136-174MHz), -10dBi gain	Yes	Yes
2	AN000413A01	Antenna LTE Main, Low Band, Mid Band 699 - 2155 MHz, 699-716MHz (- 2.9dBi), 777-787MHz (-1.5dBi), 788- 798MHz (-1.7dBi), 1850-1910MHz (1.1dBi), 1710-1755MHz (1.9dBi)	Yes	Yes
3	AN000413A03	Antenna Wifi/BT 2400 - 2480MHz, 5150 - 5850 MHz, 2412MHz (0.10dBi), 2437MHz (0.20dBi), 2462MHz (0.40dBi), 2402MHz (0.60dBi), 2438MHz (0.60dBi), 2480MHz (1.10dBi), 5180MHz (4.60dBi), 5500MHz (3.30dBi), 5825MHz (3.10dBi)	Yes	Yes

^{*} includes 50% PTT operation

7.2 Battery

Table 5

Battery No.	Battery Models	Description	Selected for test	Tested	Comments
1	PMNN4816A	Standard 3200mAh (new 18650 Li-Ion cell) Non-UL battery	(new 18650 Li-Ion cell) Yes Yes		Default battery for body configuration
2	PMNN4817A	High Capacity 4400mAH (using RN 2170 Li-Ion cell) Non-UL battery	Yes	Yes	Default battery for face configuration
3	PMNN4818A	UL 3650mAH (using RN 2170 Li-Ion cell) UL battery	Yes	Yes	

7.3 Body worn Accessories

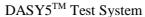
Table 6

Body worn No.	Body worn Models	Description	Selected for test	Tested	Comments
1	PMLN5407A	2.5" replacement belt loop	Yes	Yes	Paired with PMLN8372A, PMLN8373A and PMLN8374A
2	PMLN5408A	2.75" replacement belt loop	Yes	Yes	Paired with PMLN8372A, PMLN8373A and PMLN8374A
3	PMLN5409A	3" replacement belt loop	Yes	Yes	Paired with PMLN8372A, PMLN8373A and PMLN8374A
4	PMLN8371A	Aloha Standard plastic carry holster	Yes	Yes	Paired with PMLN8507A and PMLN8508A
5	PMLN8372A	Hybrid Case (Similar to APX NEXT)	Yes	Yes	Only compatible with battery PMNN4816A. Paired with PMLN5407A, PMLN5408A, PMLN5409A, PMLN8507A and PMLN8508A
6	PMLN8373A	Hybrid Case (Similar to APX NEXT)	Yes	Yes	Only compatible with battery PMNN4817A. Paired with PMLN5407A, PMLN5408A, PMLN5409A, PMLN8507A and PMLN8508A

Table 6 (Continued)

Body worn No.	Body worn Models	Description	Selected for test	Tested	Comments
7	PMLN8374A	Hybrid Case (Similar to APX NEXT)	Yes	Yes	Only compatible with battery PMNN4818A. Paired with PMLN5407A, PMLN5408A, PMLN5409A, PMLN8507A and PMLN8508A
8	PMLN8507A	Carry Accessory - Belt clip, APX N70 2.5" belt clip	Yes	Yes	Paired with PMLN8371A, PMLN8372A and PMLN8373A
9	PMLN8508A	Carry Accessory - Belt clip, APX N70 3" belt clip	Yes	Yes	Paired with PMLN8371A, PMLN8372A and PMLN8373A

7.4 Audio Accessories


Table 7

Audio No.	Audio Acc. Models	Description	Selected for test	Tested	Comments
1	PMMN4128A	UL RM 780 Gcai mini RSM , wind porting RSM with buttons	Yes	Yes	Default audio
2	NMN6271A	AUDIO ACCESSORY-REMOTE SPEAKER MICROPHONE,IMPRES XP RSM FOR APX W/ DUAL MIC NOISE SUPPRESSION.	Yes	Yes	Paired with PMLN8334A
3	NMN6274B	AUDIO ACCESSORY-REMOTE SPEAKER MICROPHONE,IMPRES XP RSM FOR APX W/ DUAL MIC NOISE SUPPRESSION, 3.5MM THRD JACK	CCESSORY-REMOTE ICROPHONE,IMPRES XP PX W/ DUAL MIC NOISE No		By similarity to NMN6271A
4	PMLN6827A	ACCESSORY KIT, TACTICAL GCAI PTT INTERFACE MODULE	Yes	Yes	Paired with PMLN8334A, PMLN6828A and PMLN6829A
5	PMLN6828A	ACCESSORY KIT, TACTICAL THROAT MICROPHONE	Yes	Yes	Paired with PMLN8334A and PMLN6827A
6	PMLN6829A	TACTICAL EAR MICROPHONE	Yes	Yes	Paired with PMLN8334A and PMLN6827A
7	PMLN8085A	*BTH heavy duty headset,BEHIND-THE- HEAD HEADSET	Yes	Yes	
8	PMLN8086A	OTH heavy duty headset, Over-the-head headset	nead No		By Similarity to PMLN8085A
9	PMLN8265A	OTH headset CH-3, Nexus	Yes	Yes	Paired with PMLN8297A
10	PMLN8266A	*BTH headset CH-3, Nexus	Yes	Yes	Paired with PMLN8297A
11	PMLN8267A	*Hard hat mount headset CH-3, Nexus	Yes	Yes	Paired with PMLN8297A

Table 7 (Continued)

Audio No.	Audio Acc. Models	Description	Selected for test	Tested	Comments
12	PMLN8297A	3M Nexus body PTT	Yes	Yes	Paired with PMLN8265A, PMLN8266A, PMLN8267A
13	PMLN8341A	1-Wire Surveillance Kit with Loud Audio Translucent Tube	Yes	Yes	
14	PMLN8342A	2-Wire Surveillance Kit with Loud Audio Translucent Tube	Yes	Yes	
15	PMLN8343A	3-Wire Surveillance Kit with Loud Audio Translucent Tube	Yes	Yes	
16	PMMN4132A	Accessory Kit, XVE500 Remote Speaker Mic, High Impact Green with knob	Yes	Yes	
17	PMMN4132A BLK	Accessory Kit, XVE500 Remote Speaker Microphone, Black with knob	No	No	By Similarity to PMLN4132A
18	PMMN4137A	Accessory Kit, XVE500 Remote Speaker Mic, High Impact Green with no knob	Yes	Yes	
19	PMMN4137A BLK	Accessory Kit, XVE500 Remote Speaker Microphone, Black with no knob	No	No	By Similarity to PMLN4137A
20	PMMN4140A	UL RM760 Gcai mini RSM	Yes	Yes	
21	PMMN4141A	XVP750 Remote Speaker Microphone, with channel knob	Yes	Yes	
22	PMMN4142A	XVP730 Remote Speaker Microphone, without channel knob	Yes	Yes	
23	PMLN8334A	GCAI-mini to GCAI Adaptor	Yes	Yes	Paired with NMN6271A, PMLN6827A, PMLN6828A, PMLN6829A, PMLN4132A and PMLN4137A
24	PMLN8120A	Receive-only Extra Loud Clear tube earpiece, 3.5mm Jack compatible with PMMN4128A	No	No	Receive only
25	PMLN8295A	2-Wire Extra Loud Earhook w/ optional earbud earpiece	No	No	Receive only
26	PMLN8337A	1-Wire Single Earbud w/ Removable Earhook Load Audio Earpiece	No	No	Receive only
27	PMLN8625A	Earpiece, Receive only Extra Loud Earpiece, 3.5mm Jack	No	No	Receive only

8.0 Description of Test System

8.1 Descriptions of Robotics/Probes/Readout Electronics Table 8

Dosimetric System type	System version	DAE type	Probe Type
Schmid & Partner Engineering AG SPEAG DASY 5	52.10.4.1527	DAE4	EX3DV4 (E-Field)

The **DASY5TM** is operated per the instructions in the DASY5TM Users Manual. The complete manual is available directly from SPEAGTM. All measurement equipment used to assess SAR compliance was calibrated according to ISO/IEC 17025 A2LA guidelines. Section 9.0 presents additional test equipment information. Appendices B and C present the applicable calibration certificates.

8.2 Description of Phantom(s)

Table 9

Phantom Type	Phantom(s) Used	Material Parameters	Phantom Dimensions LxWxD	Material Thickness (mm)	Support Structure Material	Loss Tangent (wood)
			(mm)			
Triple Flat	NA	200MHz -6GHz; Er = 3-5, $Loss\ Tangent = $ ≤ 0.05	280x175x175			
SAM	NA	$300 \text{MHz} - 6 \text{GHz};$ $\text{Er} = < 5,$ $\text{Loss Tangent} = $ ≤ 0.05	Human Model	2mm +/- 0.2mm	Wood	< 0.05
Oval Flat	V	300MHz -6GHz; Er = 4+/-1, $Loss Tangent = \le 0.05$	600x400x190			

8.3 Description of Simulated Tissue

The sugar based simulate tissue is produced by placing the correct measured amount of De-ionized water into a large container. Each of the dried ingredients are weighed and added to the water carefully to avoid clumping. If the solution has a high sugar concentration the water is pre-heated to aid in dissolving the ingredients. For Diacetin and similar type simulates, sugar and HEC ingredients are not needed. The solution is mixed thoroughly, covered, and allowed to sit overnight prior to use.

The simulated tissue mixture was mixed based on the Simulated Tissue Composition indicated in Table 10. During the daily testing of this product, the applicable mixture was used to measure the Di-electric parameters at each of the tested frequencies to verify that the Di-electric parameters were within the tolerance of the tissue specifications.

Simulated Tissue Composition (percent by mass)
Table 10

	150MHz	750MHz ⁽¹⁾	1800MHz (1)	2450MHz (1)	5Hz (1)
Ingredients	Head	Head	Head	Head	Head
Sugar	55.4	NA	NA	NA	NA
Diacetin	NA	NA	NA	NA	NA
De ionized -Water	38.35	NA	NA	NA	NA
Salt	5.15	NA	NA	NA	NA
HEC	1	NA	NA	NA	NA
Bact.	0.1	NA	NA	NA	NA

Note: (1) SPEAG provides Motorola proprietary stimulant ingredients for the 750MHz, 1800MHz, 2450GHz and 5GHz band.

9.0 Additional Test Equipment

The Table below lists additional test equipment used during the SAR assessment.

Table 11

	Model		Calibration	
Equipment Type	Number	Serial Number	Date	Calibration Due Date
SPEAG PROBE	EX3DV4	7594	12/07/2023	12/07/2026
SPEAG PROBE	EX3DV4	7364	02/28/2022	02/28/2025
SPEAG PROBE	EX3DV4	7486	01/19/2024	01/19/2024
SPEAG DAE	DAE4	850	04/14/2022	04/14/2022
SPEAG DAE	DAE4	1294	12/08/2023	12/08/2026
SPEAG DAE	DAE4	684	02/22/2022	02/22/2025
POWER AMPLIFIER	50W 1000A	14715	CNR	CNR
AMPLIFIER	5S1G4	313326	CNR	CNR
AMPLIFIER	5S4G11	312664	CNR	CNR
AMPLIFIER	5S4G11	312663	CNR	CNR
VECTOR SIGNAL GENERATOR	E4438C	MY42081753	08/30/2023	08/30/2024
SIGNAL GENERATOR (VECTOR ESG 250KHZ-6GHZ)	E4438C	MY45091093	06/26/2023	06/26/2024
BI-DIRECTIONAL COUPLER	3020A	40295	06/09/2023	06/09/2024
BI-DIRECTIONAL COUPLER	3022	81640	06/09/2023	06/09/2024
BI-DIRECTIONAL COUPLER	3024	61136	07/18/2023	07/18/2024
BI-DIRECTIONAL COUPLER	3024	61182	06/09/2023	06/09/2024
POWER METER	E4418B	MY45100911	08/11/2023	08/11/2024
POWER METER	E4416A	MY50001037	08/09/2023	08/09/2024
POWER METER	E4417A	GB41292245	12/09/2023	12/09/2024
POWER METER	E4419B	GB42420608	12/10/2023	12/10/2024
POWER SENSOR	E9301B	MY50290001	06/16/2023	06/16/2024
POWER SENSOR	E9301B	MY50280001	05/19/2023	05/19/2024
POWER SENSOR	E4412A	MY61020016	08/21/2023	08/21/2024
POWER SENSOR	E9301B	MY41495594	11/02/2023	11/02/2024
POWER SENSOR	E9301B	MY41495733	08/21/2023	08/21/2024
POWER SOURCE	SE UMS 160 CA	4302	10/16/2023	10/16/2024
POWER SOURCE	SE UMS 160 CB	4320	10/12/2023	10/12/2024
DIGITAL THERMOMETER WITH PROBE	HI98509	3CC770	05/30/2023	05/30/2024
DATA LOGGER	DSB	16326820	11/26/2023	11/26/2024
DATA LOGGER	DSB	16326831	11/26/2023	11/26/2024
THERMOMETER	HH806AU	080307	12/15/2023	12/15/2024
TEMPERATURE PROBE	80PK-22	06032017	12/15/2023	12/15/2024
NETWORK ANALYZER	E5071B	MY42403218	09/15/2023	09/15/2024
NETWORK ANALYZER	E5071B	MY42403147	02/21/2023	02/21/2024
DIGITAL THERMOMETER WITH PROBE	HI98509	3CC770	05/30/2023	05/30/2024
DIELECTRIC ASSESSMENT KIT	DAK-12	1051	10/16/2023	10/16/2024
DIELECTRIC ASSESSMENT KIT	DAK-3.5	1120	10/16/2023	10/16/2024

Table 11 (Continued)

Equipment Type	Model Number	Serial Number	Calibration Date	Calibration Due Date
DATA LOGGER	DSB	16398306	12/31/2023	12/31/2024
SPEAG DIPOLE	CLA150	4016	01/06/2023	01/06/2026
SPEAG DIPOLE	D2450V2	781	10/13/2021	10/13/2024
SPEAG DIPOLE	D5GHZV2	1026	09/24/2021	09/24/2024
SPEAG DIPOLE	D1800V2	2D120	10/28/2022	10/28/2025
SPEAG DIPOLE	D750V3	1098	10/08/2021	10/08/2024

10.0 SAR Measurement System Validation and Verification for LMR and WLAN

DASY output files of the probe/dipole calibration certificates and system verification test results are included in appendices B, C & D respectively.

10.1 System Validation

The SAR measurement system was validated according to procedures in KDB 865664. The validation status summary Table is below.

Table 12

Dates	Probe Calibration		Probe Calibration Probe Probe		1.200.50	red Tissue		Validation		
	Pol	IIIL	SIN	σ	€r	Sensitivity	Linearity	Isotropy		
				CV	V	•	•			
12/27/23	Head	150	7594	0.74	50.08	Pass	Pass	Pass		
01/06/24	Head	2450	/394	1.80	38.21	Pass	Pass	Pass		
03/23/24	Head	2450		1.83	42.80	Pass	Pass	Pass		
03/25/24	Head	5250	7364	4.39	35.70	Pass	Pass	Pass		
03/26/24	Head	5600	/304	4.79	35.50	Pass	Pass	Pass		
03/26/24	Head	5750		4.96	35.24	Pass	Pass	Pass		
04/28/24	Head	5250		4.69	37.62	Pass	Pass	Pass		
04/28/24	Head	5600	7486	5.15	38.25	Pass	Pass	Pass		
04/29/24	Head	5750		5.33	37.99	Pass	Pass	Pass		
	•			WLA	AN					
03/23/24	Head	2450		1.83	42.80	Pass	Pass	Pass		
03/25/24	Head	5250	7364	4.39	35.70	Pass	Pass	Pass		
03/26/24	Head	5600	7304	4.79	35.50	Pass	Pass	Pass		
03/26/24	Head	5750		4.96	35.24	Pass	Pass	Pass		
04/28/24	Head	5250		4.69	37.62	Pass	Pass	Pass		
04/28/24	Head	5600	7486	5.15	38.25	Pass	Pass	Pass		
04/29/24	Head	5750		5.33	37.99	Pass	Pass	Pass		

10.2 System Verification

System verification checks were conducted each day during the SAR assessment. The results are normalized to 1W. Appendix D includes DASY plots with the largest deviation from the qualified source SAR target for each dipole (Bolded). The Table below summarizes the daily system check results used for the SAR assessment.

Table 13

Probe Serial #	Tissue Type	Dipole Kit / Serial #	Ref SAR @ 1W (W/kg)	System Check Results Measured (W/kg)	System Check Test Results when normalized to 1W (W/kg)	Tested Date	Deviation (%)	
		SPEAG		4.13	4.13	4/8/2024	9.5	
		CL150 /	3.77 +/- 10%	4.08	4.08	4/9/2024	8.2	
		4016		4.08	4.08	4/10/2024	8.2	
	IEEE/IEC	SPEAG	52.70 +/-	1.68	53.16	5/10/2024	0.9	
7594	Head	D2450V2 / 781	10%	1.70	53.80	5/15/2024	2.1	
		SPEAG D5600V2 / 1026	83.90 +/- 10%	8.17	81.70	5/9/2024	-2.6	
		SPEAG D2450V2 / 781	52.70 . /	1.69	53.48	4/18/2024	1.5	
				52.70 +/- 10%	1.67	52.85	4/20/2024@	0.3
	IEEE/IEC - Head	SPEAG D2450V2 / 703	52.30 +/-	1.64	51.90	4/19/2024@	-0.8	
			10%	1.71	54.11	4/21/2024	3.5	
7364		SPEAG D5250V2	SPEAG	ead SPEAG		7.55	75.50	4/22/2024@
	пеац				D5250V2	-	80.60 +/-	2.5
		/ 1026	10%	7.88	78.80	5/18/2024	-2.2	
				7.94	79.40	5/19/2024@	-1.5	
		SPEAG	83.90 +/-	8.34	83.40	4/27/2024	-0.6	
		D5600V2 / 1026	10%	8.10	81.00	4/27/2024@	-3.5	
		SPEAG	83.90 +/-	7.59	75.90	5/20/2024@	-9.5	
		D5600V2 / 1026	10%	7.59	75.90	5/21/2024@	-9.5	
7486	IEEE/IEC Head	CDEAC		7.97	79.70	5/31/2024@	0.0	
	пеац	D5750V2	SPEAG 79.70 +/-	7.85	78.50	6/1/2024 @	-1.5	
		/ 1026	10%	7.75	77.50	6/2/2024 @	-2.8	
				7.46	74.60	6/8/2024	-6.4	

[&]quot;@" indicated the System verification covered for next test day (within 24 hours)

10.3 Equivalent Tissue Test Results

Simulated tissue prepared for SAR measurements is measured daily and within 24 hours prior to actual SAR testing to verify that the tissue is within +/- 5% of target parameters at the center of the transmit band. This measurement is done using the applicable equipment indicated in section 9.0. The Table below summarizes the measured tissue parameters used for the SAR assessment.

Table 14

Frequency (MHz)	Tissue Type	Conductivity Target (S/m)	Dielectric Constant Target	Conductivity Meas. (S/m)	Dielectric Constant Meas.	Tested Date
138.0000		0.75 (0.71-0.79)	52.9 (50.2-55.5)	0.764	51.074	04/10/2024
144.4000		0.76 (0.72-0.79)	52.6 (49.9-55.2)	0.768	50.794	04/10/2024
				0.787	51.405	04/08/2024
150.0000		0.76	52.3	0.783	51.496	04/09/2024
150.0000		(0.72 - 0.8)	(49.6-54.9)	0.772	50.520	04/10/2024
				0.777	50.249	04/15/2024
		0.77	51.9	0.793	51.055	04/08/2024
158.3000		(0.73-0.8)	(49.3-54.5)	0.789	51.179	04/09/2024
173.4000		0.78 (0.74-0.82)	51.2 (48.6-53.8)	0.790	49.491	04/10/2024
2412 0000	IEEE/	1.77	39.3	1.728	37.188	05/10/2024
2412.0000	IEC Head	(1.68-1.86)	(35.3-43.2)	1.735	37.698	05/15/2024
				1.720	40.800	04/19/2024@
		1.00	20.2	1.720	40.800	04/20/2024
2450.0000		1.80 (1.71-1.89)	39.2 (35.3-43.1)	1.711	39.115	04/21/2024
		(1.71-1.09)	(33.3-43.1)	1.756	37.133	05/10/2024
				1.763	37.633	05/15/2024
				1.775	41.667	04/18/2024
2437.0000		1.79	39.2	1.710	40.813	04/19/2024
2437.0000		(1.7-1.88)	(35.3-43.1)	1.710	40.813	04/20/2024@
				1.701	39.135	04/21/2024
2462.0000		1.81	39.2	1.764	37.118	05/10/2024
2402.0000		(1.72-1.9)	(35.3-43.1)	1.772	37.624	05/15/2024

Table 14 (Continued)

Frequency (MHz)	Tissue Type	Conductivity Target (S/m)	Dielectric Constant Target	Conductivity Meas. (S/m)	Dielectric Constant Meas.	Tested Date
				4.250	34.675	04/21/2024@
5250,0000		4.71	36	4.287	35.498	04/25/2024
5250.0000		(4.24-5.18)	(32.4-39.5)	4.530	33.818	05/18/2024
				4.453	36.814	05/19/2024
				4.271	34.643	04/21/2024@
5270 0000		4.73	35.9	4.308	35.467	04/25/2024
5270.0000		(4.26-5.2)	(32.3-39.5)	4.552	33.786	05/18/2024
				4.474	36.786	05/19/2024
5310.0000		4.77 (4.29-5.25)	35.9 (32.3-39.5)	4.515	36.721	05/19/2024@
5530.0000		5.00 (4.5-5.5)	35.6 (32-39.2)	4.606	32.786	05/21/2024@
				5.412	39.013	04/26/2024@
5600.0000	IEEE/	5.07	35.5	4.955	32.554	05/08/2024
3000.0000	IEC Head	(4.56-5.58)	(32-39.1)	5.038	36.563	05/20/2024
				4.663	33.710	05/21/2024
				5.425	39.014	04/26/2024@
		5.08	35.5	4.884	36.094	04/27/2024@
5610.0000		(4.57-5.59)	(31.9-39)	4.965	32.537	05/08/2024
		(4.37 3.37)	(31.7 37)	5.049	36.545	05/20/2024@
				4.691	32.645	05/21/2024
				4.920	32.961	05/31/2024
5750.0000		5.22	35.4	4.946	32.082	06/01/2024
3730.0000		(4.7-5.74)	(31.8-38.9)	5.049	31.894	06/02/2024
				4.880	34.907	06/07/2024
				4.947	32.910	05/31/2024@
5775.0000		5.25	35.3	4.976	32.037	06/01/2024@
3773.0000		(4.72-5.77)	(31.8-38.9)	5.076	31.848	06/02/2024@
				4.908	34.877	06/07/2024@

Note: '@' indicates that tissue test result covers next test day (within 24 hours)

11.0 Environmental Test Conditions

The EME Laboratory's ambient environment is well controlled resulting in very stable simulated tissue temperature and therefore stable dielectric properties. Simulated tissue temperature is measured prior to each scan to insure it is within +/ - 2°C of the temperature at which the dielectric properties were determined. The liquid depth within the phantom used for measurements was at least 15cm. Additional precautions are routinely taken to ensure the stability of the simulated tissue such as covering the phantoms when scans are not actively in process in order to minimize evaporation. The lab environment is continuously monitored. The Table below presents the range and average environmental conditions during the SAR tests reported herein:

Table 15

	Target	Measured
Ambient Temperature	18 – 25 °C	Range: 21.3 – 23.4°C Avg. 22.0 °C
Tissue Temperature	18 – 25 °C	Range: 19.8-20.8°C Avg. 20.3°C

Relative humidity target range is a recommended target

The EME Lab RF environment uses a Spectrum Analyzer to monitor for extraneous large signal RF contaminants that could possibly affect the test results. If such unwanted signals are discovered the SAR scans are repeated.

12.0 DUT Test Setup and Methodology

12.1 Measurements

SAR measurements were performed using the DASY system described in section 8.0 using zoom scans Oval flat phantoms filled with applicable simulated tissue were used for body and face testing.

The Table below includes the step sizes and resolution of area and zoom scans per KDB 865664 requirements.

Table 16

Descr	iption	≤3 GHz	> 3 GHz			
Maximum distance from close	est measurement point	5 ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$			
(geometric center of probe sen	isors) to phantom surface	3 ± 1 mm	$72.0 \text{ m}(2) \pm 0.3 \text{ mm}$			
Maximum probe angle from p	robe axis to phantom surface	30° ± 1°	20° + 1°			
normal at the measurement loo	eation	30 ±1	20 1			
		\leq 2 GHz: \leq 15 mm	$3-4$ GHz: ≤ 12 mm			
		$2-3$ GHz: ≤ 12 mm	$4-6$ GHz: ≤ 10 mm			
		When the x or y dimensi	on of the test device, in			
Maximum area scan spatial re	solution: Av Area Av Area	the measurement plane orientation, is smaller				
Waxiiiuiii area sean spatiai re	solution. Axarca, Ayarca	than the above, the measurement resolution				
		must be \leq the correspond	ling x or y dimension of			
		the test device with at lea	ast one measurement			
		point on the test device.				
Maximum zoom scan spatial r	resolution: ΔxZoom, ΔyZoom	≤ 2 GHz: ≤ 8 mm	$3-4 \text{ GHz: } \leq 5 \text{ mm*}$			
		$2-3 \text{ GHz: } \leq 5 \text{ mm*}$	$4-6$ GHz: ≤ 4 mm*			
Maximum zoom scan	uniform grid: ΔzZoom(n)		$3-4$ GHz: ≤ 4 mm			
spatial resolution, normal to		≤ 5 mm	$4-5$ GHz: ≤ 3 mm			
phantom surface			$5-6$ GHz: ≤ 2 mm			

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

12.2 DUT Configuration(s)

The DUT is a portable device operational at the body and face as described in section 6.0 while using the applicable accessories listed in section 7.0. All accessories listed in section 7.0 of this report were considered when implementing the guidelines specified in KDB 643646. KDB 941225 was applied to LTE test configurations.

12.3 DUT Positioning Procedures

The positioning of the device for each body location is described below and illustrated in Appendix G.

12.3.1 Body

The DUT was positioned in normal use configuration against the phantom with the offered body worn accessory as well as with and without the offered audio accessories as applicable.

12.3.2 Head

Not applicable.

12.3.3 Face

The DUT was positioned with its' front and back sides separated 2.5cm from the phantom.

^{*} When zoom scan is required and the reported SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is \leq 1.4 W/kg, \leq 8 mm, \leq 7 mm and \leq 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

12.4 DUT Test Channels

The number of test channels was determined by using the following IEC/IEEE 66209-1528 equation. The use of this equation produces the same or more test channels compared to the FCC KDB 447498 number of test channels formula.

$$N_c = 2*roundup[10*(f_{high} - f_{low})/f_c] + 1$$

Where

 N_c = Number of channels

 $F_{high} = Upper channel$

 $F_{low} = Lower channel$

 F_c = Center channel

12.5 SAR Result Scaling Methodology

The calculated 1-gram and 10-gram averaged SAR results indicated as "Max Calc. 1g-SAR" in the data Tables is determined by scaling the measured SAR to account for power leveling variations and drift. Appendix F includes a shortened scan to justify SAR scaling for drift. For this device, the "Max Calc. 1g-SAR" are scaled using the following formula:

$$Max_Calc = SAR_meas \cdot 10^{\frac{-Drift}{10}} \cdot \frac{P_max}{P_int} \cdot DC$$

 $P_{max} = Maximum Power (W)$

P_int = Initial Power (W)

Drift = DASY drift results (dB)

SAR_meas = Measured 1-g or 10-g Avg. SAR (W/kg)

DC = Transmission mode duty cycle in % where applicable

50% duty cycle is applied for PTT operation

Note: for conservative results, the following are applied:

If $P_{int} > P_{max}$, then $P_{max}/P_{int} = 1$.

Drift = 1 for positive drift

Additional SAR scaling was applied using the methodologies outlined in FCC KDB 865664 using tissue sensitivity values. SAR was scaled for conditions where the tissue permittivity was measured above the nominal target and for tissue conductivity that was measured below the nominal target. Negative or reduced SAR scaling is not permitted.

12.6 DUT Test Plan

The guidelines and requirements outlined in section 4.0 were used to assess

compliance of this device. All modes of operation identified in section 6.0 were considered during the development of the test plan. All tests were performed in CW for LMR, WLAN modes and LTE modes and 50% duty cycle was applied to PTT configurations in the final results.

Standalone and simultaneous BT testing were assessed in sections 14.3 and 16.1 per the guidelines of KDB 447498.

13.0 DUT Test Data for LMR

13.1 LMR assessments at the Body for 150.8-173.4MHz band

Battery PMNN4816A was selected as the default battery for assessments at the Body because it is the thinnest battery (refer to Exhibit 7B for battery illustration). The default battery was used during conducted power measurements for all test channels within FCC allocated frequency range (150.8-173.4MHz) which are listed in Table 17. The channel with the highest conducted power will be identified as the default channel per KDB 643646 (SAR Test for PTT Radios).

Table 17

Test Freq (MHz)	Power (W)
150.8000	6.410
158.3000	6.420
165.9000	6.420
173.4000	6.420

Assessments at the Body with Body worn PMLN8371A w/ PMLN8507A

Table 18

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (W/kg)	Max Calc. 1g-SAR (W/kg)	Run#
				150.8000					
AN000414A01	PMNN4816A	PMLN8371A w/ PMLN8507A	PMMN4128A	158.3000	6.58	0.08	3.09	1.55	BL-AB- 240408-10
				165.9000					
				173.4000					
			Assessment of Ac	lditional Batte	eries				
AN000414A01 -	PMNN4817A PMLN8371A	DM (N) (120 A	158.3000	6.60	0.08	3.24	1.62	BL-AB- 240408-11	
	PMNN4818A	w/ PMLN8507A	PMMN4128A	158.3000	6.60	0.07	3.47	1.74	BL-AB- 240408-12

00001/00002

Assessments at the Body with Body worn PMLN8371A w/ PMLN8508A

DUT assessment with offered antennas, default battery and, optional body worn accessory per KDB 643646. Optional batteries were tested per the requirements of KDB 643646. Refer to Table 17 for highest output power channel.

Table 19

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (W/kg)	Max Calc. 1g-SAR (W/kg)	Run#
		PMLN8371A w/ PMLN8508A	PMMN4128A	150.8000					
AN000414A01	PMNN4816A			158.3000	6.52	0.03	3.24	1.64	BL-AB- 240408-13
1110001111101				165.9000					
				173.4000					
			Assessment of Ac	lditional Batte	eries				
AN000414A01 -		PMLN8371A	DI O OVALOGA	158.3000	6.60	0.04	3.29	1.65	BL-AB- 240408-14
	PMNN4818A	w/ PMLN8508A	PMMN4128A	158.3000	6.55	0.06	3.55	1.79	BL-AB- 240408-15

Assessments at the Body with Body worn PMLN8372A w/ PMLN8507A

Table 20

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (W/kg)	Max Calc. 1g-SAR (W/kg)	Run#
AN000414A01 PMN	PMNN4816A			150.8000					
		PMLN8372A W/ PMLN8507A	PMMN4128A	158.3000	6.58	-0.12	3.36	1.73	BL-AB- 240408-16
				165.9000					
				173.4000					

FCC ID: AZ489FT7149 / IC: 109U-89FT7149 Report

Report ID: P30468-EME-00001/00002

Assessments at the Body with Body worn PMLN8372A w/ PMLN8508A

DUT assessment with offered antennas, default battery and, optional body worn accessory per KDB 643646. Optional batteries were tested per the requirements of KDB 643646. Refer to Table 17 for highest output power channel.

Table 21

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (W/kg)	Max Calc. 1g-SAR (W/kg)	Run#
AN000414A01 PMNN4816A				150.8000					
	PMNN4816A	PMLN8372A w/	PMMN4128A	158.3000	6.60	-0.10	3.56	1.82	BL-AB- 240408-17
	PMLN8508A	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	165.9000						
			173.4000						

Assessments at the Body with Body worn PMLN8372A w/ PMLN5408A

Table 22

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (W/kg)	Max Calc. 1g-SAR (W/kg)	Run#
AN000414A01 PMNN4816A w/		PMLN8372A	PMMN4128A	150.8000					
	PMNN4816A			158.3000	6.53	-0.09	1.20	0.62	BL-AB- 240408-18
	PMLN5408A		165.9000						
			173.4000						

Assessments at the Body with Body worn PMLN8373A w/ PMLN8507A

DUT assessment with offered antennas, default battery and, optional body worn accessory per KDB 643646. Optional batteries were tested per the requirements of KDB 643646. Refer to Table 17 for highest output power channel.

Table 23

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (W/kg)	Max Calc. 1g-SAR (W/kg)	Run#
AN000414A01 PMNN4817A w/		PMLN8373A INN4817A w/		150.8000					
	PMNN4817A		PMMN4128A	158.3000	6.60	-0.10	3.54	1.81	AR-AB- 240409-04
	PMLN8507A	N8507A	165.9000						
			173.4000						

Assessments at the Body with Body worn PMLN8373A w/ PMLN8508A

Table 24

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (W/kg)	Max Calc. 1g-SAR (W/kg)	Run#
AN000414A01 PMNN4817A				150.8000					
	PMLN8373A w/ PMLN8508A	PMMN4128A	158.3000	6.60	-0.10	3.71	1.90	AR-AB- 240409-03	
			165.9000						
			173.4000						

00001/00002

Assessments at the Body with Body worn PMLN8373A w/ PMLN5408A

DUT assessment with offered antennas, default battery and, optional body worn accessory per KDB 643646. Optional batteries were tested per the requirements of KDB 643646. Refer to Table 17 for highest output power channel.

Table 25

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (W/kg)	Max Calc. 1g-SAR (W/kg)	Run#
AN000414A01 PMNN4817A w/				150.8000					
	PMLN8373A w/ PMLN5408A	w/ PMMN4128A	158.3000	6.59	-0.04	1.35	0.68	AR-AB- 240409-05	
			165.9000						
			173.4000						

Assessments at the Body with Body worn PMLN8374A w/ PMLN8507A

DUT assessment with offered antennas, default battery and, optional body worn accessory per KDB 643646. Optional batteries were tested per the requirements of KDB 643646. Refer to Table 17 for highest output power channel. SAR plots of the highest results per Table below (bolded) are present in the Appendix E.

Table 26

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (W/kg)	Max Calc. 1g-SAR (W/kg)	Run#
AN000414A01 PMNN4818A				150.8000					
	PMLN8374A w/ PMLN8507A PMMN4128A	PMMN4128A	158.3000	6.59	-0.06	3.76	1.91	AR-AB- 240409-06	
			165.9000						
		173.4000							

Assessments at the Body with Body worn PMLN8374A w/ PMLN8508A

Table 27

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (W/kg)	Max Calc. 1g-SAR (W/kg)	Run#
AN000414A01 PMNN4818A w/			150.8000						
	PMNN4818A	PMLN8374A	PMMN4128A	158.3000	6.60	0.07	3.79	1.90	AR-AB- 240409-07
	PMLN8508A		165.9000						
				173.4000					

Assessments at the Body with Body worn PMLN8374A w/ PMLN5408A

DUT assessment with offered antennas, default battery and, optional body worn accessory per KDB 643646. Optional batteries were tested per the requirements of KDB 643646. Refer to Table 17 for highest output power channel.

Table 28

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (W/kg)	Max Calc. 1g-SAR (W/kg)	Run#
AN000414A01				150.8000					
	PMNN4818A	PMLN8374A w/	PMMN4128A	158.3000	6.52	0.07	1.56	0.79	BL-AB- 240409-08
		PMLN5408A		165.9000					
				173.4000					

Assessment at the Body with other audio accessories

Assessment per "KDB 643646 Body SAR Test Consideration for Audio Accessories without Built-in Antenna; Sec 1, A. when overall < 4.0 W/kg, SAR tested for that audio accessory is not necessary." This was applicable to all remaining accessories.

Assessment of wireless BT configuration

Assessment using the overall highest SAR configuration at the body from above without an audio accessory attached.

Table 29

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (W/kg)	Max Calc. 1g-SAR (W/kg)	Run#
AN000414A01	PMNN4818A	PMLN8374A w/ PMLN8507A	None	158.3000	6.58	0.01	3.14	1.57	BL-AB- 240409-09

13.2 LMR assessments at the Face for 150.8-173.4MHz band

Battery PMNN4817A was selected as the default battery for assessments at the Face because it has the highest capacity (refer to Exhibit 7B for battery illustration). The default battery was used during conducted power measurements for all test channels within FCC allocated frequency range (150.8-173.4MHz) which are listed in Table 30. The channel with the highest conducted power will be identified as the default channel per KDB 643646 (SAR Test for PTT Radios).

Table 30

Test Freq (MHz)	Power (W)
150.8000	6.430
158.3000	6.490
165.9000	6.540
173.4000	6.590

DUT assessment with offered antennas, default battery with front of DUT positioned 2.5cm facing phantom per KDB 643646. Optional batteries were tested per the requirements of KDB 643646. Refer to Table 30 for highest output power channel.

Table 31

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (W/kg)	Max Calc. 1g-SAR (W/kg)	Run#
				150.8000					
AN000414A01	PMNN4817A	None	None	158.3000	6.56	0.03	1.17	0.59	BL-FACE- 240409-10
		(front)		165.9000					
				173.4000					
		A	ssessment of Ac	dditional Batte	eries				
	PMNN4816A			158.3000 6.58 0.06 1.41 0.7		0.71	BL-FACE-		
AN000414A01	FIVININ4010A	None	None	158.3000	0.56	0.00	1.41	0.71	240409-11
	DMANIN 4010 A	(front)	None	159 2000	150 2000 (57 010 122 0		0.66	BL-FACE-	
	PMNN4818A			158.3000 6.57		0.10	10 1.32	0.66	240409-12

DUT assessment with offered antennas, default battery with back of DUT positioned 2.5cm facing phantom per KDB 643646. Optional batteries were tested per the requirements of KDB 643646. Refer to Table 30 for highest output power channel. The SAR plots of the highest results per Table (bolded) are presented in the Appendix E.

Table 32

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (W/kg)	Max Calc. 1g-SAR (W/kg)	Run#
				150.8000					
AN000414A01	PMNN4817A	None (book)	None	158.3000	6.60	0.18	2.43	1.22	BL-FACE- 240409-13
		(back)		165.9000					
				173.4000					
		A	ssessment of Ac	lditional Batte	eries		1		
AN000414A01	PMNN4816A	Name		158.3000	6.52	0.24	2.17	1.10	BL-FACE- 240409-14
	PMNN4818A	None (back)	None		- TO	0.22	2.10	4 - 5	BL-FACE-
		, ,		158.3000	6.50	0.32	3.19	1.62	240410-08

13.3 Assessment for outside FCC Frequency range

Additional assessment of outside FCC frequency range using highest SAR configuration from above. The SAR plots of the highest result per Table (bolded) are presented in the Appendix E.

Table 33

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (W/kg)	Max Calc. 1g-SAR (W/kg)	Run#
			Во	ody					
AN000414A01	PMNN4818A	PMLN8374 w/	PMMN4128	138.0000	6.54	0.04	0.90	0.45	BL-AB- 240410-04
AN000414A01	TIVININ4010A	PMLN8507 A	A	144.4000	6.56	-0.08	1.03	0.53	BL-AB- 240410-06
			Fa	ice					
AN000414A01	PMNN4816A	None @	None	138.0000	6.56	-0.01	2.33	1.17	BL-FACE- 240410-02
	PMINN4816A	back	None	144.4000	6.60	0 0.04 2.79	1.40	BL-FACE- 240410-07	

13.4 Assessment for ISED, Canada

Based on the assessment results for body and face per KDB643646, additional tests were not required for ISED, Canada frequency range (138-174MHz) as the testing performed is in compliance with Industry Canada frequency range.

As per ISED Notice 2016-DRS001, additional tests were required for the low, mid and high frequency channels for the configuration with the highest SAR value. The SAR plots of the highest results per Table (bolded) are presented in the Appendix E.

Table 34

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (W/kg)	Max Calc. 1g-SAR (W/kg)	Run#
			Во	dy					
AN000414A01 PMNN				138.0000	6.54	0.04	0.90	0.45	BL-AB- 240410-04
	PMNN4818A	PMLN8374 w/ PMLN8507A	PMMN4128A	158.3000	6.59	-0.06	3.76	1.91	AR-AB- 240409-06
		,,,,,,		173.4000	6.57	0.13	2.09	1.05	BL-AB- 240410-05
			Fa	ce					
				138.0000	6.56	-0.01	2.33	1.17	BL-FACE- 240410-02
AN000414A01	PMNN4816A	None @ back	None	158.3000	6.50	0.32	3.19	1.62	BL-FACE- 240409-15
				173.4000	6.52	0.16	2.46	1.25	BL-FACE- 240410-03

14.0 DUT Test Data for WLAN

SAR test reduction is applied using the following criteria according to KDB 248227 D01:

- a. For 2.4GHz 802.11 g/n SAR testing is not required when then highest reported SAR for DSSS is adjusted by ratio of OFDM to DSSS specified maximum output power and adjusted SAR is ≤1.2 W/kg.
- b. U-NII-1 SAR testing not required when U-NII-2A band highest reported SAR for a test configuration is ≤ 1.2 W/kg.
- c. For all positions/configurations, when reported SAR is >0.8W/kg, SAR is measured for these test positions/configurations on the subsequent next highest measured output power channel(s) until the reported SAR is ≤ 1.2 W/kg or all required test positions/configurations are tested.

14.1 WLAN assessments for WLAN 2.4GHz (802.11 b/g/n)

Output Power Data

These power measurements were used to determine the necessary modes for SAR testing according to KDB 248227.

Table 35

Band	802.11	Ch. BW	Ch.	Freq. (MHz)	Measured conducted power (W)
			1	2412	0.1210
	b	20	6	2437	0.1310
			11	2462	0.1300
			1	2412	0.0710
2.4.011-	g	20	6	2437	0.0766
2.4 GHz			11	2462	0.0721
			1	2412	0.0682
	n	20	6	2437	0.0724
			11	2462	0.0692
	n	40	6	2437	0.0855

Assessments at the Body with offered body worn accessories

DUT assessment with WLAN internal antenna, offered battery and without any cable accessory attached against the phantom with the offered body worn accessories. SAR plots of the highest results per Table (bolded) are presented in the Appendix E.

Table 36

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (W/kg)	Max Calc. 1g-SAR (W/kg)	Run#
		PMLN8371A w/ PMLN8507A				-0.21	0.022	0.025	JML-AB- 240418-06
		PMLN8371A w/ PMLN8508A				-0.17	0.020	0.022	JML-AB- 240418-07
AN000413A03		PMLN8372A w/ PMLN8507A				-0.12	0.024	0.027	JML-AB- 240418-08
	PMNN4816A	PMLN8372A w/ PMLN8508A	None	2437.0000	0.131	-0.10	0.028	0.031	JML-AB- 240419-03
		PMLN8372A w/ PMLN5407A				-0.33	0.019	0.022	JML-AB- 240419-04
		PMLN8372A w/ PMLN5408A				-0.16	0.030	0.034	JML-AB- 240419-05
		PMLN8372A w/ PMLN5409A				-0.19	0.030	0.034	JML-AB- 240419-07
		Ass	essment of Ad	lditional Batt	ery				
AN000413A03	PMNN4817A	PMLN8373A	None	2437 0000	0.131	-0.22	0.028	0.032	MIN-AB- 240420-02@
	PMNN4818A	W/	None	2437.0000-	0.132	-0.21	0.031	0.035	JML-AB- 240420-08

Assessments at the Face

DUT assessment with WLAN internal antenna and offered battery with front of DUT positioned 2.5cm facing phantom. SAR plots of the highest results per Table (bolded) are presented in the Appendix E.

Table 37

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g- SAR (W/kg)	Max Calc. 1g-SAR (W/kg)	Run#
AN000413A03	PMNN4817A	Radio @ front 2.5cm	None	2437.0000	0.131	-0.04	0.158	0.172	JML-FACE- 240421-11
		Ass	essment of Add	litional Batte	ry				
ANI000412 A02	PMNN4816A	Radio @ front	None	2437.0000	0.131	-0.21	0.192	0.217	MIN-FACE- 240421-02@
AN000413A03	PMNN4818A	2.5cm	none	2437.0000	0.132	-0.17	0.155	0.173	MIN-FACE- 240421-05@

DUT assessment with WLAN internal antenna and offered battery with back of DUT positioned 2.5cm facing phantom.

Table 38

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Pwr	SAR Drift (dB)]σ_	Max Calc. 1g-SAR (W/kg)	Run#
AN000413A03	PMNN4817A	Radio @ Back 2.5cm	None	2437.0000	0.131	-0.21	0.021	0.024	JML-FACE- 240421-10
		Ass	essment of Additi	onal Battery	7				
ANI000412A02	PMNN4816A	Radio @ Back		2437.0000	0.131	-0.40	0.020	0.024	MIN-FACE- 240421-01@
AN000413A03 -	PMNN4818A	2.5cm	None	2437.0000	0.132	0.41	0.024	0.026	MIN-FACE- 240421-04@

Assessments for ISED Canada

Based on the assessment results for body and face per KDB643646 D01, additional tests were not required for the Industry Canada frequency range (2412-2462 MHz) as the testing performed is in compliance with Industry Canada frequency range.

As per ISED Notice 2016-DRS001, additional tests were required for the low, mid and high frequency channels for the configuration with the highest SAR value. The SAR results are in Tables below. SAR plot is included in Appendix for the highest configuration.

Table 39

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (W/kg)	Max Calc. 1g-SAR (W/kg)	Run#
			Boo	dy					
		PMLN8374A		2412.0000	0.121	0.16	0.020	0.023	EMR-AB- 240515-06
AN000413A03	PMNN4818A		None	2437.0000	0.132	-0.21	0.031	0.035	JML-AB- 240420-08
		TWENSHOTT		2462.0000	0.130	0.11	0.026	0.028	EMR-AB- 240515-07
			Fac	ce					
				2412.0000	0.119	-0.14	0.155	0.189	BL-FACE- 240510-05
AN000414A01	PMNN4816A	Radio @ front 2.5cm	None	2437.0000	0.131	-0.21	0.192	0.217	MIN-FACE- 240421-02@
				2462.0000	0.130	-0.31	0.163	0.191	BL-FACE- 240510-06

14.2 WLAN assessments for WLAN 5.0 GHz (802.11 a/n/ac)

Output Power Data

These power measurements were used to determine the necessary modes for SAR testing according to KDB 248227.

Table 40

Table 40					
Band	802.11	Ch. BW (MHz)	Ch.	Freq. (MHz)	Measured conducted power (W)
U-NII-1 (5.15-5.25GHz)	a	20	36	5180	0.0740
			40	5200	0.0729
			44	5220	0.0729
			48	5240	0.0724
	n	20	36	5180	0.0721
			40	5200	0.0731
			44	5220	0.0728
			48	5240	0.0714
		40	38	5190	0.0127
			46	5230	0.0618
	ac	20	36	5180	0.0597
			40	5200	0.0600
			44	5220	0.0607
			48	5240	0.0608
		40	38	5190	0.0131
			46	5230	0.0637
		80	42	5210	0.0152

Table 40 (Continued)

Band	802.11	Ch. BW (MHz)	Ch.	Freq. (MHz)	Measured conducted power (W)
			52	5260	0.0714
		20	56	5280	0.0714
	a	20	60	5300	0.0719
			64	5320	0.0698
			52	5260	0.0610
		20	56	5280	0.0618
		20	60	5300	0.0632
	n		64	5320	0.0611
U-NII-2A		40	54	5270	0.076
(5.25-5.35GHz)		40	62	5310	0.015
			52	5260	0.0615
		20	56	5280	0.0631
		20	60	5300	0.0630
	ac		64	5320	0.0621
			54	5270	0.0755
		40	62	5310	0.0149
		80	58	5290	0.0080
			100	5500	0.0793
	a	20	120	5600	0.0726
	u	20	140	5720	0.0678
			100	5500	0.0649
		20	120	5600	0.0603
		20	140	5720	0.0574
	n		102	5510	0.0736
II NII AC		40	118	5590	0.0721
U-NII-2C (5.47-5.65 GHz)		40	134	5670	0.0656
(3.47-3.03 GHZ)		20	100	5500	0.0656
			120	5600	0.0610
			140	5720	0.0579
			102	5510	0.0675
	ac	40	118	5590	0.0661
		40	134	5670	0.0612
			106	5530	0.012
		80	122	5610	0.0660
			149	5745	0.0741
	9	20	157	5785	0.0741
	a	20	165	5825	0.0745
			149	5745	0.0743
		20	149	5785	0.0700
	n	20	165	5825	0.0750
II NIII 2	n		151	5755	0.0644
U-NII-3 (5.65-5.85 GHz)		40	151	5795	0.0610
(5.05-5.05 GHZ)			139	5745	0.0612
		20	157	5785	0.0617
		20		5825	0.0578
	ac		165 151	5755	0.0578
		40		1	0.0582
		00	159	5795	
		80	155	5775	0.0610

Report ID: P30468-EME-00001/00002

Assessments for U-NII-2A (5.25-5.35GHz), U-NII-2C (5.47-5.65 GHz) and U-NII-3 (5.65-5.85 GHz)

DUT assessment with WLAN internal antenna, offered battery and without any cable accessory attached against the phantom with the offered body worn accessories. SAR plots of the highest results per Table (bolded) are presented in the Appendix E.

Table 41

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g- SAR (W/kg)	Max Calc. 1g-SAR (W/kg)	Run#	
UNII-2A: 802.11n, 40MHz BW - Body										
		PMLN8371A w/ PMLN8507A	None			-0.41	0.022	0.026	MIN-AB- 240422- 01@	
		PMLN8371A w/ PMLN8508A		5270.0000	0.075	-0.11	0.017	0.018	MIN-AB- 240422- 03@	
	PMNN4816A	PMLN8372A w/ PMLN8507A				-0.31	0.020	0.023	MFR-AB- 240422- 04@	
AN000413A03		PMLN8372A w/ PMLN8508A				0.02	0.012	0.013	MFR-AB- 240422- 05@	
		PMLN8372A w/ PMLN5407A				-3.06**	0.006	0.012	MFR-AB- 240422- 06@	
		PMLN8372A w/ PMLN5408A				-0.99**	0.003	0.004	MFR-AB- 240422- 07@	
		PMLN8372A w/ PMLN5409A				1.07**	0.004	0.004	MFR-AB- 240422- 08@	
			Assessment o	f Additional Ba	ttery					
ANI000412 A02	PMNN4817A	PMLN8371A w/	None	5270.0000	0.075	-0.39	0.021	0.024	MFR-AB- 240425- 04	
AN000413A03	PMNN4818A	PMLN8507A	none			-0.19	0.016	0.018	MFR-AB- 240425- 05	

^{**} Measured SAR value is low enough where a SAR drift measurement was not practical

Table 41 (Continued)

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g- SAR (W/kg)	Max Calc. 1g-SAR (W/kg)	Run#
		UN	II-2A: 802.11	ln, 40MHz BV	V - Face				•
			Rad	io @ front					
AN000413A03	PMNN4817A	Radio @ front 2.5cm	None	5270.0000	0.076	-0.08	0.506	0.543	MHN- FACE- 240518- 02
		1	Assessment of	f Additional Ba	ittery				
	PMNN4816A	Radio @ front 2.5cm	N	5270.0000	0.075	-0.35	0.590	0.677	ZIQ- FACE- 240518- 04
AN000413A03	PMNN4818A		None		0.076	-0.25	0.409	0.457	ZIQ- FACE- 240518- 05
	ı		Rad	io @ back	ı	1	I.	1	ı
AN000413A03	PMNN4817A	Radio @ Back 2.5cm	None	5270.0000	0.076	-0.54**	0.009	0.001	MHN- FACE- 240519- 07
		1	Assessment of	f Additional Ba	ittery				
	PMNN4816A Radio @ Back		5070.0000	0.076	-0.37	0.023	0.026	ZIQ- FACE- 240520- 01@	
AN000413A03	PMNN4818A	2.5cm	None	5270.0000	0.075	-0.23	0.017	0.019	MHN- FACE- 240519- 08
		UN	H-2C: 802.11	ac, 80MHz BV	W - Body	1			
		PMLN8371A w/ PMLN8507A				-1.05**	0.011	0.018	JML-AB- 240427- 03@
		PMLN8371A w/ PMLN8508A			0.066	-0.15	0.011	0.014	MIN-AB- 240427- 05@
		PMLN8372A w/ PMLN8507A			0.066	-1.80**	0.008	0.015	MIN-AB- 240427- 06@
AN000413A03	PMNN4816A	PMLN8372A w/ PMLN8508A	None	5610.000	0.066	0.12	0.009	0.011	MFR-AB- 240427- 07@
		PMLN8372A w/ PMLN5407A			0.066	0.64**	0.002	0.002	MIN-AB- 240428- 07@
		PMLN8372A w/ PMLN5408A			0.066	-1.59**	0.002	0.004	MFR-AB- 240428- 02@
Note		PMLN8372A w/ PMLN5409A			0.066	-2.83**	0.007	0.017	MIN-AB- 240428- 04@

Note:

^{**} Measured SAR value is low enough where a SAR drift measurement was not practical

Table 41 (Continued)

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g- SAR (W/kg)	Max Calc. 1g-SAR (W/kg)	Run#	
Assessment of Additional Battery										
AN000412462	PMNN4817A	PMLN8371A			0.059	-1.74**	0.012	0.024	MHN-AB- 240520-09	
AN000413A03	PMNN4818A	w/ PMLN8507A	None	5610.0000	0.065	-1.76**	0.013	0.024	MHN-AB- 240521- 02@	
		UNI		ac, 80MHz BV	V - Face					
	I		Radi	o @ front		I			T	
AN000413A03	PMNN4817A	Radio @ front 2.5cm	None	5610.0000	0.059	-0.11	0.246	0.354	BL-FACE- 240509- 04@	
			Assessment of	Additional Ba	ttery					
	PMNN4816A	Radio @ front		5610.0000	0.066	-0.43	0.291	0.388	MHN- FACE- 240521-08	
AN000413A03	PMNN4818A	2.5cm	None		0.065	-0.18	0.199	0.256	MHN- FACE- 240521-07	
			Radi	o @ back		•				
AN000413A03	PMNN4817A	Radio @ Back 2.5cm	None	5610.0000	0.059	-0.64**	0.009	0.015	ZIQ-FACE- 240521- 03@	
		A	Assessment of	Additional Ba	ttery					
	PMNN4816A	Radio @ Back			0.066	-1.38**	0.011	0.018	ZIQ-FACE- 240521-04	
AN000413A03	PMNN4818A	2.5cm	None	5610.0000	0.065	-1.25**	0.010	0.016	ZIQ-FACE- 240521-06	
		UNI	II-3: 802.11ac	e, 80MHz BW	- Body				•	
		PMLN8371A w/ PMLN8507A				-2.88**	0.014	0.036	SAN-AB- 240608- 18@	
		PMLN8371A w/ PMLN8508A				-0.62**	0.010	0.015	ZIQ-AB- 240531-16	
AN000413A03	PMNN4816A	PMLN8372A w/ PMLN8507A	None	5775.000	0.061	-0.89**	0.007	0.011	ZIQ-AB- 240601-01@	
		PMLN8372A w/ PMLN8508A				-1.15**	0.008	0.013	ZIQ-AB- 240601-02@	
		PMLN8372A w/ PMLN5407A				0.80**	0.003	0.004	ZIQ-AB- 240601-03@	

Note:

 $[\]ensuremath{^{**}}$ Measured SAR value is low enough where a SAR drift measurement was not practical

Report ID: P30468-EME-00001/00002

Table 41 (Continued)

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g- SAR (W/kg)	Max Calc. 1g-SAR (W/kg)	Run#
AN000/13 A03	PMNN4816A	PMLN8372A w/ PMLN5408A	None	5775.0000	0.061	-2.29**	0.004	0.009	ZIQ-AB- 240601-05
AN000413A03		PMLN8372A w/ PMLN5409A	None	3773.0000	0.001	-0.75**	0.012	0.019	ZIQ-AB- 240601-06
		A	Assessment of	Additional Bat	ttery				
AN(000412A02	PMNN4817A	PMLN8371A	Nama	5775.0000 -	0.058	0.40	0.011	0.015	ZIQ-AB- 240601-08
AN000413A03	PMNN4818A	w/ PMLN8507A	None		0.063	1.83**	0.008	0.010	ZIQ-AB- 240601-09@
UNII-3: 802.11ac, 80MHz BW - Face									
	1	,	Radio	@ front	_	ı		ı	_
AN000413A03	PMNN4817A	Radio @ front 2.5cm	None	5775.0000	0.058	-0.14	0.277	0.394	ZIQ-FACE- 240602-11
	•	A	Assessment of	Additional Bat	ttery	I.		I.	
ANI000412A02	PMNN4816A	Radio @ front		5775.0000	0.061	-0.21	0.320	0.441	ZIQ-FACE- 240603- 02@
AN000413A03	PMNN4818A	2.5cm	None		0.063	-0.08	0.316	0.405	ZIQ-FACE- 240603- 03@
			Radio	@ back					
AN000413A03	PMNN4817A	Radio @ Back 2.5cm	None	5775.0000	0.058	-0.65**	0.014	0.022	ZIQ-FACE- 240602-12
		A	Assessment of	Additional Bat	ttery				
AN000413A03	PMNN4816A	Radio @	None	5775.0000	0.061	0.49**	0.001	0.001	ZIQ-FACE- 240603- 01@
Notes	PMNN4818A	Back 2.5cm			0.063	-0.05	0.014	0.018	ZIQ-FACE- 240602-13

Note:

^{**} Measured SAR value is low enough where a SAR drift measurement was not practical

FCC ID: AZ489FT7149 / IC: 109U-89FT7149 Report ID: P30468-EME-00001/00002

Assessments for ISED Canada

Based on the assessment results for body and face per KDB643646 D01, additional tests were not required for the Industry Canada frequency range (U-NII-2A, U-NII-2C and U-NII-3) as the testing performed complies with Industry Canada frequency range.

As per ISED Notice 2016-DRS001, additional tests were required for the low, mid and high frequency channels for the configuration with the highest SAR value. The SAR results are in Tables below. SAR plot (bolded) is included in Appendix for the highest configuration.

Table 42

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (W/kg)	Max Calc. 1g-SAR (W/kg)	Run#		
	UNII-2A										
	Body										
ANIO00412 A 02	D. D. D. L. C. L	PMLN8371A w/ PMLN8507A	None	5270.0000	0.075	-0.41	0.022	0.026	MIN-AB- 240422-01@		
AN000413A03	PMNN4816A			5310.0000	0.015	-0.80**	0.000	0.000*	ZIQ-AB- 240520-03@		
		•]	Face		•					
ANIO00412 A 02	DMANIN 401 CA	Radio @ front 2.5cm	None	5270.0000	0.075	-0.35	0.590	0.677	ZIQ-FACE- 240518-04		
AN000413A03	PMNN4816A			5310.0000	0.015	-0.29	0.117	0.132	ZIQ-FACE- 240520-02@		
UNII-2C											
			I	Body							
	PMNN4816A	PMLN8371A w/ PMLN8507A	None	5530.0000	0.018	-3.94**	0.000	0.000*	ZIQ-AB- 240522-03@		
AN000413A03				5610.0000	0.066	-1.05**	0.011	0.018	JML-AB- 240427-03@		
	l	1]	Face		ı					
AN1000 412 A 02	D) (D) (1/01/04	Radio @ front		5530.0000	0.018	-0.32	0.056	0.069	MHN-FACE- 240522-02@		
AN000413A03	PMNN4816A	2.5cm	None	5610.0000	0.066	-0.43	0.291	0.387	MHN-FACE- 240521-08		
			U	NII-3							
		1	I	Body		1		 			
AN000413A03	PMNN4816A	PMLN8371A w/ PMLN8507A	None	5775.0000	0.061	2.88**	0.014	0.036	SAN-AB- 240608-18@		
	1]	Face		·					
AN000413A03	PMNN4816A	Radio @ front 2.5cm	None	5775.0000	0.061	-0.21	0.320	0.441	ZIQ-FACE- 240603-02@		

Note: * SAR result lower than the ambient noise level

^{**} Measured SAR value is low enough where a SAR drift measurement was not practical

14.3 Assessment exclusion for BT

Per guidelines in KDB 447498, the following formula was used to determine the test exclusion for standalone Bluetooth transmitter;

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] *[$\sqrt{F_{(GHz)}}$] = 0.6, which is \leq 3 for 1-g SAR or 7.5 for 10-g extremity

Where:

Max. power = 15.56mW (19.95mW*78% duty cycle) Min. test separation distance = 44mm F(GHz) = 2.48 GHz

Per the result from the calculation above, the standalone SAR assessment was not required for Bluetooth band. Therefore, SAR results for Bluetooth are not reported herein.

FCC ID: AZ489FT7149 / IC: 109U-89FT7149 Report ID: P30468-EME-00001/00002

14.4 Assessment exclusion for NFC

Based on below calculation, SAR test exclusion power threshold at 13.56 MHz is 443 mW. Maximum power for NFC is 35 mW, hence SAR test was not required for NFC.

KDB 447498 4.3.1, b.1) for 100 MHz to 6 GHz and test separation distances > 50 mm, the 1-g test exclusion thresholds are determined by following:

For 100 MHz to 1500 MHz:

{[Power allowed at numeric threshold for 50 mm at 100 MHz] + [(test separation distance - 50 mm) \cdot (f(MHz)/150)]} mW

= 474.3 mW

Where:

Power allowed at numeric threshold for 50 mm at 100 MHz = 474.3 mWTest separation distance = 50 mm

KDB 447498 4.3.1, c.1) for below 100 MHz and test separation distances >50 mm and <200 mm,

Power threshold at the corresponding test separation distance at 100 MHz in step b) is multiply by [1+log (100/f (MHz))]

- $= 474.3 \text{ mW} * [1 + \log (100/13.56 \text{ MHz})]$
- = 885.9 mW

Where:

f(MHz) = 13.56 MHz

KDB 447498 4.3.1, c.2) for below 100 MHz and test separation distances \leq 50 mm, Power threshold determined by equation in c) 1) is multiplied by $\frac{1}{2}$

- = 885.9 mW * 0.5
- = 443.0 mW

15.0 Shortened Scan Assessment

A "shortened" scan using the highest SAR configuration overall from above was performed to validate the SAR drift of the full DASY5TM coarse and zoom scans. Note that the shortened scan represents the zoom scan performance result; this is obtained by first running a coarse scan to find the peak area and then, using a newly charged battery, a zoom scan only was performed. The results of the shortened cube scan presented in Appendix D demonstrate that the scaling methodology used to determine the calculated SAR results presented herein are valid. The SAR result from the Table below (bolded) is provided in Appendix F.

Table 43

Ī	Antenna	Battery	Carry	Cable	Test Freq	Init	SAR	Meas.	Max	Run#
			Accessory	Accessory	(MHz)	Pwr	Drift	1g-	Calc.	
ı						(W)	(dB)	SAR	1g-SAR	
ı								(W/kg)	(W/kg)	
Ī			PMLN8374 w/							BL-AB-
	AN000414A01	PMNN4818A	PMLN8507A	PMMN4128A	158.3000	6.57	-0.13	3.64	1.88	240410-
			FWILNO30/A							10

16.0 Simultaneous Transmission

The Table below summarizes the simultaneous transmission conditions for this device.

Table 44

Exposure Conditions	Item	Capable Simultaneous Transmit Configurations
	1	LMR + WLAN 2.4 GHz
	2	LMR + WLAN 5 GHz + BT
Dody Worm	3	LMR + BT
Body-Worn	4	LMR + LTE
	5	LMR + BT + LTE
	6	BT + LTE
	1	LMR + WLAN 2.4 GHz
	2	LMR + WLAN 5 GHz + BT
Face	3	LMR + BT
race	4	LMR + LTE
	5	LMR + BT + LTE
	6	BT + LTE


BT, WLAN 2.4 GHz and 5GHz are sharing the same antenna, only one technology to transmit at a single time. Except the WLAN 5GHz with BT.

Report ID: P30468-EME-00001/00002

16.1 Simultaneous Transmission Exclusion for BT

Per guidelines in KDB 447498, the following formula was used to determine the test exclusion to an antenna that transmits simultaneously with other antennas for test distances \leq 50mm:

The closest separation distance from the Bluetooth Antenna to the phantom is 44mm with a belt clip, as indicated in the picture below.

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] *[$\sqrt{F(GHz)/X}$] = 0.1 W/kg, which is \leq 0.4 W/kg (1g)

Where:

X = 7.5 for 1g-SAR; 18.75 for 10g

Max. Power = 15.56 mW (19.95 mW*78% duty cycle)

Min. test separation distance = 44mm

F(GHz) = 2.48 GHz

Per the result from the calculation above, simultaneous exclusion is applied and therefore SAR results are not reported herein.

16.2 Simultaneous Transmission for LMR, BT, WLAN 2.4GHz and 5GHz

Table 45

Exposure		Standalone S	SAR (W/kg)	Sum of SAR (W/kg)			
condition	LMR	2.4GHz	5GHz	LTE	LMR + 2.4GHz	LMR + 5GHz	LMR + LTE
Body worn Exposure	1.91	0.035	0.036	0.102	1.945	1.946	2.012
Face Exposure	1.62	0.217	0.677	0.202	1.837	2.297	1.822

17.0 Results Summary

Based on the test guidelines from section 4.0 and satisfying frequencies within FCC bands and ISED Canada Frequency bands, the highest Operational Maximum Calculated 1-gram and 10-gram average SAR values found for this filing:

Table 46

Designator	Frequency band (MHz)	Max Calc at Body (W/kg) 1g-SAR	Max Calc at Face (W/kg) 1g-SAR
	FCC	US	
LMR	150.8 – 173.4	1.91	1.62
LTE B12	699 – 716	0.091	0.057
LTE B13	777 – 787	0.081	0.064
LTE B14	788 - 798	0.102	0.068
LTE B4	1710 – 1755	0.019	0.202
LTE B2	1850 - 1910	0.025	0.146
WLAN 2.4 GHz	2412 - 2462	0.035	0.217
WLAN 5 GHz	5180 - 5825	0.036	0.677
BT	2402 - 2480	NA	NA
Highest Simultaneous Transmission SAR	Sum of SAR (W/kg)	2.01	2.30

All results are scaled to the maximum output power

Table 47 (Continued)

Designator	Frequency band (MHz)	Max Calc at Body (W/kg)	Max Calc at Face (W/kg)
	ISED (1g-SAR	1g-SAR
LMD			1.62
LMR	150.8 – 173.4	1.91	1.62
LTE B12	699 – 716	0.091	0.057
LTE B13	777 – 787	0.081	0.064
LTE B14	788 - 798	0.102	0.068
LTE B4	1710 - 1755	0.019	0.202
LTE B2	1850 - 1910	0.025	0.146
WLAN 2.4 GHz	2412 - 2462	0.035	0.217
WLAN 5 GHz	5180 - 5825	0.036	0.677
BT	2402 - 2480	NA	NA
Highest Simultaneous Transmission SAR	Sum of SAR (W/kg)	2.01	2.30
		erall	
LMR	150.8 - 173.4	1.91	1.62
LTE B12	699 – 716	0.091	0.057
LTE B13	777 – 787	0.081	0.064
LTE B14	788 - 798	0.102	0.068
LTE B4	1710 – 1755	0.019	0.202
LTE B2	1850 - 1910	0.025	0.146
WLAN 2.4 GHz	2412 - 2462	0.035	0.217
WLAN 5 GHz	5180 - 5825	0.036	0.677
BT	2402 - 2485	NA	NA
Highest Simultaneous Transmission SAR	Sum of SAR (W/kg)	2.01	2.30

All results are scaled to the maximum output power.

The test results clearly demonstrate compliance with FCC/ISED Occupational/Controlled Environment RF Exposure limits over 1 gram per the requirements of FCC 47 CFR § 2.1093 and RSS-102 (Issue 5).

18.0 Variability Assessment

Per the guidelines in KDB 865664 SAR variability assessment is required because SAR results are above 4.0W/kg (Occupational).

19.0 System Uncertainty

A system uncertainty analysis is not required for this report per KDB 865664 because the highest report SAR value Occupational exposure is less than 7.5W/kg.

Per the guidelines of ISO 17025 a reported system uncertainty is required and therefore measurement uncertainty budget is included in Appendix A.