MOTOROLA SOLUTIONS

DECLARATION OF COMPLIANCE SAR ASSESSMENT Part 1 of 2

Motorola Solutions Inc. EME Test Laboratory 8000 West Sunrise Blvd Fort Lauderdale, FL. 33322 Date of Report: Report Revision: Report ID:

7/10/2012 B SR9935 EWP 3200 Rev C 120710

Responsible Engineer: Report Author: Date/s Tested: Manufacturer/Location: Sector/Group/Div.: Date submitted for test: DUT Description:	Stephen Whalen (Principal Staff Engineer) Pei Loo Tey (EME Engineer); Deanna Zakharia 2/07/2012-2/18/2012 Motorola Solutions, Israel MSI 11/08/2011 VoWLAN (Semi-Rugged) is a VoIP phone based on WLAN a/b/g/n. It also includes a Bluetooth transceiver and a camera.
Test TX mode(s): Max. Power output:	802.11 a/b 25%; BlueTooth 34% 10mW for BT; 79.3mW for WLAN 802.11b; 70.8mW for WLAN 802.11g/n @ channels
Nominal Power:	2-10; 31.62mW for WLAN 802.11g/n @ channels 1 & 11; 79.3mW (6Mbps) for WLAN 802.11a/n Middle and Upper Bands, 39.8mW (6Mbps) for WLAN 802.11a/n Lower Band BT:5mW; WLAN:802.11a/n: Lower Band 28.2mW (6Mbps), Middle and Upper Bands 56.2mW (6 Mbps); WLAN 802.11b: 63mW (11Mbps), WLAN 802.11g/n 17.8mW (54 Mbps)
Tx Frequency Bands:	BT:2402-2480MHz; WLAN b/g/n:2412-2462MHz, WLAN a/n. 5180MHz, 5200MHz; 5220MHz, 5240MHz; 5260MHz, 5280MHz, 5300MHz, 5320MHz; 5500MHz, 5520MHz, 5540MHz, 5560MHz, 5580MHz, 5600MHz, 5620MHz, 5640MHz, 5660MHz, 5680MHz, 5700MHz, 5745MHz, 5765MHz, 5785MHz, 5805MHz; 5825MHz
Signaling type:	GMSK Modulation, FHSS (Bluetooth); DSSS (802.11 a/b/g/n), OFDM
Model(s) Tested:	EWP3200
Model(s) Certified:	EWP3200
Serial Number(s):	847SMN0038
Classification:	General Population/Uncontrolled Environment
FCC ID:	AZ489FT7051; Rule part 15 109U-89FT7051
IC ID:	* Refer to section 15 of part 1 for highest SAR summary results.

The test results clearly demonstrate compliance with FCC General Population/Uncontrolled RF Exposure limits of 1.6 W/kg averaged over 1 gram per the requirements of 47 CFR 2.1093(d). The 10 grams result is not applicable to FCC filing.

The test results clearly demonstrate compliance with ICNIRP (1998) Guidelines for limiting exposure in time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz), Health Physics 74, 494-522 RF Exposure limits of 2.0 W/kg averaged over 10grams of contiguous tissue.

Based on the information and the testing results provided herein, the undersigned certifies that when used as stated in the operating instructions supplied, said product complies with the national and international reference standards and guidelines listed in section 3.0 of this report. This report shall not be reproduced without written approval from an officially designated representative of the Motorola Solutions Inc EME Laboratory. I attest to the accuracy of the data and assume full responsibility for the completeness of these measurements. This reporting format is consistent with the suggested guidelines of the TIA TSB-150 December 2004. The results and statements contained in this report pertain only to the device(s) evaluated.

Dearran Zakharia

Deanna Zakharia EMS EME Lab Senior Resource Manager, Laboratory Director Approval Date: 7/10/2012 Certification Date: 6/28/2012

Certification No.: L1120608P

Part 1 of 2

1.0	Introd	uction		4
2.0	Abbre	viations /	Definitions	4
3.0	Refere	enced Stan	dards and Guidelines	4
4.0	SAR I	imits		5
5.0	SAR F	Result Sca	ling Methodology	6
6.0	Descri	ption of L	Device Under Test (DUT)	6
7.0	Optior	al Access	sories and Test Criteria	7
	7.1	Antenna	S	7
	7.2	Batteries	5	7
	7.3	Body wo	orn Accessories	8
	7.4	Audio A	ccessories	8
8.0	Descri	ption of T	est System	9
	8.1	Descript	ions of Robotics/Probes/Readout Electronics	9
	8.2	Descript	ion of Phantom(s)	9
		8.2.1	Dual Flat Phantom	
		8.2.2	SAM Phantom	10
		8.2.3	Elliptical Phantom	10
	8.3	Descript	ion of Simulated Tissue	10
9.0	Additi	onal Test	Equipment	11
10.0	SAR N	Measurem	ent System Verification	12
	10.1		ent Tissue Test Results	
	10.2	System (Check Test Results	16
11.0	Enviro	•	est Conditions	
			odology	
	12.1		ments	
	12.2	DUT Co	nfiguration(s)	17
	12.3		sitioning Procedures	
		12.3.1	Body	
		12.3.2	Head	
		12.3.3	Face	
	12.4	SAR Lin	earity Test	18
	12.5	DUT Te	st Plan	18
13.0	DUT	Fest Data.		20
	13.1	Assessm	ents at 802.11a (5.18 – 5.32GHz) Test Data	21
		13.1.1	Assessments at the Body	21
		13.1.2	Assessments at the Head	22
		13.1.3	Assessments at the Face	23
	13.2	Assessm	ents at 802.11a (5.5 – 5.7GHz) Test Data	24
		13.2.1	Assessments at the Body	
		13.2.2	Assessments at the Head	
		13.2.3	Assessments at the Face	
	13.3		ents at 802.11a (5.745 – 5.825GHz) Test Data	
		13.3.1	Assessments at the Body	
		13.3.2	Assessments at the Head	27

		13.3.3	Assessments at the Face	
	13.4	Assessm	nents at 802.11b (2.412 – 2.462MHz) Test Data	29
		13.4.1	Assessments at the Body	
			Assessments at the Head	
		13.4.3	Assessments at the Face	
	13.5	Shorten	Scan Assessment	
14.0	Simult	aneous T	ransmission Exclusion	
15.0	Conclu	usion		

APPENDICES

А	Measurement Uncertainty	32
	Probe Calibration Certificates	
С	Dipole Calibration Certificates	62
	1	

Part 2 of 2

APPENDICES (continued)

D	Test System Verification Scans	
Е	DUT Scans (Shortened Scan and Highest SAR configurations)	
	DUT scans	
G	DUT Supplementary Data (Power Slump)	
Η	DUT Test Position Photos	
Ι	DUT, Body worn and Audio Accessories Photos	

Report Revision History

Date	Revision	Comments
4/3/2012	0	Initial release
6/13/2012	А	Revise report per TCB correspondence
6/28/2012	В	Revise report per TCB correspondence
7/10/2012	С	Revise report per TCB correspondence

1.0 Introduction

This report details the utilization, test setup, test equipment, and test results of the Specific Absorption Rate (SAR) measurements performed at the Motorola Solutions Inc. EME Test Laboratory for model number EWP3200.

2.0 **Abbreviations / Definitions**

BT: Bluetooth **CNR:** Calibration Not Required **CPU:** Computer Processing Unit DC: Duty Cycle **DUT:** Device Under Test DSSS: Direct Sequence Spread Spectrum **EME:** Electromagnetic Energy FHSS: Frequency Hopping Spread Spectrum NA: Not Applicable OFDM: Orthogonal Frequency Division Multiplexing PTT: Push to Talk **QPSK:** Quadrature Phase-Shift Keying **RF:** Radio Frequency SAR: Specific Absorption Rate UNII: Unlicensed National Information Infrastructure VoIP: Voice Over Internet Protocal VoWLAN: Voice Over WLAN WLAN: Wireless Local-Area Network

Audio accessories: These accessories allow communication while the DUT is worn on the body.

Body worn accessories: These accessories allow the DUT to be worn on the body of the user.

Maximum Power: Defined as the upper limit of the production line final test station.

3.0 **Referenced Standards and Guidelines**

This product is designed to comply with the following applicable national and international standards and guidelines.

- IEC62209-1*(2005) Procedure to determine the specific absorption rate (SAR) for handheld devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)
- United States Federal Communications Commission, Code of Federal Regulations; Rule Part 47CFR § 2.1093(d) sub-part J:2011
- Federal Communications Commission, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields", OET Bulletin 65, Supplement C (Edition 01-01), FCC, Washington, D.C.: June 2001.

- IEEE 1528*(2003), Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques
- American National Standards Institute (ANSI) / Institute of Electrical and Electronics Engineers (IEEE) C95. 1-1992
- Institute of Electrical and Electronics Engineers (IEEE) C95.1-2005
- International Commission on Non-Ionizing Radiation Protection (ICNIRP) 1998
- Ministry of Health (Canada) Safety Code 6 (2009), Limits of Human Exposure to Radio frequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz
- Australian Communications Authority Radio communications (Electromagnetic Radiation -Human Exposure) Standard (2003)
- ANATEL, Brazil Regulatory Authority, Resolution No. 303 of July 2, 2002 "Regulation of the limitation of exposure to electrical, magnetic, and electromagnetic fields in the radio frequency range between 9 kHz and 300 GHz." and "Attachment to resolution # 303 from July 2, 2002"
- IEC62209-2 Edition 1.0 2010-03, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Human models, instrumentation, and procedures Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz).
 - * The IEC62209-1 and IEEE 1528 are applicable for hand-held devices used in close proximity to the ear only.

4.0 SAR Limits

	SAR (W/kg)					
EXPOSURE LIMITS	(General Population /	(Occupational /				
	Uncontrolled Exposure	Controlled Exposure				
	Environment)	Environment)				
Spatial Average - ANSI -						
(averaged over the whole body)	0.08	0.4				
Spatial Peak - ANSI -						
(averaged over any 1-g of tissue)	1.6	8.0				
Spatial Peak – ICNIRP/ANSI -						
(hands/wrists/feet/ankles averaged over 10-g)	4.0	20.0				
Spatial Peak - ICNIRP -						
(Head and Trunk 10-g)	2.0	10.0				

TABLE 1

5.0 SAR Result Scaling Methodology

The calculated 1-gram and 10-gram averaged SAR results indicated as "Max Calc. 1g-SAR" and "Max Calc.10g-SAR" in the data tables is determined by scaling the measured SAR to account for power leveling variations and power slump. A table and graph of output power versus time is provided in APPENDIX G. For this device the "Max Calc. 1g-SAR" and "Max Calc.10g-SAR" are scaled using the following formula:

$$Max_Calc = SAR_meas \cdot 10^{\frac{-Drift}{10}} \cdot \frac{P_max}{P_int} \cdot DC$$

P_max = Maximum Power (W) P_int = Initial Power (W) Drift = DASY drift results (dB) SAR_meas = Measured 1-g or 10-g Avg. SAR (W/kg) DC = Transmission mode duty cycle in % where applicable 50% duty cycle is applied for PTT operation

```
Note: for conservative results, the following are applied:
If P_int > P_max, then P_max/P_int = 1.
Drift = 1 for positive drift
```

Additional SAR scaling was applied using the methodologies outlined in FCC KDB450824 using tissue sensitivity values. SAR was scaled for conditions where the tissue permittivity was measured above the nominal target and for tissue conductivity that was measured below the nominal target. These scaling conditions only allow for positive SAR scaling. Negative or reduced SAR scaling is not permitted.

6.0 **Description of Device Under Test (DUT)**

This device is a VoIP phone based on WLANa/b/g/n (VoWLAN) for phone, dispatch and data application. WLAN supports the following bands; 802.11b/g/n (2.4 GHz ISM band) Direct Sequence Spread Spectrum (DSSS) and 802.11a/n (5 GHz UNII bands) Orthogonal Frequency Division Multiplexing (OFDM).

The maximum duty cycle for WLANa/b/g/n is 50% which is maintained within the VoWLAN device's CPU processing limitations.

Bluetooth: Frequency Hopping Spread Spectrum (FHSS) GFSK (1Mbps) maximum duty cycle is 95%. The Bluetooth is used for any application in which data/voice is exchanged with an external Bluetooth device.

This device will be marketed to and used by the general population. This device may be used while held against the head in voice mode, in front of the face in PTT mode, and against the body in phone, PTT or Data modes.

This device is capable of operating in the BT 2400-2483.5MHz; 802.11a/n 5.15-5.25GHz; 802.11a/n 5.25-5.35GHz; 802.11a/n 5.47-5.725GHz; 802.11a/n 5.725-5.825GHz; 802.11b/g/n 2.400-2.483.5GHz bands.

The rated conducted power is BT 5mW; 802.11a/n (5.15-5.25GHz) 28.2mW; 802.11a/n (5.25-5.35GHz) 56.2mW; 802.11a/n (5.47-5.725GHz) 56.2mW; 802.11a/n (5.725-5.825 GHz) 56.2mW; 802.11b (2.400-2.4835GHz) 63mW; 802.11g/n (2.400-2.4835GHz) 17.8mW.

The maximum conducted output power is BT 10mW; 802.11a/n (5.15-5.25 GHz) 39.8mW; 802.11a/n (5.25-5.35 GHz) 79.3mW; 802.11a/n (5.47-5.725 GHz) 79.3mW; 802.11a/n (5.725-5.825 GHz) 79.3mW; 802.11b (2.400-2.4835 GHz) 79.3mW; 802.11g/n (2.400-2.4835 GHz) 70.8mW @ channels 2-10; 802.11g/n (2.400-2.4835 GHz) 31.62mW @ channels 1 & 11 as defined by the upper limit of the production line final test station.

Note that 802.11g/n has a lower power level than 802.11b and therefore 802.11g/n was not tested.

7.0 **Optional Accessories and Test Criteria**

This device is offered with optional accessories. All accessories were individually evaluated during the test plan creation to determine if testing was required. The following sections identify the test criteria and details for each accessory category.

7.1 Antennas

There is one internal dual-band antenna offered for this product. The table below lists its description by band.

Antenna Models Description		*Tested		
0789971V87	(2412-2484 MHz), 1/4 wave, 2.4 – 3.2 dBi	Yes		
	Dual-Band Planar Inverted-F Antenna [PIFA]			
0789971V87	(5180 - 5805 MHz), 1/4 wave, 1.9 – 2.4 dBi	Yes		
	*Defer to Exhibit 7D for enterna concretion distances			

TABLE 2

*Refer to Exhibit 7B for antenna separation distances.

7.2 Batteries

There is one battery offered for this product. The table below lists the battery description.

TABLE 3

Battery Models	Description	*Tested	Comments
SNN5793A	Li Ion 3.7V 1750 mAh – BK10 EWP1x00, EWP2x00 and EWP3x00	Yes	Tested with battery cover FHN7740A.

7.3 Body worn Accessories

All body worn accessories were considered. The table below lists the body worn accessories, and body worn accessory descriptions.

Body worn Models	Description	*Tested	Comments			
EWPACCUC001	Carry Case for EWP2x00 and EWP3x00	Yes				
SYN2680A	Plastic holster with clip, EWP3x00, EWP2x00 TEAM-BUN-XX-2x00	Yes				
SYN2678A	Cord Lanyard for EWP1x00, EWP2x00 and EWP3x00		Lanyard is used only to secure the device to the garment while being carried by the			
EWPACCLY002	Cord Lanyard		offered body worn accessories.			

TABLE 4

*Refer to Exhibit 7B for antenna separation distances.

7.4 Audio Accessories

All audio accessories were considered. The table below lists the offered audio accessories and their descriptions. Exhibit 7B illustrates photos of the tested audio accessories.

IADLE 5				
Audio Acc. Models	Description	Tested	Comments	
RMN5130A	Mono over the ear headset W/MIC & PTT-2.5mm	Yes		
SJYN0264C	Mono in the ear headset w/MIC & PTT	Yes		
RCH50 (A9132697=25-156511-01)	Rugged Cabled Headset and headset adapter cable	Yes		
SKN6371C	Data Cable	Yes		

TABLE 5

8.0 **Description of Test System**

8.1 Descriptions of Robotics/Probes/Readout Electronics

The laboratory utilizes a Dosimetric Assessment System (DASY5TM) SAR measurement system Version 52.6.2.424 manufactured by Schmid & Partner Engineering AG (SPEAGTM), of Zurich Switzerland. The test system consists of a Stäubli RX90L robot, DAE4 and ES3DV3 & EX3DV4 E-field probes. The DASY5TM system is operated per the instructions in the DASY5TM Users Manual. The complete manual is available directly from SPEAGTM. All measurement equipment used to assess EME SAR compliance was calibrated according to ISO/IEC 17025 A2LA guidelines. Section 9.0 presents additional test equipment information. Appendices B and C present the applicable calibration certificates. The E-field probe first scans a coarse grid over a large area inside the phantom in order to locate the interpolated maximum SAR distribution. After the coarse scan measurement, the probe is automatically moved to a position at the interpolated maximum. The subsequent scan can directly use this position as reference for the cube evaluations.

8.2 **Description of Phantom(s)**

8.2.1 **Dual Flat Phantom**

Phantom ID	Material Parameters	Phantom Dimensions (mm)	Material Thickness (mm)	Support structure material	Loss Tangent (wood)
	200MHz -6GHz;				
	Er = 5				
	Loss Tangent =		2mm +/-		
Dual flat 1002	< 0.05	414x390	0.2mm	Wood	< 0.05

TABLE 6

8.2.2 SAM Phantom

		IADLE /		
Phantom ID	Material Parameters	Material Thickness (mm)	Support structure material	Loss Tangent (wood)
	300MHz -6GHz; Er			
	= 5			
	Loss Tangent =	2mm +/-		
SAMTP1209	< 0.05	0.2mm	Wood	< 0.05
	300MHz -6GHz; Er			
	=<5,			
	Loss Tangent =	2mm +/-		
SAMTP1234	< 0.05	0.2mm	Wood	< 0.05

TABLE 7

8.2.3 Elliptical Phantom

Not Applicable

8.3 **Description of Simulated Tissue**

The simulated tissue used is compliant to that specified in FCC Supplement C (Edition 01-01) to OET Bulletin 65 (Edition 97-01) and IEEE Std 1528 - 2003 "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques". The simulated tissue used is also compliant to that specified in IEC62209-1 (2005) and adopted by CENELEC as EN62209-1 (2006).

The sugar based simulate tissue is produced by placing the correct measured amount of De-ionized water into a large container. Each of the dried ingredients are weighed and added to the water carefully to avoid clumping. If the solution has a high sugar concentration the water is pre-heated to aid in dissolving the ingredients. For Diacetin and similar type simulates, sugar and HEC ingredients are not needed. The solution is mixed thoroughly, covered, and allowed to sit overnight prior to use.

The simulated tissue mixture was mixed based on the Simulated Tissue Composition indicated in table 8 below for 2.450 & 5.0 GHz. During the daily testing of this product, the applicable mixture was used to measure the Dielectric parameters at each of the tested frequencies to verify that the Dielectric parameters were within the tolerance of the tissue specifications.

% of listed ingredients	2450	MHz	5GHz ⁽¹⁾		
g- curents	Head	Body	Head	Body	
Sugar	NA	NA	NA	NA	
Diacetin	NA	30	NA	NA	
De ionized					
-Water	51.0	NA	NA	NA	
Salt	48.8	70	NA	NA	
HEC	0.1	NA	NA	NA	
Bact.	0.1	NA	NA	NA	

Note: 1) SPEAG provides Motorola proprietary simulant ingredients for the 5GHz band. 2) Reference section 10.1 for target parameters

9.0 Additional Test Equipment

The table below lists additional test equipment used during the SAR assessment.

IABLE 9							
Equipment Type	Model Number	Serial Number	Calibration Date	Calibration Due Date			
Power Meter (Agilent)	E4419B	MY45103725	4/6/2011	4/6/2012			
P-Series Power Meter (Agilent)	N1911A	GB45100276	11/9/2011	11/30/2012			
E-Series Avg. Power Sensor (Agilent)	E9301B	MY50280001	8/8/2011	8/8/2012			
E-Series Avg. Power Sensor (Agilent)	E9301B	MY50290001	8/8/2011	8/8/2012			
Wideband Power Sensor (Agilent)	N1921A	MY45240599	11/9/2011	11/30/2012			
Bi-Directional Coupler (NARDA)	3024	61150	11/14/2011	11/14/2013			
Bi-Directional Coupler (NARDA)	3022	77115	3/3/2010	3/3/2012			
Signal Generator (Agilent)	E4438C	MY42082269	1/24/2012	1/24/2014			
Signal Generator (Agilent)	E4428C	MY47381119	6/24/2011	6/24/2013			
Dickson Temperature Recorder	TM125	1195889	3/9/2011	3/9/2012			
Omega Digital Thermometer with J Type TC Probe	HH200A	20857	10/28/2011	10/28/2012			
Omega Digital Thermometer with J Type TC Probe	HH202A	18801	5/18/2011	5/18/2012			
Omega Digital Thermometer with J Type TC Probe	HH202A	18812	5/3/2011	5/3/2012			
Agilent PNA-L Network Analyzer	N5230A	MY45001092	6/9/2011	6/9/2012			
Dielectric Probe Kit (HP)*	85070C	US99360076	CNR	CNR			
Speag Dipole	D5GHzV2	1017	9/20/2011	9/20/2013			
Speag Dipole	D2450V2	704	11/25/2010	11/25/2012			

TABLE 9

Note: * Calibration is not required by the OEM. The dielectric probe kit is used in conjunction with a calibrated network analyzer. The dielectric probe kit is calibrated for short, open and load using the calibrated network analyzer. A saline solution is routinely measured as an additional check point.

10.0 SAR Measurement System Verification

The SAR measurements were conducted with probe model/serial number ES3DV3/3291 and EX3DV4/3735. The system performance check was conducted daily and within 24 hours prior to testing. DASY output files of the probe/dipole calibration certificates and system performance test results are included in appendices B, C, D respectively.

Dipole validation scans using head tissue equivalent medium are provided in APPENDIX D. The EMS EME lab validated the dipole to the applicable IEEE 1528-2003 system performance targets. Within the same day system validation was performed using FCC body tissue parameters to generate the system performance target values for body at the applicable frequency. The results of the EMS EME system performance validation are provided herein.

10.1 Equivalent Tissue Test Results

Simulated tissue prepared for SAR measurements is measured daily and within 24 hours prior to actual SAR testing to verify that the tissue is within +/- 10% (2.4GHz and 5GHz) of target parameters for each tested channel. This measurement is done using the applicable equipment indicated in section 9.0.

The table below summarizes the measured tissue parameters used for the SAR assessment.

			-				
Frequency	Tissue	Conductivity	Dielectric	Conductivity	Dielectric Constant		
(MHz)	Туре	Target (S/m)	Constant Target		Meas.	Tested Date	
(/	-J F -		e Measurements fo				
5200	ECC D 1	5.30	49.0	4.93	48.9	2/7/12	
5200	FCC Body	(4.77 - 5.83)	(46.6 - 51.5)	4.93	49.0	2/13/12	
5240	FCC Body	5.35 (4.81 - 5.88)	49.0 (46.5 - 51.4)	5.03	49.1	2/13/12	
5260	FCC Body	5.37	48.9	4.99	48.9	2/12/12	
3200	FCC Body	(4.84 - 5.91)	(46.5 - 51.4)	5.05	49.2	2/13/12	
5320	FCC Body	5.44 (4.90 - 5.99)	48.9 (46.4 - 51.3)	5.08	48.9	2/13/12	
	FCC Body		10.6	5.66	48.3	2/8/12	
5500		5.65 (5.09 - 6.22)	48.6 (46.2 - 51.0)	5.41	48.7	2/13/12	
		(5.0) - 0.22)	(40.2 - 51.0)	5.38	46.8	2/14/12	
5600	FCC Body	5.77	48.5	5.55	48.4	2/13/12	
3000	FCC Body	(5.19 - 6.34)	(46.1 - 50.9)	5.51	46.6	2/14/12	
5620	FCC Body	5.79 (5.21 - 6.37)	48.4 (46.0 - 50.9)	5.54	46.6	2/14/12	
5660	FCC Body	5.84 (5.25 - 6.42)	48.4 (46.0 - 50.8)	5.60	46.5	2/14/12	
5745	FCC Body	5.94 (5.34 - 6.53)	48.3 (45.9 - 50.7)	5.71	46.6	2/16/12	
		5.00	49.2	5.77	48.0	2/13/12	
5785	FCC Body 5.98	5.98 (5.38 - 6.58)	48.2 (45.8 - 50.6)	5.60	47.6	2/15/12	
		(5.50 0.50)	(15.0 50.0)	5.77	46.5	2/16/12	
		< 00	48.2	5.80	47.9	2/13/12	
5800	FCC Body	Body 6.00 (5.40 - 6.60)	48.2 (45.8 - 50.6)	5.62	47.6	2/15/12	
		(3.40 - 0.0	(3.40 0.00)	(+5.0 50.0)	5.79	46.5	2/16/12
5805	FCC Body	6.01 (5.41 - 6.61)	48.2 (45.8 - 50.6)	5.80	46.5	2/16/12	

TABLE 10

				u)		
				a 1 4 4	Dielectric	
Frequency (MHz)	Tissue Type	Conductivity Target (S/m)	Dielectric Constant Target	Conductivity Meas. (S/m)	Constant Meas.	Tested Date
(11112)	Tissue Type		e Measurements fo		Ivitas.	Testeu Date
				4.90	33.9	2/8/12
				4.94	34.3	2/9/12
5200	IEEE Head	4.66	36.0	4.77	33.9	2/11/12
		(4.19 – 5.13)	(34.2 – 37.8)	4.75	33.9	2/12/12
				4.79	33.8	2/15/12
				4.95	33.8	2/8/12
5240	IEEE Head	4.70	36.0	4.99	34.3	2/9/12
		(4.23 – 5.17)	(34.2 – 37.8)	4.82	33.8	2/11/12
				4.92	33.6	2/7/12
5260	IEEE Head	4.72 (4.25 – 5.19)	35.9 (34.1 – 37.7)	5.02	34.2	2/9/12
		(4.25 – 5.19)	(34.1 – 37.7)	4.85	33.8	2/11/12
				5.04	33.6	2/8/12
5320	IEEE Head	4.78	35.9	5.09	34.1	2/9/12
		(4.30 – 5.26)	(34.1 – 37.7)	4.92	33.7	2/11/12
				5.40	32.8	2/8/12
	00 IEEE Head	4.97 (4.47 – 5.46)		5.31	33.7	2/9/12
5500			35.7 (33.9 – 37.4)	5.14	33.8	2/10/12
				5.12	33.3	2/11/12
				4.75	33.9	2/12/12
		, 5.07	35.5 (33.7 – 37.3)	5.35	33.0	2/8/12
5,000				5.43	33.5	2/9/12
5600	IEEE Head	(4.56 – 5.58)		5.25	33.5	2/10/12
				5.26	33.1	2/11/12
			35.5 (33.7 - 37.3)	5.46	33.5	2/9/12
5620	IEEE Head	5.09 (4.58 - 5.60)		5.28	33.5	2/10/12
		(4.56 – 5.66)	(33.7 - 37.3)	5.25	33.2	2/12/12
		5.10	25.5	5.51	33.4	2/9/12
5660	5660 IEEE Head	5.13 (4.62 - 5.64)	35.5 (33.7 – 37.3)	5.33	33.4	2/10/12
		(1.02 5.01)	(5517 5715)	5.29	33.1	2/12/12
		5.00	25.5	5.62	33.2	2/9/12
5745	IEEE Head	5.22 (4.69 – 5.74)	35.5 (33.7 – 37.3)	5.44	33.3	2/10/12
		(1.0) 5.71)	(55.7 57.5)	5.40	32.9	2/12/12
		5.20	25.5	5.67	33.1	2/9/12
5785	IEEE Head	5.26 (4.73 – 5.78)	35.5 (33.7 – 37.3)	5.49	33.2	2/10/12
		(()	5.45	32.8	2/12/12
		5 27	25.5	5.69	33.1	2/9/12
5800	IEEE Head	5.27 (4.74 – 5.80)	35.5 (33.7 – 37.3)	5.50	33.2	2/10/12
		×/		5.47	32.8	2/12/12
		5.28	35.5	5.69	33.1	2/9/12
5805	IEEE Head	(4.75 – 5.80)	33.3 (33.7 – 37.3)	5.51	33.2	2/10/12
				5.48	32.8	2/12/12

Frequency (MHz)	Tissue Type	Conductivity Target (S/m)	Dielectric Constant Target	Conductivity Meas. (S/m)	Dielectric Constant Meas.	Tested Date
	1	Simulated Tissue	Measurements for	r 2.5GHz testing	5	
2417	FCC Body	1.92 (1.82 – 2.02)	52.7 (50.1 – 55.4)	1.96	47.9	2/18/12
2427	ECC De de	1.94	52.7	1.94	48.2	2/17/12
2437	FCC Body	(1.84 - 2.03)	(50.1 – 55.4)	1.99	47.9	2/18/12
2450	FCC Body	1.95 (1.85 - 2.05)	52.7 (50.1 – 55.3)	2.01	47.8	2/18/12
2457	FCC Body	1.96 (1.86 – 2.06)	52.7 (50.1 – 55.3)	2.02	47.8	2/18/12
0417	IEEE /IEC	1.77	39.3	1.84	39.7	2/16/12
2417	Head	(1.68 – 1.86)	(37.3 – 41.2)	1.83	39.4	2/17/12
2437	IEEE /IEC	1.79	39.2	1.86	39.6	2/16/12
2437	Head	(1.70 - 1.88)	(37.3 – 41.2)	1.85	39.3	2/17/12
2450	IEEE /IEC	1.80	39.2	1.88	39.6	2/16/12
2450	Head	(1.71 – 1.89)	(37.2 – 41.2)	1.87	39.2	2/17/12
2457	IEEE /IEC	1.81	39.2	1.89	3.95	2/16/12
2457	Head	(1.72 - 1.90)	(37.2 – 41.1)	1.88	39.2	2/17/12

TABLE 10 (continued)

10.2 System Check Test Results

System performance checks were conducted each day during the SAR assessment. The results are normalized to 1W. APPENDIX D explains how the targets were set and includes DASY plots for each day during the SAR assessment. The table below summarizes the daily system check results used for the SAR assessment.

				System Check Test Results	Reported SAR values	
				when normalized	for System	
Probe		Dipole Kit /	Reference SAR	to 1W	Check at 1g	Tested
Serial #	Tissue Type	Serial #	@ 1W (W/kg)	(W/kg)	(W/kg)	Date
		Syster	n Check result for	5GHz		
	5200	D5GHzV2 /	80.00 +/- 10%	78.67	1.18	2/7/12
	FCC Body	1017	00.00 1/- 10/0	83.33	1.25	2/13/12
	5500	D5GHzV2 /		90.67	1.36	2/8/12
	FCC Body	1017	86.00 +/- 10%	89.33	1.34	2/13/12
	Tee body	1017		88.67	1.33	2/14/12
	5800	D5GHzV2 /		77.33	1.16	2/13/12
	FCC Body	1017	76.10 +/- 10%	78.00	1.17	2/15/12
	TCC Dody			79.33	1.19	2/16/12
	5200 IEEE /IEC Head	D5GHzV2 / 1017	81.33 +/- 10%	86.67	1.30	2/8/12
3735				84.00	1.26	2/9/12
5755				86.67	1.30	2/11/12
				88.00	1.32	2/12/12
				86.67	1.30	2/15/12
	5500 IEEE /IEC Head	D5GHzV2 / 1017	88.00 +/- 10%	94.00	1.41	2/9/12
				91.33	1.37	2/10/12
				91.33	1.37	2/11/12
				94.67	1.42	2/12/12
	5800	D5GHzV2 /	82.40 +/- 10%	88.67	1.33	2/9/12
	IEEE /IEC	1017		86.00	1.29	2/10/12
	Head			88.67	1.33	2/12/12
System Check result for 2.5GHz				· · · ·		
	2450 FCC Body	D2450V2 / 704	52.78+/- 10%	51.00	1.53	2/18/12
3291	2450 IEEE /IEC	D2450V2 / 704	55.33+/- 10%	59.00	1.77	2/16/12
	Head			53.67	1.61	2/17/12

Note: See APPENDIX D for an explanation of the reference SAR targets stated above.

11.0 Environmental Test Conditions

The EME Laboratory's ambient environment is well controlled resulting in very stable simulated tissue temperature and therefore stable dielectric properties. Simulated tissue temperature is measured prior to each scan to insure it is within $+/-2^{\circ}C$ of the temperature at which the dielectric properties were determined. The liquid depth within the phantom used for measurements was at least 15cm. Additional precautions are routinely taken to ensure the stability of the simulated tissue such as covering the phantoms when scans are not actively in process in order to minimize evaporation. The lab environment is continuously monitored. The table below presents the range and average environmental conditions during the SAR tests reported herein:

	Target	Measured
		Range: 21.2 – 22.5°C
Ambient Temperature	18 - 25 °C	Avg. 21.9 °C
		Range: 33.7 – 59.0 %
Relative Humidity	30 - 70 %	Avg. 50.4%
		Range: 19.9 – 22.5°C
Tissue Temperature	NA	Avg. 20.9°C

TABLE 12

The EME Lab RF environment uses a Spectrum Analyzer to monitor for extraneous large signal RF contaminants that could possibly affect the test results. If such unwanted signals are discovered the SAR scans are repeated.

12.0 **DUT Test Methodology**

12.1 Measurements

SAR measurements were performed using the DASY system described in section 8.0 using coarse and zoom scans. Dual flat and SAM phantoms were filled with applicable simulated tissue, which were used for body, head and face testing.

12.2 **DUT Configuration(s)**

The DUT is a portable device with BT (FHSS) and 802.11a/b/g (DSSS, OFDM) transmission signaling operational at the body, head, and face using the offered accessories. The device is placed in the test positions presented in Appendix I.

12.3 **DUT Positioning Procedures**

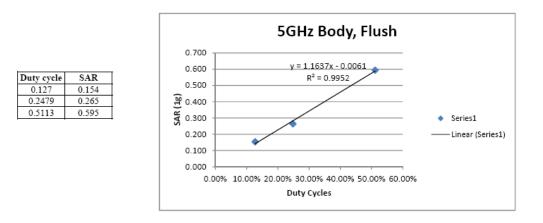
The positioning of the device for each body location is described below and illustrated in APPENDIX H.

12.3.1 Body

The DUT was positioned in normal use configuration against the phantom with the offered body worn accessory as well as with and without the offered audio accessories as applicable.

12.3.2 Head

The DUT was placed against the right and left heads of the SAM phantom in the cheek touch and tilt positions.


12.3.3 Face

The DUT was positioned with its' front side separated 2.5cm from the phantom.

12.4 SAR Linearity Test

This device is unable to operate at 100% duty factor of its maximum duty cycle (50%) for the duration of a SAR test due to thermal restriction. Therefore, SAR linearity was verified for the highest 5GHz band frequency channel (5.6GHz) at the body using 25%, 50% and 100% of the intended maximum duty cycle (i.e. 12.7%, 24.8% and 51.1%). The table and chart below illustrates SAR linearity results.

Note – in order to achieve SAR data above the system noise level the DUT was positioned in a non-user configuration. SAR results are for SAR linearity purpose only.

12.5 DUT Test Plan

Test channels were selected per the requirement of OET/KDB 248227 D01 "SAR Measurement Procedures for 802.11a/b/g transmitters (revised May 2007)". All modes of operation identified in section 6.0 were considered during the development of the test plan.

In some cases the initial power listed herein may exceed the reported maximum power due to software step size tuning limitations. However, the initial powers measured are not greater than the allowed 5% of the reported maximum power.

ModeData rateData rateChannelMaximute requencyMaximute Conducted (W)Maximute Conducted (W)Defail PowerDefail rest (%)Defail rest rest (%)Defail rest rest rest restDefail rest rest restDefail rest rest rest restDefail rest rest rest restDefail rest rest rest restDefail rest rest rest restDefail rest rest rest restDefail rest rest rest restDefail rest rest rest rest restDefail rest rest rest restDefail rest rest rest restDefail rest rest rest rest restDefail rest rest rest rest restDefail rest rest rest rest rest rest restDefail rest rest rest rest rest rest restDefail rest res						TADLE 15				
$802.11a \\ Mode \\ Mode \\ Mode \\ Mode \\ Math Math Matrix M$	Mode	Band	rate	Channel		Conducted Power	Conducted Power		test	adjacent
$802.11a \\ Mode \\ Mode \\ Mode \\ 802.11a \\ 802$			6	36	5180	0.0398	0.0398	0.03%	\checkmark	
$802.11a = \frac{5.18 + 5.32 GHz}{Mode} = \frac{6}{6} = \frac{48}{52} = \frac{5240}{5260} = \frac{0.00793}{0.0793} = \frac{0.0407}{0.0759} = \frac{4.34\%}{4.34\%} = $			6	40	5200	0.0398	0.0407	2.36%		$\sqrt{*}$
$802.11a = \frac{5.32 \text{ GHz}}{Mode} = \frac{6}{6} = \frac{52}{5260} = \frac{5260}{0.0793} = \frac{0.0759}{0.0793} = \frac{4.34\%}{0.0759} = \frac{4.34\%}{4.34\%} = \frac{1}{4.34\%} = \frac{1}{4.$			6	44	5220	0.0398	0.0398	0.03%		
$802.11a \\ Mode \\ 802.11a \\ Mode \\ 802.11a \\ $		5.18 -	6	48	5240	0.0398	0.0407	2.36%	$\sqrt{*}$	
		6	52	5260	0.0793	0.0759	-4.34%	$\sqrt{*}$		
6 64 5320 0.0793 0.0759 4.34% $\sqrt{*}$ 802.11a $\frac{6}{6}$ 100 5500 0.0793 0.0759 4.34% $\sqrt{*}$ 6 104 5520 0.0793 0.0759 4.34% $\sqrt{*}$ 6 108 5540 0.0793 0.0759 4.34% $\sqrt{*}$ 6 112 5560 0.0793 0.0759 4.34% $\sqrt{*}$ 6 112 5560 0.0793 0.0759 4.34% $\sqrt{*}$ 6 116 5580 0.0793 0.0759 4.34% $\sqrt{*}$ 6 124 5620 0.0793 0.0794 0.17% $\sqrt{*}$ 6 128 5640 0.0793 0.0776 -2.11% $\sqrt{*}$ 6 136 5680 0.0793 0.0776 -2.11% $\sqrt{*}$ 5.745 - 5.825GHz 6 157 5785 0.0793 0.0776 -2.11% $\sqrt{*}$			6	56	5280	0.0793	0.0759	-4.34%		
$802.11a = \begin{array}{ c c c c c c c c c c c c c c c c c c c$			6	60	5300	0.0793	0.0741	-6.52%		
$802.11a \\ 802.11a \\ 802.11a \\ 802.11a \\ 802.11a \\ 802.11a \\ 5.5 \\ 5.7GHz \\ \hline 6 \\ 112 \\ 6 \\ 112 \\ 6 \\ 112 \\ 6 \\ 112 \\ 5560 \\ 0.0793 \\ 0.0793 \\ 0.0793 \\ 0.0793 \\ 0.0793 \\ 0.0794 \\ 0.17\% \\ -4.34\% \\ \\ -4.34\% \\ \\ -6 \\ 112 \\ 5560 \\ 0.0793 \\ 0.0793 \\ 0.0794 \\ 0.17\% \\ -4.34\% \\ \\ -6 \\ 116 \\ 5580 \\ 0.0793 \\ 0.0793 \\ 0.0794 \\ 0.17\% \\ -4.34\% \\ \\ -6 \\ 120 \\ 5600 \\ 0.0793 \\ 0.0794 \\ 0.17\% \\ -4.34\% \\ \\ -6 \\ 120 \\ 5600 \\ 0.0793 \\ 0.0794 \\ 0.17\% \\ -4.34\% \\ \\ -6 \\ 128 \\ 5640 \\ 0.0793 \\ 0.0793 \\ 0.0794 \\ 0.17\% \\ -2.11\% \\ \\ -6 \\ 140 \\ 5700 \\ 0.0793 \\ 0.0776 \\ -2.11\% \\ \\ -6 \\ 140 \\ 5700 \\ 0.0793 \\ 0.0776 \\ -2.11\% \\ \\ -6 \\ 153 \\ 5765 \\ 0.0793 \\ 0.0776 \\ -2.11\% \\ \\ -6 \\ 161 \\ 5805 \\ 0.0793 \\ 0.0776 \\ -2.11\% \\ \\ -6 \\ 161 \\ 5805 \\ 0.0793 \\ 0.0776 \\ -2.11\% \\ \\ -6 \\ 161 \\ 5805 \\ 0.0793 \\ 0.0776 \\ -2.11\% \\ \\ -6 \\ 161 \\ 5805 \\ 0.0793 \\ 0.0776 \\ -2.11\% \\ \\ -6 \\ 161 \\ 5805 \\ 0.0793 \\ 0.0776 \\ -2.11\% \\ \\ -6 \\ 161 \\ 5805 \\ 0.0793 \\ 0.0776 \\ -2.11\% \\ \\ -6 \\ 161 \\ 5805 \\ 0.0793 \\ 0.0776 \\ -2.11\% \\ \\ -6 \\ 161 \\ 5805 \\ 0.0793 \\ 0.0776 \\ -2.11\% \\ \\ -6 \\ 161 \\ 5805 \\ 0.0793 \\ 0.0776 \\ -2.11\% \\ \\ -6 \\ 161 \\ 5805 \\ \\ -6 \\ 161 \\ 5805 \\ 0.0793 \\ 0.0776 \\ -2.11\% \\ \\ -6 \\ 161 \\ 5805 \\ \\ -6 \\ 161 \\ 5805 \\ 0.0793 \\ 0.0776 \\ -2.11\% \\ \\ -2.11\% \\ \\ -6 \\ -2.11\% \\ -2.11\% \\ \\ -2.11\% \\ \\ -2.11\% \\ \\ -2.11\% \\ \\ -2.11\% \\ -2.11\% \\ \\ -2.11\% \\ -2.11\% \\ \\ -2.11\% \\ -2.11\% \\ -2.11\% \\ -2.11\% \\ -2.11\% \\ -2.11\% \\ -2.11\% \\ -2.11\% \\ -2.11\% \\ -2.11\% \\ -2.11\% $			6	64	5320	0.0793	0.0759	-4.34%	$\sqrt{*}$	
$802.11a \\ 802.11a \\ 802.11a \\ 5.5 - 5.7 GHz \\ 5.7 GHz \\ 5.7 GHz \\ 6 \\ 110 \\ 6 \\ 110 \\ 6 \\ 110 \\ 6 \\ 110 \\ 120 \\ 560 \\ 0 \\ 120 \\ 6 \\ 120 \\ 560 \\ 0 \\ 120 \\ 560 \\ 0 \\ 0.0793 \\ 0.0793 \\ 0.0793 \\ 0.0794 \\ 0.17\% \\ 0 \\ 112 \\ 560 \\ 0 \\ 0.0793 \\ 0.0794 \\ 0.17\% \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $			6	100	5500	0.0793	0.0776	-2.11%		$\sqrt{*}$
802.11a 6 112 5560 0.0793 0.0759 -4.34% 5.5 - 5.7GHz 6 116 5580 0.0793 0.0794 0.17%			6	104	5520	0.0793	0.0759	-4.34%	\checkmark	
802.11a 6 116 5580 0.0793 0.0759 -4.34% \checkmark 5.7GHz 6 120 5600 0.0793 0.0794 0.17% \checkmark 6 124 5620 0.0793 0.0813 2.50% \checkmark 6 128 5640 0.0793 0.0794 0.17% \checkmark 6 132 5660 0.0793 0.0794 0.17% \checkmark 6 132 5660 0.0793 0.0794 0.17% \checkmark 6 136 5680 0.0793 0.0794 0.17% \checkmark 6 140 5700 0.0793 0.0794 0.17% \checkmark 5.745 5.825GHz 6 153 5765 0.0793 0.0776 -2.11% \checkmark 5.745 6 157 5785 0.0793 0.0724 -8.65% \checkmark 6 161 5805 0.0793 0.0724 -8.65% \checkmark			6	108	5540	0.0793	0.0759	-4.34%		
	902 11-		6	112	5560	0.0793	0.0759	-4.34%		
	802.11a		6	116	5580	0.0793	0.0759	-4.34%	\checkmark	
			6	120	5600	0.0793	0.0794	0.17%		$\sqrt{*}$
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		5.70112	6	124	5620	0.0793	0.0813	2.50%	$\sqrt{*}$	
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			6	128	5640	0.0793	0.0794	0.17%		
			6	132	5660	0.0793	0.0794	0.17%		$\sqrt{*}$
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			6	136	5680	0.0793	0.0776	-2.11%	\checkmark	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			6	140	5700	0.0793	0.0794	0.17%		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			6	149	5745	0.0793	0.0776	-2.11%	$\sqrt{*}$	
			6	153	5765	0.0793	0.0776	-2.11%		
			6	157	5785	0.0793	0.0776	-2.11%	$\sqrt{*}$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		01020 0112	6	161	5805	0.0793	0.0759	-4.34%		$\sqrt{*}$
ModeData rate (Mbps)Test ChannelFrequency (MHz)Conducted Power (W)Conducted Power (W)Delta** 			6	165	5825	0.0793	0.0724	-8.65%	\checkmark	
MCSO 40 5200 0.0398 0.0351 n/a 5.18 - 5.32 GHz MCSO 44 5240 0.0398 0.0364 n/a 802.11n MCSO 48 5260 0.0793 0.0662 n/a 802.11n MCSO 52 5300 0.0793 0.0662 n/a MCSO 52 5300 0.0793 0.0748 n/a therefore power was not retuned to be within +/- 5% of maximum 5.5 - 5.7GHz MCSO 112 5560 0.0793 0.0772 n/a	Mode	Band	rate			Conducted Power	Conducted Power		Com	ment
S02.11n MCSO 44 5240 0.0398 0.0364 n/a Testing not required and therefore power was not retuned to be within +/- 5% of maximum 802.11n MCSO 48 5260 0.0793 0.0662 n/a Testing not required and therefore power was not retuned to be within +/- 5% of maximum 802.11n MCSO 56 5320 0.0793 0.0662 n/a Testing not required and therefore power was not retuned to be within +/- 5% of maximum 5.5 - 5.7 GHz MCSO 112 5560 0.0793 0.0716 n/a maximum			MCSO	36	5180	0.0398	0.0388	n/a		
S02.11n MCSO 48 5260 0.0793 0.0662 n/a required and therefore power was not retuned to be within +/- 5% of maximum 802.11n MCSO 52 5300 0.0793 0.0662 n/a required and therefore power was not retuned to be within +/- 5% of maximum 5.5 - 5.7 GHz MCSO 112 5560 0.0793 0.0772 n/a maximum			MCSO	40	5200	0.0398	0.0351	n/a		
$802.11n \begin{array}{ c c c c c c c c c c c c c c c c c c c$			MCSO	44	5240	0.0398	0.0364	n/a	Testi	ng not
MCSO 52 5300 0.0793 0.0748 n/a was not retund to be within +/- 5% of maximum 5.5 - 5.7 GHz MCSO 112 5560 0.0793 0.0772 n/a was not retund to be within +/- 5% of maximum	802.11n	5.32 GHz	MCSO	48	5260	0.0793	0.0662	n/a	requir	ed and
MCSO 56 5320 0.0793 0.0693 n/a be within +/- 5% of maximum 5.5 - 5.7 GHz MCSO 100 5500 0.0793 0.0716 n/a maximum			MCSO	52	5300	0.0793	0.0748	n/a		1
5.5 - 5.7GHz MCSO 100 5500 0.0/93 0.0/16 n/a 5.7GHz MCSO 112 5560 0.0793 0.0772 n/a			MCSO	56	5320	0.0793	0.0693	n/a	be within	+/- 5% of
5.7GHz MCSO 112 5560 0.0793 0.0772 n/a			MCSO	100	5500	0.0793	0.0716	n/a	maxi	mum
			MCSO	112	5560	0.0793	0.0772	n/a		
			MCSO	140	5700	0.0793	0.0703	n/a		

TABLE 13

Note * - Channel was selected during the development of the test plan. Note ** - Delta is calculated by:

(Measured conducted power - Maximum conducted power)/ Maximum conducted power

Mode	Band	Data rate (Mbps)	Test Channel	Frequency (MHz)	Maximum Conducted Power (W)	Measured Conducted Power (W)	Delta** (%)	Default test channel
		1	1	2412	0.0793	0.0832	4.68%	
		1		2417	0.0793	0.0832	4.89%	$\sqrt{*}$
		1		2422	0.0793	0.0794	0.17%	
		1		2427	0.0793	0.0794	0.17%	
	2.412 -	1		2432	0.0793	0.0724	-8.65%	
802.11b	2.462	1	6	2437	0.0793	0.0832	4.89%	$\sqrt{*}$
	GHz	1		2442	0.0793	0.0741	-6.52%	
		1		2447	0.0793	0.0708	-10.73%	
		1		2452	0.0793	0.0759	-4.34%	
		1		2457	0.0793	0.0724	-8.65%	$\sqrt{*}$
		1	11	2462	0.0793	0.0741	-7.02%	
Mode	Band	Data rate (Mbps)	Test Channel	Frequency (MHz)	Maximum Conducted Power (W)	Measured Conducted Power (W)	Delta** (%)	Comment
		6	Ch 1	2412	0.03162	0.0347	9.65%	
		6	Ch 2	2417	0.0708	0.0692	-2.28%	
		6	Ch 3	2422	0.0708	0.0692	-2.28%	
		6	Ch 4	2427	0.0708	0.0724	2.33%	Testing not
	2.412 -	6	Ch 5	2432	0.0708	0.0724	2.33%	Testing not required
802.11g/n	2.462	6	Ch 6	2437	0.0708	0.0708	0.00%	because of
	GHz	6	Ch 7	2442	0.0708	0.0724	2.33%	lower power levels.
		6	Ch 8	2447	0.0708	0.0661	-6.67%	10 (015.
		6	Ch 9	2452	0.0708	0.0676	-4.50%	
		6	Ch 10	2457	0.0708	0.0692	-2.28%	
	1 1	6	Ch 11	2462	0.03162	0.0295	-6.67%	

TABLE 13 (continued)

Note * - Channel was selected during the development of the test plan. Note ** - Delta is calculated by:

(Measured conducted power - Maximum conducted power)/ Maximum conducted power

DUT Test Data 13.0

13.1 Assessments at 802.11a (5.18 – 5.32GHz) Test Data

13.1.1 Assessments at the Body

Assessment of the optional carry cases; The DUT was tested with the optional carry cases, at mid channel using offered battery SNN5793A, without any data or audio attachments. The DUT was tested in each of 2 intended orientations within body worn kit EWPACCUC 001, the orientations are: 1) front of DUT facing phantom with audio port facing up 2) back of DUT facing phantom with audio port facing up.

Assessment of the offered audio and data accessories; The DUT was tested with the optional audio and data cables using the highest SAR configuration from above.

Assessment across the remaining selected test frequencies; The DUT was tested across the remaining selected tests frequencies with the body worn kit EWPACCUC001 (back of DUT facing phantom) without any data or audio cable attachment. This was the highest configuration observed at the body for this band.

Table 14 presents the data of the body assessment. SAR plot of the highest result from the table below (bolded) was presented in Appendix F Section 1.0 - 802.11a (5.18 - 5.32GHz) Assessment at the Body.

TABLE 14	ŀ
----------	---

	Assessments at the Body (VoWLAN 802.11a) 5.18 - 5.32GHz band												
			Assessments	at the Body (VoW	LAN 802.	11a) 5.18 ·	• 5.32GHz	band					
Antenna Pos.	Battery	Test position	Carry Case	Cable Accessory	Freq (MHz)	Initial Power (W)	SAR Drift (dB)	Meas. 1g- SAR (mW/g)	Meas. 10g- SAR (mW/g)	Max Calc. 1g- SAR (mW/g)	Max Calc. 10g- SAR (mW/g)	Run Number	
			As	sessment at the bo	dy – optio	nal carry	cases		-	-			
			Holder w/clip SYN2680A Case w/clip			0.0759	-0.850	0.031	0.013	0.08	0.03	CM-Ab- 120212- 11	
Internal 0789971V87	SNN5793A	Against Phantom	EWPACCUC001, back facing phantom	None	5260	0.0759	-0.500	0.062	0.025	0.14	0.06	CM-Ab- 120212- 12	
			Case w/clip EWPACCUC001, front facing phantom			0.0759	-0.840	0.036	0.015	0.09	0.04	CM-Ab- 120212- 13	
				ontional andia and	l data anhi				010.00	0.07	0.01	15	
		Asses	ssment at the body –	optional audio and	data cab	les search	using wor	rst case fro	n above			CM-Ab-	
				Headset RMN5130A	5260	0.0759	-0.850	0.052	0.022	0.13	0.06	120212- 14	
Internal		Against	Case w/clip EWPACCUC001,	Headset SJYN0264C	5260	0.0759	-0.780	0.048	0.021	0.12	0.05	CM-Ab- 120212- 16	
0789971V87	SNN5793A	Phantom	back facing phantom	Headset & adapter RCH50 (A9132697=25- 156511-01)	5260	0.0759	-0.330	0.058	0.024	0.13	0.05	JsT-Ab- 120213- 04	
				Data cable SKN6371C	5260	0.0759	-0.840	0.038	0.024	0.07	0.03	JsT-Ab- 120213- 05	
	Assessment at the body – freq. search using worst case position from above										05		
			Assessment at the	e body – freq. sear	en using v	vorst case	position I	roin above				JsT-Ab-	
			Case w/alir		5200	0.0407	-0.350	0.023	0.009	0.05	0.02	120213- 11	
Internal 0789971V87	SNN5793A	Against Phantom		None	5240	0.0407	-0.950	0.022	0.008	0.06	0.02	JsT-Ab- 120213- 10	
					5240	0.0407	-0.930	0.022	0.000	0.00	0.02	CM-Ab- 120213-	
					5320	0.0759	-0.520	0.044	0.020	0.10	0.05	12	

13.1.2 Assessments at the Head

Assessment of the right ear test positions and applicable frequencies; The DUT was tested at the right ear in both the cheek touch and 15° tilt positions using the offered battery kit SNN5793A at the center frequency of the band. The highest configuration from the position search above was used to test all other applicable frequencies in the band.

Assessment of the left ear test positions and applicable frequencies; The DUT was tested at the left ear in both the cheek touch and 15° tilt positions using the offered battery kit SNN5793A at the center frequency of the band. The highest configuration from the position search above was used to test all other applicable frequencies in the band.

Table 15 presents the data of the head assessment. SAR plots of the highest result from head for each test position were bolded and presented in Appendix F Section 2.0 - 802.11a (5.18 - 5.32GHz) Assessment at the Head – Tilt and Touch positions.

13.1.3 Assessments at the Face

Assessment of the applicable frequencies; The DUT was tested using the offered battery kit SNN5793A at the applicable frequencies of the band.

Table 15 presents the data of the face assessment. SAR plot of the highest result from face assessments was bolded and presented in Appendix F Section 3.0 - 802.11a (5.18 - 5.32GHz) Assessment at the Face.

	Assessments at the Head (VoWLAN 802.11a) 5.18 – 5.32GHz band													
Antenna Pos.	Battery	Test position	Carry Case	Cable Accessory	Freq (MHz)	Initial Power (W)	SAR Drift (dB)	Meas. 1g- SAR (mW/g)	Meas. 10g- SAR (mW/g)	Max Calc. 1g- SAR (mW/g)	Max Calc. 10g- SAR (mW/g)	Run Number		
				Assessment at	the right	ear – touc	h/tilt							
Internal 0789971V87	SNN5793A	Cheek touch Cheek	None	None	5260	0.0759	-0.450	0.239	0.087	0.55	0.20	CM-Rear- 120207-16 CM-Rear-		
		tilt			5260	0.0759	-0.940	0.282	0.104	0.73	0.27	120207-17		
			Assessment at the	right ear – freq.	search us	ing worst	case positi	on from ab	ove					
					5200	0.0407	-0.690	0.102	0.040	0.24	0.09	JsT-Rear- 120208-08		
Internal 0789971V87	SNN5793A	Cheek tilt	None	None	5240	0.0407	-1.230	0.117	0.044	0.31	0.12	CM-Rear- 120208-09		
					5320	0.0759	-0.670	0.279	0.103	0.68	0.25	CM-Rear- 120208-10		
				Assessment a	t the left e	ar – touch	/tilt							
Internal	SNN5793A	Cheek touch	None	None	5260	0.0759	-0.350	0.229	0.093	0.52	0.21	CM-Lear- 120209-12		
0789971V87		Cheek tilt			5260	0.0759	-0.580	0.217	0.089	0.52	0.21	CM-Lear- 120209-13		
	-		Assessment at th	e left ear – freq.	search usi	ng worst c	ase positio	n from abo	ove	-	-	-		
					5200	0.0407	-0.790	0.100	0.040	0.24	0.10	CM-Lear- 120209-14		
Internal 0789971V87	SNN5793A	Cheek touch	None	None	5240	0.0407	-0.410	0.116	0.051	0.25	0.11	CM-Lear- 120209-16		
					5320	0.0759	-0.460	0.247	0.102	0.57	0.24	CM-Lear- 120209-18		
				Assessmer	nt at the fa	nce – 2.5cm	1	r	r		r			
					5200	0.0407	-0.540	0.011	0.004	0.01	0.00	JsT-Face- 120215-04		
Internal	SNN5793A	Front	None	None	5240	0.0407	-0.610	0.014	0.006	0.02	0.01	CM-Face- 120211-14		
0789971V87		Front 2.5cm	None		5260	0.0759	-0.940	0.028	0.012	0.04	0.02	CM-Face- 120211-15		
					5320	0.0759	-0.870	0.023	0.010	0.03	0.01	CM-Face- 120211-16		

TABLE 15

13.2 Assessments at 802.11a (5.5 – 5.7GHz) Test Data

13.2.1 Assessments at the Body

Assessment of the optional carry cases; The DUT was tested with the optional carry cases, at mid channel using offered battery SNN5793A, without any data or audio attachments. The DUT was tested in each of 2 intended orientations within body worn kit EWPACCUC 001, the orientations are: 1) front of DUT facing phantom with audio port facing up 2) back of DUT facing phantom with audio port facing up.

Assessment of the offered audio and data accessories; The DUT was tested with the optional audio and data cables using the highest SAR configuration from above.

Assessment across the remaining selected test frequencies; The DUT was tested across the remaining selected tests frequencies with the body worn kit EWPACCUC001 (back of DUT facing phantom) and audio cable SJYN0264C. This was the highest configuration observed at the body for this band.

Table 16 presents the data of the body assessment. SAR plot of the highest result from the table below (bolded) was presented in Appendix F Section 4.0 - 802.11a (5.5 - 5.7 GHz) Assessment at the Body.

			Assessments at	the Body (VoWL	AN 802.11	a) 5.5 - 5.7	/GHz ban	d				
Antenna Pos.	Battery	Test position	Carry Case	Cable Accessory	Freq (MHz)	Initial Power (W)	SAR Drift (dB)	Meas. 1g- SAR (mW/g)	Meas. 10g- SAR (mW/g)	Max Calc. 1g- SAR (mW/g)	Max Calc. 10g- SAR (mW/g)	Run Number
			Asses	sment at the body	– optional	carry cas	es					
			Holder w/clip SYN2680A			0.0794	-1.010	0.020	0.006	0.05	0.02	CM-Ab- 120213- 14
Internal 0789971V87	SNN5793A		Case w/clip EWPACCUC001, back facing phantom	None	5600*	0.0794	-0.990	0.043	0.018	0.11	0.05	CM-Ab- 120213- 18
			Case w/clip EWPACCUC001, front facing phantom			0.0794	-0.320	0.048	0.020	0.10	0.04	JsT-Ab- 120214- 04
		Assessm	ent at the body – opt	tional audio and da	lata cable search using worst case from above							
				Headset RMN5130A		0.0794	-0.660	0.058	0.024	0.14	0.06	JsT-Ab- 120214- 05
Internal		Case w/clip		Headset SJYN0264C	-	0.0794	-0.940	0.062	0.026	0.15	0.06	JsT-Ab- 120214- 09
Internal 0789971V87		Phantom	EWPACCUC001, back facing phantom	SJYN0264C 0. 1001, Headset & 5600* 10 adapter RCH50 10 (A9132697=25-	0.0794	-0.570	0.060	0.025	0.14	0.06	JsT-Ab- 120214- 08	
				Data cable SKN6371C		0.0794	-0.770	0.046	0.011	0.11	0.03	JsT-Ab- 120214- 10

TABLE 16

Note * - Even though this channel is not applicable per KDB443999 it could be applicable for other countries

Assessments at the Body (VoWLAN 802.11a) 5.5 - 5.7GHz band													
Antenna Pos.	Battery	Test position	Carry Case	Cable Accessory	Freq (MHz)	Initial Power (W)	SAR Drift (dB)	Meas. 1g- SAR (mW/g)	Meas. 10g- SAR (mW/g)	Max Calc. 1g- SAR (mW/g)	Max Calc. 10g- SAR (mW/g)	Run Number	
Assessment at the body – freq. search using worst case position from above													
					5500	0.0776	-0.580	0.036	0.014	0.09	0.03	CM-Ab- 120214- 11	
Internal 0789971V87	SNN5793A	Against Phantom	Case w/clip EWPACCUC001, back facing	Headset SJYN0264C	5620*	0.0813	-0.930	0.055	0.022	0.14	0.05	CM-Ab- 120214- 12	
			phantom		5660	0.0794	-0.280	0.060	0.025	0.13	0.05	CM-Ab- 120214- 15	

TABLE 16 (continued)

Note * - Even though this channel is not applicable per KDB443999 it could be applicable for other countries

13.2.2 Assessments at the Head

Assessment of the right ear test positions and applicable frequencies; The DUT was tested at the right ear in both the cheek touch and 15° tilt positions using the offered battery kit SNN5793A at the center frequency of the band. The highest configuration from the position search above was used to test all other applicable frequencies in the band.

Assessment of the left ear test positions and applicable frequencies; The DUT was tested at the left ear in both the cheek touch and 15° tilt positions using the offered battery kit SNN5793A at the center frequency of the band. The highest configuration from the position search above was used to test all other applicable frequencies in the band.

Table 17 presents the data of the head assessment. SAR plots of the highest result from head assessments for each test position were bolded and presented in Appendix F Section 5.0 - 802.11a (5.5 - 5.7 GHz) Assessment at the Head – Tilt and Touch positions.

13.2.3 Assessments at the Face

Assessment of the applicable frequencies; The DUT was tested using the offered battery kit SNN5793A at the applicable frequencies of the band.

Table 17 presents the data of the face assessment. SAR plot of the highest result from face assessments was bolded and presented in Appendix F Section 6.0 - 802.11a (5.5 - 5.7 GHz) Assessment at the Face.

TABLE 17

	Assessments at the Head (VoWLAN 802.11a) 5.5 – 5.7 GHz band													
Antenna Pos.	Battery	Test position	Carry Case	Cable Accessory	Freq (MHz)	Initial Power (W)	SAR Drift (dB)	Meas. 1g- SAR (mW/g)	Meas. 10g- SAR (mW/g)	Max Calc. 1g- SAR (mW/g)	Max Calc. 10g- SAR (mW/g)	Run Number		
				Assessment at	the right	ear – toucl	h/tilt							
Internal 0789971V87	SNN5793A	Cheek touch Cheek	None	None	5600*	0.0794	-0.630	0.299	0.106	0.69	0.25	CM-Rear- 120208-11 JsT-Rear-		
		tilt			5600*	0.0794	-0.250	0.348	0.127	0.74	0.27	120209-09		
			Assessment at the	right ear – freq.	search us	ing worst	case positi	on from ab	ove					
					5500	0.0776	-1.120	0.266	0.095	0.70	0.25	CM-Rear- 120208-14		
Internal 0789971V87	SNN5793A	Cheek tilt	None	None	5620*	0.0813	-0.380	0.352	0.127	0.77	0.28	JsT-Rear- 120209-11		
					5660	0.0794	-0.240	0.370	0.129	0.78	0.27	JsT-Rear- 120209-10		
	-			Assessment a	t the left e	ar – touch	/tilt	-	-	-	-			
Internal	SNN5793A	Cheek touch	None	None	5600*	0.0794	-0.420	0.265	0.110	0.58	0.24	JsT-Lear- 120210-05		
0789971V87	5111075011	Cheek tilt	Tione		5600*	0.0794	-0.490	0.287	0.118	0.64	0.26	JsT-Lear- 120210-07		
			Assessment at the	left ear – freq.	search usi	ng worst c	ase positio	n from abo	ove					
					5500	0.0776	-0.190	0.271	0.114	0.58	0.24	JsT-Lear- 120210-08		
Internal 0789971V87	SNN5793A	Cheek tilt	None	None	5620*	0.0813	-1.000	0.298	0.121	0.75	0.30	JsT-Lear- 120210-09		
					5660	0.0794	-0.420	0.288	0.119	0.63	0.26	JsT-Lear- 120210-11		
				Assessmer	nt at the fa	nce – 2.5cm	1							
					5500	0.0776	0.500	0.026	0.011	0.03	0.01	CM-Face- 120211-18		
Internal	SNN5793A	Front	None	None	5600*	0.0794	-0.200	0.033	0.013	0.03	0.01	CM-Face- 120211-19		
0789971V87	5111079511	2.5cm	None	None -	5620*	0.0813	-0.530	0.032	0.015	0.04	0.02	JsT-Face- 120212-04		
					5660	0.0794	-0.460	0.036	0.015	0.04	0.02	JsT-Face- 120212-05		

Note * - Even though this channel is not applicable per KDB443999 it could be applicable for other countries

13.3 Assessments at 802.11a (5.745 – 5.825GHz) Test Data

13.3.1 Assessments at the Body

Assessment of the optional carry cases; The DUT was tested with the optional carry cases, at mid channel using offered battery SNN5793A, without any data or audio attachments. The DUT was tested in each of 2 intended orientations within body worn kit EWPACCUC 001, the orientations are: 1) front of DUT facing phantom with audio port facing up 2) back of DUT facing phantom with audio port facing up.

Assessment of the offered audio and data accessories; The DUT was tested with the optional audio and data cables using the highest SAR configuration from above.

Assessment across the remaining selected test frequencies; The DUT was tested across the remaining selected tests frequencies with the body worn kit SYN2680A and data cable SKN6371C. This was the highest configuration observed at the body for this band.

Table 18 presents the data of the body assessment. SAR plot of the highest result from the table below (bolded) was presented in Appendix F Section 7.0 - 802.11a (5.745 - 5.825GHz) Assessment at the Body.

	Assessments at the Body (VoWLAN 802 11a) 5 745 - 5 825CHz band													
	Assessments at the Body (VoWLAN 802.11a) 5.745 - 5.825GHz band Meas. Max Max Meas. Meas. Calc. Calc.													
Antenna Pos.	Battery	Test position	Carry Case	Cable Accessory	Freq (MHz)	Initial Power (W)	SAR Drift (dB)	Meas. 1g- SAR (mW/g)	Meas. 10g- SAR (mW/g)	Max Calc. 1g- SAR (mW/g)	Max Calc. 10g- SAR (mW/g)	Run Number		
			As	sessment at the bo	dy – optio	nal carry	cases							
			Holder w/clip SYN2680A			0.0776	-0.910	0.048	0.019	0.12	0.05	CM-Ab- 120213- 16		
Internal 0789971V87	SNN5793A	Against Phantom	Case w/clip EWPACCUC001, back facing phantom	None	5785	0.0776	-0.880	0.043	0.018	0.11	0.05	CM-Ab- 120215- 11		
			Case w/clip EWPACCUC001, front facing phantom			0.0776	0.066	0.039	0.015	0.08	0.03	CM-Ab- 120215- 14		
		Asse	ssment at the body –	ontional audio and	l data cab					0.00	0.02			
		Asse	sment at the body –	Headset RMN5130A		0.0776	-0.099	0.042	0.017	0.09	0.04	CM-Ab- 120215- 16		
Internal		Against	Holder w/clip	Headset SJYN0264C		0.0776	-0.410	0.050	0.021	0.11	0.05	JsT-Ab- 120216- 03		
0789971V87	SNN5793A	Phantom	SYN2680A	Headset & adapter RCH50 (A9132697=25- 156511-01)	5785	0.0776	-0.890	0.042	0.017	0.10	0.04	JsT-Ab- 120216- 05		
				Data cable SKN6371C		0.0776	-0.550	0.052	0.021	0.12	0.05	JsT-Ab- 120216- 06		
			Assessment at the	e body – freq. sear	ch using w	vorst case	position f	rom above						
Internal	SNN5793A	Against	Holder w/clip	Data cable	5745	0.0776	-0.810	0.045	0.019	0.11	0.05	JsT-Ab- 120216- 07		
0789971V87		Against Phantom	1	SKN6371C	5805	0.0759	-0.540	0.047	0.020	0.11	0.05	JsT-Ab- 120216- 08		

TABLE 18

13.3.2 Assessments at the Head

Assessment of the right ear test positions and applicable frequencies; The DUT was tested at the right ear in both the cheek touch and 15° tilt positions using the offered battery kit SNN5793A at the center frequency of the band. The highest configuration from the position search above was used to test all other applicable frequencies in the band.

Assessment of the left ear test positions and applicable frequencies; The DUT was tested at the left ear in both the cheek touch and 15° tilt positions using the offered battery kit SNN5793A at the center frequency of the band. The highest configuration from the position search above was used to test all other applicable frequencies in the band.

Table 19 presents the data of the head assessments. SAR plots of the highest result from head assessments for each test position were bolded and presented in Appendix F Section 8.0 - 802.11a (5.745 - 5.825GHz) Assessment at the Head – Tilt and Touch positions.

13.3.3 Assessments at the Face

Assessment of the applicable frequencies; The DUT was tested using the offered battery kit SNN5793A at the applicable frequencies of the band.

Table 18 presents the data of the face assessments. SAR plots of the highest result from face assessments was bolded and presented in Appendix F Section 9.0 - 802.11a (5.745 - 5.825 GHz) Assessment at the Face.

	Assessments at the Head (VoWLAN 802.11a) 5.745 – 5.825GHz band													
Antenna Pos.	Battery	Test position	Carry Case	Cable Accessory	Freq (MHz)	Initial Power (W)	SAR Drift (dB)	Meas. 1g- SAR (mW/g)	Meas. 10g- SAR (mW/g)	Max Calc. 1g- SAR (mW/g)	Max Calc. 10g- SAR (mW/g)	Run Number		
				Assessment at	the right	ear – touc	h/tilt							
Internal	SNN5793A	Cheek touch	None	None	5785	0.0776	-0.180	0.302	0.106	0.64	0.23	JsT-Rear- 120209-05		
0789971V87		Cheek tilt			5785	0.0776	-0.800	0.320	0.112	0.79	0.28	JsT-Rear- 120209-06		
			Assessment at the	right ear – freq.	search us	sing worst	case positi	on from ab	ove					
Internal	SNN5793A	Cheek	None	None	5745	0.0776	-0.740	0.327	0.116	0.79	0.28	JsT-Rear- 120209-07		
0789971V87	SINNS735A	tilt	None	None	5805	0.0759	-0.950	0.314	0.112	0.82	0.29	JsT-Rear- 120209-08		
				Assessment a	t the left e	ear – touch	/tilt							
Internal	SNN5793A	Cheek touch	None	None	5785	0.0776	-0.490	0.268	0.103	0.61	0.24	CM-Lear- 120210-13		
0789971V87	SINISTISA	Cheek tilt	None	None	5785	0.0776	0.530	0.288	0.114	0.59	0.23	CM-Lear- 120210-14		
			Assessment at th	e left ear – freq.	search usi	ng worst c	ase positio	on from abo	ve					
Internal	SNN5793A	Cheek	None	None	5745	0.0776	1.120	0.244	0.092	0.50	0.19	CM-Lear- 120210-15		
0789971V87	SININJ/JSA	touch	None	None	5805	0.0759	0.140	0.297	0.113	0.62	0.24	CM-Lear- 120210-16		
	Assessment at the face – 2.5cm													
					5745	0.0776	-0.580	0.043	0.018	0.05	0.02	JsT-Face- 120212-06		
Internal 0789971V87	SNN5793A	3A Front 2.5cm	None	None	5785	0.0776	-0.640	0.030	0.012	0.04	0.01	JsT-Face- 120212-07		
					5805	0.0759	-0.740	0.036	0.015	0.04	0.02	JsT-Face- 120212-08		

TABLE 19

13.4 Assessments at 802.11b (2.412 – 2.462MHz) Test Data

13.4.1 Assessments at the Body

Assessment of the optional carry cases; The DUT was tested with the optional carry cases, at mid channel using offered battery SNN5793A, without any data or audio attachments. The DUT was tested in each of 2 intended orientations within body worn kit EWPACCUC 001, the orientations are: 1) front of DUT facing phantom with audio port facing up 2) back of DUT facing phantom with audio port facing up.

Assessment of the offered audio and data accessories; The DUT was tested with the optional audio and data cables using the highest SAR configuration from above.

Assessment across the band edges; The DUT was tested across the band edges with the body worn kit EWPACCUC001 (back of DUT facing phantom) and audio cable SJYN0264C. This was the highest configuration observed at the body for this band.

Table 20 presents the data of the body assessment. SAR plot of the highest result from the table below (bolded) was presented in Appendix F Section 10.0 - 802.11b (2.412 – 2.462GHz) Assessment at the Body.

			Assessments a	at the Body (VoWI	LAN 802.1	1b) 2.412 .	-2.462GH	z band				
Antenna Pos.	Battery	Test position	Carry Case	Cable Accessory	Freq (MHz)	Initial Power (W)	SAR Drift (dB)	Meas. 1g- SAR (mW/g)	Meas. 10g- SAR (mW/g)	Max Calc. 1g- SAR (mW/g)	Max Calc. 10g- SAR (mW/g)	Run Number
			As	sessment at the bo	dy – optio	nal carry	cases					
			Holder w/clip SYN2680A			0.0832	0.240	0.017	0.009	0.03	0.02	CM-Ab- 120217- 22
Internal 0789971V87	SNN5793A	Against Phantom	Case w/clip EWPACCUC001, back facing phantom	None	2437	0.0832	-0.320	0.048	0.028	0.10	0.06	CM-Ab- 120217- 23
			Case w/clip EWPACCUC001, front facing phantom			0.0832	-0.490	0.014	0.008	0.03	0.02	CM-Ab- 120217- 24
		Asse	ssment at the body –	optional audio and	l data cab	le search i	using wor	st case fror	n above			
				Headset RMN5130A	2437	0.0832	0.280	0.053	0.032	0.11	0.06	JsT-Ab- 120218- 02
Internal		Against	Case w/clip EWPACCUC001,	Headset SJYN0264C	2437	0.0832	-0.790	0.053	0.031	0.13	0.08	JsT-Ab- 120218- 03
0789971V87	SNN5793A	Phantom	back facing phantom	Headset & adapter RCH50 (A9132697=25- 156511-01)	2437	0.0832	-0.120	0.053	0.032	0.11	0.07	JsT-Ab- 120218- 04
				Data cable SKN6371C	2437	0.0832	-0.180	0.047	0.028	0.10	0.06	JsT-Ab- 120218- 05

TABLE 20

	Assessments at the Body (VoWLAN 802.11b) 2.412-2.462GHz band													
Antenna Test Cable Freq Power Drift SAR SAR														
	Assessment at the body – freq. search using worst case position from above													
Internal	CNINE702A	Against	Case w/clip EWPACCUC001,	Headset	2417	0.0832	-0.460	0.044	0.026	0.10	0.06	JsT-Ab- 120218- 06		
0789971V87	SNN5793A	Phantom	back facing phantom	SJYN0264C	2457	0.0724	-0.400	0.047	0.027	0.11	0.07	JsT-Ab- 120218- 07		

TABLE 20(continued)

13.4.2 Assessments at the Head

Assessment of the right ear test positions and applicable frequencies; The DUT was tested at the right ear in both the cheek touch and 15° tilt positions using the offered battery kit SNN5793A at the center frequency of the band. The highest configuration from the position search above was used to test all other applicable frequencies in the band.

Assessment of the left ear test positions and applicable frequencies; The DUT was tested at the left ear in both the cheek touch and 15° tilt positions using the offered battery kit SNN5793A at the center frequency of the band. The highest configuration from the position search above was used to test all other applicable frequencies in the band.

Table 21 presented the data of the head assessments. SAR plots of the highest result from head assessments for each test position were bolded and presented in Appendix F Section 11.0 - 802.11b (2.412 - 2.462GHz) Assessment at the Head – Tilt and Touch positions.

13.4.3 Assessments at the Face

Assessment of the applicable frequencies; The DUT was tested using the offered battery kit SNN5793A at the applicable frequencies of the band.

Table 21 presents the data of the face assessments. SAR plot of the highest result from face assessments was bolded and presented in Appendix F Section 12.0 - 802.11b (2.412 - 2.462GHz) Assessment at the Face.

TABLE 21

	Assessments at the Head (VoWLAN 802.11b) 2.412-2.462GHz band													
Antenna Pos.	Battery	Test position	Carry Case	Cable Accessory	Freq (MHz)	Initial Power (W)	SAR Drift (dB)	Meas. 1g- SAR (mW/g)	Meas. 10g- SAR (mW/g)	Max Calc. 1g- SAR (mW/g)	Max Calc. 10g- SAR (mW/g)	Run Number		
				Assessment at	the right	ear – touc	h/tilt							
Internal	SNN5793A	Cheek touch	None	None	2437	0.0832	-0.093	0.092	0.046	0.19	0.10	CM-Rear- 120216-12		
0789971V87		Cheek tilt			2437	0.0832	-0.240	0.064	0.033	0.14	0.07	CM-Rear- 120216-13		
			Assessment at the rig	ght ear – freq.	search us	ing worst	case positi	on from ab	ove					
Internal	SNN5793A	Cheek	None	None	2417	0.0832	-0.290	0.079	0.040	0.17	0.09	CM-Rear- 120216-14		
0789971V87	SINISTSA	touch	None	None	2457	0.0724	-0.097	0.074	0.037	0.17	0.08	CM-Rear- 120216-15		
	Assessment at the left ear – touch/tilt													
Internal	SNN5793A	Cheek touch	None	None	2437	0.0832	-0.170	0.054	0.031	0.11	0.06	CM-Lear- 120217-18		
0789971V87	SINISTISA	Cheek tilt	None	None	2437	0.0832	-0.280	0.053	0.029	0.11	0.06	CM-Lear- 120217-19		
			Assessment at the le	eft ear – freq. :	search usi	ng worst c	ase positio	n from abo	ve					
Internal	SNN5793A	Cheek	None	None	2417	0.0832	-0.340	0.046	0.025	0.10	0.06	CM-Lear- 120217-20		
0789971V87	SINNSTASA	tilt	None	None	2457	0.0724	-0.280	0.051	0.028	0.12	0.07	CM-Lear- 120217-21		
	Assessment at the face – 2.5cm													
					2417	0.0832	-0.360	0.008	0.004	0.01	0.00	JsT-Face- 120217-15		
Internal 0789971V87	SNN5793A	A Front 2.5cm	None	None	2437	0.0832	1.000	0.008	0.005	0.01	0.01	JsT-Face- 120217-16		
					2457	0.0724	0.230	0.008	0.004	0.01	0.00	CM-Face- 120217-17		

13.5 Shorten Scan Assessment

Short scan assessment A "shortened" scan was performed to validate the SAR drift of the full DASY5TM coarse and zoom scans. Note that the shortened scan represents the zoom scan performance result; this is obtained by first running a coarse scan to find the peak area and then, using a newly charged battery, a zoom scan only was performed. The results of the shortened cube scan presented in APPENDIX E demonstrate that the scaling methodology used to determine the calculated SAR results presented herein are valid. The SAR result from the table below is provided in APPENDIX E.

Antenna Pos.	Battery	Test position	Carry Case	Cable Accessory	Freq (MHz)	Initial Power (W)	SAR Drift (dB)	Meas. 1g- SAR (mW/g)	Meas. 10g- SAR (mW/g)	Max Calc. 1g- SAR (mW/g)	Max Calc. 10g- SAR (mW/g)	Run Number
		· ·	•		· · · · · ·							Full Scan
Internal		Cheek										JsT-Rear-
0789971V87	SNN5793A	tilt	None	None	5805	0.0759	-0.950	0.314	0.112	0.82	0.29	120209-08
												Shorten
												Scan
Internal		Cheek										JsT-Rear-
0789971V87	SNN5793A	tilt	None	None	5805	0.0759	-0.420	0.334	0.109	0.77	0.25	120215-06

TABLE 22

14.0 Simultaneous Transmission Exclusion

FCC part 15 subpart C source-based time-averaged conducted output power for BT is less than 60 / f-GHz. Therefore, simultaneous transmission SAR results are not reported herein.

15.0 **Conclusion**

The highest Operational Maximum Calculated 1-gram and 10-gram average SAR values found for this filing: Model EWP3200 are in the table below.

Frequency (MHz)		c at Body W/g)	Max Cal (mV	Max Calc at Head (mW/g)							
	1g-SAR	10g-SAR	1g-SAR	10g-SAR	1g-SAR	10g-SAR					
802.11b 2.412-2.462 GHz	0.13	0.08	0.01	0.01	0.19	0.10					
802.11a 5.18- 5.32 GHz 5.5 - 5.7 GHz 5.745 - 5.825 GHz	0.15	0.07	0.05	0.02	0.82	0.29					

TABLE 23

Note - All results are scaled to maximum output power.

The test results clearly demonstrate compliance with FCC General Population/Uncontrolled RF Exposure limits of **1.6** W/kg averaged over 1 gram per the requirements of 47 CFR 2.1093(d). The 10 grams result is not applicable to FCC filing.

APPENDIX A Measurement Uncertainty

The Measurement Uncertainty tables indicated in this APPENDIX are applicable to the DUT test frequencies ranging from 800MHz to 3GHz and 3GHz to 5GHz; for Dipole test frequencies ranging from 800MHz to 3GHz and 3GHZ to 5GHz. Therefore, the highest tolerances for the probes calibration uncertainty are indicated.

a b c d $f(d,k)$ f g $exf^{f/}$ $exg^{f/}$ k Incertainty Component Tol. Prob ci ci ci lg llg llg <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>h =</th> <th><i>i</i> =</th> <th></th>								h =	<i>i</i> =	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $								c x f /	c x g /	
Incertainty ComponentImage: Section section $\left(\frac{\pm}{9}\right)$ DistImage: Section sectio	<i>a</i>	b	С	d	f(d,k)	f	g	е	е	k
ITEE 1528 γ_0 Dist $(1 g)$ u_i u_i u_i Measurement System i <i td=""> i i i i i i i i i i i i i</i>			Tol.	Prob		c_i	c_i	1 g	10 g	
Instruction Total Total <thtotal< th=""> Total Total</thtotal<>										
Oncertainty Component Image of the second sec			%)	Dist		(1 g)	(10 g)	-		
Probe CalibrationE.2.15.9N1.00115.95.9 ∞ Axial IsotropyE.2.24.7R1.730.7070.7071.91.9 ∞ Hemispherical IsotropyE.2.29.6R1.730.7070.7073.93.9 ∞ Boundary EffectE.2.31.0R1.73110.60.6 ∞ LinearityE.2.44.7R1.73110.60.6 ∞ System Detection LimitsE.2.51.0R1.73110.60.6 ∞ Readout ElectronicsE.2.60.3N1.00110.30.3 ∞ Response TimeE.2.71.1R1.73110.60.6 ∞ Integration TimeE.2.81.1R1.73110.60.6 ∞ RF Ambient Conditions - NeiseE.6.13.0R1.73110.60.6 ∞ RF Ambient Conditions - ReflectionsE.6.10.0R1.73110.20.2 ∞ Probe Positioner Mech. ToleranceE.6.20.4R1.73110.80.8 ∞ Max. SAR Evaluation (ext., int., avg.)E.53.4R1.73112.02.0 ∞ Poet PositioningE.4.23.2N1.00113.23.229 <tr<< th=""><th></th><th>section</th><th></th><th></th><th>Div.</th><th></th><th></th><th>(±%)</th><th>(±%)</th><th><i>v_i</i></th></tr<<>		section			Div.			(±%)	(±%)	<i>v_i</i>
Axial IsotropyE.2.24.7R1.730.7070.7071.91.9 ∞ Hemispherical IsotropyE.2.29.6R1.730.7070.7073.93.9 ∞ Boundary EffectE.2.31.0R1.73110.60.6 ∞ LinearityE.2.44.7R1.73110.60.6 ∞ System Detection LimitsE.2.51.0R1.73110.60.6 ∞ Readout ElectronicsE.2.60.3N1.00110.30.3 ∞ Response TimeE.2.71.1R1.73110.60.6 ∞ Response TimeE.2.81.1R1.73110.60.6 ∞ RF Ambient Conditions - NoiseE.6.13.0R1.73110.00.0 ∞ RF Ambient Conditions - ReflectionsE.6.10.0R1.73110.00.0 ∞ Probe Positioner Mech. ToleranceE.6.20.4R1.73110.20.2 ∞ Max. SAR Evaluation (ext., int., avg.)E.53.4R1.73110.80.8 ∞ Test sample Related										
Hemispherical IsotropyE.2.29.6R1.730.7070.7073.93.9 ∞ Boundary EffectE.2.31.0R1.73110.60.6 ∞ LinearityE.2.44.7R1.73110.60.6 ∞ System Detection LimitsE.2.51.0R1.73110.60.6 ∞ Readout ElectronicsE.2.60.3N1.00110.60.6 ∞ Response TimeE.2.71.1R1.73110.60.6 ∞ Integration TimeE.2.81.1R1.73110.60.6 ∞ RF Ambient Conditions - NoiseE.6.13.0R1.73111.7 π π RF Ambient Conditions - ReflectionsE.6.10.0R1.73110.00.0 ∞ Probe Positioner Mech. ToleranceE.6.20.4R1.73110.80.8 ∞ Max. SAR Evaluation (ext., int., avg.)E.53.4R1.73110.04.00 ∞ Test sample Related							-			∞
Boundary Effect E.2.3 1.0 R 1.73 1 1 0.6 0.6 ∞ Linearity E.2.4 4.7 R 1.73 1 1 2.7 2.7 ∞ System Detection Limits E.2.5 1.0 R 1.73 1 1 0.6 0.6 ∞ Readout Electronics E.2.6 0.3 N 1.00 1 1 0.6 0.6 ∞ Readout Electronics E.2.7 1.1 R 1.73 1 1 0.6 0.6 ∞ Response Time E.2.7 1.1 R 1.73 1 1 0.6 0.6 ∞ RF Ambient Conditions - Noise E.6.1 3.0 R 1.73 1 1 0.0 0.0 ∞ Probe Positioner Mech. Tolerance E.6.2 0.4 R 1.73 1 1 0.8 0.8 ∞ Max. SAR Evaluation (ext., int., avg.) E.5 3.4 R 1.73 1 1 2.0 2.0 ∞	**			R						x
LinearityE.2.44.7R 1.73 112.72.7 ∞ System Detection LimitsE.2.51.0R 1.73 110.60.6 ∞ Readout ElectronicsE.2.60.3N 1.00 110.30.3 ∞ Response TimeE.2.7 1.1 R 1.73 110.60.6 ∞ Integration TimeE.2.8 1.1 R 1.73 110.60.6 ∞ RF Ambient Conditions - NoiseE.6.1 3.0 R 1.73 110.00.0 ∞ RF Ambient Conditions - ReflectionsE.6.1 0.0 R 1.73 110.00.0 ∞ Probe Positioning w.r.t PhantomE.6.3 1.4 R 1.73 110.20.2 ∞ Probe Positioning w.r.t PhantomE.6.3 1.4 R 1.73 110.80.8 ∞ Max. SAR Evaluation (ext., int, avg.)E.5 3.4 R 1.73 110.20.2 ∞ Test Sample Related $$	Hemispherical Isotropy	E.2.2	9.6	R	1.73	0.707	0.707	3.9	3.9	∞
System Detection LimitsE.2.51.0R1.73110.60.6 ∞ Readout ElectronicsE.2.60.3N1.00110.30.3 ∞ Response TimeE.2.71.1R1.73110.60.6 ∞ Integration TimeE.2.81.1R1.73110.60.6 ∞ RF Ambient Conditions - NoiseE.6.13.0R1.73110.60.6 ∞ RF Ambient Conditions - ReflectionsE.6.10.0R1.73110.00.0 ∞ Probe Positioner Mech. ToleranceE.6.20.4R1.73110.20.2 ∞ Probe Positioning w.r.t PhantomE.6.31.4R1.73110.80.8 ∞ Max. SAR Evaluation (ext., int., avg.)E.53.4R1.73110.0 ∞ Test Sample Related	Boundary Effect	E.2.3	1.0	R	1.73	1	1	0.6	0.6	∞
Readout ElectronicsE.2.60.3N1.00110.30.3 ∞ Response TimeE.2.71.1R1.73110.60.6 ∞ Integration TimeE.2.81.1R1.73110.60.6 ∞ RF Ambient Conditions - NoiseE.6.13.0R1.73110.60.6 ∞ RF Ambient Conditions - ReflectionsE.6.10.0R1.73111.71.7 ∞ Probe Positioner Mech. ToleranceE.6.20.4R1.73110.00.0 ∞ Probe Positioning w.r.t PhantomE.6.31.4R1.73110.80.8 ∞ Max. SAR Evaluation (ext., int., avg.)E.53.4R1.73112.02.0 ∞ Test sample RelatedImage: Constraint or the standard or t	Linearity	E.2.4	4.7	R	1.73	1	1	2.7	2.7	x
Response TimeE.2.71.1R1.73110.60.6 ∞ Integration TimeE.2.81.1R1.73110.60.6 ∞ RF Ambient Conditions - NoiseE.6.13.0R1.73111.71.7 ∞ RF Ambient Conditions - ReflectionsE.6.10.0R1.73110.00.0 ∞ Probe Positioner Mech. ToleranceE.6.20.4R1.73110.20.2 ∞ Probe Positioning w.r.t PhantomE.6.31.4R1.73110.80.8 ∞ Max. SAR Evaluation (ext., int., avg.)E.53.4R1.73112.02.0 ∞ Test sample Related1.00113.23.229Device Holder UncertaintyE.4.14.0N1.00114.04.08SAR drift6.6.25.0R1.73112.92.9 ∞ Phantom UncertaintyE.3.14.0R1.73112.32.3 ∞ Liquid Conductivity (target)E.3.25.0R1.73112.32.3 ∞ Liquid Permittivity (measurement)E.3.33.3N1.000.640.431.81.2 ∞ Liquid Permittivity (measurement)E.3.31.9N1.000.	System Detection Limits	E.2.5	1.0	R	1.73	1	1	0.6	0.6	∞
Integration TimeE.2.81.1R1.73110.60.6 ∞ RF Ambient Conditions - NoiseE.6.13.0R1.73111.71.7 ∞ RF Ambient Conditions - ReflectionsE.6.10.0R1.73111.71.7 ∞ RF Ambient Conditions - ReflectionsE.6.10.0R1.73110.00.0 ∞ Probe Positioner Mech. ToleranceE.6.20.4R1.73110.20.2 ∞ Probe Positioning w.r.t PhantomE.6.31.4R1.73110.80.8 ∞ Max. SAR Evaluation (ext., int., avg.)E.53.4R1.73112.02.0 ∞ Test sample Related </td <td>Readout Electronics</td> <td>E.2.6</td> <td>0.3</td> <td>Ν</td> <td>1.00</td> <td>1</td> <td>1</td> <td>0.3</td> <td>0.3</td> <td>8</td>	Readout Electronics	E.2.6	0.3	Ν	1.00	1	1	0.3	0.3	8
RF Ambient Conditions - NoiseE.6.13.0R1.73111.71.7 ∞ RF Ambient Conditions - ReflectionsE.6.10.0R1.73110.00.0 ∞ Probe Positioner Mech. ToleranceE.6.20.4R1.73110.20.2 ∞ Probe Positioning w.r.t PhantomE.6.31.4R1.73110.80.8 ∞ Max. SAR Evaluation (ext., int., avg.)E.53.4R1.73112.02.0 ∞ Test sample Related	Response Time	E.2.7	1.1	R	1.73	1	1	0.6	0.6	8
RF Ambient Conditions - ReflectionsE.6.10.0R 1.73 110.00.0 ∞ Probe Positioner Mech. ToleranceE.6.20.4R 1.73 110.20.2 ∞ Probe Positioning w.r.t PhantomE.6.3 1.4 R 1.73 110.80.8 ∞ Max. SAR Evaluation (ext., int., avg.)E.5 3.4 R 1.73 112.0 2.0 ∞ Test sample RelatedTest Sample PositioningE.4.2 3.2 N 1.00 11 3.2 3.2 29 Device Holder UncertaintyE.4.1 4.0 N 1.00 11 2.9 2.9 ∞ SAR drift $6.6.2$ 5.0 R 1.73 11 2.9 2.9 ∞ Phantom uncertaintyE.3.1 4.0 R 1.73 11 2.3 2.3 ∞ Liquid Conductivity (target)E.3.2 5.0 R 1.73 11 2.3 2.3 ∞ Liquid Permittivity (measurement)E.3.3 3.3 N 1.00 0.64 0.43 1.8 1.2 ∞ Liquid Permittivity (measurement)E.3.3 1.9 N 1.00 0.6 0.49 1.1 0.9 ∞ Combined Standard UncertaintyE.3.3 1.9 N 1.00 0.6 0.49 1.1 1.1 411	Integration Time	E.2.8	1.1	R	1.73	1	1	0.6	0.6	8
Probe Positioner Mech. ToleranceE.6.2 0.4 R 1.73 11 0.2 0.2 ∞ Probe Positioning w.r.t PhantomE.6.3 1.4 R 1.73 11 0.8 0.8 ∞ Max. SAR Evaluation (ext., int., avg.)E.5 3.4 R 1.73 11 0.8 0.8 ∞ Test sample Related $$	RF Ambient Conditions - Noise	E.6.1	3.0	R	1.73	1	1	1.7	1.7	8
Probe Positioning w.r.t PhantomE.6.3 1.4 R 1.73 110.80.8 ∞ Max. SAR Evaluation (ext., int., avg.)E.5 3.4 R 1.73 1112.02.0 ∞ Test sample Related </td <td>RF Ambient Conditions - Reflections</td> <td>E.6.1</td> <td>0.0</td> <td>R</td> <td>1.73</td> <td>1</td> <td>1</td> <td>0.0</td> <td>0.0</td> <td>8</td>	RF Ambient Conditions - Reflections	E.6.1	0.0	R	1.73	1	1	0.0	0.0	8
Max. SAR Evaluation (ext., int., avg.)E.5 3.4 R 1.73 112.0 2.0 ∞ Test sample Related </td <td>Probe Positioner Mech. Tolerance</td> <td>E.6.2</td> <td>0.4</td> <td>R</td> <td>1.73</td> <td>1</td> <td>1</td> <td>0.2</td> <td>0.2</td> <td>8</td>	Probe Positioner Mech. Tolerance	E.6.2	0.4	R	1.73	1	1	0.2	0.2	8
Test sample RelatedE.4.2 3.2 N 1.00 11 3.2 3.2 29 Test Sample PositioningE.4.2 3.2 N 1.00 11 4.0 4.0 8 Device Holder UncertaintyE.4.1 4.0 N 1.00 11 4.0 4.0 8 SAR drift $6.6.2$ 5.0 R 1.73 11 2.9 2.9 ∞ Phantom and Tissue ParametersE.3.1 4.0 R 1.73 11 2.3 2.3 ∞ Iquid Conductivity (target)E.3.2 5.0 R 1.73 0.64 0.43 1.8 1.2 ∞ Liquid Conductivity (measurement)E.3.3 3.3 N 1.00 0.64 0.43 2.1 1.4 ∞ Liquid Permittivity (target)E.3.2 5.0 R 1.73 0.66 0.49 1.7 1.4 ∞ Liquid Permittivity (measurement)E.3.3 1.9 N 1.00 0.6 0.49 1.1 0.9 ∞ Liquid Permittivity (measurement)E.3.3 1.9 N 1.00 0.6 0.49 1.1 0.9 ∞ Liquid Permittivity (measurement)E.3.3 1.9 N 1.00 0.6 0.49 1.1 0.9 ∞ Liquid Permittivity (measurement)E.3.3 1.9 N 1.00 0.6 0.49 1.1 0.9 ∞ Liquid Permittivity (measurement)E.3.3 1.9 </td <td>Probe Positioning w.r.t Phantom</td> <td>E.6.3</td> <td>1.4</td> <td>R</td> <td>1.73</td> <td>1</td> <td>1</td> <td>0.8</td> <td>0.8</td> <td>8</td>	Probe Positioning w.r.t Phantom	E.6.3	1.4	R	1.73	1	1	0.8	0.8	8
Test sample RelatedImage: constraint of the symbol constraint of the s	Max. SAR Evaluation (ext., int., avg.)	E.5	3.4	R	1.73	1	1	2.0	2.0	8
Device Holder UncertaintyE.4.14.0N1.00114.04.08SAR drift6.6.25.0R1.73112.92.9 ∞ Phantom and Tissue Parameters </td <td>Test sample Related</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Test sample Related									
SAR drift 6.6.2 5.0 R 1.73 1 1 2.9 2.9 ∞ Phantom and Tissue Parameters <th<< td=""><td>Test Sample Positioning</td><td>E.4.2</td><td>3.2</td><td>N</td><td>1.00</td><td>1</td><td>1</td><td>3.2</td><td>3.2</td><td>29</td></th<<>	Test Sample Positioning	E.4.2	3.2	N	1.00	1	1	3.2	3.2	29
Phantom and Tissue Parameters E Image: Mark and the system of the syst	Device Holder Uncertainty	E.4.1	4.0	Ν	1.00	1	1	4.0	4.0	8
Phantom Uncertainty E.3.1 4.0 R 1.73 1 1 2.3 2.3 ∞ Liquid Conductivity (target) E.3.2 5.0 R 1.73 0.64 0.43 1.8 1.2 ∞ Liquid Conductivity (measurement) E.3.3 3.3 N 1.00 0.64 0.43 2.1 1.4 ∞ Liquid Permittivity (target) E.3.2 5.0 R 1.73 0.6 0.43 2.1 1.4 ∞ Liquid Permittivity (target) E.3.2 5.0 R 1.73 0.6 0.49 1.7 1.4 ∞ Liquid Permittivity (measurement) E.3.3 1.9 N 1.00 0.6 0.49 1.1 0.9 ∞ Combined Standard Uncertainty RSS 11 11 411 Expanded Uncertainty Image: Combined Standard Uncertainty Image: Com	SAR drift	6.6.2	5.0	R	1.73	1	1	2.9	2.9	8 8
Liquid Conductivity (target)E.3.25.0R1.730.640.431.81.2 ∞ Liquid Conductivity (measurement)E.3.33.3N1.000.640.432.11.4 ∞ Liquid Permittivity (target)E.3.25.0R1.730.60.491.71.4 ∞ Liquid Permittivity (measurement)E.3.31.9N1.000.60.491.10.9 ∞ Combined Standard UncertaintyRSS1111411Expanded UncertaintyImage: Combined Standard UncertaintyImage: Comb	Phantom and Tissue Parameters									
Liquid Conductivity (target)E.3.25.0R1.730.640.431.81.2 ∞ Liquid Conductivity (measurement)E.3.33.3N1.000.640.432.11.4 ∞ Liquid Permittivity (target)E.3.25.0R1.730.60.491.71.4 ∞ Liquid Permittivity (measurement)E.3.31.9N1.000.60.491.10.9 ∞ Combined Standard UncertaintyRSS1111411Expanded UncertaintyImage: Combined Standard UncertaintyImage: Comb	Phantom Uncertainty	E.3.1	4.0	R	1.73	1	1	2.3	2.3	8
Liquid Conductivity (measurement) E.3.3 3.3 N 1.00 0.64 0.43 2.1 1.4 ∞ Liquid Permittivity (target) E.3.2 5.0 R 1.73 0.6 0.49 1.7 1.4 ∞ Liquid Permittivity (measurement) E.3.3 1.9 N 1.00 0.6 0.49 1.7 1.4 ∞ Combined Standard Uncertainty RSS 1.00 0.6 0.49 1.1 0.9 ∞ Expanded Uncertainty RSS 11 11 411	•	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	8
Liquid Permittivity (target) E.3.2 5.0 R 1.73 0.6 0.49 1.7 1.4 ∞ Liquid Permittivity (measurement) E.3.3 1.9 N 1.00 0.6 0.49 1.1 0.9 ∞ Combined Standard Uncertainty RSS Image: Combined Standard Uncertainty RSS Image: Combined Standard Uncertainty Im									1.4	x
Liquid Permittivity (measurement) E.3.3 1.9 N 1.00 0.6 0.49 1.1 0.9 ∞ Combined Standard Uncertainty RSS Image: Combined Standard Uncertainty RSS Image: Combined Standard Uncertainty Image: Combined Standard Uncertainty N 1.00 0.6 0.49 1.1 0.9 ∞ Expanded Uncertainty Image: Combined Standard Uncertainty Image: Combine										x
Combined Standard Uncertainty RSS 11 11 411 Expanded Uncertainty Image: Complex of the second s										∞
Expanded Uncertainty							-			411
(95% CONFIDENCE LEVEL) k=2 22 22	(95% CONFIDENCE LEVEL)			<i>k</i> =2				22	22	

Table 1: Uncertainty Budget for Device Under Test: 800 – 3000 MHz

FCD-0558 Uncertainty Budget Rev8.0

							<i>h</i> =	<i>i</i> =	
				<i>e</i> =			c x f /	c x g /	
a	b	с	d	f(d,k)	f	g	е	е	k
		Tol.	Prob		c_i	c_i	1 g	10 g	
		(±				(10			
	IEEE 1528	%)	Dist		(1 g)	g)	\boldsymbol{u}_i	\boldsymbol{u}_i	
Uncertainty Component	section			Div.			(±%)	(±%)	<i>v</i> _i
Measurement System									
Probe Calibration	E.2.1	8.3	N	1.00	1	1	8.3	8.3	x
Axial Isotropy	E.2.2	4.7	R	1.73	0.707	0.707	1.9	1.9	∞
Hemispherical Isotropy	E.2.2	9.6	R	1.73	0.707	0.707	3.9	3.9	∞
Boundary Effect	E.2.3	2.0	R	1.73	1	1	1.2	1.2	x
Linearity	E.2.4	4.7	R	1.73	1	1	2.7	2.7	8
System Detection Limits	E.2.5	1.0	R	1.73	1	1	0.6	0.6	∞
Readout Electronics	E.2.6	0.3	Ν	1.00	1	1	0.3	0.3	8
Response Time	E.2.7	1.1	R	1.73	1	1	0.6	0.6	∞
Integration Time	E.2.8	1.1	R	1.73	1	1	0.6	0.6	x
RF Ambient Conditions - Noise	E.6.1	3.0	R	1.73	1	1	1.7	1.7	8
RF Ambient Conditions -									
Reflections	E.6.1	0.0	R	1.73	1	1	0.0	0.0	∞
Probe Positioner Mech. Tolerance	E.6.2	1.0	R	1.73	1	1	0.6	0.6	x
Probe Positioning w.r.t Phantom	E.6.3	4.0	R	1.73	1	1	2.3	2.3	8
Max. SAR Evaluation (ext., int.,									
avg.)	E.5	2.1	R	1.73	1	1	1.2	1.2	00
Test sample Related									
Test Sample Positioning	E.4.2	3.2	N	1.00	1	1	3.2	3.2	29
Device Holder Uncertainty	E.4.1	4.0	Ν	1.00	1	1	4.0	4.0	8
SAR drift	6.6.2	5.0	R	1.73	1	1	2.9	2.9	x
Phantom and Tissue Parameters									
Phantom Uncertainty	E.3.1	4.0	R	1.73	1	1	2.3	2.3	8
Dielectric Parameter Correction		1.4	Ν	1.00	1	0.79	1.4	1.1	x
Liquid Conductivity (measurement)	E.3.3	3.3	N	1.00	0.64	0.43	2.1	1.4	8
Liquid Permittivity (measurement)	E.3.3	1.9	N	1.00	0.6	0.49	1.1	0.9	8
Combined Standard Uncertainty			RSS				12	12	663
Expanded Uncertainty									
(95% CONFIDENCE LEVEL)			<i>k</i> =2				25	25	

Table 2: Uncertainty Budget for Device Under Test: 3 – 6 GHz

FCD-0558 Uncertainty Budget Rev8.0

				<i>e</i> =			h = c x f /	i = c x g /	
а	b	с	d	f(d,k)	f	g	e e	e e	k
	IEEE	Tol. (±	Prob.		c _i	<i>c</i> _i	1 g	10 g	
	1528	%)	Dist.		(1 g)	(10 g)	\boldsymbol{u}_i	\boldsymbol{u}_i	
Uncertainty Component	section			Div.			(±%)	(±%)	<i>v</i> _i
Measurement System									
Probe Calibration	E.2.1	5.9	N	1.00	1	1	5.9	5.9	∞
Axial Isotropy	E.2.2	4.7	R	1.73	1	1	2.7	2.7	×
Spherical Isotropy	E.2.2	9.6	R	1.73	0	0	0.0	0.0	∞
Boundary Effect	E.2.3	1.0	R	1.73	1	1	0.6	0.6	∞
Linearity	E.2.4	4.7	R	1.73	1	1	2.7	2.7	∞
System Detection Limits	E.2.5	1.0	R	1.73	1	1	0.6	0.6	∞
Readout Electronics	E.2.6	0.3	Ν	1.00	1	1	0.3	0.3	∞
Response Time	E.2.7	1.1	R	1.73	1	1	0.6	0.6	×
Integration Time	E.2.8	0.0	R	1.73	1	1	0.0	0.0	×
RF Ambient Conditions - Noise	E.6.1	3.0	R	1.73	1	1	1.7	1.7	×
RF Ambient Conditions - Reflections	E.6.1	0.0	R	1.73	1	1	0.0	0.0	×
Probe Positioner Mechanical Tolerance	E.6.2	0.4	R	1.73	1	1	0.2	0.2	×
Probe Positioning w.r.t. Phantom	E.6.3	1.4	R	1.73	1	1	0.8	0.8	×
Max. SAR Evaluation (ext., int., avg.)	E.5	3.4	R	1.73	1	1	2.0	2.0	×
Dipole									
Dipole Axis to Liquid Distance	8, E.4.2	2.0	R	1.73	1	1	1.2	1.2	8
Input Power and SAR Drift			_						
Measurement	8, 6.6.2	5.0	R	1.73	1	1	2.9	2.9	∞
Phantom and Tissue Parameters			_		-				
Phantom Uncertainty	E.3.1	4.0	R	1.73	1	1	2.3	2.3	00
Liquid Conductivity (target)	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	∞
Liquid Conductivity (measurement)	E.3.3	3.3	R	1.73	0.64	0.43	1.2	0.8	×
Liquid Permittivity (target)	E.3.2	5.0	R	1.73	0.6	0.49	1.7	1.4	×
Liquid Permittivity (measurement)	E.3.3	1.9	R	1.73	0.6	0.49	0.6	0.5	~
Combined Standard Uncertainty			RSS				9	9	99999
Expanded Uncertainty (95% CONFIDENCE LEVEL)			<i>k</i> =2				18	17	

Table 3: Uncertainty Budget for System Validation: 800 – 3000 MHz

FCD-0558 Uncertainty Budget Rev8.0

				_			h =	<i>i</i> = (
a	b	с	d	e = f(d,k)	f	g	cxf/ e	cxg/ e	k
		Tol.	Prob.		c_i	<i>c</i> _i	1 g	10 g	
	IEEE	(±			•		0	0	
	1528	%)	Dist.		(1 g)	(10 g)	\boldsymbol{u}_i	\boldsymbol{u}_i	
Uncertainty Component	section			Div.			(±%)	(±%)	vi
Measurement System									
Probe Calibration	E.2.1	8.3	N	1.00	1	1	8.3	8.3	×
Axial Isotropy	E.2.2	4.7	R	1.73	1	1	2.7	2.7	×
Spherical Isotropy	E.2.2	9.6	R	1.73	0	0	0.0	0.0	∞
Boundary Effect	E.2.3	2.0	R	1.73	1	1	1.2	1.2	∞
Linearity	E.2.4	4.7	R	1.73	1	1	2.7	2.7	∞
System Detection Limits	E.2.5	1.0	R	1.73	1	1	0.6	0.6	∞
Readout Electronics	E.2.6	0.3	Ν	1.00	1	1	0.3	0.3	∞
Response Time	E.2.7	1.1	R	1.73	1	1	0.6	0.6	×
Integration Time	E.2.8	0.0	R	1.73	1	1	0.0	0.0	×
RF Ambient Conditions - Noise	E.6.1	3.0	R	1.73	1	1	1.7	1.7	∞
RF Ambient Conditions - Reflections	E.6.1	0.0	R	1.73	1	1	0.0	0.0	×
Probe Positioner Mechanical Tolerance	E.6.2	1.0	R	1.73	1	1	0.6	0.6	×
Probe Positioning w.r.t. Phantom	E.6.3	4.0	R	1.73	1	1	2.3	2.3	×
Max. SAR Evaluation (ext., int., avg.)	E.5	2.1	R	1.73	1	1	1.2	1.2	∞
Dipole									
Dipole Axis to Liquid Distance	8, E.4.2	2.0	R	1.73	1	1	1.2	1.2	×
Input Power and SAR Drift									
Measurement	8, 6.6.2	5.0	R	1.73	1	1	2.9	2.9	×
Phantom and Tissue Parameters									
Phantom Uncertainty	E.3.1	4.0	R	1.73	1	1	2.3	2.3	~
Dielectric Parameter Correction		1.4	N	1.00	1	0.79	1.4	1.1	×
Liquid Conductivity (measurement)	E.3.3	3.3	R	1.73	0.64	0.43	1.2	0.8	~
Liquid Permittivity (measurement)	E.3.3	1.9	R	1.73	0.6	0.49	0.6	0.5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Combined Standard Uncertainty			RSS				11	11	99999
Expanded Uncertainty (95% CONFIDENCE LEVEL)			<i>k</i> =2				21	21	

Table 4: Uncertainty Budget for System Validation: 3 - 6 GHz

FCD-0558 Uncertainty Budget Rev8.0

Notes for Tables 1, 2, 3 and 4.

a) Column headings a-k are given for reference.

b) Tol. - tolerance in influence quantity.

c) Prob. Dist. – Probability distribution

d) N, R - normal, rectangular probability distributions

e) Div. - divisor used to translate tolerance into normally distributed standard uncertainty

f) *ci* - sensitivity coefficient that should be applied to convert the variability of the uncertainty component into a variability of SAR.

g) ui - SAR uncertainty

h) *vi* - degrees of freedom for standard uncertainty and effective degrees of freedom for the expanded uncertainty

APPENDIX B Probe Calibration Certificates

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Motorola EME

Client

SWISS S RIBRAT

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: ES3-3291_Jul11

Accreditation No.: SCS 108

C

S

	ES3DV3 - SN:32	91				
Calibration procedure(s)	QA CAL-01.v8, QA CAL-12.v7, QA CAL-14.v3, QA CAL-23.v4, QA CAL-25.v4 Calibration procedure for dosimetric E-field probes					
Calibration date:	July 22, 2011					
All calibrations have been cond Calibration Equipment used (Mo		y facility: environment temperature (22 \pm 3)°C a	and humidity < 70%.			
Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration			
Power meter E4419B	GB41293874	31-Mar-11 (No. 217-01372)	Apr-12			
	MY41498087					
Power sensor E4412A		31-Mar-11 (No. 217-01372)	Apr-12			
	SN: S5054 (3c)	31-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01369)				
Reference 3 dB Attenuator			Apr-12			
Reference 3 dB Attenuator Reference 20 dB Attenuator	SN: S5054 (3c)	29-Mar-11 (No. 217-01369)	Apr-12 Apr-12			
Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator	SN: S5054 (3c) SN: S5086 (20b)	29-Mar-11 (No. 217-01369) 29-Mar-11 (No. 217-01367)	Apr-12 Apr-12 Apr-12			
Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2	SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b)	29-Mar-11 (No. 217-01369) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01370)	Apr-12 Apr-12 Apr-12 Apr-12 Apr-12			
Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4	SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013	29-Mar-11 (No. 217-01369) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01370) 29-Dec-10 (No. ES3-3013_Dec10)	Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Dec-11			
Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards	SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 654	29-Mar-11 (No. 217-01369) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01370) 29-Dec-10 (No. ES3-3013_Dec10) 3-May-11 (No. DAE4-654_May11)	Apr-12 Apr-12 Apr-12 Apr-12 Dec-11 May-12			
Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E	SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 654 ID	29-Mar-11 (No. 217-01369) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01370) 29-Dec-10 (No. ES3-3013_Dec10) 3-May-11 (No. DAE4-654_May11) Check Date (in house)	Apr-12 Apr-12 Apr-12 Apr-12 Dec-11 May-12 Scheduled Check			
Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C	SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 654 UD US3642U01700	29-Mar-11 (No. 217-01369) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01370) 29-Dec-10 (No. ES3-3013_Dec10) 3-May-11 (No. DAE4-654_May11) Check Date (in house) 4-Aug-99 (in house check Oct-09)	Apr-12 Apr-12 Apr-12 Apr-12 Dec-11 May-12 Scheduled Check In house check: Oct-11			
Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C	SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 65129 (30b) SN: 654 ID US3642U01700 US37390585	29-Mar-11 (No. 217-01369) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01367) 29-Dec-10 (No. ES3-3013_Dec10) 3-May-11 (No. DAE4-654_May11) Check Date (in house) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-10)	Apr-12 Apr-12 Apr-12 Apr-12 Dec-11 May-12 Scheduled Check In house check: Oct-11 In house check: Oct-11			

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: ES3-3291_Jul11

Page 1 of 11

Issued: July 25, 2011

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

С

Schweizerischer Kallbrierdienst Service suisse d'étalonnage Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMX.v.z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C	modulation dependent linearization parameters
Polarization ϕ	φ rotation around probe axis
Polarization 9	9 rotation around an axis that is in the plane normal to probe axis (at measurement center),
	i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of
 power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the
 maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom
 exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ES3-3291_Jul11

Page 2 of 11

Probe ES3DV3

SN:3291

Manufactured: July 6, 2010 Calibrated:

July 22, 2011

.

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: ES3-3291_Jul11

Page 3 of 11

ES3DV3-- SN:3291

July 22, 2011

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3291

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m) ²) ^A	0.87	1.39	0.83	± 10.1 %
DCP (mV) ^B	104.0	101.6	101.6	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dB	C dB	VR mV	Unc ^E (k=2)
10000	CW	0.00	X	0.00	0.00	1.00	122.4	±2.5 %
			Y	0.00	0.00	1.00	122.0	
			Z	0.00	0.00	1.00	123.0	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

- ^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).
 ^B Numerical linearization parameter: uncertainty not required.
 ^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

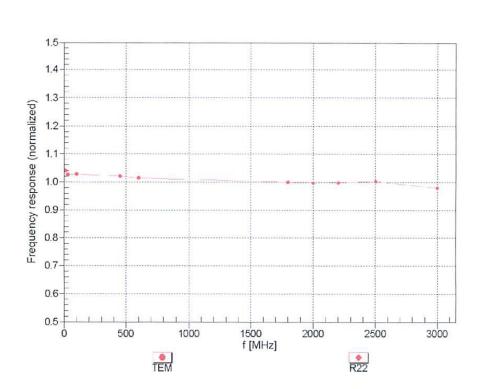
Certificate No: ES3-3291_Jul11

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
300	45.3	0.87	7.48	7.48	7.48	0.24	1.01	± 13.4 %
450	<u> </u>	0.87	6.94	6.94	6.94	0.16	1.79	± 13.4 %
750	41.9	0.89	6.58	6.58	6.58	1.00	1.00	± 12.0 %
900	41.5	0.97	6.24	6.24	6.24	1.00	1.00	± 12.0 %
1810	40.0	1.40	5.23	5.23	5.23	0.95	1.13	± 12.0 %
1950	40.0	1.40	_ 5.08	5.08	5.08	1.00	1.06	± 12.0 %
2300	39.5	1.67	4.88	4.88	4.88	0.87	1.14	± 12.0 %
2450	39.2	1.80	4.56	4.56	4.56	0.94	1.09	± 12.0 %
2600	39.0	1.96	4.47	4.47	4.47	0.84	1.19	<u>± 12.0 %</u>
3500	37.9	2.91	4.35	4.35	4.35	0.99	1.24	± 13.1 %
3700	37.7	3.12	3.91	3.91	3.91	0.99	1.30	± 13.1 %

Calibration Parameter Determined in Head	d Tissue Simulating Media
--	---------------------------

^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^{*} At frequencies below 3 GHz, the validity of tissue parameters (c and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (c and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

			·— ·		-			
f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
300	58.2	0.92	7.62	7.62	7.62	0.22	1.67	± 13.4 %
450	56.7	0.94	7.46	7.46	7.46	0.08	1.30	± 13.4 %
750	55.5	0.96	6.47	6.47	<u>6.</u> 47	1.00	1.14	± 12.0 %
900	55.0	1.05	6.28	6.28	6.28	1.00	1.00	± 12.0 %
1810	53.3	1.52	5.07	5.07	5.07	1.00	1.18	± 12.0 %
1950	53.3	1.52	4.97	4.97	4.97	0.94	1.20	± 12.0 %
2300	52.9	1.81	4.56	4.56	4.56	1.00	1.09	± 12.0 %
2450	52.7	1.95	4.30	4.30	4.30	1.00	1.08	± 12.0 %
2600	52.5	2.16	4.21	4.21	4.21	0.90	1.21	± 12.0 %
3500	51.3	3.31	3.63	3.63	3.63	0.65	1.70	± 13.1 %
3700	51.0	3.55	3.58	3.58	3.58	0.60	1.87	± 13.1 %


Calibration Parame	ter Determined in Body	Tissue Simulating Media

^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.
 ^f At frequencies below 3 GHz, the validity of tissue parameters (c and c) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (c and c) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

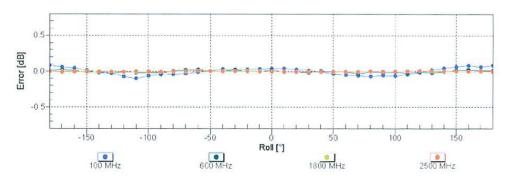
Page 6 of 11

ES3DV3- SN:3291

July 22, 2011

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

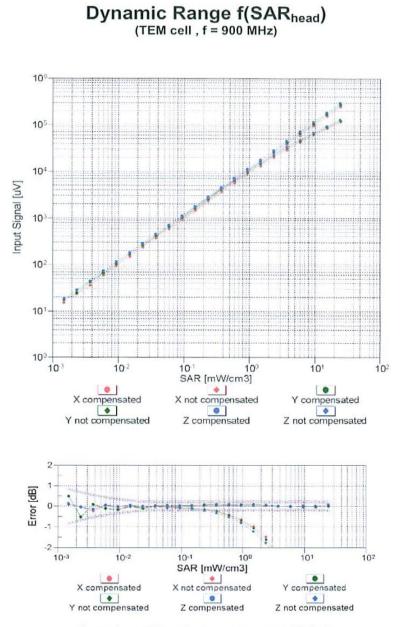
Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


Certificate No: ES3-3291_Jul11

Page 7 of 11

July 22, 2011

f=600 MHz,TEM f=1800 MHz,R22

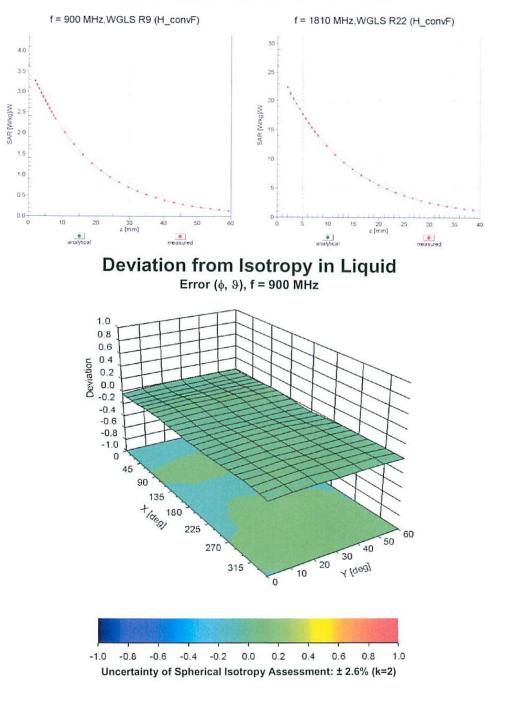


Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: ES3-3291_Jul11

Page 8 of 11

July 22, 2011



Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: ES3-3291_Jul11

Page 9 of 11

July 22, 2011

Conversion Factor Assessment

Certificate No: ES3-3291_Jul11

Page 10 of 11

Sensor Arrangement	Triangular
Connector Angle (°)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Other Probe Parameters

Certificate No: ES3-3291_Jul11

Page 11 of 11

Schmid & Partner Engineering AG

speag

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

Additional Conversion Factors
for Dosimetric E-Field ProbeType:ES3DV3Serial Number:3291Place of Assessment:ZurichDate of Assessment:July 26, 2011Probe Calibration Date:July 22, 2011

Schmid & Partner Engineering AG hereby certifies that conversion factor(s) of this probe have been evaluated on the date indicated above. The assessment was performed using the FDTD numerical code SEMCAD of Schmid & Partner Engineering AG. Since the evaluation is coupled with measured conversion factors, it has to be recalculated yearly, i.e., following the re-calibration schedule of the probe. The uncertainty of the numerical assessment is based on the extrapolation from measured value at 900 MHz or at 1810 MHz.

Assessed by:

20 llg

ES3DV3-SN:3291

Page 1 of 2

July 26, 2011

0, Fax +41 44 24	5 9779	
		SN:3291
ConvF	8.5 ± 10%	$\varepsilon_r = 52.3$ $\sigma = 0.76$ mho/m (head tissue)
ConvF	7.9 ± 10%	$\epsilon_r = 47.6$ $\sigma = 0.83$ mho/m (head tissue)
ConvF	8.2 ± 10%	$\varepsilon_r = 61.9$ $\sigma = 0.80 \text{ mho/m}$ (body tissue)
ConvF	7.8 ± 10%	$\epsilon_r = 59.4$ $\sigma = 0.88 \text{ mho/m}$ (body tissue)
1	and Deside States	
	-Field Pro -Field Pro (± standard d <i>ConvF</i> <i>ConvF</i>	ConvF 7.9 ± 10% ConvF 8.2 ± 10%

ES3DV3-SN:3291

Page 2 of 2

July 26, 2011

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

SWISS

0

0N

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Motorola EME Client

Certificate No: EX3-3735_Sep11

Accreditation No.: SCS 108

S

С

CALIBRATION CERTIFICATE							
Object	EX3DV4 - SN:373	35					
Calibration procedure(s)	QA CAL-01.v8, QA CAL-14.v3, QA CAL-23.v4, QA CAL-25.v4 Calibration procedure for dosimetric E-field probes						
Calibration date:	September 26, 20	011					
The measurements and the unc	ertainties with confidence pr ucted in the closed laborator	onal standards, which realize the physical units obability are given on the following pages and y facility: environment temperature $(22 \pm 3)^{\circ}$ C a	are part of the certificate.				
Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration				
Power meter E4419B	GB41293874	31-Mar-11 (No. 217-01372)	Apr-12				
Power sensor E4412A	MY41498087	31-Mar-11 (No. 217-01372)	Apr-12				
Reference 3 dB Attenuator	SN: S5054 (3c)	29-Mar-11 (No. 217-01369)	Apr-12				
Reference 20 dB Attenuator	SN: S5086 (20b)	29-Mar-11 (No. 217-01367)	Apr-12				
Reference 30 dB Attenuator	SN: S5129 (30b)	29-Mar-11 (No. 217-01370)	Apr-12				
Reference Probe ES3DV2	SN: 3013	29-Dec-10 (No. ES3-3013_Dec10)	Dec-11				
DAE4	SN: 654	3-May-11 (No. DAE4-654_May11)	May-12				
Secondary Standards	ID	Check Date (in house)	Scheduled Check				
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Oct-09)	In house check: Oct-11				
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-10)	In house check: Oct-11				
	Name	Function	Signature				
Calibrated by:	Katja Pokovic	Technical Manager	2fleg				
Approved by:	Niels Kuster	Quality Manager	V. Kes				
			Issued: September 27, 2011				

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: EX3-3735_Sep11

Page 1 of 11

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

SWISS S C South S

Schweizerischer Kalibrierdienst Service sulsse d'étatonnage Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

Giussary.	
TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization 9	9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of
 power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the
 maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom
 exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: EX3-3735_Sep11

Page 2 of 11

Probe EX3DV4

SN:3735

Manufactured: Calibrated:

February 15, 2010 September 26, 2011

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: EX3-3735_Sep11

Page 3 of 11

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.52	0.46	0.43	± 10.1 %
DCP (mV) ^B	100.9	99.3	101.2	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dB	C dB	VR mV	Unc ^E (k=2)
10000	CW	0.00	X	0.00	0.00	1.00	116.1	±2.7 %
			Y	0.00	0.00	1.00	110.6	
			Z	0.00	0.00	1.00	106.5	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).
 ^B Numerical linearization parameter: uncertainty not required.
 ^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No: EX3-3735_Sep11

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
4950	36.3	4.40	5.34	5.34	5.34	0.30	1.80	± 13.1 %
5200	36.0	4.66	5.15	5.15	5.15	0.35	1.80	± 13.1 %
5300	35.9	4.76	4.80	4.80	4.80	0.40	1.80	± 13.1 %
5500	35.6	4.96	4.38	4.38	4.38	0.50	1.80	± 13.1 %
5600	35.5	5.07	4.08	4.08	4.08	0.55	1.80	± 13.1 %
5800	35.3	5.27	4.16	4.16	4.16	0.55	1.80	± 13.1 %

Calibration Parameter Determined in Head Tissue Simulating Media

^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^c At frequencies below 3 GHz, the validity of tissue parameters (a and a) can be relaxed to ± 10% if liquid compensation formula is applied to

⁺ At frequencies below 3 GHz, the validity of tissue parameters (c and c) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (c and c) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

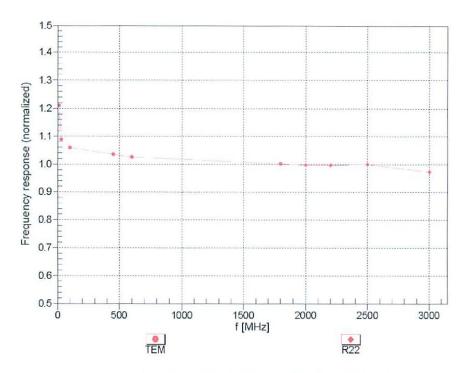
Certificate No: EX3-3735_Sep11

Page 5 of 11

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
4950	49.4	5.01	4.34	4.34	4.34	0.50	1.95	± 13.1 %
5200	49.0	5.30	4.10	4.10	4.10	0.60	1.95	± 13.1 %
5300	48.9	5.42	3.80	3.80	3.80	0.60	1.95	± 13.1 %
5500	48.6	5.65	3.53	3.53	3.53	0.65	1.95	± 13.1 %
5600	48.5	5.77	3.35	3.35	3.35	0.65	1.95	± 13.1 %
5800	48.2	6.00	3.59	3.59	3.59	0.65	1.95	± 13.1 %

Calibration Parameter Determined in Body Tissue Simulating Media

^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^f At frequencies below 3 GHz, the validity of tissue parameters (c and σ) can be relaxed to ± 10% if liquid compensation formula is applied to


^r At frequencies below 3 GHz, the validity of tissue parameters (c and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (c and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Certificate No: EX3-3735_Sep11

Page 6 of 11

September 26, 2011

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: EX3-3735_Sep11

Page 7 of 11

September 26, 2011

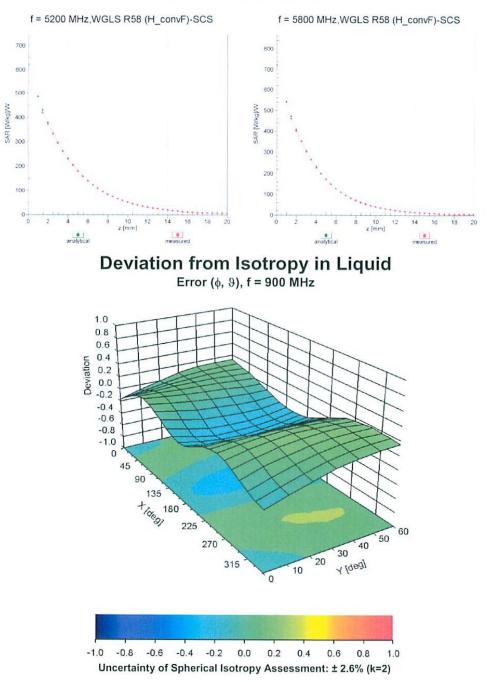
f=600 MHz,TEM f=1800 MHz,R22 180 225 0 Z o Z × • × 0 Tot Tot 0.5 Error [dB] 0.0 -0 5 -150 -100 100 150 -50 50 Roll [°] 100 MHz 600 MHz 1800 MHz 2500 MHz

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Page 8 of 11

September 26, 2011


Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: EX3-3735_Sep11

Page 9 of 11

EX3DV4- SN:3735

September 26, 2011

Conversion Factor Assessment

Certificate No: EX3-3735_Sep11

Page 10 of 11

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	2 mm

Certificate No: EX3-3735_Sep11

Page 11 of 11

APPENDIX C Dipole Calibration Certificates

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

SWISS S BRP

С

S

Accreditation No.: SCS 108

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Motorola EME Certificate No: D2450V2-704_Nov10

Object	D2450V2 - SN: 7	04	
Calibration procedure(s)	QA CAL-05.v7 Calibration proce	dure for dipole validation kits	
Calibration date:	November 25, 20	10	
	and a state of the second state of a second	robability are given on the following pages a	and are part of the certificate.
All calibrations have been condu	cted in the closed laborator	ry facility: environment temperature (22 ± 3)	
All calibrations have been condu	cted in the closed laborator	ry facility: environment temperature (22 ± 3)	°C and humidity < 70%.
All calibrations have been condu Calibration Equipment used (M& Primary Standards	cted in the closed laborator TE critical for calibration)		
All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A	cted in the closed laborator TE critical for calibration)	ry facility: environment temperature (22 ± 3) Cal Date (Certificate No.)	°C and humidity < 70%. Scheduled Calibration
All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A	Cted in the closed laborator TE critical for calibration) ID # GB37480704	ry facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266)	°C and humidity < 70%. Scheduled Calibration Oct-11
All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator	Cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783	ry facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 30-Mar-10 (No. 217-01158)	°C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11
All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination	Cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g)	ry facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266)	°C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11 Mar-11
All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327	Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01158)	°C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11 Mar-11 Mar-11
All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4	Cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205	Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01162) 30-Apt-10 (No. ES3-3205_Apr10) 10-Jun-10 (No. DAE4-601_Jun10)	°C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11 Mar-11 Mar-11 Apr-11 Jun-11
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A	Cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601	cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. ES3-3205_Apr10) 10-Jun-10 (No. DAE4-601_Jun10) Check Date (in house)	°C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11 Mar-11 Mar-11 Apr-11 Jun-11 Scheduled Check
All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A	Cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID #	ry facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. ES3-3205_Apr10) 10-Jun-10 (No. DAE4-601_Jun10) Check Date (in house) 18-Oct-02 (in house check Oct-09)	°C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11 Mar-11 Mar-11 Apr-11 Jun-11 Scheduled Check In house check: Oct-11
All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	Cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317	cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. ES3-3205_Apr10) 10-Jun-10 (No. DAE4-601_Jun10) Check Date (in house)	°C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11 Mar-11 Mar-11 Apr-11 Jun-11 Scheduled Check
All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards	Cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005	Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. ES3-3205_Apr10) 10-Jun-10 (No. DAE4-601_Jun10) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09)	*C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11 Mar-11 Mar-11 Apr-11 Jun-11 Scheduled Check In house check: Oct-11 In house check: Oct-11 In house check: Oct-11
All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	Cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206	Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. ES3-3205_Apr10) 10-Jun-10 (No. DAE4-601_Jun10) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-10)	°C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11 Mar-11 Mar-11 Apr-11 Jun-11 Scheduled Check In house check: Oct-11 In house check: Oct-11

Certificate No: D2450V2-704_Nov10

Page 1 of 6

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

s

С

Schweizerischer Kalibrierdienst Service suisse d'étalonnage

Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D2450V2-704_Nov10

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.8 ± 6 %	1.72 mho/m ± 6 %
Head TSL temperature during test	(21.5 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.1 mW / g
SAR normalized	normalized to 1W	52.4 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	53.4 mW /g ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
	condition 250 mW input power	6.15 mW / g
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured SAR normalized		6.15 mW / g 24.6 mW / g

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	55.2 Ω + 0.4 jΩ
Return Loss	- 26.2 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.152 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

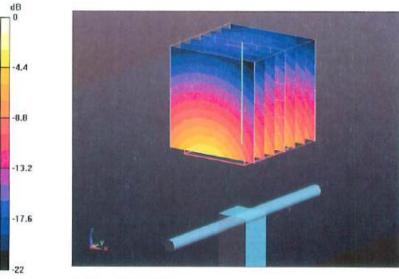
Manufactured by	SPEAG
Manufactured on	March 22, 2001

DASY5 Validation Report for Head TSL

Date/Time: 25.11.2010 14:18:31

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:704

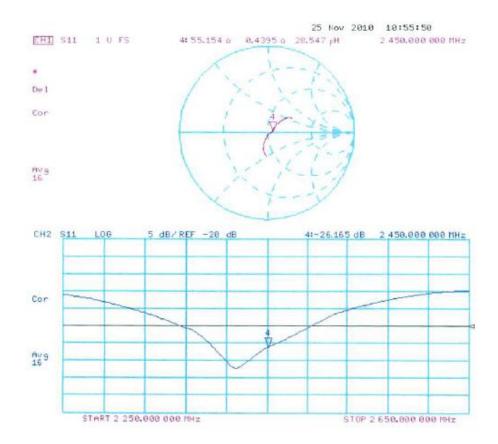

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: HSL U12 BB Medium parameters used: f = 2450 MHz; $\sigma = 1.72$ mho/m: $\varepsilon_r = 38.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.53, 4.53, 4.53); Calibrated: 30.04.2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 10.06.2010
- · Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- Measurement SW: DASY52, V52.2 Build 0, Version 52.2.0 (163)
- Postprocessing SW: SEMCAD X, V14.2 Build 2, Version 14.2.2 (1685)

Pin=250 mW/d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7)/Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 101.6 V/m; Power Drift = 0.037 dB Peak SAR (extrapolated) = 26.8 W/kg SAR(1 g) = 13.1 mW/g; SAR(10 g) = 6.15 mW/g Maximum value of SAR (measured) = 16.5 mW/g



 $0 \, dB = 16.5 \, mW/g$

Certificate No: D2450V2-704_Nov10

Page 5 of €

Impedance Measurement Plot for Head TSL

Certificate No: D2450V2-704_Nov10

Page 6 of 6

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 108

S

С

S

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Motorola EME

Certificate No: D	5GHzV2-1	017 Se	p11
-------------------	----------	--------	-----

Object	D5GHzV2 - SN:	1017	
Calibration procedure(s)	QA CAL-22.v1 Calibration proce	dure for dipole validation kits bet	tween 3-6 GHz
Calibration date:	September 20, 20	011	
The measurements and the unce	rtainties with confidence p	onal standards, which realize the physical ur robability are given on the following pages ar	nd are part of the certificate.
		Ty facility: environment temperature (22 \pm 3)	
Calibration Equipment used (M&)		Cal Date (Certificate No.)	Scheduled Calibration
Calibration Equipment used (M&T Primary Standards Power meter EPM-442A	TE critical for calibration)	Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266)	Scheduled Calibration Oct-11
Calibration Equipment used (M&1 Primary Standards Power meter EPM-442A Power sensor HP 8481A	TE critical for calibration) ID # GB37480704 US37292783	Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266)	Scheduled Calibration Oct-11 Oct-11
Calibration Equipment used (M&1 Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator	TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g)	Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01368)	Scheduled Calibration Oct-11 Oct-11 Apr-12
Calibration Equipment used (M&1 Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination	TE critical for calibration) ID # GB37490704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327	Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01368) 29-Mar-11 (No. 217-01371)	Scheduled Calibration Oct-11 Oct-11 Apr-12 Apr-12
Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Fype-N mismatch combination Reference Probe EX3DV4	TE critical for calibration) ID # GB37490704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3503	Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01368) 29-Mar-11 (No. 217-01371) 04-Mar-11 (No. EX3-3503_Mar11)	Scheduled Calibration Oct-11 Oct-11 Apr-12 Apr-12 Mar-12
Calibration Equipment used (M&1 Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4	TE critical for calibration) ID # GB37490704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327	Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01368) 29-Mar-11 (No. 217-01371)	Scheduled Calibration Oct-11 Oct-11 Apr-12 Apr-12
Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4	TE critical for calibration) ID # GB37490704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3503	Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01368) 29-Mar-11 (No. 217-01371) 04-Mar-11 (No. EX3-3503_Mar11)	Scheduled Calibration Oct-11 Oct-11 Apr-12 Apr-12 Mar-12
All calibrations have been conduc Calibration Equipment used (M&1 Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power sensor HP 8481A	TE critical for calibration) ID # GB37480704 US37292783 SN: 5066 (20g) SN: 5047.2 / 06327 SN: 3503 SN: 601	Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01368) 29-Mar-11 (No. 217-01371) 04-Mar-11 (No. EX3-3503_Mar11) 04-Jul-11 (No. DAE4-601_Jul11)	Scheduled Calibration Oct-11 Oct-11 Apr-12 Apr-12 Mar-12 Jul-12
Calibration Equipment used (M&) Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power sensor HP 8481A	TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3503 SN: 601 ID #	Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01368) 29-Mar-11 (No. 217-01371) 04-Mar-11 (No. EX3-3503_Mar11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house)	Scheduled Calibration Oct-11 Oct-11 Apr-12 Apr-12 Mar-12 Jul-12 Scheduled Check
Calibration Equipment used (M&) Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3503 SN: 601 ID # MY41092317	Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01368) 29-Mar-11 (No. 217-01371) 04-Mar-11 (No. EX3-3503_Mar11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-09)	Scheduled Calibration Oct-11 Oct-11 Apr-12 Apr-12 Mar-12 Jul-12 Scheduled Check In house check: Oct-11
Calibration Equipment used (M&) Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards	TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3503 SN: 601 ID # MY41092317 100005	Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01368) 29-Mar-11 (No. 217-01371) 04-Mar-11 (No. EX3-3503_Mar11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-09) 04-Aug-99 (in house check Oct-09)	Scheduled Calibration Oct-11 Oct-11 Apr-12 Apr-12 Mar-12 Jul-12 Scheduled Check In house check: Oct-11 In house check: Oct-11
Calibration Equipment used (M&) Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3503 SN: 601 ID # MY41092317 100005 US37390585 S4206	Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01368) 29-Mar-11 (No. 217-01371) 04-Mar-11 (No. EX3-3503_Mar11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-09) 04-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-10)	Scheduled Calibration Oct-11 Oct-11 Apr-12 Apr-12 Mar-12 Jul-12 Scheduled Check In house check: Oct-11 In house check: Oct-11 In house check: Oct-11

Certificate No: D5GHzV2-1017_Sep11

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

s

Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
 - Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- · SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D5GHzV2-1017_Sep11

Page 2 of 13

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.6.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5200 MHz ± 1 MHz 5500 MHz ± 1 MHz 5800 MHz ± 1 MHz	

Head TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	36.0	4.66 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.8 ± 6 %	4.44 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.79 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	77.3 mW /g ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.22 mW / g

Head TSL parameters at 5500 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.6	4.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.4 ± 6 %	4.73 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5500 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.40 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	83.2 mW / g ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.39 mW / g

Certificate No: D5GHzV2-1017_Sep11

Head TSL parameters at 5800 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.3	5.27 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	33.9 ± 6 %	5.02 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.80 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	77.2 mW / g ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 100 mW input power	2.21 mW / g

Body TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	49.0	5.30 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	48.0 ± 6 %	5.49 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.61 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	75.8 mW / g ± 18.1 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
	condition	
SAR measured	100 mW input power	2.13 mW / g

Body TSL parameters at 5500 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.6	5.65 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.4 ± 6 %	5.88 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5500 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	8.20 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	81.7 mW / g ± 18.1 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	

or an averaged over to one (to g) of body top	Condition	
SAR measured	100 mW input power	2.27 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	22.6 mW / g ± 17.6 % (k=2)

Body TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.2	6.00 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.8 ± 6 %	6.29 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.69 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	76.6 mW / g ± 18.1 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured	condition 100 mW input power	2.12 mW / g

Appendix

Antenna Parameters with Head TSL at 5200 MHz

Impedance, transformed to feed point	50.4 Ω - 7.6 jΩ
Return Loss	- 22.4 dB

Antenna Parameters with Head TSL at 5500 MHz

Impedance, transformed to feed point	55.7 Ω - 6.1 jΩ
Return Loss	- 22.1 dB

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	57.2 Ω - 6.2 jΩ
Return Loss	- 21.1 dB

Antenna Parameters with Body TSL at 5200 MHz

Impedance, transformed to feed point	50.3 Ω - 6.3 jΩ
Return Loss	- 24.1 dB

Antenna Parameters with Body TSL at 5500 MHz

Impedance, transformed to feed point	55.6 Ω - 4.0 jΩ
Return Loss	- 23.7 dB

Antenna Parameters with Body TSL at 5800 MHz

Impedance, transformed to feed point	59.0 Ω - 4.0 jΩ
Return Loss	- 20.9 dB

General Antenna Parameters and Design

Electrical Delay (one direction) 1.234 ns		
	Electrical Delay (one direction)	1.234 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	February 05, 2004

Certificate No: D5GHzV2-1017_Sep11

DASY5 Validation Report for Head TSL

Date: 20.09.2011

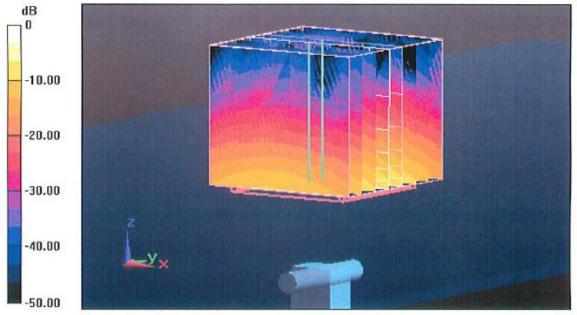
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1017

Communication System: CW; Frequency: 5200 MHz, Frequency: 5500 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; σ = 4.44 mho/m; ε_r = 34.8; ρ = 1000 kg/m³, Medium parameters used: f = 5500 MHz; σ = 4.73 mho/m; ε_r = 34.4; ρ = 1000 kg/m³, Medium parameters used: f = 5800 MHz; σ = 5.02 mho/m; ε_r = 33.9; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

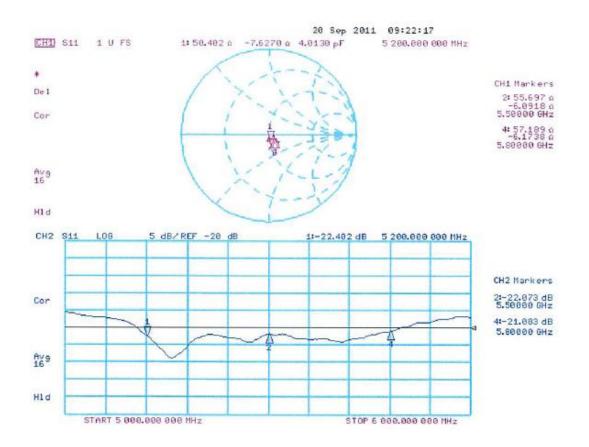
DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.41, 5.41, 5.41), ConvF(4.91, 4.91, 4.91), ConvF(4.81, 4.81, 4.81); Calibrated: 04.03.2011
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.07.2011
- · Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.6.2(482); SEMCAD X 14.4.5(3634)


Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 64.589 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 28.998 W/kg SAR(1 g) = 7.79 mW/g; SAR(10 g) = 2.22 mW/g Maximum value of SAR (measured) = 17.776 mW/g

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 65.361 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 33.287 W/kg SAR(1 g) = 8.4 mW/g; SAR(10 g) = 2.39 mW/g Maximum value of SAR (measured) = 19.730 mW/g

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 61.941 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 32.737 W/kg SAR(1 g) = 7.8 mW/g; SAR(10 g) = 2.21 mW/g Maximum value of SAR (measured) = 18.737 mW/g


Certificate No: D5GHzV2-1017_Sep11

Page 8 of 13

0 dB = 18.740 mW/g

Impedance Measurement Plot for Head TSL

Certificate No: D5GHzV2-1017_Sep11

Page 10 of 13

DASY5 Validation Report for Body TSL

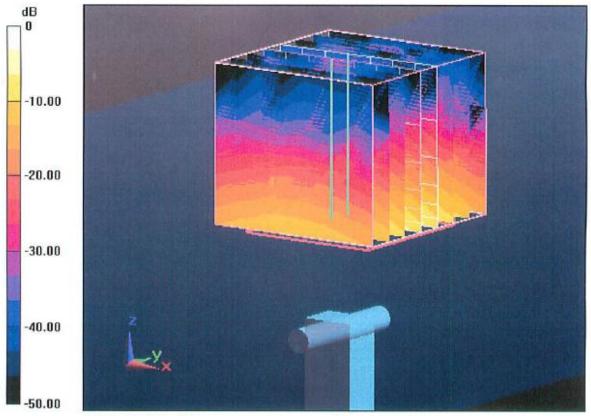
Date: 19.09.2011

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1017

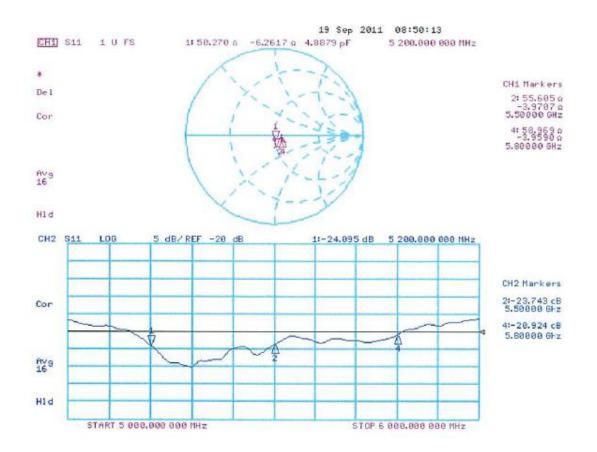
Communication System: CW; Frequency: 5200 MHz, Frequency: 5500 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; σ = 5.49 mho/m; ε_r = 48; ρ = 1000 kg/m³, Medium parameters used: f = 5500 MHz; σ = 5.88 mho/m; ε_r = 47.4; ρ = 1000 kg/m³, Medium parameters used: f = 5800 MHz; σ = 6.29 mho/m; ε_r = 46.8; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:


- Probe: EX3DV4 SN3503; ConvF(4.91, 4.91, 4.91), ConvF(4.43, 4.43, 4.43), ConvF(4.38, 4.38, 4.38); Calibrated: 04.03.2011
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.07.2011
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.6.2(482); SEMCAD X 14.4.5(3634)

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 58.578 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 29.490 W/kg SAR(1 g) = 7.61 mW/g; SAR(10 g) = 2.13 mW/g Maximum value of SAR (measured) = 17.235 mW/g

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 59.471 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 34.752 W/kg SAR(1 g) = 8.2 mW/g; SAR(10 g) = 2.27 mW/g Maximum value of SAR (measured) = 19.268 mW/g


Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 55.732 V/m; Power Drift = -0.0038 dB Peak SAR (extrapolated) = 35.372 W/kg SAR(1 g) = 7.69 mW/g; SAR(10 g) = 2.12 mW/g Maximum value of SAR (measured) = 18.585 mW/g

Certificate No: D5GHzV2-1017_Sep11

 $0~\mathrm{dB}=18.590\mathrm{mW/g}$

Impedance Measurement Plot for Body TSL

Page 13 of 13