DECLARATION OF COMPLIANCE SAR ASSESSMENT Part 1 of 2 #### **Motorola Solutions Inc. EME Test Laboratory** Motorola Solutions Malaysia Sdn Bhd Plot 2A, Medan Bayan Lepas, Mukim 12 SWD 11900 Bayan Lepas Penang, Malaysia. **Date of Report:** 10/7/2021 **Report Revision:** A **Responsible Engineer:** Saw Sun Hock (EME Engineer) Report Author: Sin Keng LEE (EME Engineer) **Date/s Tested:** 09/21/2021-09/22/2021 Motorola Solutions Inc. Manufacturer: **DUT Description:** Handheld Portable – XPR 3300e 403-512 MHz 4W NKP TIA4950 **Test TX mode(s):** CW (PTT) Refer Table 3 Max. Power output: **Nominal Power:** Refer Table 3 **Tx Frequency Bands:** LMR 403-512 MHz Signaling type: FM Model(s) Tested: AAH02RDC9VA1AN-1 (PMUE5780A) / PMUE5780AAANAA **Model(s) Certified:** AAH02RDC9VA1AN-1 (PMUE5780A) / PMUE5780AAANAA AAH02RDH9VA1AN-1 (PMUE5845A) / PMUE5845AABNAA AAH02RDC9VA1AN-1 (PMUE3999C) / PMUE3999CAANAA AAH02RDH9VA1AN-1 (PMUE5839A) / PMUE5839AABNAA **Serial Number(s):** 867TXM2661 **Classification:** Occupational/Controlled **Applicant Name:** Motorola Solutions Inc. **Applicant Address:** 8000 West Sunrise Boulevard, Fort Lauderdale, Florida 33322 FCC ID: AZ489FT4969: LMR 406.125-512 MHz This report contains results that are immaterial for FCC equipment approval, which are clearly identified. 109U-89FT4969; LMR 406.1-430MHz, 450-470MHz IC: This report contains results that are immaterial for ISED equipment approval, which are clearly identified. 24843 **ISED Test Site registration: FCC Test Firm Registration** Number: 823256 The test results clearly demonstrate compliance with FCC Occupational/Controlled RF Exposure limits of 8 W/kg averaged over 1 gram per the requirements of FCC 47 CFR § 2.1093 and RSS-102 (Issue 5). Based on the information and the testing results provided herein, the undersigned certifies that when used as stated in the operating instructions supplied, said product complies with the national and international reference standards and guidelines listed in section 4.0 of this report (no deviation from standard methods). This report shall not be reproduced without written approval from an officially designated representative of the Motorola **Solutions Inc EME Laboratory.** I attest to the accuracy of the data and assume full responsibility for the completeness of these measurements. This reporting format is consistent with the suggested guidelines of the TIA T\$B-150 December 2004. The results and statements contained in this report pertain only to the device(s) evaluated. > Pei Loo Tev (Approved Signatory) **Approval Date: 10/8/2021** ## Part 1 of 2 | 1.0 | Introdu | uction | 4 | |------|---------|---|----| | 2.0 | FCC S | AR Summary | 4 | | 3.0 | Abbrev | viations / Definitions | 4 | | 4.0 | Refere | nced Standards and Guidelines | 5 | | 5.0 | SAR L | imits | 6 | | 6.0 | Descrip | otion of Device Under Test (DUT) | 6 | | 7.0 | Option | al Accessories and Test Criteria | 7 | | | 7.1 | Antennas | 7 | | | 7.2 | Battery | 7 | | | 7.3 | Body worn Accessories | 8 | | | 7.4 | Audio Accessories | 9 | | 8.0 | Descrip | otion of Test System | 11 | | | 8.1 | Descriptions of Robotics/Probes/Readout Electronics | 11 | | | 8.2 | Description of Phantom(s) | 12 | | | 8.3 | Description of Simulated Tissue | 12 | | 9.0 | Additio | onal Test Equipment | 13 | | 10.0 | SAR M | Measurement System Validation and Verification | 13 | | | 10.1 | System Validation | 13 | | | 10.2 | System Verification | 14 | | | 10.3 | Equivalent Tissue Test Results | 14 | | 11.0 | Enviro | nmental Test Conditions | 15 | | 12.0 | DUT T | est Setup and Methodology | 15 | | | 12.1 | Measurements | 15 | | | 12.2 | DUT Configuration(s) | 16 | | | 12.3 | DUT Positioning Procedures | 16 | | | | 12.3.1 Body | 16 | | | | 12.3.2 Head | 16 | | | | 12.3.3 Face | | | | 12.4 | DUT Test Channels | | | | 12.5 | SAR Result Scaling Methodology | | | | 12.6 | DUT Test Plan | | | 13.0 | | est Data | | | | 13.1 | Spot Check at the Body Configuration | | | | 13.2 | Spot Check at the Face Configurations | | | | 13.3 | Spot Check for each Antenna | | | | 13.4 | Assessment for ISED, Canada | | | | 13.5 | Shortened Scan Assessment | | | 14.0 | Results | s Summary | 20 | | | | ility Assessment | | | 16.0 | System | Uncertainty | 21 | ## APPENDICES | Α | Measurement Uncertainty Budget | 22 | |---|---------------------------------|----| | | Probe Calibration Certificates | | | | Dipole Calibration Certificates | | #### Part 2 of 2 ## **APPENDICES** | D | System Verification Check Scans | 2 | |---|---|------| | | DUT Scans | | | F | Shorten Scan of Highest SAR Configuration | . 10 | | | DUT Test Position Photos | | | | DUT, Body worn and audio accessories Photos | | ## **Report Revision History** | Date | Revision | Comments | |-----------|----------|-----------------| | 10/7/2021 | A | Initial release | #### 1.0 Introduction FCC ID: AZ489FT4969 / IC: 109U-89FT4969 This report details the utilization, test setup, test equipment, and test results of the Specific Absorption Rate (SAR) measurements performed at the Motorola Solutions Inc. EME Test Laboratory for handheld portable with model number AAH02RDC9VA1AN-1 (PMUE5780A) / PMUE5780AAANAA. This model is only able to operate in PTT mode, without BT and WLAN 2.4GHz. It is a depopulated version to the AAH02RDC9VA1AN (PMUE3838C) / PMUE3838CAANKA, which has been previously evaluated for SAR in FCC ID: AZ489FT7125, IC ID: 109U-89FT7125. The results of those previous evaluations were taken into consideration when developing the AAH02RDC9VA1AN-1 (PMUE5780A) / PMUE5780AAANAA SAR Test Plan. The AAH02RDC9VA1AN-1 (PMUE5780A) / PMUE5780AAANAA uses the same accessories as the AAH02RDC9VA1AN (PMUE3838C) / PMUE3838CAANKA with FCC ID: AZ489FT7125, IC ID: 109U-89FT7125 and these accessories were also taken consideration and/or evaluation as well. This device is classified as Occupational/Controlled. #### 2.0 FCC SAR Summary Table 1 | Equipment Class | Frequency band (MHz) | Max Calc at
Body (W/kg) | Max Calc
at Face
(W/kg) | | |------------------------|-------------------------|----------------------------|-------------------------------|--| | | | 1g-SAR | 1g-SAR | | | TNF | 406.125-512MHz
(LMR) | 6.07 | 3.59 | | #### 3.0 Abbreviations / Definitions CNR: Calibration Not Required CW: Continuous Wave DUT: Device Under Test EME: Electromagnetic Energy FM: Frequency Modulation LMR: Land Mobile Radio NA: Not Applicable PTT: Push to Talk RSM: Remote Speaker Microphone SAR: Specific Absorption Rate TNF: Licensed Non-Broadcast Transmitter Held to Face Audio accessories: These accessories allow communication while the DUT is worn on the body. Body worn accessories: These accessories allow the DUT to be worn on the body of the user. Maximum Power: Defined as the upper limit of the production line final test station. #### 4.0 Referenced Standards and Guidelines This product is designed to comply with the following applicable national and international standards and guidelines. - IEC62209-1 (2016) Procedure to determine the specific absorption rate (SAR) for handheld devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz) - Federal Communications Commission, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields", OET Bulletin 65, FCC, Washington, D.C.: 1997. - IEEE 1528 (2013), Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques - American National Standards Institute (ANSI) / Institute of Electrical and Electronics Engineers (IEEE) C95. 1-1992 - Institute of Electrical and Electronics Engineers (IEEE) C95.1-2005 - International Commission on Non-Ionizing Radiation Protection (ICNIRP) 1998 - Ministry of Health (Canada) Safety Code 6 (2015), Limits of Human Exposure to Radio frequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz - RSS-102 (Issue 5) Radio Frequency (RF) Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands) - Australian Communications Authority Radio communications (Electromagnetic Radiation -Human Exposure) Standard (2014) - ANATEL, Brazil Regulatory Authority, Resolution No. 303 of July 2, 2002 "Regulation of the limitation of exposure to electrical, magnetic, and electromagnetic fields in the radio frequency range between 9 kHz and 300 GHz." and "Attachment to resolution # 303 from July 2, 2002" - IEC62209-2 Edition 1.0 2010-03, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Human models, instrumentation, and procedures Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz). - FCC KDB 643646 D01 SAR Test for PTT Radios v01r03 - FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04 - FCC KDB 865664 D02 RF Exposure Reporting v01r02 - FCC KDB 447498 D01 General RF Exposure Guidance v06 FCC ID: AZ489FT4969 / IC: 109U-89FT4969 #### 5.0 SAR Limits Table 2 | | SAR (W/kg) | | | | |---|-----------------------|---------------------|--|--| | EXPOSURE LIMITS | (General Population / | (Occupational / | | | | EAI OSURE EIVITIS | Uncontrolled Exposure | Controlled Exposure | | | | | Environment) | Environment) | | | | Spatial Average - ANSI - | | | | | | (averaged over the whole body) | 0.08 | 0.4 | | | | Spatial Peak - ANSI - | | | | | | (averaged over any 1-g of tissue) | 1.6 | 8.0 | | | | Spatial Peak – ICNIRP/ANSI - | | | | | | (hands/wrists/feet/ankles averaged over 10-g) | 4.0 | 20.0 | | | | Spatial Peak - ICNIRP - | | | | | | (Head and Trunk 10-g) | 2.0 | 10.0 | | | ### **6.0** Description of Device Under Test (DUT) This portable device operates in the
LMR bands using frequency modulation (FM). The LMR bands in these devices operate in a half duplex system. A half duplex system only allows the user to transmit or receive. These devices cannot transmit and receive simultaneously. The user must stop transmitting in order to receive a signal or listen for a response, regardless of PTT button or use of voice activated audio accessories. This type of operation, along with the RF safety booklet, which instructs the user to transmit no more than 50% of the time, justifies the use of 50% duty factor for this device. The intended operating positions are "at the face" with the DUT at least 1 inch from the mouth, and "at the body" by means of the offered body worn accessories. Body worn audio and PTT operation is accomplished by means of optional remote accessories that are connected to the radio. Table 3 below indicated the technology, band, maximum duty cycle and maximum output power. Maximum output power is defined as upper limit of the production line final test station. Table 3 | Radio | Band | Transmission | Duty Cycle | Nominal | Max Power | |-------|---------|--------------|-------------------|-----------|--------------| | Type | (MHz) | | (%) | Power (W) | (W) | | LMR | 403-512 | FM | *50 | 4.0 | 4.80 | Note - * includes 50% PTT operation ## FCC ID: AZ489FT4969 / IC: 109U-89FT4969 #### 7.0 Optional Accessories and Test Criteria This device is offered with optional accessories. All accessories were individually evaluated during the test plan creation for reference model AAH02RDC9VA1AN (PMUE3838C) / PMUE3838CAANKA, FCC ID: AZ489FT7125, IC ID: 109U-89FT7125 to determine if testing was required per the guidelines outlined in "SAR Test Reduction Considerations for Occupational PTT Radios" FCC KDB 643646 to assess compliance of this device. The following sections identify the test criteria and details for each accessory category. Refer to Exhibit 7B for antenna separation distances. SAR Tested column represents the accessories that selected for spot check evaluation. #### 7.1 Antennas There are optional removable antennas. The Table below lists their descriptions. Table 4 | Antenna
No. | Antenna Models | Description | SAR
Evaluated** | SAR
Tested | |----------------|----------------|---|--------------------|---------------| | 1 | PMAE4069A | Stubby, 400 - 450 MHz, 1/4 Wave, 1.15 dBi | Yes | No | | 2 | PMAE4070A | Stubby, 440 - 490 MHz , 1/4 Wave, 1.15 dBi | Yes | No | | 3 | PMAE4071A | Stubby, 470 - 527 MHz, 1/4 Wave, 1.15 dBi | Yes (1) | Yes | | 4 | PMAE4079A | Whip, 400 - 527 MHz, ¹ / ₄ Wave, 2.15 dBi | Yes | No | ^{**} SAR evaluated in reference model AAH02RDC9VA1AN (PMUE3838C) / PMUE3838CAANKA ### 7.2 Battery There are optional batteries offered for this product. Table below lists their descriptions. Table 5 | Battery
No. | Battery Models | Description | SAR
Evaluated** | SAR
Tested | Comments | |----------------|-----------------------|---|--------------------|---------------|--| | 1 | PMNN4406B | Core Slim Li-Ion 1600 mAh IP56 Battery | Yes (2) | Yes | | | 2 | PMNN4407B | IMPRES Slim Li-Ion 1600 mAh IP56
Battery | Yes | No | | | 3 | PMNN4409B | IMPRES Li-Ion Non-FM 2250 mAh IP56
Battery | Yes | No | | | 4 | PMNN4415A | Standard IP56 NiMH 1400T 1300 mAh
Battery | Yes | No | | | 5 | PMNN4416B | Standard IP56 Li-Ion 1600T 1500mAh
Battery | Yes | No | | | 6 | PMNN4417B | IMPRES IP56 Li-Ion 1600T 1500 mAh | Yes (3) | Yes | | | 7 | PMNN4418B | IMPRES IP56 Li-Ion 2250T 2150 mAh | Yes | No | | | 8 | PMNN4435A | Li-Mn 1400 mAh low temp -30C IP67
Submersible Battery | Yes | No | | | 9 | PMNN4463A | Battery Li-Ion IP57 2050 mAh | Yes | No | | | 10 | PMNN4488A | IMPRES Li-Ion 3000 mAh, IP68 Battery for vibrator belt clip | Yes | No | Compatible with body
worn PMLN7296A
only | | 11 | PMNN4490B | IMPRES Li-Ion 2900mAh TIA4950
HAZLOC IP68 Battery | Yes | No | | | 12 | PMNN4491C | IMPRES Slim Battery 2100 mAh IP68
Battery | Yes | No | | ⁽¹⁾ The accessory provided highest Body & Face SAR in previous SAR evaluation. #### **Table 5 (continued)** | Battery
No. | Battery Models | Description | SAR
Evaluated** | SAR
Tested | Comments | |----------------|-----------------------|--|--------------------|---------------|----------------------------| | 13 | PMNN4493A | IMPRES Li-Ion 3000 mAH IP68 Battery, low voltage | Yes | No | | | 14 | PMNN4525B | IMPRES Li-Ion battery IP68 1950 mAh | Yes | No | | | 15 | PMNN4543A | Core Li-Ion 2450mAh IP68 battery | Yes | No | | | 16 | PMNN4544A | IMPRES 2450mAh IP68 Battery | Yes | No | | | 17 | PMNN4548A | Belize De-Moto 2450mAH S10 to 3006 cells | No | No | By similarity to PMNN4543A | ^{**} SAR evaluated in reference model AAH02RDC9VA1AN (PMUE3838C) / PMUE3838CAANKA ## 7.3 Body worn Accessories All body worn accessories were considered. Table below lists the body worn accessories, and body worn accessory descriptions. Table 6 | Body worn
No. | Body worn
Models | Description | SAR
Evaluated** | SAR
Tested | Comments | |------------------|---------------------|--|--------------------|---------------|---| | 1 | NTN5243A | Adjustable Black Nylon Carrying Strap, attaches to D-ring on cases | Yes | No | Previously tested with
PMLN5866A,
PMLN5864A,
PMLN5870A | | 2 | PMLN5866A | Hard Leather Carry Case with 3.0"
Swivel belt loop - No display | Yes | No | Tested with
NTN5243A with belt
loop removed | | 3 | PMLN5865A | Hard Leather Carry Case with 3.0" Swivel belt loop - LKP | No | No | By similarity to
PMLN5866A | | 4 | PMLN5867A | Hard Leather Carry Case with 2.5" Swivel belt loop - LKP | No | No | By similarity to
PMLN5866A | | 5 | PMLN5868A | Hard Leather Carry Case with 2.5" Swivel belt loop - No display | No | No | By similarity to
PMLN5866A | | 6 | PMLN5870A | Nylon Carry Case 3.0" Fixed belt loop-
No display | Yes | No | Previously tested with
NTN5243A,
RLN6487A &
RLN6488A | | 7 | PMLN5869A | Nylon Carry Case 3.0" Fixed belt loop-
LKP | No | No | By similarity to
PMLN5870A | | 8 | PMLN5864A | Hard Leather Carry Case 3.0" Fixed belt loop- No display | Yes | No | Previously tested with NTN5243A | | 9 | PMLN5863A | Hard Leather Carry Case 3.0" Fixed belt loop- LKP | No | No | By similarity to
PMLN5864A | | 10 | PMLN4651A | 2 Inch Belt Clip | Yes | No | | | 11 | PMLN7008A | 2.5 Inch Belt Clip | Yes | No | | | 12 | PMLN7296A | Vibrating Belt Clip | Yes | Yes | Only applicable for
battery with vibrator
PMNN4488A | ⁽²⁾ The battery provides highest Face SAR in previous SAR evaluation. ⁽³⁾ The battery provides highest Body SAR in previous SAR evaluation. #### Table 6 (continued) | Body
worn
No. | Body worn Models | Description | SAR
Evaluated** | SAR
Tested | Comments | |---------------------|------------------|---|--------------------|---------------|---| | 13 | HLN6602A | Universal Chest Pack | Yes | No | | | 14 | RLN4570A | Break-a-way Chest Pack with radio holder, pen holder and velcro secured pouch | Yes (4) | Yes | | | 15 | RLN4815A | RadioPAk Radio Utility Case | Yes | No | | | 16 | RLN6487A | Leather Radio Strap - XL | Yes | No | Previously tested
with RLN6488A &
PMLN5870A | | 17 | RLN6488A | Anti-Sway Strap Leather Radio Strap | Yes | No | Previously tested
with RLN6487A &
PMLN5870A | | 18 | RLN6486A | Leather Radio Strap | No | No | By similarity to
RLN6487A | ^{**} SAR evaluated in reference model AAH02RDC9VA1AN (PMUE3838C) / PMUE3838CAANKA #### 7.4 Audio Accessories The Table below lists the offered audio accessories and their descriptions. The highest SAR configuration from the reference model was found with no audio accessory attached, simulating the Bluetooth type test configuration was the worst case overall. Table 7 | Audio | Audio Acc. | | SAR | SAR | | |-------|------------|--|-------------|--------|----------------------------| | No. | Models | Description | Evaluated** | Tested | Comments | | 1 | PMLN5727A | Earpiece Inline Mic/PTT, Swvl,
MagOne | Yes | No | Default audio | | 2 | PMLN5732A | Earset w/ Boom Mic, Mag One | No | No | By similarity to PMLN5727A | | 3 | PMMN4073A | IMPRES RSM, small 3.5 jack | Yes | No | | | 4 | PMMN4075A | RSM Small, No Emergency, IP57 | No | No | By similarity to PMMN4073A | | 5 | PMMN4076A | RSM Small with 3.5mm Jack | No | No | By similarity to PMMN4073A | | 6 | PMMN4071A | IMPRES RSM large 3.5 jack NC | No | No | By similarity to PMMN4073A | | 7 | PMMN4108A | IMPRES WINDPORTING RSM IP67 | No | No | By similarity to PMMN4073A | | 8 | PMLN5726A | 2-Wire Surveillance Kit, Beige | Yes | No | | | 9 | PMLN7269A | 2-wire surveillance kit with quick disconnect clear acoustic tube, black | No | No | By similarity to PMLN5726A | | 10 | PMLN7270A | 2-wire surveillance kit with quick disconnect clear acoustic tube, beige | No | No | By similarity to PMLN5726A | | 11 | PMLN6754A | 3-wire surveillance kit w/ trans tube-
black | Yes | No | | | 12 | PMLN6755A | 3-wire surveillance kit w/ trans tubebeige | No | No | By similarity to PMLN6754A | | 13 | PMLN5733A | Earbud with In-Line Mic/PTT,
MagOne | Yes | No | | | 14 | PMLN6757A | Earpiece, adjust d-style w/in-line PTT/Mic | Yes | No | | | 15 | PMLN6761A | Ultra-Lite Headset MagOne | Yes | No | | ⁽⁴⁾ The accessory provides highest Body SAR in previous SAR evaluation. ## Table 7 (continued) | Audio
No. | Audio Acc. Models | Description |
SAR
Evaluated** | SAR
Tested | Comments | |--------------|-------------------|--|--------------------|---------------|--------------------------------| | 16 | PMLN5731A | Heavy duty Headset, Noise Cancellation,
Inline PTT | Yes | No | | | 17 | PMLN6759A | Temple transducer | Yes | No | | | 18 | PMLN6635A | Lightweight Headset | No | No | By similarity to
PMLN6759A | | 19 | PMLN6760A | Behind the head heavy duty headset | Yes | No | | | 20 | PMLN6763A | Behind the Head Heavy Duty Headset
Intrinsically safe TIA | No | No | By similarity to
PMLN6760A | | 21 | PMLN7464A | OTTO OTH Headset Slim GCAI
Connector (Non-TIA) | No | No | By similarity to
PMLN6760A | | 22 | PMLN7465A | OTTO OTH Headset Slim GCAI
Connector (TIA) | No | No | By similarity to
PMLN6760A | | 23 | PMMN4071AL | IMPRES Large RSM, Noise cancelling with 3.5mm jack | Yes | No | | | 24 | PMMN4108AL | IMPRES Windporting RSM IP67 | No | No | By similarity to
PMMN4071AL | | 25 | PMMN4073AL | IMPRES Small RSM with 3.5mm jack | No | No | By similarity to
PMMN4071AL | | 26 | PMMN4076AL | RSM Small with 3.5MM jack | Yes | No | | | 27 | PMMN4075AL | RSM Small, No emergency, IP57 | No | No | By similarity to
PMMN4076AL | ^{**} SAR evaluated in reference model AAH02RDC9VA1AN (PMUE3838C) / PMUE3838CAANKA #### 8.0 Description of Test System ## 8.1 Descriptions of Robotics/Probes/Readout Electronics Table 8 | Dosimetric System type | System version | DAE type | Probe Type | |-------------------------------|----------------|----------|---------------------| | Schmid & Partner | | | EV2DVA | | Engineering AG | 52.10.4.1527 | DAE4 | EX3DV4
(E-Field) | | SPEAG DASY 5 | | | (E-Field) | The DASY5™ system is operated per the instructions in the DASY5™ Users Manual. The complete manual is available directly from SPEAG™. All measurement equipment used to assess SAR compliance was calibrated according to ISO/IEC 17025 A2LA guidelines. Section 9.0 presents additional test equipment information. Appendices B and C present the applicable calibration certificates. The E-field probe first scans a coarse grid over a large area inside the phantom in order to locate the interpolated maximum SAR distribution. After the coarse scan measurement, the probe is automatically moved to a position at the interpolated maximum. The subsequent scan can directly use this position as reference for the cube evaluations. #### FCC ID: AZ489FT4969 / IC: 109U-89FT4969 #### 8.2 Description of Phantom(s) Table 9 | Phantom Type | Phantom(s) Used | Material
Parameters | Phantom Dimensions LxWxD (mm) | Material
Thickness
(mm) | Support
Structure
Material | Loss
Tangent
(wood) | |--------------|-----------------|---|-------------------------------|-------------------------------|----------------------------------|---------------------------| | Thantom Type | Thantom(s) Oscu | 200MHz -6GHz; | (11111) | (11111) | Matchai | (wood) | | Triple Flat | NA | Er = 3-5,
Loss Tangent = | 280x175x175 | | | | | | | ≤0.05 | | | | | | SAM | NA | 300MHz - 6GHz;
Er = < 5,
Loss Tangent =
≤ 0.05 | Human Model | 2mm
+/- 0.2mm | Wood | < 0.05 | | Oval Flat | V | 300MHz -6GHz;
Er = 4+/- 1,
Loss Tangent =
≤0.05 | 600x400x190 | | | | ## 8.3 Description of Simulated Tissue The sugar based simulate tissue is produced by placing the correct measured amount of De-ionized water into a large container. Each of the dried ingredients are weighed and added to the water carefully to avoid clumping. If the solution has a high sugar concentration the water is pre-heated to aid in dissolving the ingredients. For Diacetin and similar type simulates, sugar and HEC ingredients are not needed. The solution is mixed thoroughly, covered, and allowed to sit overnight prior to use. The simulated tissue mixture was mixed based on the Simulated Tissue Composition indicated in Table 10. During the daily testing of this product, the applicable mixture was used to measure the Di-electric parameters at each of the tested frequencies to verify that the Di-electric parameters were within the tolerance of the tissue specifications. Simulated Tissue Composition (percent by mass) Table 10 | | 450MHz | | | |--------------|--------|-------|--| | Ingredients | Head | Body | | | Sugar | 56 | 46.5 | | | Diacetin | - | - | | | De ionized – | 39.1 | 50.53 | | | Water | 39.1 | | | | Salt | 3.8 | 1.87 | | | HEC | 1.0 | 1 | | | Bact. | 0.1 | 0.1 | | Report ID: P31421-EME-00006 ## FCC ID: AZ489FT4969 / IC: 109U-89FT4969 #### 9.0 Additional Test Equipment The Table below lists additional test equipment used during the SAR assessment. Table 11 | Equipment Type | Model
Number | Serial Number | Calibration
Date | Calibration Due Date | |---------------------------|-----------------|---------------|---------------------|----------------------| | SPEAG Probe | EX3DV4 | 7533 | 4/19/2021 | 4/19/2022 | | SPEAG DAE | DAE3 | 374 | 4/8/2021 | 4/8/2022 | | POWER AMPLIFIER | 50W100D | 0357646 | CNR | CNR | | VECTOR SIGNAL GENERATOR | E4438C | MY47272101 | 10/29/2019 | 10/29/2021 | | BI-DIRECTIONAL COUPLER | 3020A | 40295 | 7/8/2021 | 7/8/2022 | | POWER METER | E4419B | GB42420608 | 11/27/2020 | 11/27/2021 | | POWER METER | E4418B | GB40206480 | 11/25/2020 | 11/25/2021 | | POWER SENSOR | E9301B | MY41495594 | 5/29/2021 | 5/29/2022 | | POWER SENSOR | 8481B | MY41091243 | 11/3/2020 | 11/3/2021 | | DATA LOGGER | DSB | 16398306 | 11/24/2020 | 11/24/2021 | | TEMPERATURE PROBE | 80PK-22 | 06032017 | 11/25/2020 | 11/25/2021 | | THERMOMETER | HH806AU | 080307 | 11/25/2020 | 11/25/2021 | | NETWORK ANALYZER | E5071B | MY42403147 | 12/1/2020 | 12/1/2021 | | THERMOMETER | HH202A | 35881 | 12/3/2020 | 12/3/2021 | | TEMPERATURE PROBE | 80PK-22 | 05032017 | 12/3/2020 | 12/3/2021 | | DIELECTRIC ASSESSMENT KIT | DAK-3.5 | 1156 | 4/7/2021 | 4/7/2022 | | SPEAG DIPOLE | D450V3 | 1054 | 3/11/2019 | 3/11/2022 | | POWER SENSOR | E9301B | MY55210006 | 5/7/2021 | 5/7/2022 | | POWER METER | E4418B | MY45107917 | 7/23/2021 | 7/23/2022 | #### 10.0 SAR Measurement System Validation and Verification DASY output files of the probe/dipole calibration certificates and system verification test results are included in appendices B, C & D respectively. #### 10.1 System Validation The SAR measurement system was validated according to procedures in KDB 865664. The validation status summary Table is below. Table 12 | Dates Probe Calibration | | Probe
SN | Measured Tissue
Parameters | | Validation | | | | | |-------------------------|-------|-------------|-------------------------------|------|------------|-------------------|-------------|-----------|----------| | | Point | | Point | SIN | σ | $\epsilon_{ m r}$ | Sensitivity | Linearity | Isotropy | | | CW | | | | | | | | | | 5/10/2021 | Body | 450 | 7533 | 0.93 | 55.1 | Pass | Pass | Pass | | | 5/08/2021 | Head | 450 | 1333 | 0.84 | 43.8 | Pass | Pass | Pass | | ## FCC ID: AZ489FT4969 / IC: 109U-89FT4969 #### 10.2 System Verification System verification checks were conducted each day during the SAR assessment. The results are normalized to 1W. Appendix D includes DASY plots for each day during the SAR assessment. The Table below summarizes the daily system check results used for the SAR assessment. Table 13 | Probe
Serial # | Tissue Type | Dipole Kit / Serial # | Ref SAR @ 1W
(W/kg) | System Check
Results
Measured
(W/kg) | Results when
normalized to 1W
(W/kg) | Tested
Date | |-------------------|---------------|-----------------------|------------------------|---|--|----------------| | 7533 | FCC Body | SPEAG D450V3 / | 4.54 +/- 10% | 1.21 | 4.84 | 09/21/2021 | | 7555 | IEEE/IEC Head | 1054 | 4.57 +/- 10% | 1.23 | 4.92 | 09/22/2021 | #### **10.3** Equivalent Tissue Test Results Simulated tissue prepared for SAR measurements is measured daily and within 24 hours prior to actual SAR testing to verify that the tissue is within +/- 5% of target parameters at the center of the transmit band. This measurement is done using the applicable equipment indicated in section 9.0. The Table below summarizes the measured tissue parameters used for the SAR assessment. Table 14 | Frequency (MHz) | Tissue Type | Conductivity Target (S/m) | Dielectric Constant
Target | Conductivity
Meas. (S/m) | Dielectric
Constant
Meas. | Tested Date | |-----------------|-------------------|---------------------------|-------------------------------|-----------------------------|---------------------------------|--------------------| | 450 | FCC Body | 0.94
(0.89-0.99) | 56.7
(53.9-59.5) | 0.92 | 55.5 | 09/21/2021 | | 430 | IEEE/
IEC Head | 0.87
(0.83-0.91) | 43.5
(41.3-45.7) | 0.84 | 42.4 | 09/22/2021 | | 470 | FCC Body | 0.94
(0.89-0.99) | 56.6
(53.8-59.5) | 0.94 | 55.2 | 09/21/2021 | | 470 | IEEE/
IEC Head | 0.87
(0.83-0.91) | 43.4
(41.2-45.6) | 0.85 | 42 | 09/22/2021 | #### 11.0 Environmental Test Conditions The EME Laboratory's ambient environment is well controlled resulting in very stable simulated tissue temperature and therefore stable dielectric properties. Simulated tissue temperature is measured prior to each scan to insure it is within +/ - 2°C of the temperature at which the dielectric properties were determined. The liquid depth within the phantom used for measurements was at least 15cm. Additional precautions are routinely taken to ensure the stability of the simulated tissue such as covering the phantoms when scans are not actively in process in order to minimize evaporation. The lab environment is continuously monitored. The Table below presents the range and average environmental conditions during the SAR tests reported herein: Table 15 | | Target | Measured | |---------------------|------------
----------------------| | | | Range: 20.3 – 23.3°C | | Ambient Temperature | 18 − 25 °C | Avg. 22.2 °C | | | | Range: 20.6-21.5°C | | Tissue Temperature | 18 − 25 °C | Avg. 21.1°C | Relative humidity target range is a recommended target The EME Lab RF environment uses a Spectrum Analyzer to monitor for extraneous large signal RF contaminants that could possibly affect the test results. If such unwanted signals are discovered the SAR scans are repeated. #### 12.0 DUT Test Setup and Methodology #### 12.1 Measurements SAR measurements were performed using the DASY system described in section 8.0 using zoom scans. Oval flat phantoms filled with applicable simulated tissue were used for body and face testing. The Table below includes the step sizes and resolution of area and zoom scans per KDB 865664 requirements. Table 16 | Descr | iption | ≤3 GHz | > 3 GHz | | |--|-----------------------------|---|--|--| | Maximum distance from close (geometric center of probe sen | <u> </u> | 5 ± 1 mm | $\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$ | | | Maximum probe angle from probe normal at the measurement local | * | 30° ± 1° | 20° ± 1° | | | | | ≤ 2 GHz: ≤ 15 mm | $3-4$ GHz: ≤ 12 mm | | | | | $2-3$ GHz: ≤ 12 mm | $4-6 \text{ GHz:} \leq 10 \text{ mm}$ | | | | | When the x or y dimension | on of the test device, in | | | Maximum area scan spatial | resolution: Av Area Av Area | the measurement plane orientation, is smaller | | | | Wiaximum area scan spatiar | resolution. Axarea, Ayarea | than the above, the measurement resolution must | | | | | | be \leq the corresponding x or y dimension of the | | | | | | test device with at least one measurement point | | | | | | on the test device. | | | | Maximum zoom scan spatial r | esolution: ΔxZoom, ΔyZoom | \leq 2 GHz: \leq 8 mm | $3-4$ GHz: ≤ 5 mm* | | | | | $2-3 \text{ GHz: } \leq 5 \text{ mm*}$ | $4-6 \text{ GHz:} \leq 4 \text{ mm*}$ | | | Maximum zoom scan spatial | uniform grid: ΔzZoom(n) | | $3-4$ GHz: ≤ 4 mm | | | resolution, normal to | | ≤ 5 mm | $4-5 \text{ GHz:} \leq 3 \text{ mm}$ | | | phantom surface | | | $5-6 \text{ GHz: } \leq 2 \text{ mm}$ | | Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details. #### **12.2 DUT** Configuration(s) The DUT is a portable device operational at the body and face as described in section 6.0 while using the applicable accessories listed in section 7.0. Selected accessories listed in section 7.0 of this report were considered in the spot check evaluation. #### **12.3 DUT Positioning Procedures** The positioning of the device for each body location is described below and illustrated in Appendix G. #### 12.3.1 Body The DUT was positioned in normal use configuration against the phantom with the offered body worn accessory as well as with and without the offered audio accessories as applicable. #### 12.3.2 Head Not applicable. #### 12.3.3 Face The DUT was positioned with its' front and back sides separated 2.5cm from the phantom. ^{*} When zoom scan is required and the reported SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is \leq 1.4 W/kg, \leq 8 mm, \leq 7 mm and \leq 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz. #### 12.4 DUT Test Channels The number of test channels was determined by using the following IEEE 1528 equation. The use of this equation produces the same or more test channels compared to the FCC KDB 447498 number of test channels formula. $$N_c = 2 * roundup[10 * (f_{high} - f_{low}) / f_c] + 1$$ Where N_c = Number of channels $F_{high} = Upper channel$ $F_{low} = Lower channel$ F_c = Center channel #### 12.5 SAR Result Scaling Methodology The calculated 1-gram average SAR indicated as "Max Calc. 1g-SAR" in the data Tables is determined by scaling the measured SAR to account for power leveling variations and drift. Appendix F includes a shortened scan to justify SAR scaling for drift. For this device the "Max Calc. 1g-SAR" are scaled using the following formula: $$Max_Calc = SAR_meas \cdot 10^{\frac{-Drift}{10}} \cdot \frac{P_max}{P_int} \cdot DC$$ P max = Maximum Power (W) P int = Initial Power (W) Drift = DASY drift results (dB) SAR_meas = Measured 1-g or 10-g Avg. SAR (W/kg) DC = Transmission mode duty cycle in % where applicable 50% duty cycle is applied for PTT operation Note: for conservative results, the following are applied: If $P_{int} > P_{max}$, then $P_{max}/P_{int} = 1$. Drift = 1 for positive drift Additional SAR scaling was applied using the methodologies outlined in FCC KDB 865664 using tissue sensitivity values. SAR was scaled for conditions where the tissue permittivity was measured above the nominal target and for tissue conductivity that was measured below the nominal target. Negative or reduced SAR scaling is not permitted. #### 12.6 DUT Test Plan Test plan has developed base on configurations which produced the highest worst case SAR in previous certified FCC ID: AZ489FT7125, IC ID: 109U-89FT7125. All tests were performed in CW and 50% duty cycle was applied to PTT configurations in the final results. #### 13.0 DUT Test Data #### 13.1 Spot Check at the Body Configuration The conducted power measurements for all test channels according to FCC allocated frequency range (406.125-512 MHz) are listed in Table 17 below. Table 17 | Test Freq (MHz) | Power (W) | |-----------------|-----------| | 406.125 | 4.69 | | 422.300 | 4.67 | | 435.400 | 4.63 | | 440.000 | 4.62 | | 441.400 | 4.62 | | 450.000 | 4.64 | | 457.900 | 4.60 | | 470.000 | 4.70 | | 475.000 | 4.65 | | 484.000 | 4.70 | | 490.000 | 4.69 | | 496.200 | 4.75 | | 512.000 | 4.75 | The previous highest body SAR configuration (Run# ZZ-AB-190902-13) from reference model AAH02RDC9VA1AN (PMUE3838C) / PMUE3838CAANKA, FCC ID: AZ489FT7125, IC ID: 109U-89FT7125 has been performed spot check. Table 18 indicated the reference model and spot check results. SAR plot from depopulated model is presented in Appendix E. Table 18 | Antenna | Battery | Carry
Accessory | Cable
Accessory | Test Freq
(MHz) | Init
Pwr
(W) | SAR
Drift
(dB) | Meas.
1g-SAR
(W/kg) | Max
Calc.
1g-
SAR
(W/kg) | Run# | |-----------|-----------|--------------------|--------------------|--------------------|--------------------|----------------------|---------------------------|--------------------------------------|------------------------------------| | | | Spot Chec | ck - Previous Ove | rall Highest | Body | Configu | ration | | | | PMAE4071A | PMNN4417B | RLN4570A | None | 470.000 | 4.80 | -0.64 | 10.20 | 5.91 | Reference Model
ZZ-AB-190902-13 | | PMAE4071A | PMNN4417B | RLN4570A | None | 470.000 | 4.70 | -0.84 | 9.30 | 5.76 | AMN-AB-210922-
04# | #### 13.2 Spot Check at the Face Configurations The previous highest face SAR configuration (Run# LOH-FACE-190904-11#) from reference model AAH02RDC9VA1AN (PMUE3838C) / PMUE3838CAANKA, FCC ID: AZ489FT7125, IC ID: 109U-89FT7125 has been performed spot check. Table 19 indicated the reference model and spot check result. SAR plot from depopulated model is presented in Appendix E. Table 19 | Antenna | Battery | Carry
Accessory | Cable
Accessory | Test
Freq
(MHz) | Init
Pwr
(W) | SAR
Drift
(dB) | Meas.
1g-SAR
(W/kg) | Max Calc.
1g-SAR
(W/kg) | Run# | |-----------|-----------|-----------------------|--------------------|-----------------------|--------------------|----------------------|---------------------------|-------------------------------|--| | | | Sp | ot Check - Pre | vious Ove | rall Hig | ghest Fac | e Configurat | ion | | | PMAE4071A | PMNN4406B | None
(Radio front) | None | 470 | 4.8 | -0.76 | 6.09 | 3.63 | Reference Model
LOH-FACE-190904-01# | | PMAE4071A | PMNN4406B | None
(Radio front) | None | 470 | 4.72 | -0.41 | 6.43 | 3.59 | MA-FACE-210922-10 | #### 13.3 Spot Check for each Antenna Not applicable as reference model SAR value is less than 6W/kg. #### 13.4 Assessment for ISED, Canada As per ISED Notice 2020-DRS0022, if the worst-case reported SAR value in the reference model's original RF technical brief is less than or equal to 6W/kg, spot check must be performed on each depopulated variant for the configuration yielding the worst-case SAR identified for the reference model. Table 20 indicated the spot check results for Body and Face worst-case SAR configurations. The spot check results was not above 30% of the worst-case SAR value in the original SAR report for the reference model, no additional testing shall be performed. Table 20 | | | | | Iubic | | | | | | |-----------|-----------|-----------------------|--------------------|--------------------|--------------------|----------------------|---------------------------|-------------------------------|--| | Antenna | Battery | Carry
Accessory | Cable
Accessory | Test Freq
(MHz) | Init
Pwr
(W) | SAR
Drift
(dB) | Meas.
1g-SAR
(W/kg) | Max Calc.
1g-SAR
(W/kg) | Run# | | | | | Spot Check - Prev | ious Overal | l Highest | Body Co | onfiguration | | | | PMAE4071A | PMNN4417B | RLN4570A | None | 470.000 | 4.80 | -0.64 | 10.20 | 5.91 | Reference Model
ZZ-AB-190902-13 | | PMAE4071A | PMNN4417B | RLN4570A | None | 470 | 4.70 | -0.84 | 9.30 | 5.76 | AMN-AB-210922-04# | | | | | Spot Check - Pre | vious Overal | l Highest | Face Co | onfiguration | | | | PMAE4071A | PMNN4406B | None
(Radio front) | None | 470 | 4.8 | -0.76 | 6.09 | 3.63 | Reference Model
LOH-FACE-190904-01# | | PMAE4071A | PMNN4406B | None (Radio front) | None | 470 | 4.72 | -0.41 | 6.43 | 3.59 | MA-FACE-210922-10 | #### 13.5 Shortened
Scan Assessment A "shortened" scan using the highest SAR configuration overall from above was performed to validate the SAR drift of the full DASY5TM coarse and zoom scans. Note that the shortened scan represents the zoom scan performance result; this is obtained by first running a coarse scan to find the peak area and then, using a newly charged battery, a zoom scan only was performed. The results of the shortened cube scan presented in Appendix D demonstrate that the scaling methodology used to determine the calculated SAR results presented herein are valid. The SAR result from the Table below is provided in Appendix F. Table 21 | | | Carry | Cable | Test Freq | Init
Pwr | SAR
Drift | Meas. | Max
Calc.
1g-
SAR | | |-----------|-----------|-----------|-----------|-----------|-------------|--------------|--------|----------------------------|-----------------------| | Antenna | Battery | Accessory | Accessory | (MHz) | (W) | (dB) | (W/kg) | (W/kg) | Run# | | PMAE4071A | PMNN4417B | RLN4570A | None | 470 | 4.70 | -0.75 | 10.00 | 6.07 | AMN-AB-210922-
06# | #### 14.0 Results Summary Spot check result indicated the depopulated version model AAH02RDC9VA1AN-1 (PMUE5780A) / PMUE5780AAANAA is within the product variant SAR performance compare to the reference model AAH02RDC9VA1AN (PMUE3838C) / PMUE3838CAANKA with FCC ID: AZ489FT7125, IC ID: 109U-89FT7125 . The highest Operational Maximum Calculated 1-gram average SAR values found for this filing: Table 22 | Designator | Frequency
band | Max Calc at Body
(W/kg) | Max Calc at Face
(W/kg) | |------------|--------------------------|----------------------------|----------------------------| | O | (MHz) | 1g-SAR | 1g-SAR | | | | FCC | | | LMR | 406.125-512 | 6.07 | 3.59 | | | | ISED | | | LMR | 406.125-430 ;
450-470 | 6.07 | 3.59 | All results are scaled to the maximum output power. The test results clearly demonstrate compliance with FCC Occupational/Controlled RF Exposure limits of 8 W/kg averaged over 1 gram per the requirements of FCC 47 CFR § 2.1093. #### 15.0 Variability Assessment Per the guidelines in KDB 865664 SAR variability assessment is required because SAR results are above 4.0W/kg (Occupational) or 0.8W/kg (General population) Choose applicable condition. The Table below includes test results of the original measurement(s), the repeated measurement(s), and the ratio (SAR_{high}/SAR_{low}) for the applicable test configuration(s). Table 23 | Run# | Antenna | Battery | Carry
Accessory | Cable
Accessory | Test Freq. (MHz) | Adj
Calc.
1g-SAR
(W/kg) | Ratio | Comments | |-----------------------|-----------|-------------|--------------------|--------------------|------------------|----------------------------------|-------|---| | AMN-AB-210922-
04# | PMAE4071A | PMNN4417B | DI N4570A | None | 470 | 5.64 | 1.05 | No additional repeated scans is required due to | | AMN-AB-210922-
06# | PMAE40/1A | PIVINN441/D | KLN4370A | None | 470 | 5.94 | 1.03 | the Ratio $(SAR_{high}/SAR_{low}) < 1.20$ | #### **16.0** System Uncertainty A system uncertainty analysis is not required for this report per KDB 865664 because the highest report SAR value for Occupational exposure is less than 7.5W/kg. Per the guidelines of ISO 17025 a reported system uncertainty is required and therefore measurement uncertainty budget is included in Appendix A. ## Appendix A Measurement Uncertainty Budget #### Uncertainty Budget for System Validation (dipole & flat phantom) for 450 MHz | | | | | | | | h = | i = | | |--|-------------------------|------------|--------------|------------|-----------------------|-----------------------|--|---|------------------| | a | b | c | d | e = f(d,k) | £ | a | $\begin{array}{c c} c x f \\ /e \end{array}$ | $\begin{array}{c} c x \\ g/e \end{array}$ | \boldsymbol{k} | | Uncertainty Component | IEEE
1528
section | Tol. (± %) | Prob
Dist | Div. | c_i (1 g) | c _i (10 g) | 1 g
U _i
(±%) | 10 g
U _i
(±%) | v _i | | Measurement System | | | | | | | | | | | Probe Calibration | E.2.1 | 6.7 | N | 1.00 | 1 | 1 | 6.7 | 6.7 | ∞ | | Axial Isotropy | E.2.2 | 4.7 | R | 1.73 | 1 | 1 | 2.7 | 2.7 | ∞ | | Spherical Isotropy | E.2.2 | 9.6 | R | 1.73 | 0 | 0 | 0.0 | 0.0 | 8 | | Boundary Effect | E.2.3 | 1.0 | R | 1.73 | 1 | 1 | 0.6 | 0.6 | 8 | | Linearity | E.2.4 | 4.7 | R | 1.73 | 1 | 1 | 2.7 | 2.7 | 8 | | System Detection Limits | E.2.5 | 1.0 | R | 1.73 | 1 | 1 | 0.6 | 0.6 | 8 | | Readout Electronics | E.2.6 | 0.3 | N | 1.00 | 1 | 1 | 0.3 | 0.3 | ∞ | | Response Time | E.2.7 | 1.1 | R | 1.73 | 1 | 1 | 0.6 | 0.6 | ∞ | | Integration Time | E.2.8 | 0.0 | R | 1.73 | 1 | 1 | 0.0 | 0.0 | ∞ | | RF Ambient Conditions - Noise | E.6.1 | 3.0 | R | 1.73 | 1 | 1 | 1.7 | 1.7 | ∞ | | RF Ambient Conditions - Reflections | E.6.1 | 0.0 | R | 1.73 | 1 | 1 | 0.0 | 0.0 | ∞ | | Probe Positioner Mechanical Tolerance | E.6.2 | 0.4 | R | 1.73 | 1 | 1 | 0.2 | 0.2 | ∞ | | Probe Positioning w.r.t. Phantom | E.6.3 | 1.4 | R | 1.73 | 1 | 1 | 0.8 | 0.8 | ∞ | | Max. SAR Evaluation (ext., int., avg.) | E.5 | 3.4 | R | 1.73 | 1 | 1 | 2.0 | 2.0 | ∞ | | Dipole | | | | | | | | | | | Dipole Axis to Liquid Distance | 8, E.4.2 | 2.0 | R | 1.73 | 1 | 1 | 1.2 | 1.2 | ∞ | | Input Power and SAR Drift Measurement | 8, 6.6.2 | 5.0 | R | 1.73 | 1 | 1 | 2.9 | 2.9 | ∞ | | Phantom and Tissue Parameters | | | | | | | | | | | Phantom Uncertainty | E.3.1 | 4.0 | R | 1.73 | 1 | 1 | 2.3 | 2.3 | ∞ | | Liquid Conductivity (target) | E.3.2 | 5.0 | R | 1.73 | 0.64 | 0.43 | 1.8 | 1.2 | ∞ | | Liquid Conductivity (measurement) | E.3.3 | 3.3 | R | 1.73 | 0.64 | 0.43 | 1.2 | 0.8 | ∞ | | Liquid Permittivity (target) | E.3.2 | 5.0 | R | 1.73 | 0.6 | 0.49 | 1.7 | 1.4 | ∞ | | Liquid Permittivity (measurement) | E.3.3 | 1.9 | R | 1.73 | 0.6 | 0.49 | 0.6 | 0.5 | ∞ | | Combined Standard Uncertainty | | | RSS | | | | 10 | 9 | 99999 | | Expanded Uncertainty
(95% CONFIDENCE LEVEL) | | | k=2 | | | | 19 | 18 | | Notes for uncertainty budget Tables: - a) Column headings *a-k* are given for reference. - b) Tol. tolerance in influence quantity. - c) Prob. Dist. Probability distribution - d) N, R normal, rectangular probability distributions - e) Div. divisor used to translate tolerance into normally distributed standard uncertainty - f) *ci* sensitivity coefficient that should be applied to convert the variability of the uncertainty component into a variability of SAR. - g) ui SAR uncertainty - h) vi degrees of freedom for standard uncertainty and effective degrees of freedom for the expanded uncertainty #### **Uncertainty Budget for Device Under Test, for 450 MHz** | а | b | c | d | e = f(d,k) | f | g | h = c x f / e | $i = c \times g / e$ | k | |--|-------------------------|------------|--------------|------------|-------------|--------------|-------------------------------------|--------------------------------------|----------| | Uncertainty Component | IEEE
1528
section | Tol. (± %) | Prob
Dist | Div. | c_i (1 g) | c_i (10 g) | 1 g
<i>u_i</i>
(±%) | 10 g
<i>u_i</i>
(±%) | v_i | | Measurement System | | | | | | | | | | | Probe Calibration | E.2.1 | 6.7 | N | 1.00 | 1 | 1 | 6.7 | 6.7 | ∞ | | Axial Isotropy | E.2.2 | 4.7 | R | 1.73 | 0.707 | 0.707 | 1.9 | 1.9 | ∞ | | Hemispherical Isotropy | E.2.2 | 9.6 | R | 1.73 | 0.707 | 0.707 | 3.9 | 3.9 | ∞ | | Boundary Effect | E.2.3 | 1.0 | R | 1.73 | 1 | 1 | 0.6 | 0.6 | ∞ | | Linearity | E.2.4 | 4.7 | R | 1.73 | 1 | 1 | 2.7 | 2.7 | ∞ | | System Detection Limits | E.2.5 | 1.0 | R | 1.73 | 1 | 1 | 0.6 | 0.6 | ∞ | | Readout Electronics | E.2.6 | 0.3 | N | 1.00 | 1 | 1 | 0.3 | 0.3 | ∞ | | Response Time | E.2.7 | 1.1 | R | 1.73 | 1 | 1 | 0.6 | 0.6 | ∞ | | Integration Time | E.2.8 | 1.1 | R | 1.73 | 1 | 1 | 0.6 | 0.6 | ∞ | | RF Ambient Conditions - Noise | E.6.1 | 3.0 | R | 1.73 | 1 | 1 | 1.7 | 1.7 | ∞ | | RF Ambient Conditions - | | | | | | | | | | | Reflections | E.6.1 | 0.0 | R | 1.73 | 1 | 1 | 0.0 | 0.0 | ∞ | | Probe Positioner Mech. Tolerance | E.6.2 | 0.4 | R | 1.73 | 1 | 1 | 0.2 | 0.2 | ∞ | | Probe Positioning w.r.t Phantom | E.6.3 | 1.4 | R | 1.73 | 1 | 1 | 0.8 | 0.8 | ∞ | | Max. SAR Evaluation (ext., int., avg.) | E.5 | 3.4 | R | 1.73 | 1 | 1 | 2.0 | 2.0 | ∞ | | Test sample Related | | | | | | | | | | | Test Sample Positioning | E.4.2 | 3.2 | N | 1.00 | 1 | 1 | 3.2 | 3.2 | 29 | | Device Holder Uncertainty | E.4.1 | 4.0 | N | 1.00 | 1 | 1 | 4.0 | 4.0 | 8 | | SAR drift | 6.6.2 | 5.0 | R | 1.73 | 1 | 1 | 2.9 | 2.9 | 8 | | Phantom and Tissue Parameters | | | | | | | | | | | Phantom Uncertainty | E.3.1 | 4.0 | R | 1.73 | 1 | 1 | 2.3 | 2.3 | 8 | | Liquid Conductivity (target) | E.3.2 | 5.0 | R | 1.73 | 0.64 | 0.43 | 1.8 | 1.2 | 8 | | Liquid Conductivity (measurement) | E.3.3 | 3.3 | N | 1.00 | 0.64 | 0.43 | 2.1 | 1.4 | 8 | | Liquid Permittivity (target) | E.3.2 | 5.0 | R | 1.73 | 0.6 | 0.49 | 1.7 | 1.4 | × | | Liquid Permittivity (measurement) | E.3.3 | 1.9 | N | 1.00 | 0.6 | 0.49 | 1.1 | 0.9 | ∞ | | Combined Standard Uncertainty | | | RSS | | | | 11 | 11 | 477 | | Expanded Uncertainty
(95% CONFIDENCE LEVEL) | | | k=2 | | | | 23 | 22 | | Notes for uncertainty budget Tables: - a) Column headings *a-k* are given for reference. - b) Tol. tolerance in influence quantity. - c) Prob. Dist. Probability distribution - d) N, R normal, rectangular probability distributions - e) Div. divisor used to translate tolerance into normally distributed standard uncertainty - f) *ci* sensitivity coefficient that should be applied to convert the variability of the uncertainty component into a variability of SAR. - g) ui SAR uncertainty - h) *vi* degrees of freedom for
standard uncertainty and effective degrees of freedom for the expanded uncertainty FCC ID: AZ489FT4969 / IC: 109U-89FT4969 Report ID: P31421-EME-00006 # Appendix B Probe Calibration Certificates Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Motorola Solutions MY Certificate No: EX3-7533_Apr21 #### CALIBRATION CERTIFICATE Object EX3DV4 - SN:7533 Calibration procedure(s) QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v6, QA CAL-23.v5, QA CAL-25.v7 Calibration procedure for dosimetric E-field probes Calibration date: April 19, 2021 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID. | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 09-Apr-21 (No. 217-03291/03292) | Apr-22 | | Power sensor NRP-Z91 | SN: 103244 | 09-Apr-21 (No. 217-03291) | Apr-22 | | Power sensor NRP-Z91 | SN: 103245 | 09-Apr-21 (No. 217-03292) | Apr-22 | | Reference 20 dB Attenuator | SN: CC2552 (20x) | 09-Apr-21 (No. 217-03343) | Apr-22 | | DAE4 | SN: 660 | 23-Dec-20 (No. DAE4-660_Dec20) | Dec-21 | | Reference Probe ES3DV2 | SN: 3013 | 30-Dec-20 (No. ES3-3013_Dec20) | Dec-21 | | Secondary Standards | ID. | Check: Date (in house) | Scheduled Check | | Power meter E44198 | SN: GB41293874 | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 | | Power sensor E4412A | SN: MY41498087 | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 | | Power sensor E4412A | SN: 000110210 | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 | | RF generator HP 8648C | SN: US3642U01700 | 04-Aug-99 (in house check Jun-20) | In house check: Jun-22 | | Network Analyzer E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-20) | In house check: Oct-21 | Calibrated by: Name Function Signature Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: April 21, 2021 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: EX3-7533_Apr21 Page 1 of 23 Calibration Laboratory of Schmid & Partner Engineering AG Zoughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service sulsse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters Polarization φ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system #### Calibration is Performed According to the Following Standards: IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 Techniques", June 2013 b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - Spherical isotropy (3D deviation from isotropy): In a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No: EX3-7533_Apr21 Page 2 of 23 EX3DV4 - SN:7533 April 19, 2021 #### DASY/EASY - Parameters of Probe: EX3DV4 - SN:7533 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--|----------|----------|----------|-----------| | Norm (μV/(V/m) ²) ^A | 0.42 | 0.45 | 0.41 | ± 10.1 % | | DCP (mV) ⁰ | 98.1 | 99.3 | 103.4 | 1 | Calibration Results for Modulation Response | UID | Communication System Name | | A
dB | qB√hΛ
B | С | D
dB | VR
mV | Max
dev. | Max
Unc∈
(k=2) | |--------|---|---|---------|------------|-------|----------|----------
--|---| | 0 | CW | X | 0.00 | 0.00 | 1.00 | 0.00 | 141.2 | ± 3.5 % | ± 4.7 % | | | Total Control of the | Y | 0.00 | 0.00 | 1.00 | | 141.1 | | | | | La companya di mangana ang pangana ang pangana | Z | 0.00 | 0.00 | 1.00 | | 141.9 | E | .1.1000071430 | | 10352- | Pulse Waveform (200Hz, 10%) | X | 2.40 | 65.60 | 10.01 | 10.00 | 60.0 | ± 2.8 % | ± 9.6 % | | AAA | Control to record development with the second second to the second | Y | 1.75 | 62.29 | 7.82 | | 60.0 | | 1-02000000 | | | | Z | 3.80 | 70.37 | 12.36 | | 60.0 | | | | 10353- | Pulse Waveform (200Hz, 20%) | X | 1.37 | 64.59 | 8.68 | 6.99 | 80.0 | ±2.2% | ± 9.6 % | | AAA | | Y | 0.87 | 60.46 | 5.99 | 10000000 | 80.0 | 0.01/0.00/0.00 | 100000000000000000000000000000000000000 | | | | Z | 6.72 | 78.25 | 14.06 | | 80.0 | | | | 10354- | Pulse Waveform (200Hz, 40%) | X | 1.64 | 69.97 | 10.02 | 3.98 | 95.0 | ±1.2% | ± 9.6 % | | AAA | | Y | 0.43 | 60.00 | 5.14 | | 95.0 | Service Chile | 0.0000000000000000000000000000000000000 | | | | Z | 20.00 | 91.39 | 17.04 | | 95.0 | | | | 10355- | Pulse Waveform (200Hz, 60%) | X | 20.00 | 93.50 | 16.70 | 2.22 | 120.0 | ±1.0% | ± 9.6 % | | AAA | | Y | 0.32 | 61.69 | 6.08 | | 120.0 | 200000000000000000000000000000000000000 | 177,757,757 | | | 0 | Z | 20.00 | 101.20 | 20.43 | | 120.0 | | | | 10387- | QPSK Waveform, 1 MHz | X | 1.63 | 66.38 | 14.99 | 1.00 | 150.0 | ±1.8% | ±9.6% | | AAA | | Y | 1.62 | 66.57 | 14.96 | C CORK : | 150.0 | Control of the Contro | 100000000000000000000000000000000000000 | | | | Z | 1.56 | 65.84 | 14.60 | | 150.0 | 1 | | | 10388- | QPSK Waveform, 10 MHz | X | 2.14 | 67.39 | 15.59 | 0.00 | 150.0 | ±1.1% | ±9.6% | | AAA | | Y | 2.11 | 67.25 | 15.49 | AMT6578 | 150.0 | 100000000000000000000000000000000000000 | 200000 | | | | Z | 2.06 | 66.85 | 15.23 | | 150.0 | 1 | | | 10396- | 64-QAM Waveform, 100 kHz | X | 2.34 | 67.98 | 17.70 | 3.01 | 150.0 | ±0.8% | ± 9.6 % | | AAA | | Y | 2.24 | 67.31 | 17.29 | STATE OF | 150.0 | | THE STATE OF | | 5.000 | | Z | 2.30 | 67.65 | 17.41 | | 150.0 | | | | 10399- | 64-QAM Waveform, 40 MHz | X | 3.50 | 66.97 | 15.77 | 0.00 | 150.0 | # 0.7 % | ± 9.6 % | | AAA | | Y | 3.47 | 86.93 | 15.71 | | 150.0 | | E0333 | | 0000 | | Z | 3.42 | 66.71 | 15.55 | | 150.0 | | | | 10414- | WLAN CCDF, 64-QAM, 40MHz | X | 4.83 | 65.71 | 15.61 | 0.00 | 150.0 | ±1.3% | ± 9.6 % | | AAA | , w 200 | Y | 4.59 | 65.02 | 15.21 | g 1000 j | 150.0 | | | | | Mester III | Z | 4.74 | 65.53 | 15.43 | | 150.0 | | | Note: For details on UID parameters see Appendix The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: EX3-7533_Apr21 Page 3 of 23 A The uncertainties of Norm X,Y,Z do not affect the E³-field uncertainty inside TSL (see Pages 5 and 6). * Numerical linearization parameter: uncertainty not required. * Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value. EX3DV4-SN:7533 April 19, 2021 ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:7533 #### Sensor Model Parameters | | C1
fF | C2
fF | ν-1 | T1
ms.V ⁻² | T2
ms.V ⁻¹ | T3
ms | T4
V-2 | T5
V-1 | Т6 | |----|----------|----------|-------|--------------------------|--------------------------|----------|-----------|-----------|------| | X | 37.3 | 278.85 | 35.60 | 3.32 | 0.00 | 4.96 | 1.49 | 0.00 | 1.00 | | Y | 34.5 | 254.64 | 34.79 | 4.92 | 0.00 | 4.90 | 1.32 | 0.00 | 1.00 | | Z. | 36.5 | 267.86 | 34.51 | 4.09 | 0.00 | 4.98 | 1.50 | 0.00 | 1.00 | #### Other Probe Parameters | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | -86.8 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 1.4 mm | Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job. Certificate No: EX3-7533_Apr21 Page 4 of 23 EX3DV4-SN:7533 April 19, 2021 ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:7533 #### Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^c | Relative
Permittivity ^F | Conductivity
(S/m) | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |----------------------|---------------------------------------|-----------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 150 | 52.3 | 0.76 | 14.08 | 14.08 | 14.08 | 0.00 | 1.00 | ± 13,3 % | | 300 | 45.3 | 0.87 | 13.10 | 13.10 | 13.10 | 0.09 | 1.25 | ± 13.3 % | | 450 | 43.5 | 0.87 | 11.86 | 11.86 | 11.86 | 0.16 | 1.30 | ± 13.3 % | | 750 | 41.9 | 0.89 | 10.83 | 10.83 | 10.83 | 0.46 | 0.83 | ± 12.0 % | | 835 | 41.5 | 0.90 | 10.50 | 10.50 | 10.50 | 0.53 | 0.83 | ± 12.0 9 | | 900 | 41.5 | 0.97 | 10.32 | 10.32 | 10.32 | 0.50 | 0.80 | ± 12.0 9 | | 1450 | 40.5 | 1.20 | 9.04 | 9.04 | 9.04 | 0.41 | 0.80 | ± 12.0 9 | | 1810 | 40.0 | 1.40 | 8.50 | 8.50 | 8.50 | 0.34 | 0.86 | ± 12.0 9 | | 1900 | 40.0 | 1.40 | 8.39 | 8.39 | 8.39 | 0.30 | 0.86 | ± 12.0 9 | | 2100 | 39.8 | 1.49 | 8.20 | 8.20 | 8.20 | 0.33 | 0.86 | ± 12.0 9 | | 2300 | 39.5 | 1.67 | 8.08 | 8.08 | 8.08 | 0.32 | 0.90 | ± 12.0 9 | | 2450 | 39.2 | 1.80 | 7.83 | 7.83 | 7.83 | 0.32 | 0.90 | ± 12.0 9 | | 2600 | 39.0 | 1.96 | 7.74 | 7.74 | 7.74 | 0.29 | 0.90 | ± 12.0 9 | | 3500 | 37.9 | 2.91 | 7.26 | 7.26 | 7.26 | 0.30 | 1.35 | ± 14.0 9 | | 3700 | 37.7 | 3.12 | 7.01 | 7.01 | 7.01 | 0.30 | 1.35 | ± 14.0 % | | 5250 | 35.9 | 4.71 | 5.40 | 5,40 | 5.40 | 0.40 | 1.80 | ± 14.0 9 | | 5500 | 35.6 | 4.96 | 4.92 | 4.92 | 4.92 | 0.40 | 1.80 | ± 14.0 % | | 5600 | 35.5 | 5,07 | 4.82 | 4.82 | 4.82 | 0.40 | 1.80 | ± 14.0 % | | 5750 | 35.4 | 5.22 | 4.89 | 4.89 | 4.89 | 0.40 | 1.80 | ± 14.0 % | ^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 5 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz. At frequencies up to 10 GHz, the validity of tissue parameters (s and e) can be relaxed to ± 10% if flight compensation formula is applied to measured SAR values. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. Certificate No: EX3-7533_Apr21 Page 5 of 23 EX3DV4- SN:7533 April 19, 2021 ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:7533 #### Calibration Parameter Determined in Body Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^f | Conductivity
(S/m) | ConvF X | ConvF Y | ConvF Z | Alpha ⁶ | Depth ^G
(mm) | Unc
(k=2) | |----------------------|---------------------------------------|-----------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 150 | 61.9 | 0.80 | 13.77 | 13,77 | 13.77 | 0.00 | 1.00 | ± 13.3 % | | 300 | 58.2 |
0.92 | 12.74 | 12.74 | 12.74 | 0.02 | 1.35 | ± 13.3 % | | 450 | 56.7 | 0.94 | 12.07 | 12.07 | 12.07 | 0,11 | 1.30 | ± 13.3 % | | 750 | 55.5 | 0.96 | 10.68 | 10.68 | 10.68 | 0.49 | 0.80 | ± 12.0 % | | 835 | 55.2 | 0.97 | 10.30 | 10.30 | 10.30 | 0.47 | 0.80 | ± 12.0 % | | 900 | 55.0 | 1.05 | 10.10 | 10.10 | 10.10 | 0.50 | 0.80 | ± 12.0 % | | 1450 | 54.0 | 1.30 | 9.34 | 9.34 | 9.34 | 0.40 | 0.80 | ± 12.0 % | | 1810 | 53.3 | 1.52 | 8.44 | 8.44 | 8.44 | 0.44 | 0.86 | ± 12.0 % | | 1900 | 53.3 | 1.52 | 8.23 | 8.23 | 8.23 | 0.32 | 0.86 | ± 12.0 % | | 2100 | 53.2 | 1.62 | 8.04 | 8.04 | 8.04 | 0.41 | 0.86 | ± 12.0 9 | | 2300 | 52.9 | 1.81 | 7.91 | 7.91 | 7.91 | 0,40 | 0.90 | ± 12.0 9 | | 2450 | 52.7 | 1.95 | 7.82 | 7.82 | 7.82 | 0.36 | 0.90 | ± 12.0 % | | 2600 | 52.5 | 2.16 | 7.71 | 7.71 | 7.71 | 0.35 | 0.90 | ± 12.0 % | | 3500 | 51.3 | 3.31 | 6.59 | 6.59 | 6.59 | 0.40 | 1.35 | ± 14.0 % | | 3700 | 51.0 | 3.55 | 6.51 | 6.51 | 6.51 | 0.40 | 1.35 | ± 14.0 % | | 5250 | 48.9 | 5.36 | 4.86 | 4.86 | 4.86 | 0.50 | 1.90 | ± 14.0 % | | 5500 | 48.6 | 5.65 | 4.24 | 4.24 | 4.24 | 0.50 | 1.90 | ± 14.0 % | | 5600 | 48.5 | 5.77 | 4.17 | 4.17 | 4.17 | 0.50 | 1.90 | ± 14.0 % | | 5750 | 48.3 | 5.94 | 4.26 | 4.26 | 4.26 | 0.50 | 1.90 | ± 14.0 % | ⁶ Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the CornF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for CornF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of CornF assessed at 8 MHz is 4-9 MHz, and CornF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz. ⁸ At frequencies up to 10 GHz, the validity of tissue parameters (c and c) can be released to ± 10% if liquid compensation formula is applied to measured SAR values. The uncertainty is the RSS of the CornF uncertainty for indicated target tissue parameters. ⁹ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. Certificate No: EX3-7533_Apr21 Page 6 of 23 EX3DV4- SN:7533 April 19, 2021 ## Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) Certificate No: EX3-7533_Apr21 Page 7 of 23 EX3DV4- SN:7533 April 19, 2021 ## Receiving Pattern (\$\phi\$), \$\text{9} = 0° Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) Certificate No: EX3-7533_Apr21 Page 8 of 23 EX3DV4- SN:7533 April 19, 2021 #### **Appendix: Modulation Calibration Parameters** | UID | Rev | Communication System Name | Group | PAR
(dB) | Unc ^E
(k=2) | |--------|-----|---|--------------------|-------------------|---------------------------| | 0 | 1 | CW | CW | 0.00 | ± 4.7 % | | 10010 | CAA | SAR Validation (Square, 100ms, 10ms) | Test | 10.00 | ± 9.6 % | | 10011 | CAB | UMTS-FDD (WCDMA) | WCDMA | 2.91 | ± 9.6 % | | 170.00 | CAB | IEEE 802.11b WIFI 2.4 GHz (DSSS, 1 Mbps) | WLAN | 1.87 | ± 9.6 9 | | 10013 | CAB | IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 6 Mbps) | WLAN | 9.46 | ± 9.6 % | | 10021 | DAC | GSM-FDD (TDMA, GMSK) | GSM | 9.39 | ± 9.6 % | | 10023 | DAC | GPRS-FDD (TDMA, GMSK, TN 0) | GSM | 9.57 | ± 9.6 % | | 10024 | DAC | GPRS-FDD (TDMA, GMSK, TN 0-1) | GSM | 6.56 | ± 9.6 % | | 10025 | DAC | EDGE-FDD (TDMA, 8PSK, TN 0) | GSM | 12.62 | ± 9.6 % | | 10026 | DAC | EDGE-FDD (TDMA, 8PSK, TN 0-1) | GSM | 9.55 | ± 9.6 % | | 10027 | DAC | GPRS-FDD (TDMA, GMSK, TN 0-1-2) | GSM | 4.80 | ± 9.6 % | | 10028 | DAC | GPRS-FDD (TDMA, GMSK, TN 0-1-2-3) | GSM | 3,55 | ± 9.6 % | | 10029 | DAC | EDGE-FDD (TDMA, 8PSK, TN 0-1-2) | GSM | 7.78 | ± 9.6 % | | 10030 | CAA | IEEE 802.15.1 Bluetooth (GFSK, DH1) | Bluetooth | 5.30 | ± 9.6 % | | 10031 | CAA | IEEE 802.15.1 Bluetooth (GFSK, DH3) | Bluetooth | 1.87 | ± 9.6 % | | 10032 | CAA | IEEE 802.15.1 Bluelooth (GFSK, DH5) | Bluetooth | 1.16 | ± 9.6 % | | 10033 | CAA | IEEE 802.15.1 Bluelooth (PI/4-DQPSK, DH1) | Bluetooth | 7.74 | ± 9.6 % | | 10034 | CAA | IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3) | Bluetooth | 4.53 | ± 9.6 % | | 10035 | CAA | IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5) | Bluetooth | 3.83 | ± 9.6 % | | 10036 | CAA | IEEE 802.15.1 Bluetooth (8-DPSK, DH1) | Bluetcoth | 8.01 | ± 9.6 % | | 10037 | CAA | IEEE 802.15.1 Bluetooth (8-DPSK, DH3) | Bluetooth | 4.77 | ± 9.6 % | | 10038 | CAA | IEEE 802.15.1 Bluetooth (8-DPSK, DH5) | Bluetooth | 4.10 | ±9.6% | | 10039 | CAB | CDMA2000 (1xRTT, RC1) | CDMA2000 | 4.57 | ± 9.6 % | | 10042 | CAB | IS-54 / IS-136 FDD (TDMA/FDM, PV4-DQPSK, Halfrate) | AMPS | 7.78 | ± 9.6 % | | 10044 | CAA | IS-91/EIA/TIA-553 FDD (FDMA, FM) | AMPS | 0.00 | ± 9.6 % | | 10048 | CAA | DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24) | DECT | 13.80 | ± 9.6 % | | 10049 | CAA | DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12) | DECT | 10.79 | ± 9.6 % | | 10056 | CAA | UMTS-TDD (TD-SCDMA, 1.28 Mcps) | TD-SCDMA | 11.01 | ± 9.6 % | | 10058 | DAC | EDGE-FDO (TDMA, 8PSK, TN 0-1-2-3) | GSM | 6.52 | ± 9.6 % | | 10059 | CAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps) | WLAN | 2.12 | ±9.6 % | | 10060 | CAB | IEEE 802,11b WiFi 2.4 GHz (DSSS, 5.5 Mbps) | WLAN | 2.83 | ±9.6% | | 10061 | CAB | IEEE 802.11b WIFI 2.4 GHz (DSSS, 11 Mbps) | WLAN | 3.60 | ± 9.6 % | | 10062 | CAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps) | WLAN | 8.68 | ± 9.6 % | | 10063 | CAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps) | WLAN | 8.63 | ± 9.6 % | | 10064 | CAD | IEEE 802,11a/h WiFl 5 GHz (OFDM, 12 Mbps) | WLAN | 9.09 | ± 9.6 % | | 10065 | CAD | IEEE 802.11a/h WIFI 5 GHz (OFDM, 18 Mbps) | WLAN | 9.00 | ± 9.6 % | | 10066 | CAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps) | WLAN | 9.38 | ± 9.6 % | | 10067 | CAD | IEEE 802,11a/h WiFi 5 GHz (OFDM, 36 Mbps) | WLAN | 10.12 | ± 9.6 % | | 10068 | CAD | IEEE 802,11a/h WiFl 5 GHz (OFDM, 48 Mbos) | WLAN | 10.24 | ± 9.6 % | | 10069 | CAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps) | WLAN | 10.56 | ± 9.6 % | | 10071 | CAB | IEEE 802.11g WIFI 2.4 GHz (DSSS/OFDM, 9 Mbps) | WLAN | 9.83 | ± 9.6 % | | 10072 | CAB | IEEE 802.11g WIFI 2.4 GHz (DSSS/OFDM, 12 Mbps) | WLAN | 9.62 | ± 9.6 % | | 10073 | CAB | IEEE 802.11g WIFI 2.4 GHz (DSSS/OFDM, 18 Mbps) | WLAN | 9.94 | ± 9.6 % | | 10074 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 24 Mbps) | WLAN | 10.30 | ± 9.6 % | | 0075 | CAB | IEEE 802.11g WiFt 2.4 GHz (DSSS/OFDM, 36 Mbps) | WLAN | 10.77 | ± 9.6 % | | 10076 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps) | WLAN | 10.77 | ± 9.6 % | | 10077 | CAB | IEEE 802.11g WIFI 2.4 GHz (DSSS/OFDM, 46 Mbps) | WLAN | 11.00 | ± 9.6 % | | 10081 | CAB | CDMA2000 (1xRTT, RC3) | CDMA2000 | The second second | | | 10082 | CAB | IS-54 / IS-136 FDD (TDMA/FDM, Pl/4-DQPSK, Fulirate) | AMPS | 3.97 | ± 9.6 % | | 10090 | DAC | GPRS-FDD (TDMA, GMSK, TN 0-4) | GSM | 4.77 | ± 9.6 % | | 10097 | | UMTS-FDD (HSDPA) | 4 0.5T-5T11500000- | 6.56 | ± 9.6 % | | 10098 | CAC | UMTS-FDD (HSUPA)
UMTS-FDD (HSUPA, Subtest 2) | WCDMA | 3.98 | ± 9.6 % | | 10000 | DAC | OW TO THO (HOUPA, Subtest 2) | WCDMA | 3.98 | ± 9.6 % | Certificate No: EX3-7533_Apr21 Page 11 of 23 EX3DV4-- SN:7533 April 19, 2021 | 10099 | CAC | EDGE-FDD (TDMA, 8PSK, TN 0-4) | GSM | 9.55 | ± 9.6 % | |-------|-----|--|---------|-------|---------| | 10100 | CAC | LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK) | LTE-FDD | 5.67 | ± 9.6 % | | 10101 | CAB | LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM) | LTE-FDD | 6.42 | ± 9.6 % | | 10102 | CAB | LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM) | LTE-FDD | 6.60 | ± 9.6 % | | 10103 | DAC | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK) | LTE-TOD | 9.29 | ± 9.6 % | | 10104 | CAE | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM) | LTE-TOD | 9.97 | ± 9.6 % | | 10105 | CAE | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM) | LTE-TDD | 10.01 | ± 9.6 % | | 10108 | CAE | LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK) | LTE-FDD | 5.80 | ± 9.6 % | | 10109 | CAG | LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM) | LTE-FDD | 6.43 | ± 9.6 % | | 10110 | CAG | LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK) | LTE-FDD | 5.75 | ± 9.6 % | | 10111 | CAG | LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM) | LTE-FDD | 6.44 | ± 9.6 % | | 10112 | CAG | LTE-FDD (SC-FDMA, 100% RB, 10 MHz. 64-QAM) | LTE-FDD | 6.59 | ± 9.6 % | | 10113 | CAG | LTE-FDO (SC-FDMA, 100% R8, 5 MHz, 64-QAM) | LTE-FDD | 6.62 | ± 9.6 % | | 10114 | CAG | IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK) | WLAN | 8.10 | ± 9.6 % | | 10115 | CAG | IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM) | WLAN | 8.46 | ± 9.6 % | | 10116 | CAG | IEEE 802.11n (HT Greenfield, 135 Mbps, 64-QAM) | WLAN | 8.15 | ± 9.6 % | | 10117 | CAG | IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK) | WLAN | 8.07 | ± 9.6 % | | 10118 | CAD | IEEE 802.11n (HT Mixed, 81 Mbps, 16-QAM) | WLAN | 8.59 | ± 9.6 % | | 10119 | CAD | IEEE 802.11n (HT Mixed, 135 Mbps, 64-QAM) | WLAN | 8.13 | ±9.6% | | 10140 | CAD | LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM) | LTE-FDD | 6.49 | ± 9.6 % | | 10141 | CAD | LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM) | LTE-FDD | 6.53 | ±9.6% | | 10142 | CAD | LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK) | LTE-FDD | 5.73 | ± 9.6 % | | 10143 | CAD | LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM) | LTE-FDD | 6.35 | ± 9.6 % | | 10144 | CAC | LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM) | LTE-FDO | 6.65 | ± 9.6 % | | 10145 | CAC | LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK) | LTE-FDD | 5.76 | ± 9.6 % | | 10146 | CAC | LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM) | LTE-FD0 | 6.41 | ± 9.6 % | | 10147 | CAC | LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM) | LTE-FDD | 6.72 | ± 9.6 % | | 10149 | CAE | LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM) | LTE-F00 | 6.42 | ± 9.6 % | | 10150 | CAE | LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM) |
LTE-FDO | 6.60 | ± 9.6 % | | 10151 | CAE | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK) | LTE-TOO | 9.28 | ± 9.6 % | | 10152 | CAE | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM) | LTE-TDD | 9.92 | ± 9.6 % | | 10153 | CAE | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM) | LTE-TOD | 10.05 | ± 9.6 % | | 10154 | CAF | LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK) | LTE-FDD | 5.75 | ± 9.6 % | | 10155 | CAF | LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 18-QAM) | LTE-FOD | 6.43 | ± 9.6 % | | 10156 | CAF | LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK) | LTE-FDD | 5.79 | ± 9.6 % | | 10157 | CAE | LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM) | LTE-FDD | 6.49 | ± 9.6 % | | 10158 | CAE | LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM) | LTE-FDD | 6.62 | ± 9.6 % | | 10159 | CAG | LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM) | LTE-FDD | 6.56 | ± 9.6 % | | 10160 | CAG | LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK) | LTE-FDD | 5.82 | ± 9.6 % | | 10161 | CAG | LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM) | LTE-FDD | 6.43 | ± 9.6 % | | 10162 | CAG | LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM) | LTE-FDD | 6.58 | ± 9.6 % | | 10166 | CAG | LTE-FOD (SC-FDMA, 50% RB, 1.4 MHz, QPSK) | LTE-FDD | 5.46 | ± 9.6 % | | 10167 | CAG | LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM) | LTE-FDD | 6.21 | ± 9.6 % | | 10168 | CAG | LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM) | LTE-FDD | 6.79 | ± 9.6 % | | 10169 | CAG | LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK) | LTE-FDD | 5.73 | ± 9.6 % | | 10170 | CAG | LTE-FDD (SG-FDMA, 1 RB, 20 MHz, 18-QAM) | LTE-FDD | 6.52 | ± 9.6 % | | 10171 | CAE | LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM) | LTE-FDD | 6.49 | ± 9.6 % | | 10172 | CAE | LTE-TOD (SC-FDMA, 1 RB, 20 MHz, QPSK) | LTE-TOD | 9.21 | ± 9.6 % | | 10173 | CAE | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM) | LTE-TOD | 9.48 | ± 9.6 % | | 10174 | CAF | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM) | LTE-TOD | 10.25 | ± 9.6 % | | 10175 | CAF | LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK) | LTE-FDD | 5.72 | ± 9.6 % | | 10176 | CAF | LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM) | LTE-FDD | 6.52 | ± 9.6 % | | 10177 | CAE | LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK) | LTE-FDD | 5.73 | ± 9.6 % | | 10178 | CAE | LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM) | LTE-FDD | 6.52 | ± 9.6 % | | 10179 | AAE | LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM) | LTE-FDD | 6.50 | ± 9.6 % | | 10180 | CAG | LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM) | LTE-FDD | 6.50 | ± 9.6 % | Certificate No: EX3-7533_Apr21 Page 12 of 23 April 19, 2021 | 10181 | CAG | LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK) | LTE-FDD | 5.72 | ± 9.6 % | |-------|-----|---|---------|-------|---------| | 10182 | CAG | LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM) | LTE-FDD | 6.52 | ± 9.6 % | | 10183 | CAG | LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM) | LTE-FDD | 6.50 | ± 9.6 % | | 10184 | CAG | LTE-FDD (SC-FDMA, 1 RB, 3 MHz, QPSK) | LTE-FDD | 5.73 | ± 9.6 % | | 10185 | CAI | LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM) | LTE-FDD | 6.51 | ± 9.6 % | | 10186 | CAG | LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM) | LTE-FDD | 6.50 | ± 9.6 % | | 10187 | CAG | LTE-FOD (SC-FDMA, 1 RB, 1.4 MHz, QPSK) | LTE-FDD | 5.73 | ± 9.6 % | | 10188 | CAG | LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM) | LTE-FDD | 6.52 | ± 9.6 % | | 10189 | CAE | LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM) | LTE-FDD | 6.50 | ± 9.6 % | | 10193 | CAE | IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK) | WLAN | 8.09 | ± 9.6 % | | 10194 | AAD | IEEE 802.11n (HT Greenfield, 39 Mbps, 16-QAM) | WLAN | 8.12 | ± 9.6 % | | 10195 | CAE | IEEE 802.11n (HT Greenfield, 85 Mbps, 64-QAM) | WLAN | 8.21 | ± 9.6 % | | 10196 | CAE | IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK) | WLAN | 8.10 | ± 9.6 % | | 10197 | AAE | IEEE 802.11n (HT Mixed, 39 Mbps, 16-QAM) | WLAN | 8.13 | ± 9.6 % | | 10198 | CAF | IEEE 802.11n (HT Mixed, 65 Mbps, 64-QAM) | WLAN | 8.27 | ± 9.6 % | | 10219 | CAF | IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK) | WLAN | 8.03 | ± 9.6 % | | 10220 | AAF | IEEE 802.11n (HT Mixed, 43.3 Mbps, 16-QAM) | WLAN | 8.13 | ± 9.6 % | | 10221 | CAC | IEEE 802.11n (HT Mixed, 72.2 Mbps, 64-QAM) | WLAN | 8.27 | ± 9.6 % | | 10222 | CAC | IEEE 802.11n (HT Mixed, 15 Mbps, BPSK) | WLAN | 8.06 | ± 9.6 % | | 10223 | CAD | IEEE 802,11n (HT Mixed, 90 Mbps, 16-QAM) | WLAN | 8.48 | ± 9.6 % | | 10224 | CAD | IEEE 802.11n (HT Mixed, 150 Mbps, 64-QAM) | WLAN | 8.08 | ± 9.6 % | | 10225 | CAD | UMTS-FDD (HSPA+) | WCDMA | 5.97 | ± 9.6 % | | 10226 | CAD | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM) | LTE-TOD | 9.49 | ± 9.6 % | | 10227 | CAD | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM) | LTE-TOO | 10.26 | ± 9.6 % | | 10228 | CAD | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK) | LTE-TOD | 9.22 | ± 9.6 % | | 10229 | DAC | LTE-TDD (SC-FDMA, 1 R8, 3 MHz, 16-QAM) | LTE-TOO | 9.48 | ± 9.6 % | | 10230 | CAC | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM) | LTE-TDD | 10.25 | ± 9.6 % | | 10231 | CAC | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK) | LTE-TOO | 9.19 | ± 9.6 % | | 10232 | CAD | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM) | LTE-TOD | 9.48 | ± 9.6 % | | 10233 | CAD | LTE-TOD (SC-FDMA, 1 RB, 5 MHz, 64-QAM) | LTE-TOD | 10.25 | ± 9.6 % | | 10234 | CAD | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK) | LTE-TOD | 9.21 | ± 9.6 % | | 10235 | CAD | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM) | LTE-TOD | 9.48 | ±9.6% | | 10236 | CAD | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM) | LTE-TOD | 10.25 | ± 9.6 % | | 10237 | CAD | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK) | LTE-TOO | 9.21 | ± 9.6 % | | 10238 | CAB | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM) | LTE-TOD | 9.48 | ± 9.6 % | | 10239 | CAB | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM) | LTE-TOD | 10.25 | ±9.6% | | 10240 | CAB | LTE-TOD (SC-FDMA, 1 RB, 15 MHz, QPSK) | LTE-TOD | 9.21 | ± 9.6 % | | 10241 | CAB | LTE-TOD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM) | LTE-TOD | 9.82 | ± 9.6 % | | 10242 | CAD | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM) | LTE-TOD | 9.86 | ± 9.6 % | | 10243 | CAD | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK) | LTE-TDD | 9.46 | ± 9.6 % | | 10244 | CAD | LTE-TOD (SC-FDMA, 50% RB, 3 MHz, 16-QAM) | LTE-TOD | 10.06 | ± 9.6 % | | 10245 | CAG | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM) | LTE-TDD | 10.06 | ±9.6% | | 10246 | CAG | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK) | LTE-TOD | 9.30 | ± 9.6 % | | 10247 | CAG | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM) | LTE-TOO | 9,91 | ± 9.6 % | | 10248 | CAG | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM) | LTE-TOD | 10.09 | ± 9.6 % | | 10249 | CAG | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK) | LTE-TDO | 9.29 | ± 9.6 % | | 10250 | CAG | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM) | LTE-TDD | 9.81 | ± 9.6 % | | 10251 | CAF | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM) | LTE-TDD | 10.17 | ± 9.6 % | | 10252 | CAF | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK) | LTE-TDD | 9.24 | ± 9.6 % | | 10253 | CAF | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM) | LTE-TOD | 9.90 | ± 9.6 % | | 10254 | CAB | LTE-TDO (SC-FDMA, 50% RB, 15 MHz, 64-QAM) | LTE-TOD | 10.14 | ± 9.6 % | | 10255 | CAB | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK) | LTE-TDD | 9.20 | ± 9.6 % | | 10256 | CAB | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM) | LTE-TOD | 9.96 | ± 9.6 % | | 10257 | CAD | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM) | LTE-TOD | 10.08 | ± 9.6 % | | 10258 | CAD | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK) | LTE-TDD | 9.34 | ± 9.6 % | | 10259 | CAD | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM) | LTE-TDD | 9.98 | ± 9.6 % | Page 13 of 23 April 19, 2021 | 10260 | CAG | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM) | LTE-TOO | 9.97 | ± 9.6 % | |-------|-----|---|----------|-------|-----------------| | 10261 | CAG | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK) | LTE-TDD | 9.24 | ± 9.6 % | | 10262 | CAG | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM) | LTE-TOO | 9.83 | ± 9.6 % | | 10263 | CAG | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM) | LTE-TOD | 10.16 | ± 9.6 % | | 10264 | CAG | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK) | LTE-TOD | 9.23 | ± 9.6 % | | 10265 | CAG | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM) | LTE-TOD | 9.92 | ± 9.6 % | | 10266 | CAF | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM) | LTE-TOD | 10.07 | ± 9.6 % | | 10267 | CAF | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK) | LTE-TDD | 9.30 | ± 9.6 % | | 10268 | CAF | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM) | LTE-TOD | 10.06 | ± 9.6 % | | 10269 | CAB | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM) | LTE-TDD | 10.13 | ± 9.6 % | | 10270 | CAB | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK) | LTE-TDD | 9.58 | ± 9.6 % | | 10274 | CAB | UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10) | WCDMA | 4.87 | ± 9.6 % | | 10275 | CAD | UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4) | WCDMA | 3,96 | ± 9.6 % | | 10277 | CAD | PHS (QPSK) | PHS | 11.81 | ± 9.6 % | | 10278 | CAD | PHS (QPSK, BW 884MHz, Rolloff 0.5) | PHS | 11.81 | ± 9.6 % | | 10279 | CAG | PHS (QPSK, BW 884MHz, Rolloff 0.38) | PHS | 12.18 | ± 9.6 % | | 10290 | CAG | CDMA2000, RC1, SO55, Full Rate | CDMA2000 | 3.91 | ± 9.6 % | | 10291 | CAG | CDMA2000, RC3, SO55, Full Rate | CDMA2000 | 3.46 | ± 9.6 % | | 10292 | CAG | CDMA2000, RC3, SO32, Full Rate | CDMA2000 | 3.39 | ±9.6 % | | 10293 | CAG | CDMA2000, RC3, SO3, Full Rate | CDMA2000 | 3.50 | ±9.6 % | | 10295 | CAG | CDMA2000, RC1, SO3, 1/8th Rate 25 fr. | CDMA2000 | 12.49 | ± 9.6 % | | 10297 | CAF | LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK) | LTE-FDD | 5.81 | ±9.6% | | 10298 | CAF | LTE-FDD (SC-FDMA, 50% RB, 3 MHz, QPSK) | LTE-FDD | 5.72 | ± 9.6 % | | 10299 | CAF | LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM) | LTE-FDD | 6.39 | ± 9.6 % | | 10300 | CAC | LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM) | LTE-FDD | 6.60 | ± 9.6 % | | 10301 | CAC | IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, QPSK, PUSC) | WIMAX | 12.03 | ± 9.6 % | | 10302 | CAB | IEEE 802,16e WIMAX (29:18, 5ms, 10MHz, QPSK, PUSC, 3CTRL) | WIMAX | 12.57 | ± 9.6 % | | 10303 | CAB | IEEE 802.16e WIMAX (31:15, 5ms, 10MHz, 64QAM, PUSC) | WIMAX | 12.52 | ± 9.6 % | | 10304 | CAA | IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, 64QAM, PUSC) | WIMAX | 11.86 | ± 9.6 % | | 10305 | CAA | IEEE 802.16a WIMAX (31:15, 10ms, 10MHz, 64QAM, PUSC) | WIMAX | 15.24 | ± 9.6 % | | 10306 | CAA | IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 84QAM, PUSC) | WIMAX |
14.67 | ± 9.6 % | | 10307 | AAB | IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, QPSK, PUSC) | WIMAX | 14.49 | ± 9.6 % | | 10308 | AAB | IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 16QAM, PUSC) | WIMAX | 14.46 | ± 9.6 % | | 10309 | AAB | IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 16QAM,AMC 2x3) | WIMAX | 14.58 | ± 9.6 % | | 10310 | AAB | IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, QPSK, AMC 2x3 | WIMAX | 14.57 | ± 9.6 % | | 10311 | AAB | LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK) | LTE-FDD | 6.06 | ± 9.6 % | | 10313 | AAD | IDEN 1:3 | IDEN | 10.51 | ± 9.6 % | | 10314 | AAD | IDEN 1:8 | IDEN | 13.48 | ± 9.6 % | | 10315 | AAD | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 98pc dc) | WLAN | 1,71 | ± 9.6 % | | 10316 | AAD | IEEE 802.11g WIFi 2.4 GHz (ERP-OFDM, 6 Mbps, 96pc dc) | WLAN | 8.36 | ± 9.6 % | | 10317 | AAA | IEEE 802,11a WIFI 5 GHz (OFDM, 6 Mbps, 98pc dc) | WLAN | 8.36 | ± 9.6 % | | 10352 | AAA | Pulse Waveform (200Hz, 10%) | Generic | 10.00 | ± 9.6 % | | 10353 | AAA | Pulse Waveform (200Hz, 20%) | Generic | 6.99 | ± 9.6 % | | 10354 | AAA | Pulse Waveform (200Hz, 40%) | Generic | 3.98 | ± 9.6 % | | 10355 | AAA | Pulse Waveform (200Hz, 60%) | Generic | 2.22 | ± 9.6 % | | 10356 | AAA | Pulse Waveform (200Hz, 80%) | Generic | 0.97 | ± 9.6 % | | 10387 | AAA | QPSK Waveform, 1 MHz | Generic | 5.10 | ± 9.6 % | | 10388 | AAA | QPSK Waveform, 10 MHz | Generic | 5.22 | ± 9.6 % | | 10396 | AAA | 64-QAM Waveform, 100 kHz | Generic | 6.27 | ± 9.6 % | | 10399 | AAA | 64-QAM Waveform, 40 MHz | Generic | 6.27 | ± 9.6 % | | 10400 | AAD | IEEE 802.11ac WiFi (20MHz, 64-QAM, 99pc dc) | WLAN | 8.37 | ± 9.6 % | | 10401 | AAA | IEEE 802.11ac WiFi (40MHz, 64-QAM, 99pc dc) | WLAN | 8.60 | ±9.6 % | | 10402 | AAA | IEEE 802.11ac WiFi (80MHz, 64-QAM, 99oc dc) | WLAN | 8.53 | 150,570,510,570 | | 10403 | AAB | CDMA2000 (1xEV-DO, Rev. 0) | CDMA2000 | 3.76 | ±9.6% | | 10404 | AAB | CDMA2000 (1xEV-DO, Rev. A) | CDMA2000 | 3.76 | ± 9.6 % | | | | | | 3.77 | T 24 E5 The | Page 14 of 23 April 19, 2021 | 10410 | AAA | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Sub=2,3,4,7,8,9) | LTE-TOD | 7.82 | ± 9.6 % | |-------|-----|--|--|-------|----------------------| | 10414 | AAA | WLAN CCDF, 64-QAM, 40MHz | Generic | 8.54 | ± 9.6 % | | 10415 | AAA | IEEE 802:11b WIFI 2.4 GHz (DSSS, 1 Mbps, 99pc dc) | WLAN | 1.54 | ± 9.6 % | | 10416 | AAA | IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 99pc dc) | WLAN | 8.23 | ± 9.6 % | | 10417 | AAA | IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 99pc dc) | WLAN | 8.23 | ± 9.6 % | | 10418 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Long) | WLAN | 8.14 | ± 9.6 % | | 10419 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Short) | WLAN | 8.19 | ± 9.6 % | | 10422 | AAA | IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK) | WLAN | 8.32 | ± 9.6 % | | 10423 | AAA | IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM) | WLAN | 8.47 | ± 9.6 % | | 10424 | AAE | IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM) | WLAN | 8.40 | ± 9.6 % | | 10425 | AAE | IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK) | WLAN | 8.41 | ± 9.6 % | | 10426 | AAE | IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM) | WLAN | 8.45 | ± 9.6 % | | 10427 | AAB | IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) | WLAN | 8.41 | ± 9.6 % | | 10430 | AAB | LTE-FDD (OFDMA, 5 MHz, E-TM 3.1) | LTE-FDD | 8.28 | ± 9.6 % | | 10431 | AAC | LTE-FDD (OFDMA, 10 MHz, E-TM 3.1) | LTE-FDD | 8.38 | ± 9.6 % | | 10432 | AAB | LTE-FDD (OFDMA, 15 MHz, E-TM 3.1) | LTE-FDD | 8.34 | ± 9.6 % | | 10433 | AAC | LTE-FDD (OFDMA, 20 MHz, E-TM 3.1) | LTE-FDD | 8.34 | ± 9.6 % | | 10434 | AAG | W-CDMA (BS Test Model 1, 64 DPCH) | WCDMA | 8.60 | ± 9.6 % | | 10435 | AAA | LTE-TOD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Sub) | LTE-TDD | 7.82 | ± 9.6 % | | 10447 | AAA | LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%) | LTE-FDD | 7.56 | ± 9.6 % | | 10448 | AAA | LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clippin 44%) | LTE-FDD | 7.53 | ± 9.6 % | | 10449 | AAC | LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Cliping 44%) | LTE-FDD | 7.51 | ± 9.6 % | | 10450 | AAA | LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%) | LTE-FDD | 7,48 | ± 9.6 % | | 10451 | AAA | W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%) | WCDMA | 7.59 | ± 9.6 % | | 10453 | AAC | Validation (Square, 10ms, 1ms) | Test | 10.00 | ± 9.6 % | | 10456 | AAC | IEEE 802.11ac WiFi (160MHz, 64-QAM, 99pc dc) | WLAN | 8.63 | ± 9.6 % | | 10457 | AAC | UMTS-FDD (DC-HSDPA) | WCDMA | 6.62 | ± 9.6 % | | 10458 | AAC | CDMA2000 (1xEV-DO, Rev. B. 2 carriers) | CDMA2000 | 6.55 | ± 9.6 % | | 10459 | AAC | CDMA2000 (1xEV-DO, Rev. B, 3 carriers) | CDMA2000 | 8.25 | ± 9.6 % | | 10460 | AAC | UMTS-FDD (WCDMA, AMR) | WCDMA | 2.39 | ± 9.6 % | | 10461 | AAC | LTE-TDO (SC-FDMA, 1 RB, 1.4 MHz, QPSK, UL Sub) | LTE-TDD | 7.82 | ± 9.6 % | | 10462 | AAC | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.30 | ± 9.6 % | | 10463 | AAD | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.56 | ± 9.6 % | | 10464 | AAD | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK, UL Sub) | LTE-TDD | 7.82 | ± 9.6 % | | 10465 | AAC | LTE-TDO (SC-FDMA, 1 RB, 3 MHz, 16-QAM, UL Sub) | LTE-TOO | 8.32 | ± 9.6 % | | 10486 | AAC | LTE-TDO (SC-FDMA, 1 RB, 3 MHz, 64-QAM, UL Sub) | LTE-TOD | 8.57 | ± 9.6 % | | 10467 | AAA | LTE-TOD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Sub) | LTE-TOD | 7.82 | ± 9.6 % | | 10468 | AAF | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM, UL Sub) | LTE-TOO | 8.32 | ± 9.6 % | | 10469 | AAD | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM, UL Sub) | LTE-TOD | 8.56 | ± 9.6 % | | 10470 | AAD | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Sub) | LTE-TOD | 7.82 | the last to the same | | 10471 | AAC | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM, UL Sub) | LTE-TOD | 8.32 | ± 9.6 % | | 10472 | AAC | LTE-TOD (SC-FDMA, 1 RB, 10 MHz, 64-QAM, UL Sub) | LTE-TOD | 8.57 | ± 9.6 % | | 10473 | AAA | LTE-TOD (SC-FDMA, 1 RB, 15 MHz, QPSK, UL Sub) | LTE-TOD | 4 | ± 9.6 % | | 10474 | AAC | LTE-TOD (SC-FDMA, 1 RB, 15 MHz, 16-QAM, UL Sub) | LTE-TOD | 7.82 | ± 9.6 % | | 10475 | - | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM, UL Sub) | The state of s | 8.32 | ± 9.6 % | | 10477 | AAD | LTE-TOD (SC-FDMA, 1 RB, 20 MHz, 16-QAM, UL Sub) | LTE-TOD | 8.57 | ± 9.6 % | | 10478 | AAC | LTE-TOD (SC-FDMA, 1 RB, 20 MHz, 16-QAM, UL Sub) | | 8.32 | ± 9.6 % | | 10479 | AAC | LTE-TOD (SC-FDMA, 1 KB, 20 MHz, 64-QAM, 01, Sub) | LTE-TOD | 8.57 | ± 9.6 % | | 10480 | AAC | | LTE-TOD | 7.74 | ± 9.6 % | | 0480 | AAA | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM, UL Sub) | LTE-TOD | 8.18 | ± 9.6 % | | 10482 | AAA | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.45 | ± 9.6 % | | 10483 | AAA | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK, UL Sub) | LTE-TDD | 7.71 | ± 9.6 % | | 10484 | AAA | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM, Sub) | LTE-TDD | 8.39 | ± 9.6 % | | | AAB | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.47 | ± 9.6 % | | 10485 | AAB | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK, UL Sub) | LTE-TDD | 7.59 | ± 9.6 % | | 10486 | AAB | LTE-TOD (SC-FDMA, 50% RB, 5 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.38 | ± 9.6 % | | 10487 | AAC | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.60 | ± 9.6 % | Page 15 of 23 April 19, 2021 | 10488 | AAC | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK, UL Sub) | LTE-TOO | 7.70 | ± 9.6 % | |-------|-----|---|---------|------|---------| | 10489 | AAC | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.31 | ± 9.6 % | | 10490 | AAF | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM, UL Sub) | LTE-TOD | 8.54 | ± 9.6 % | | 10491 | AAF | LTE-TOD (SC-FDMA, 50% RB, 15 MHz, QPSK, UL Sub) | LTE-TOD | 7.74 | ± 9.6 % | | 10492 | AAF | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM, UL Sub) | LTE-TOD | 8.41 | ± 9.6 % | | 10493 | AAF | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM, UL Sub) | LTE-TOD | 8.55 | ± 9.6 % | | 10494 | AAF | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK, UL Sub) | LTE-TOO | 7.74 | ± 9.6 % | | 10495 | AAF | LTE-TDD
(SC-FDMA, 50% RB, 20 MHz, 16-QAM, UL Sub) | LTE-TOD | 8.37 | ± 9.6 % | | 10496 | AAE | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.54 | ± 9.6 % | | 10497 | AAE | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK, UL Sub) | LTE-TDD | 7.67 | ± 9.6 % | | 10498 | AAE | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.40 | ± 9.6 % | | 10499 | AAC | LTE-TDO (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.68 | ± 9.6 % | | 10500 | AAF | LTE-TOD (SC-FDMA, 100% RB, 3 MHz, QPSK, UL Sub) | LTE-TDD | 7.67 | ± 9.6 % | | 10501 | AAF | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM, UL Sub) | LTE-TOD | 8.44 | ± 9.6 % | | 10502 | AAB | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM, UL Sub) | LTE-TOD | 8.52 | ± 9.6 % | | 10503 | AAB | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL Sub) | LTE-TOO | 7.72 | ± 9.6 % | | 10504 | AAB | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM, UL Sub) | LTE-TOO | 8.31 | ± 9.6 % | | 10505 | AAC | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM, UL Sub) | LTE-TOD | 8.54 | ± 9.6 % | | 10506 | AAC | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK, UL Sub) | LTE-TOO | 7.74 | ± 9.6 % | | 10507 | AAC | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM, UL Sub) | LTE-TOD | 8.36 | ± 9.6 % | | 10508 | AAF | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM, UL Sub) | LTE-TOD | 8.55 | ± 9.6 % | | 10509 | AAF | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK, UL Sub) | LTE-TOD | 7.99 | ± 9.6 % | | 10510 | AAF | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM, UL Sub) | LTE-TDD | 8,49 | ± 9.6 % | | 10511 | AAF | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM, UL Sub) | LTE-TOD | 8.51 | ± 9.6 % | | 10512 | AAF | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK, UL Sub) | LTE-TOD | 7.74 | ± 9.6 % | | 10513 | AAF | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL Sub) | LTE-TOD | 8.42 | ± 9.6 % | | 10514 | AAE | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM, UL Sub) | LTE-TOD | 8.45 | ± 9.6 % | | 10515 | AAE | IEEE 802.11b WIFI 2.4 GHz (DSSS, 2 Mbps, 99pc dc) | WLAN | 1.58 | ± 9.6 % | | 10516 | AAE | IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc dc) | WLAN | 1.57 | ± 9.6 % | | 10517 | AAF | IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 99pc dc) | WLAN | 1.58 | ±9.6 % | | 10518 | AAF | IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 99pc dc) | WLAN | 8.23 | ± 9.6 % | | 10519 | AAF | IEEE 802.11a/h WIFI 5 GHz (OFDM, 12 Mbps, 99pc dc) | WLAN | 8.39 | ± 9.6 % | | 10520 | AAB | IEEE 802.11a/h WIFi 5 GHz (OFDM, 18 Mbps, 99pc dc) | WLAN | 8.12 | ± 9.6 % | | 10521 | AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 99pc dc) | WLAN | 7.97 | ± 9.6 % | | 10522 | AAB | IEEE 802.11a/h WIFI 5 GHz (OFDM, 36 Mbps, 99pc dc) | WLAN | 8.45 | ± 9.6 % | | 10523 | AAC | IEEE 802.11a/h WIFI 5 GHz (OFDM, 48 Mbps, 99pc dc) | WLAN | 8.08 | ± 9.6 % | | 10524 | AAC | IEEE 802,11a/h WIFi 5 GHz (OFDM, 54 Mbps, 99pc dc) | WLAN | 8.27 | ± 9.6 % | | 10525 | AAC | IEEE 802.11sc WiFi (20MHz, MCS0, 99pc dc) | WLAN | 8.36 | ± 9.6 % | | 10526 | AAF | IEEE 802.11ac WiFi (20MHz, MCS1, 98pc dc) | WLAN | 8.42 | ± 9.6 % | | 10527 | AAF | IEEE 802.11ac WiFi (20MHz, MCS2, 99pc dc) | WLAN | 8.21 | ± 9.6 % | | 10528 | AAF | IEEE 802.11ac WIFI (20MHz, MCS3, 99pc dc) | WLAN | 8.36 | ± 9.6 % | | 10529 | AAF | IEEE 802.11ac WiFi (20MHz, MCS4, 99pc dc) | WLAN | 8.36 | ± 9.6 % | | 10531 | AAF | IEEE 802.11ac WiFi (20MHz, MCS6, 99pc dc) | WLAN | 8.43 | ± 9.6 % | | 10532 | AAF | IEEE 802.11ac WIFI (20MHz, MCS7, 99pc dc) | WLAN | 8.29 | ± 9.6 % | | 10533 | AAE | IEEE 802,11ac WiFi (20MHz, MC\$8, 99pc dc) | WLAN | 8.38 | ±9.6% | | 10534 | AAE | IEEE 802.11ac WiFi (40MHz, MCS0, 99pc dc) | WLAN | 8.45 | ± 9.6 % | | 10535 | AAE | IEEE 802.11ac WiFi (40MHz, MCS1, 99pc dc) | WLAN | 8.45 | ± 9.6 % | | 10536 | AAF | IEEE 802.11ac WiFi (40MHz, MCS2, 99pc dc) | WLAN | 8.32 | ± 9.6 % | | 10537 | AAF | IEEE 802.11ac WiFi (40MHz, MCS3, 99pc dc) | WLAN | 8.44 | ± 9.6 % | | 10538 | AAF | IEEE 802.11ac WiFi (40MHz, MCS4, 99pc dc) | WLAN | 8.54 | ± 9.6 % | | 10540 | AAA | IEEE 802.11ac WiFi (40MHz, MCS6, 99pc dc) | WLAN | 8,39 | ± 9.6 % | | 10541 | AAA | IEEE 802.11ac WiFi (40MHz, MCS7, 99pc dc) | WLAN | 8.46 | ± 9.6 % | | 0542 | AAA | IEEE 802.11ac WiFi (40MHz, MCS8, 99pc dc) | WLAN | 8.65 | ± 9.6 % | | 0543 | AAC | IEEE 802.11ac WiFi (40MHz, MCS9, 99pc dc) | WLAN | 8.65 | ±9.6% | | 0544 | AAC | IEEE 802.11ac WiFi (80MHz, MCS0, 99pc dc) | WLAN | 8.47 | ± 9.6 % | | 10545 | AAC | IEEE 802.11ac WiFi (80MHz, MCS1, 99pc dc) | WLAN | 8.55 | ± 9.6 % | Certificate No: EX3-7533_Apr21 Page 16 of 23 April 19, 2021 | 10546 | AAC | IEEE 802.11ac WiFi (80MHz, MCS2, 99pc dc) | WLAN | 8.35 | ±9.6% | |-------|-----|---|------|------|---------| | 10547 | AAC | IEEE 802.11ac WiFi (80MHz, MCS3, 99pc dc) | WLAN | 8.49 | ± 9.6 % | | 10548 | AAC | IEEE 802,11ac WiFi (80MHz, MCS4, 99pc dc) | WLAN | 8.37 | ± 9.6 % | | 10550 | AAC | IEEE 802.11ac WiFi (80MHz, MCS6, 99pc dc) | WLAN | 8.38 | ± 9.6 % | | 10551 | AAC | IEEE 802.11ac WiFi (80MHz, MCS7, 99pc dc) | WLAN | 8.50 | ± 9.6 % | | 10552 | AAC | IEEE 802.11ac WiFi (80MHz, MCS8, 99pc dc) | WLAN | 8.42 | ± 9.6 % | | 10553 | AAC | IEEE 802.11ac WiFi (80MHz, MCS9, 99pc dc) | WLAN | 8.45 | ± 9.6 % | | 10554 | AAC | IEEE 802.11ac WiFi (160MHz, MCS0, 99pc dc) | WLAN | 8.48 | ± 9.6 % | | 10555 | AAC | IEEE 802,11ac WIFI (160MHz, MCS1, 99pc dc) | WLAN | 8.47 | ± 9.6 % | | 10556 | AAC | IEEE 802.11ac WiFi (160MHz, MCS2, 99pc dc) | WLAN | 8.50 | ± 9.6 % | | 10557 | AAC | IEEE 802.11ac WIFI (160MHz, MCS3, 99pc dc) | WLAN | 8.52 | ± 9.6 % | | 10558 | AAC | IEEE 802.11ac WiFi (160MHz, MCS4, 99pc dc) | WLAN | 8.61 | ± 9.6 % | | 10560 | AAC | IEEE 802.11ac WiFi (160MHz, MCS6, 99pc dc) | WLAN | 8.73 | ± 9.6 % | | 10561 | AAC | IEEE 802.11ac WiFi (160MHz, MCS7, 99pc dc) | WLAN | 8.56 | ± 9.6 % | | 10562 | AAC | IEEE 802.11ac WiFi (160MHz, MCS8, 99pc dc) | WLAN | 8.69 | ± 9.6 % | | 10563 | AAC | IEEE 802.11ac WiFi (160MHz, MCS9, 99pc dc) | WLAN | 8.77 | ± 9.6 % | | 10564 | AAC | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 99pc dc) | WLAN | 8.25 | ± 9.6 % | | 10565 | AAC | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 99pc dc) | WLAN | 8.45 | ± 9.6 % | | 10566 | AAC | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 99pc dc) | WLAN | 8.13 | ± 9.6 % | | 10567 | AAC | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 99pc dc) | WLAN | 8.00 | ± 9.6 % | | 10568 | AAC | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 99pc dc) | WLAN | 8.37 | ± 9.6 % | | 10569 | AAC | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 99pc dc) | WLAN | 8.10 | ± 9.6 % | | 10570 | AAC | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 99pc dc) | WLAN | 8.30 | ± 9.6 % | | 10571 | AAC | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 90pc dc) | WLAN | 1.99 | ±9.6% | | 10572 | AAC | IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 90pc dc) | WLAN | 1.99 | ± 9.6 % | | 10573 | AAC | IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc dc) | WLAN | 1.98 | ± 9.6 % | | 10574 | AAC | IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 90pc dc) | WLAN | 1.98 | ± 9.6 % | | 10575 | AAC | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 90pc dc) | WLAN | 8.59 | ± 9.6 % | | 10576 | AAC | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 90pc dc) | WLAN | 8.60 | ± 9.6 % | | 10577 | AAC | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc dc) | WLAN | 8.70 | ± 9.6 % | | 10578 | AAD | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 90pc dc) | WLAN | 8.49 | ± 9.6 % | | 10579 | AAD | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 90pc dc) | WLAN | 8.36 | ± 9.6 % | | 10580 | AAD | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 90pc dc) | WLAN | 8.76 | ± 9.6 % | | 10581 | AAD | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc dc) | WLAN | 8.35 | ± 9.6 % | | 10582 | AAD | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc dc) | WLAN | 8.67 | ±9.6% | | 10583 | AAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 90pc dc) | WLAN | 8.59 | ± 9.6 % | | 10584 | AAD | IEEE 802.11a/h WIFI 5 GHz (OFDM, 9 Mbps, 90pc dc) | WLAN | 8.60 | ± 9.6 % | | 10585 | AAD | IEEE 802.11a/h WIFI 5 GHz (OFDM, 12 Mbps, 90pc dc) | WLAN | 8.70 | ± 9.6 % | | 10586 | AAD | IEEE 802.11a/h WIFI 5 GHz (OFDM, 18 Mbps, 90pc dc) | WLAN | 8.49 | ± 9.6 % | | 10587 | AAA | IEEE 802.11a/h WiFl 5 GHz (OFDM, 24 Mbps, 90pc dc) | WLAN | 8.36 | ± 9.6 % | | 10588 | AAA | IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc dc) | WLAN | 8.76 | ± 9.6 % | | 10589 | AAA | IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc dc) | WLAN | 8.35 | ± 9.6 % | | 10590 | AAA | IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc dc) | WLAN | 8.67 | ± 9.6 % | | 10591 | AAA | IEEE 802.11n (HT Mixed, 20MHz, MCS0, 90pc dc) | WLAN | 8.63 | ± 9.6 % | | 10592 | AAA | IEEE 802.11n (HT Mixed, 20MHz, MCS1, 90pc dc) | WLAN | 8.79 | ± 9.6 % | | 10593 | AAA | IEEE 802,11n (HT Mixed, 20MHz, MCS2, 90pc dc) | WLAN | 8.64 | ± 9.6 % | | 10594 | AAA | IEEE 802.11n (HT Mixed, 20MHz, MCS3, 90pc dc) | WLAN | 8.74 | ± 9.6 % | | 10595 | AAA | IEEE 802.11n (HT Mixed, 20MHz, MCS4, 90pc dc) | WLAN | 8.74 | ± 9.6 % | | 10598 | AAA | IEEE 802.11n (HT Mixed, 20MHz, MCS5, 90pc dc) | WLAN | 8.71 | ± 9.6 % | | 10597 | AAA | IEEE 802.11n (HT Mixed, 20MHz, MCS6, 90pc dc) | WLAN | 8.72 | ± 9.6 % | | 10598 | AAA | IEEE 802.11n (HT Mixed, 20MHz, MCS7, 90pc dc) | WLAN | 8.50 | ± 9.6 % | | 10599 | AAA | IEEE 802.11n (HT Mixed, 40MHz, MCS0, 90pc dc) | WLAN | 8.79 | ± 9.6 % | | 10600 | AAA | IEEE 802.11n (HT Mixed, 40MHz, MCS1, 90pc dc) | WLAN | 88.8 | ± 9.6 % | | 10601 | AAA | IEEE 802.11n (HT Mixed, 40MHz, MCS2, 90pc dc) | WLAN | 8.82 | ± 9.6 % | | 10602 | AAA | IEEE 802.11n (HT Mixed, 40MHz, MCS3, 90pc dc) | WLAN | 8.94 | ± 9.6 % | | 10603 | AAA | IEEE 802.11n (HT Mixed, 40MHz, MCS4, 90pc dc) | WLAN | 9.03 | ± 9.6 % | Page 17 of 23 April 19, 2021 | 10604 | AAA | IEEE 802.11n (HT Mixed, 40MHz, MCS5, 90pc dc) | WLAN | 8.76 | ± 9.6 % | |-------|-----|---|-----------|-------|--------------------------| | 10605 | AAA | IEEE 802.11n (HT Mixed, 40MHz, MCS6, 90pc dc) | WLAN | 8.97 | ± 9.6 % | | 10606 | AAC | IEEE 802.11n (HT Mixed, 40MHz, MCS7,
90pc dc) | WLAN | 8.82 | ± 9.6 % | | 10607 | AAC | IEEE 802.11ac WIFI (20MHz, MCS0, 90pc dc) | WLAN | 8.64 | ± 9.6 % | | 10608 | AAC | IEEE 802.11ac WIFI (20MHz, MCS1, 90pc dc) | WLAN | 8.77 | ± 9.6 % | | 10609 | AAC | IEEE 802.11ac WIFI (20MHz, MCS2, 90pc dc) | WLAN | 8.57 | ± 9.6 % | | 10610 | AAC | IEEE 802.11ac WiFi (20MHz, MCS3, 90pc dc) | WLAN | 8.78 | ± 9.6 % | | 10611 | AAC | IEEE 802.11ac WiFi (20MHz, MCS4, 90pc dc) | WLAN | 8.70 | ± 9.6 % | | 10612 | AAC | IEEE 802 11ac WiFi (20MHz, MCS5, 90pc dc) | WLAN | 8.77 | ± 9.6 % | | 10613 | AAC | IEEE 802.11ac WiFi (20MHz, MCS6, 90pc dc) | WLAN | 8.94 | ± 9.6 % | | 10614 | AAC | IEEE 802.11ac WiFI (20MHz, MCS7, 90pc dc) | WLAN | 8.59 | ± 9.6 % | | 10615 | AAC | IEEE 802.11ac WIFI (20MHz, MCS8, 90pc dc) | WLAN | 8.82 | 19.6% | | 10616 | AAC | IEEE 802.11ac WIFI (40MHz, MCS0, 90pc dc) | WLAN | 8.82 | ± 9.6 % | | 10617 | AAC | IEEE 802.11ac WiFi (40MHz, MCS1, 90pc dc) | WLAN | 8.81 | ± 9.6 % | | 10618 | AAC | IEEE 802.11ac WiFi (40MHz, MCS2, 90pc dc) | WLAN | 8.58 | ± 9.6 % | | 10619 | AAC | IEEE 802.11sc WiFl (40MHz, MCS3, 90pc dc) | WLAN | 8.86 | ± 9.6 % | | 10620 | AAC | IEEE 802.11ac WiFI (40MHz, MCS4, 90pc dc) | WLAN | 8.87 | ± 9.6 % | | 10621 | AAC | IEEE 802.11ac WIFI (40MHz, MCS5, 90pc dc) | WLAN | 8.77 | ± 9.6 % | | 10622 | AAC | IEEE 802.11ac WiFi (40MHz, MCS6, 90pc dc) | WLAN | 8.68 | ± 9.6 % | | 10623 | AAC | IEEE 802.11ac WiFi (40MHz, MCS7, 90pc dc) | WLAN | 8.82 | ± 9.6 % | | 10624 | AAC | IEEE 802.11ac WiFi (40MHz, MCS8, 90pc dc) | WLAN | 8.96 | ± 9.6 % | | 10625 | AAC | IEEE 802.11ac WiFl (40MHz, MCS9, 90pc dc) | WLAN | 8.96 | ± 9.6 % | | 10826 | AAC | IEEE 802.11ac WiFI (80MHz, MCS0, 90pc dc) | WLAN | | The second second second | | 10627 | AAC | IEEE 802.11ac WiFi (80MHz, MCS1, 90pc dc) | WLAN | 8.83 | ± 9.6 % | | 10828 | AAC | IEEE 802.11ac WiFi (80MHz, MCS2, 90pc dc) | WLAN | 8.88 | ± 9.6 % | | 10629 | AAC | JEEE 802.11ac WiFi (80MHz, MCS3, 90pc dc) | WLAN | 8.71 | ± 9.6 % | | 10630 | AAC | IEEE 802.11ac WiFi (80MHz, MCS4, 90pc dc) | WLAN | 8.85 | ± 9.6 % | | 10631 | AAC | IEEE 802.11ac WiFi (80MHz, MCS5, 90pc dc) | WLAN | 8.72 | ± 9.6 % | | 10632 | AAC | IEEE 802.11ac WIFI (80MHz, MCS6, 90pc dc) | WLAN | 8,81 | ± 9.6 % | | 10633 | AAC | IEEE 802,11ac WiFi (80MHz, MCS7, 90pc dc) | WLAN | 8.74 | ± 9.6 % | | 10634 | | IEEE 802.11ac WIFI (80MHz, MCSF, 90pc dc) | WLAN | 8.83 | ± 9.6 % | | 10635 | AAC | IEEE 802.11ac WiFi (80MHz, MCS8, 90pc dc) | 0.0-0.019 | 8.80 | ± 9.6 % | | 10636 | AAC | IEEE 802,11ac WiFi (160MHz, MCS6, sopc dc) | WLAN | 8.81 | ± 9.6 % | | 10637 | AAC | IEEE 802.11ac WiFi (160MHz, MCS1, 90pc dc) | WLAN | 8.83 | ± 9.6 % | | 10638 | - | IEEE 802.11ac WiFi (160MHz, MCS2, 90pc dc) | WLAN | 8.79 | ± 9.6 % | | 10639 | AAC | IEEE 802.11ac WiFi (160MHz, MCS2, 90pc dc) | WLAN | 8.86 | ± 9.6 % | | 10640 | AAC | IEEE 802.11ac WiFi (160MHz, MCS4, 90pc dc) | WLAN | 8.85 | ± 9.6 % | | 10641 | AAC | IEEE 802.11ac WiFi (160MHz, MCS4, 90pc dc) | WLAN | 8.98 | ± 9.6 % | | 10642 | AAC | IEEE 802.11ac WiFI (160MHz, MCSS, 90pc dc) | WLAN | 9.06 | ±9.6 % | | 10643 | AAC | | WLAN | 9.06 | ±9.6% | | 10644 | AAC | IEEE 802.11ac WiFi (160MHz, MCS7, 90pc dc) | WLAN | 8.89 | ± 9.6 % | | 10644 | AAC | IEEE 802.11ac WIFI (160MHz, MCS8, 90pc dc) | WLAN | 9.05 | ± 9.6 % | | 10646 | AAC | IEEE 802.11sc WiFi (160MHz, MCS9, 90pc dc) | WLAN | 9.11 | ± 9.6 % | | 10647 | AAC | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Sub=2,7) | LTE-TDD | 11.96 | ± 9.6 % | | | AAC | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Sub=2,7) | LTE-TDD | 11.96 | ± 9.6 % | | 10648 | AAC | CDMA2000 (1x Advanced) | CDMA2000 | 3.45 | ±9.6% | | 10652 | AAC | LTE-TDO (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%) | LTE-TOD | 6.91 | ± 9.6 % | | 10653 | AAC | LTE-TDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%) | LTE-TOO | 7.42 | ± 9.6 % | | 10654 | AAC | LTE-TDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%) | LTE-TOD | 6.96 | ± 9.6 % | | 10655 | AAC | LTE-TDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%) | LTE-TDD | 7.21 | ± 9.6 % | | 10658 | AAC | Pulse Waveform (200Hz, 10%) | Test | 10.00 | ± 9.6 % | | 10659 | AAC | Pulse Waveform (200Hz, 20%) | Test | 6.99 | ± 9.6 % | | 10660 | AAC | Pulse Waveform (200Hz, 40%) | Test | 3.98 | ±9.6 % | | 10661 | AAC | Pulse Waveform (200Hz, 60%) | Test | 2.22 | ±9.6% | | 10662 | AAC | Pulse Waveform (200Hz, 80%) | Test | 0.97 | ± 9.6 % | | 10670 | AAC | Bluetooth Low Energy | Bluetooth | 2.19 | ± 9.6 % | | 10671 | AAD | IEEE 802.11ax (20MHz, MCS0, 90pc dc) | WLAN | 9.09 | ± 9.6 % | Page 18 of 23 April 19, 2021 | 10672 | AAD | IEEE 802.11ax (20MHz, MCS1, 90pc dc) | WLAN | 8.57 | ± 9.6 % | |-------|------|---------------------------------------|------|------|---------| | 10673 | AAD | IEEE 802.11ax (20MHz, MCS2, 90pc dc) | WLAN | 8.78 | ± 9.6 % | | 10674 | AAD | IEEE 802.11ax (20MHz, MCS3, 90pc dc) | WLAN | 8.74 | ± 9.6 % | | 10675 | AAD | IEEE 802,11ax (20MHz, MCS4, 90pc dc) | WLAN | 8.90 | ± 9.6 % | | 10676 | AAD | IEEE 802.11ax (20MHz, MCS5, 90pc dc) | WLAN | 8.77 | ± 9.6 % | | 10677 | AAD | IEEE 802.11ax (20MHz, MCS6, 90pc dc) | WLAN | 8.73 | ± 9.6 % | | 10678 | AAD | IEEE 802.11ax (20MHz, MCS7, 90pc dc) | WLAN | 8.78 | ± 9.6 % | | 10679 | AAD | IEEE 802.11ax (20MHz, MCS8, 90pc dc) | WLAN | 8.89 | ± 9.6 % | | 10680 | AAD | IEEE 802.11ax (20MHz, MCS9, 90pc dc) | WLAN | 8.80 | ± 9.6 % | | 10681 | AAG | IEEE 802,11ax (20MHz, MCS10, 90pc dc) | WLAN | 8.62 | ± 9.6 % | | 10682 | AAF | IEEE 802.11ax (20MHz, MCS11, 90pc dc) | WLAN | 8.83 | ± 9.6 % | | 10683 | AAA | IEEE 802.11ax (20MHz, MCS0, 99pc dc) | WLAN | 8.42 | ± 9.6 % | | 10684 | AAC | IEEE 802.11ax (20MHz, MCS1, 99pc dc) | WLAN | 8.26 | ± 9.6 % | | 10685 | AAC | IEEE 802.11ax (20MHz, MCS2, 99pc dc) | WLAN | 8.33 | ± 9.6 % | | 10686 | AAC | IEEE 802.11ax (20MHz, MCS3, 99pc dc) | WLAN | 8.28 | ± 9.6 % | | 10687 | AAE | IEEE 802.11ax (20MHz, MCS4, 99pc dc) | WLAN | 8.45 | ± 9.6 % | | 10688 | AAE | IEEE 802.11ax (20MHz, MCS5, 99pc dc) | WLAN | 8.29 | ± 9.6 % | | 10689 | AAD | IEEE 802,11ax (20MHz, MCS6, 99pc dc) | WLAN | 8.55 | ± 9.6 % | | 10690 | AAE | IEEE 802.11ax (20MHz, MCS7, 99pc dc) | WLAN | 8.29 | ± 9.6 % | | 10691 | AAB | IEEE 802,11ax (20MHz, MCS8, 99pc dc) | WLAN | 8.25 | ± 9.6 % | | 10692 | AAA | IEEE 802.11ax (20MHz, MCS9, 99pc dc) | WLAN | 8.29 | ± 9.6 % | | 10693 | AAA | IEEE 802.11ax (20MHz, MCS10, 99pc dc) | WLAN | 8.25 | ± 9.6 % | | 10694 | AAA | IEEE 802.11ax (20MHz, MCS11, 99pc dc) | WLAN | 8.57 | ± 9.6 % | | 10695 | AAA | IEEE 802.11ax (40MHz, MCS0, 90pc dc) | WLAN | 8.78 | ± 9.6 % | | 10696 | AAA | IEEE 802.11ax (40MHz, MCS1, 90pc dc) | WLAN | 8.91 | ± 9.6 % | | 10697 | AAA | IEEE 802.11ax (40MHz, MCS2, 90pc dc) | WLAN | 8.61 | ± 9.6 % | | 10698 | AAA | IEEE 802.11ax (40MHz, MCS3, 90pc dc) | WLAN | 8.89 | ± 9.6 % | | 10699 | AAA | IEEE 802.11ax (40MHz, MCS4, 90pc dc) | WLAN | 8.82 | ± 9.6 % | | 10700 | AAA | IEEE 802,11ax (40MHz, MCS5, 90pc dc) | WLAN | 8.73 | ± 9.6 % | | 10701 | AAA | IEEE 802,11ax (40MHz, MCS6, 90pc dc) | WLAN | 8.86 | ± 9.6 % | | 10702 | AAA | IEEE 802.11ax (40MHz, MCS7, 90pc dc) | WLAN | 8.70 | ± 9.6 % | | 10703 | AAA | IEEE 802.11ax (40MHz, MCS8, 90pc dc) | WLAN | 8.82 | ± 9.6 % | | 10704 | AAA | IEEE 802.11ax (40MHz, MCS9, 90pc dc) | WLAN | 8.56 | ± 9.6 % | | 10705 | AAA | IEEE 802.11ax (40MHz, MCS10, 90pc dc) | WLAN | 8.69 | ± 9.6 % | | 10706 | AAC | IEEE 802.11ax (40MHz, MCS11, 90pc dc) | WLAN | 8.66 | ± 9.6 % | | 10707 | AAC | IEEE 802.11ax (40MHz, MCS0, 99pc dc) | WLAN | 8.32 | ± 9.6 % | | 10708 | AAC | IEEE 802.11ax (40MHz, MCS1, 99pc dc) | WLAN | 8.55 | ± 9.6 % | | 10709 | AAC | IEEE 802.11ax (40MHz, MCS2, 99pc dc) | WLAN | 8.33 | ± 9.6 % | | 10710 | AAC | IEEE 802.11ax (40MHz, MCS3, 99pc dc) | WLAN | 8.29 | ± 9.6 % | | 10711 | AAC | IEEE 802.11ax (40MHz, MCS4, 99pc dc) | WLAN | 8.39 | ± 9.6 % | | 10712 | AAC | IEEE 802.11ax (40MHz, MCS5, 99pc dc) | WLAN | 8.67 | ± 9.6 % | | 10713 | AAC | IEEE 802.11ax (40MHz, MCS6, 99pc dc) | WLAN | 8.33 | ± 9.6 % | | 10714 | AAC | IEEE 802.11ax (40MHz, MCS7, 99pc dc) | WLAN | 8.26 | ± 9.6 % | | 10715 | AAC. | IEEE 802.11ax (40MHz, MCS8, 99pc dc) | WLAN | 8.45 | ± 9.6 % | | 10716 | AAC | IEEE 802.11ax (40MHz, MCS9, 99pc dc) | WLAN | 8.30 | ± 9.6 % | | 10717 | AAC | IEEE 802.11ax (40MHz, MCS10, 99pc dc) | WLAN | 8.48 | ± 9.6 % | | 10718 | AAC | IEEE 802.11ax (40MHz, MCS11, 99pc dc) | WLAN | 8.24 | ± 9.6 % | | 10719 | AAC | IEEE 802.11ax (80MHz, MCS0, 90pc dc) | WLAN | 8.81 | ± 9.6 % | | 10720 | AAC | IEEE 802.11ax (80MHz, MCS1, 90pc dc) | WLAN | 8.87 | ± 9.6 % | | 10721 | AAC | IEEE 802.11ax (80MHz, MCS2, 90pc dc) | WLAN | 8.76 | ± 9.6 % | | 10722 | AAC | IEEE 802.11ax (80MHz, MCS3, 90pc dc) | WLAN | 8.55 | ± 9.6 % | | 10723 | AAC | IEEE 802.11ax (80MHz, MCS4, 90pc dc) | WLAN | 8.70 | ± 9.6 % | | 10724 | AAC | IEEE 802.11ax (80MHz, MCS5, 90pc dc) | WLAN | 8.90 | ± 9.6 % | | 10725 | AAC | IEEE 802.11ax (80MHz, MCS6, 90pc dc) | WLAN | 8.74 | ± 9.6 % | | 10726 | AAC | IEEE 802.11ax (80MHz, MCS7, 90pc dc) | WLAN | 8.72 | ± 9.6 % | | 10727 | AAC | IEEE 802.11ax (80MHz, MCS8, 90pc dc) | WLAN | 8.66 | ± 9.6 % | Page 19 of 23 | tel some at the control of contr | |
--|----------------| | EX3DV4 SN:7533 | April 19, 2021 | | | | | 10728 | AAC | IEEE 802.11ax (80MHz, MCS9, 90pc dc) | WLAN | 8.65 | ± 9.6 % | |------------|-----|--|---------------|------|---------| | 10729 | AAC | IEEE 802.11ax (80MHz, MCS10, 90pc dc) | WLAN | 8.64 | ±9.6% | | 10730 | AAC | IEEE 802.11ax (80MHz, MCS11, 90pc dc) | WLAN | 8.67 | ± 9.6 % | | 10731 | AAC | IEEE 802.11ax (80MHz, MCS0, 99pc do) | WLAN | 8.42 | ± 9.6 % | | 10732 | AAC | IEEE 802.11ax (80MHz, MCS1, 99pc dc) | WLAN | 8.46 | ± 9.6 % | | 10733 | AAC | IEEE 802,11ax (80MHz, MCS2, 99pc dc) | WLAN | 8.40 | ±9.6 % | | 10734 | AAC | IEEE 802 11ax (80MHz, MCS3, 99pc dc) | WLAN | 8.25 | ± 9.6 % | | 10735 | AAC | IEEE 802.11ax (80MHz, MCS4, 99pc dc) | WLAN | 8.33 | ±9.6 % | | 10736 | AAC | IEEE 802.11ax (80MHz, MCS5, 99pc dc) | WLAN | 8.27 | ± 9.6 % | | 10737 | AAC | IEEE 802.11ax (80MHz, MCS6, 99pc dc) | WLAN | 8.36 | ± 9.6 % | | 10738 | AAC | IEEE 802,11ax (80MHz, MCS7, 99pc dc) | WLAN | 8.42 | ± 9.6 % | | 10739 | AAC | IEEE 802.11ax (80MHz, MCS8, 99pc dc) | WLAN | 8.29 | ± 9.6 % | | 10740 | AAC | IEEE 802.11ax (80MHz, MCS9, 99pc dc) | WLAN | 8.48 | ± 9.6 % | | 10741 | AAC | IEEE 802.11ax (80MHz, MCS10, 99pc dc) | WLAN | 8.40 | ± 9.6 % | | 10742 | AAC | IEEE 802.11ax (80MHz, MCS11, 99pc dc) | WLAN | 8.43 | ± 9.6 % | | 10743 | AAC | IEEE 802.11ax (160MHz, MCS0, 90pc dc) | WLAN | 8.94 | ± 9.6 % | | 10744 | AAC | IEEE 802,11ax (160MHz, MCS1, 90pc dc) | WLAN | 9.16 | ± 9.6 % | | 10745 | AAC | IEEE 802.11ax (160MHz, MCS2, 90pc dc) | WLAN | 8.93 | ± 9.6 % | | 10746 | AAC | IEEE 802.11ax (160MHz, MCS3, 90pc dc) | WLAN | 9.11 | ± 9.6 % | | 10747 | AAC | IEEE 802.11ax (160MHz, MCS4, 90pc dc) | WLAN | 9.04 | | | 10748 | AAC | IEEE 802.11ax (160MHz, MCS5, 90pc dc) | WLAN | 8.93 | ±9.6 % | | 10749 | AAC | IEEE 802.11ax (160MHz, MCS6, 90pc dc) | WLAN | 8.90 | ± 9.6 % | | 10750 | - | IEEE 802.11ax (160MHz, MCS7, 90pc dc) | WLAN | | | | 10751 | AAC | IEEE 802.11ax (160MHz, MCS8, 90pc dc) | WLAN | 8.79 | ± 9.6 % | | 10752 | - | IEEE 802.11ax (160MHz, MCS9, 90pc dc) | WLAN | 8.82 | ± 9.6 % | | 10753 | AAC | IEEE 802.11ax (160MHz, MCS10, 90pc dc) | WLAN | 8.81 | ± 9.6 % | | 10754 | AAC | IEEE 802.11ax (160MHz, MCS11, 90pc dc) | WLAN | 9.00 | ± 9.6 % | | 10755 | AAC | IEEE 802.11ax (160MHz, MCS0, 99pc dc) | WLAN | 8.94 | ± 9.6 % | | 10756 | AAC | | | 8.64 | ±9.6 % | | 10757 | AAC | IEEE 802.11ax (160MHz, MCS1, 99pc dc) IEEE 802.11ax (160MHz, MCS2, 99pc dc) | WLAN | 8.77 | ±9.6 % | | 10758 | AAC | IEEE 802.11ax (160MHz, MCS2, 890c dc) | WLAN | 8.77 | ± 9.6 % | | 10759 | AAC | The state of s | WLAN | 8.69 | ±9.6 % | | 10760 | AAC | IEEE 802.11ax (160MHz, MCS4, 99pc dc) | WLAN | 8.58 | ± 9.6 % | | 10761 | AAC | IEEE 802.11ax (160MHz, MCS5, 99pc dc) | WLAN | 8.49 | ± 9.6 % | | 0.3,447.14 | AAC | IEEE 802.11ax (160MHz, MCS6, 99pc dc) | WLAN | 8.58 | ± 9.6 % | | 10762 | AAC | IEEE 802.11ax (160MHz, MCS7, 99pc dc) | WLAN | 8.49 | ± 9.6 % | | 10763 | AAC | IEEE 802.11ax (160MHz, MCS8, 99pc dc) | WLAN | 8.53 | ±9.6% | | 10764 | AAC | IEEE 802.11ax (160MHz, MCS9, 99pc dc) | WLAN | 8.54 | ± 9.6 % | | | AAC | IEEE 802.11ax (160MHz, MCS10, 99pc dc) | WLAN | 8.54 | ± 9.6 % | | 10766 | AAC | IEEE 802.11ax (180MHz, MCS11, 99pc dc) | WLAN | 8.51 | ± 9.6 % | | 10767 | AAC | 5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 7.99 | ± 9.6 % | | 10768 | AAC | 5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.01 | ± 9.6 % | | 10769 | AAC | 5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.01 | ± 9.6 % | | 10770 | AAC | 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.02 | ± 9.6 % | | 20071711 | AAC | 5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.02 | ± 9.6 % | | 10772 | AAC | 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.23 | ± 9.6 % | | 10773 | AAC | 5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.03 | ± 9.6 % | | 10774 | AAC | 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.02 | ± 9.6 % | | 10775 | AAC | 5G NR (CP-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.31 | ± 9.6 % | | 10776 | AAC | 5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.30 | ± 9.6 % | | 10777 | AAC | 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.30 | ± 9.6 % | | 10778 | AAC | 5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.34 | ± 9.6 % | | 10779 | AAC | 5G NR (CP-OFDM, 50% RB, 25 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.42 | ± 9.6 % | | 10780 | AAC | 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.38 | ± 9.6 % | | 10781 | AAC | 5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.38 | ± 9.6 % | | 10782 | AAC | 5G NR (CP-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.43 | ± 9.6 % | | 10783 | AAC | 5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.31 | ± 9.6 % | Certificate No: EX3-7533_Apr21 Page 20 of 23 April 19, 2021 | 10784 | TAAG | 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz) | L CO NID CD4 TDD | 0.00 | T | |---------|--------------------------|--|------------------|------
--| | 10785 | AAC | 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.29 | ± 9.6 % | | 10786 | AAC | 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.40 | ± 9.6 % | | 10787 | AAC | | 5G NR FR1 TDD | 8.35 | ± 9.6 % | | 10788 | AAC | 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.44 | ± 9.6 % | | | AAC | 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.39 | ±9.6 % | | 10789 | AAC | 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.37 | ±9.6% | | 10790 | AAC | 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.39 | ±9.6% | | 10791 | AAC | 5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.83 | ± 9.6 % | | 10792 | AAC | 5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.92 | ± 9.6 % | | 10793 | AAC | 5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.95 | ±9.6% | | 10794 | AAC | 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.82 | ± 9.6 % | | 10795 | AAC | 5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.84 | ± 9.6 % | | 10796 | AAC | 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.82 | ± 9.6 % | | 10797 | AAC | 5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.01 | ± 9.6 % | | 10798 | AAC | 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.89 | ± 9.6 % | | 10799 | AAC | 5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.93 | ±9.6 % | | 10801 | AAC | 5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.89 | ± 9.6 % | | 10802 | AAC | 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.87 | ± 9.6 % | | 10803 | AAE | 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.93 | ± 9.6 % | | 10805 | AAD | 5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.34 | ±9.6 % | | 10806 | AAD | 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.37 | ± 9.6 % | | 10809 | AAD | 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.34 | ± 9.6 % | | 10810 | AAD | 5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.34 | ± 9.6 % | | 10812 | AAD | 5G NR (CP-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.35 | ± 9.6 % | | 10817 | AAD | 5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.35 | ±9.6% | | 10818 | AAD | 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.34 | ±9.6 % | | 10819 | AAD | 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.33 | ± 9.6 % | | 10820 | AAD | 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.30 | ± 9.6 % | | 10821 | AAC | 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.41 | ±9.6 % | | 10822 | AAD | 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.41 | ± 9.6 % | | 10823 | AAC | 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.36 | ± 9.6 % | | 10824 | AAD | 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.39 | ± 9.6 % | | 10825 | AAD | 5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.41 | ± 9.6 % | | 10827 | AAD | 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.42 | ± 9.6 % | | 10828 | AAE | 5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.43 | ± 9.6 % | | 10829 | AAD | 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.40 | ± 9.6 % | | 10830 | AAD | 5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.63 | ± 9.6 % | | 10831 | AAD | 5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.73 | ± 9.6 % | | 10832 | AAD | 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.74 | ± 9.6 % | | 10833 | AAD | 5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.70 | ± 9.6 % | | 10834 | AAD | 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.75 | ± 9.6 % | | 10835 | AAD | 5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.70 | ± 9.6 % | | 10836 | AAE | 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.66 | The state of s | | 10837 | THE RESERVE AND ADDRESS. | 5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | | ± 9.6 % | | 10839 | AAD | 5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 80 kHz) | 5G NR FR1 TDD | 7.68 | ± 9.6 % | | 10840 | AAD | 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 60 kHz) | | 7.70 | ± 9.6 % | | 10841 | AAD | 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.67 | ± 9.6 % | | 0326.00 | AAD | | 5G NR FR1 TDD | 7.71 | ± 9.6 % | | 10843 | AAD | 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 60 kHz)
5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8,49 | ± 9.6 % | | 10000 | AAD | | 5G NR FR1 TDD | 8.34 | ± 9.6 % | | 10846 | AAD | 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.41 | ± 9.6 % | | 10854 | AAD | 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.34 | ± 9.6 % | | 10855 | AAD | 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.36 | ± 9.6 % | | 10856 | AAD | 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.37 | ± 9.6 % | | 10857 | AAD | 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.35 | ± 9.6 % | | 10858 | AAD | 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | B.36 | ± 9.6 % | | 10859 | AAD | 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | B.34 | ± 9.6 % | Page 21 of 23 April 19, 2021 | 10860 | AAD | 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.41 | ± 9.6 % | |-----------|------|--|---|------|---------| | 10861 | AAD | 5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.40 | ± 9.6 % | | 10863 | AAD | 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.41 | ± 9.6 % | | 10864 | AAE | 5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.37 | ± 9.6 % | | 10865 | AAD | 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.41 | ± 9.6 % | | 10866 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ± 9.6 % | | 10868 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.89 | ± 9.6 % | | 10869 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 5.75 | ± 9.6 % | | 10870 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 5.86 | ± 9.6 % | | 10871 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 5.75 | ± 9.6 % | | 10872 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 6.52 | ± 9.6 % | | 10973 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 6.61 | ± 9.6 % | | 10874 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 84QAM, 120 kHz) | 5G NR FR2 TDD | 6.65 | ± 9.6 % | | 10875 | AAD | 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz) | 5G NR FR2 TDO | 7.78 | ± 9.6 % | | 10876 | AAD | 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 8.39 | ± 9.6 % | | 10877 | AAD | 5G NR (CP-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 7.95 | ± 9.6 % | | 10878 | AAD | 5G NR (CP-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 8.41 | ± 9.6 % | | 10879 | AAD | 5G NR (CP-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 8.12 | ± 9.6 % | | 10880 | AAD | 5G NR (CP-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 8.38 | ± 9.6 % | | 10881 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 5.75 | ± 9.6 % | | 10882 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 5.96 | ± 9.6 % | | 10883 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 6.57 | ± 9.6 % | | 10884 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 6.53 | ± 9.6 % | | 10885 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz) | 5G
NR FR2 TDD | 6.61 | ± 9.6 % | | 10886 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 6.65 | ± 9.6 % | | 10887 | AAD | 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 7.78 | ± 9.6 % | | 10888 | AAD | 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 8.35 | ± 9.6 % | | 10889 | AAD | 5G NR (CP-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 8.02 | ± 9.6 % | | 10890 | AAD | 5G NR (CP-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 8.40 | ± 9.6 % | | 10891 | AAD | 5G NR (CP-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz) | 50 NR FR2 TDD | 8.13 | ± 9.6 % | | 10892 | AAD | 5G NR (CP-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 8,41 | ± 9.6 % | | 10897 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.66 | ± 9.6 % | | 10896 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.67 | ± 9.6 % | | 10899 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.67 | ± 9.6 % | | 10900 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ± 9.6 % | | 10901 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ± 9.6 % | | 10902 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ± 9.6 % | | 10903 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ± 9.6 % | | 10904 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ± 9.6 % | | 10905 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ± 9.6 % | | 10906 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ± 9.6 % | | 10907 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.78 | ± 9.6 % | | 10908 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.93 | ±9.6% | | 10909 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.96 | ± 9.6 % | | 10910 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.83 | ± 9.6 % | | 10911 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 25 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.93 | ± 9.6 % | | 10912 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.84 | ± 9.6 % | | 10913 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.84 | ± 9.6 % | | 10914 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.85 | ± 9.6 % | | 10915 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.83 | ± 9.6 % | | 10916 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 80 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.87 | ± 9.6 % | | 10917 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 100 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.94 | ± 9.6 % | | 10918 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.86 | ± 9.6 % | | 10919 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.86 | ± 9.6 % | | 10920 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.87 | ± 9.6 % | | 0005-01-0 | 1000 | 5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz) | 22 111111111111111111111111111111111111 | 0.07 | E 3.0 % | Certificate No: EX3-7533_Apr21 Page 22 of 23 April 19, 2021 | 79777 | | | | | | |-------|-----|---|---------------|-------|---------| | 10922 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.82 | ± 9.6 % | | 10923 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.84 | ± 9.6 % | | 10924 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.84 | ± 9.6 % | | 10925 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.95 | ± 9.6 % | | 10926 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.84 | ± 9.6 % | | 10927 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.94 | ± 9.6 % | | 10928 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.52 | ± 9.6 % | | 10929 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.52 | ± 9.6 % | | 10930 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.52 | ± 9.6 % | | 10931 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.51 | ± 9.6 % | | 10932 | AAB | 5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.51 | ± 9.6 % | | 10933 | AAA | 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.51 | ± 9.6 % | | 10934 | AAA | 5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.51 | ± 9.6 % | | 10935 | AAA | 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.51 | ± 9.6 % | | 10936 | AAC | 5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.90 | ± 9.6 % | | 10937 | AAB | 5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.77 | ± 9.6 % | | 10938 | AAB | 6G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.90 | ± 9.6 % | | 10939 | AAB | 5G NR (DFT-s-DFDM, 50% RB, 20 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.82 | ± 9.6 % | | 10940 | AAB | 5G NR (DFT-s-OFDM, 50% RB, 25 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.89 | ± 9.6 % | | 10941 | AAB | 5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.83 | ± 9.6 % | | 10942 | AAB | 5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.85 | ± 9.6 % | | 10943 | AAB | 5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.95 | ± 9.6 % | | 10944 | AAB | 5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.81 | ± 9.6 % | | 10945 | AAB | 5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.85 | ± 9.6 % | | 10946 | AAC | 5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.83 | ± 9.6 % | | 10947 | AAB | 5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.87 | ± 9.6 % | | 10948 | AAB | 5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.94 | ± 9.6 % | | 10949 | AAB | 5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.87 | ± 9.6 % | | 10960 | AAB | 5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.94 | ± 9.6 % | | 10951 | AAB | 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.92 | ± 9.6 % | | 10952 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz) | 5G NR FR1 FDD | 8.25 | ± 9.6 % | | 10953 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz) | 5G NR FR1 FDD | 8.15 | ± 9.6 % | | 10954 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 kHz) | 5G NR FR1 FDD | 8.23 | ± 9.6 % | | 10955 | AAB | 5G NR DL (CP-OFDM, TM 3.1; 20 MHz, 64-QAM, 15 kHz) | 5G NR FR1 FDD | 8.42 | ± 9.6 % | | 10956 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz) | 5G NR FR1 FDD | 8.14 | ± 9.6 % | | 10957 | AAC | 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz) | 5G NR FR1 FDD | 8.31 | ± 9.6 % | | 10958 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz) | 5G NR FR1 FDD | 8.61 | ± 9.6 % | | 10959 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 84-QAM, 30 kHz) | 5G NR FR1 FDD | 8.33 | ±9.6% | | 10960 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz) | 5G NR FR1 TDD | 9.32 | ± 9.6 % | | 10961 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz) | 5G NR FR1 TDD | 9.36 | ± 9.6 % | | 10962 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 kHz) | 5G NR FR1 TOO | 9.40 | ± 9.6 % | | 10963 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 kHz) | 5G NR FR1 TDD | 9.55 | ±9.6% | | 10964 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 9.29 | ± 9.6 % | | 10965 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 9.37 | ± 9.6 % | | 10966 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 9.55 | ± 9.6 % | | 10967 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 9.42 | ± 9.6 % | | 10988 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 100 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 9.49 | ± 9.6 % | | 10972 | AAB | 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 11.59 | ± 9.6 % | | 10973 | AAB | 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 9.06 | ± 9.6 % | | 10974 | AAB | 5G NR (CP-OFDM, 100% RB, 100 MHz, 256-QAM, 30 kHz) | 5G NR FR1 TDD | 10.28 | ± 9.6 % | EUncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value. Certificate No: EX3-7533_Apr21 Page 23 of 23 FCC ID: AZ489FT4969 / IC: 109U-89FT4969 Report ID: P31421-EME-00006 # Appendix C Dipole Calibration Certificates #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108 Client Motorola Solutions MY Certificate No: D450V3-1054_Mar19 | Object | D450V3 - SN:10 | 54 | | |---|---
--|--| | Calibration procedure(s) | QA CAL-15.v9 | | 100 | | | Calibration Proce | edure for SAR Validation Sources | s below 700 MHz | | Calibration date: | March 11, 2019 | | | | This calibration certificate docume | nts the traceability to not | ional standards, which realize the physical un | site of measurements (CI) | | he measurements and the uncer | tainties with confidence p | robability are given on the following pages ar | nd are part of the certificate. | | All calibrations have been conduct | ed in the closed laborato | ry facility: environment temperature (22 ± 3)* | C and humidity < 70%. | | Calibration Equipment used (M&T) | | and the control of th | 2015-000-000 (0.00 € 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | Power meter NRP | SN: 104778 | 04-Apr-18 (No. 217-02672/02673) | Apr-19 | | Power sensor NRP-Z91 | SN: 103244 | 04-Apr-18 (No. 217-02672) | Apr-19 | | Power sensor NRP-Z91 | SN: 103245 | 04-Apr-18 (No. 217-02673) | Apr-19 | | Reference 20 dB Attenuator | SN: 5277 (20x) | 04-Apr-18 (No. 217-02682) | Apr-19 | | | SN: 5047.2 / 06327 | 04-Apr-18 (No. 217-02683) | Apr-19 | | | | naucht to flan Ett (10000) | Dec-19 | | Type-N mismatch combination | SN: 3877 | 31-Dec-18 (No. EX3-3877, Dec-18) | | | Type-N mismatch combination
Reference Probe EX30V4 | SN: 3877
SN: 654 | 31-Dec-18 (No. EX3-3877_Dec18)
05-Jul-18 (No. DAE4-654_Jul18) | Jul-19 | | Type-N mismatch combination
Reference Probe EX30V4
DAE4
Secondary Standards | FEET CONTRACTOR 1 | [| | | Type-N mismatch combination
Reference Probe EX3DV4
DAE4 | SN: 654 | 05-Jul-18 (No. DAE4-854_Jul18) | Jul-19
Scheduled Check | | Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B | SN: 654 | 05-Jul-18 (No. DAE4-654_Jul18) Check Date (In house) | Jul-19 Scheduled Check In house check: Jun-20 | | Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A | SN: 654
ID #
SN: GB41293874 | 05-Jul-18 (No. DAE4-854_Jul18) Check Date (in house) 06-Apr-16 (in house check Jun-18) | Jul-19 Scheduled Check In house check: Jun-20 In house check: Jun-20 | | Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A | SN: 654
ID #
SN: GB41293874
SN: MY41498087 | 05-Jul-18 (No. DAE4-854_Jul18) Check Date (in house) 06-Apr-16 (in house check Jun-18) 06-Apr-16 (in house check Jun-18) | Jul-19 Scheduled Check In house check: Jun-20 In house check: Jun-20 In house check: Jun-20 | | Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A RF generator HP 8848C | SN: 654
ID #
SN: GB41293874
SN: MY41498087
SN: 000110210 | 05-Jul-18 (No. DAE4-854_Jul18) Check Date (In house) 06-Apr-16 (In house check Jun-18) 06-Apr-16 (In house check Jun-18) 06-Apr-16 (In house check Jun-18) | Jul-19 Scheduled Check In house check: Jun-20 In house check: Jun-20 In house check: Jun-20 In house check: Jun-20 | | Type-N mismatch combination
Reference Probe EX3DV4
DAE4
Secondary Standards | SN: 654
ID #
SN: GB41293874
SN: MY41498087
SN: 000110210
SN: US3642U01700 | 05-Jul-18 (No. DAE4-854_Jul18) Check Date (In house) 06-Apr-16 (In house check Jun-18) 06-Apr-16 (In house check Jun-18) 06-Apr-16 (In house check Jun-18) 04-Aug-99 (In house check Jun-18) | Jul-19 | | Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A RF generator HP 8648C | SN: 654 ID # SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700 SN: US41080477 | 05-Jul-18 (No. DAE4-854_Jul18) Check Date (In house) 06-Apr-16 (In house check Jun-18) 06-Apr-16 (In house check Jun-18) 06-Apr-16 (In house check Jun-18) 04-Aug-99 (In house check Jun-18) 31-Mar-14 (In house check Oct-18) | Jul-19 Scheduled Check In house check: Jun-20 In house check: Jun-20 In house check: Jun-20 In house check: Jun-20 In house check: Oct-19 | | Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A RF generator HP 8648C Network Analyzer Agilent E8358A Calibrated by: | SN: 654 ID # SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700 SN: US41080477 Name Claudio Leubler | 05-Jul-18 (No. DAE4-854_Jul18) Check Date (In house) 06-Apr-16 (In house check Jun-18) 06-Apr-16 (In house check Jun-18) 06-Apr-16 (In house check Jun-18) 04-Aug-99 (In house check Jun-18) 31-Mar-14 (In house check Oct-18) Function Laboratory Technician | Jul-19 Scheduled Check In house check: Jun-20 In house check: Jun-20 In house check: Jun-20 In house check: Jun-20 In house check: Oct-19 | | Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A RF generator HP 8648C Network Analyzer Agilent E8358A | SN: 654 ID # SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700 SN: US41080477 Name | 05-Jul-18 (No. DAE4-854_Jul18) Check Date (In house) 06-Apr-16 (In house check Jun-18) 06-Apr-16 (In house check Jun-18) 06-Apr-16 (In house check Jun-18) 04-Aug-99 (In house check Jun-18) 31-Mar-14 (In house check Oct-18) | Scheduled Check In house check: Jun-2t In house check: Jun-2t In house check: Jun-2t In house check: Jun-2t In house check: Oct-15 | Certificate No: D450V3-1054_Mar19 Page 1 of 8 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS). The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - iEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR
measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D450V3-1054_Mar19 Page 2 of 8 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.2 | |------------------------------|------------------------|-----------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | ELI4 Flat Phantom | Shell thickness: 2 ± 0.2 mm | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 450 MHz ± 1 MHz | | #### Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 43.5 | 0.87 mha/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 44.1 ± 6 % | 0.87 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ## SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.14 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 4.57 W/kg ± 18.1 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 0.763 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 3.06 W/kg ± 17.6 % (k=2) | ## **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 56.7 | 0.94 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 55.7 ± 6 % | 0.93 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ## SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.13 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 4.54 W/kg ± 18.1 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 0.762 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 3.06 W/kg ± 17.6 % (k=2) | Certificate No: D450V3-1054_Mar19 Page 3 of 8 #### Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 60.2 Ω - 0.4 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 20.7 dB | | #### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 57.7 Ω - 3.6 jΩ | |--------------------------------------|-----------------| | Return Loss | - 22.1 dB | #### General Antenna Parameters and Design After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | |-----------------|-------| Certificate No: D450V3-1054_Mar19 Page 4 of 8 #### DASY5 Validation Report for Head TSL Date: 11.03.2019 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 450 MHz; Type: D450V3; Serial: D450V3 - SN:1054 Communication System: UID 0 - CW; Frequency: 450 MHz Medium parameters used: f = 450 MHz; $\sigma = 0.87 \text{ S/m}$; $\epsilon_r = 44.1$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN3877; ConvF(10.5, 10.5, 10.5) @ 450 MHz; Calibrated: 31.12.2018 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn654; Calibrated: 05.07.2018 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:1003 DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450) ## Dipole Calibration for Head Tissue/d=15mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 38.90 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 1.75 W/kg SAR(1 g) = 1.14 W/kg; SAR(10 g) = 0.763 W/kg Maximum value of SAR (measured) = 1.53 W/kg 0 dB = 1.53 W/kg = 1.85 dBW/kg Certificate No: D450V3-1054_Mar19 Page 5 of 8 ## Impedance Measurement Plot for Head TSL Certificate No: D450V3-1054_Mar19 #### **DASY5 Validation Report for Body TSL** Date: 11.03.2019 Test Laboratory: SPEAG, Zurich, Switzerland ## DUT: Dipole 450 MHz; Type: D450V3; Serial: D450V3 - SN:1054 Communication System: UID 0 - CW; Frequency: 450 MHz Medium parameters used: f = 450 MHz; $\sigma = 0.93 \text{ S/m}$; $\varepsilon_r = 55.7$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN3877; ConvF(10.7, 10.7, 10.7) @ 450 MHz; Calibrated: 31.12.2018 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn654; Calibrated: 05.07.2018 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:1003 DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450) ## Dipole Calibration for Body Tissue/d=15mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 41.61 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 1.73 W/kg SAR(1 g) = 1.13 W/kg; SAR(10 g) = 0.762 W/kg Maximum value of SAR (measured) = 1.51 W/kg 0 dB = 1.51 W/kg = 1.79 dBW/kg Certificate No: D450V3-1054_Mar19 Page 7 of 8 ## Impedance Measurement Plot for Body TSL Certificate No: D450V3-1054_Mar19 ## **Dipole Data** As stated in KDB 865664, dipoles used for longer calibration intervals are required to provide supporting information and measurement to qualify for extended calibration interval. Dipole D450V3 (S/N: 1054) has exceeded the annual calibration date thus the dipole impedance and return loss measurement data measured by Motorola Solutions' EME lab for Dipole D450V3 (S/N: 1054) are provided in the table below. The results meet the requirements stated in KDB 865664. | Dipole D450V3- | Head | | | Body | | | |----------------|-----------|-------------------------|--------------------|-----------|------------|--------------------| | 1054 | Impedance | | Return Loss | Impedance | | Return Loss | | Date Measured | real Ω | imag $\mathrm{j}\Omega$ | dB | real Ω | imag
jΩ | dB | | 04/08/19 | 59.46 | -4.57 | -20.36 | 56.02 | -6.09 | -21.87 | | 04/13/20 | 57.08 | -6.58 | -20.38 | 56.08 | -3.56 | -24.43 | | 4/26/21 | 54.62 | -6.32 | -22.56 | 52.47 | -6.56 | -23.36 |