MOTOROLA SOL		STANDARDS MAANSA COREDITED SAMM 826				
DECLARAT	ION OF COMPLIAN	CE SAR ASSESSMENT PCII Report Part 1 of 2				
Motorola Soluti	ons Inc.					
EME Test Lab	oratory	Date of Report: 05/14/2024				
Motorola Solutions Mal	aysia Sdn Bhd	Report Revision: C				
Plot 2A, Medan Bay	van Lepas,					
Mukim 12 SWD 11900 Bayan Le	epas Penang, Malaysia.					
Responsible Engineer:	Yeng Yee Yeong (EM	E Engineer)				
Report Author:	Yeng Yee Yeong (EM	E Engineer)				
Date/s Tested:	3/19/2024-3/21/2024					
Manufacturer:	Motorola Solutions In	2.				
Manufacturer Location:	Sanmina, Penang					
DUT Description:		CLS1410 BLACK RL IC				
Test TX mode(s):	CW (PTT)					
Max. Power output:	Refer Table 3					
Nominal Power:	Refer Table 3					
Tx Frequency Bands:	Refer Table 3					
Signaling type:	Refer Table 3					
Model(s) Tested:	CU1410BKV4BA (HO					
Model(s) Certified:	Refer Section 1.0 Introduction					
Serial Number(s):	13422AD2784					
Classification:	Occupational/Controlled Environment R01.0531					
Firmware Version:						
Applicant Name:	Motorola Solutions In					
Applicant Address:	Plot 2A, Medan Bayan Lepas, Mukim 12 SWD, 11900 Bayan Lepas, Penang, Malaysia.					
FCC ID:	Malaysia. AZ489FT4963					
FCC ID:		sults that are immeterial for ECC equipment approval which				
	This report contains results that are immaterial for FCC equipment approval, which are clearly identified.					
FCC Test Firm Registration 823256						
Number:	025250					
IC:	109U-89FT4963					
		sults that are immaterial for ISED equipment approval,				
	which are clearly iden					
IC Test Site registration:	24843					
The test results clearly demonstrate compliance with Occupational/Controlled RF Exposure limits of 8 W/kg averaged over 1						
gram per the requirements of FCC 47 CFR § 2.1093 and RSS-102 (Issue 5)						
	=	dersigned certifies that when used as stated in the operating instructions supplied, said				
		s and guidelines listed in section 4.0 of this report (no deviation from standard methods).				
		fficially designated representative of the Motorola Solutions Inc EME Laboratory.				
I attest to the accuracy of the data and assume full responsibility for the completeness of these measurements. This reporting format is consistent with the suggested guidelines of the TIA TSB-150 December 2004. The results and statements contained in this report pertain only to the device(s) evaluated.						
	Br					
\prec						
		ock (Approval Signatory)				
Approved Date: 05/14/2024						

Part 1 of 2

1.0	Introd	ction	5
2.0	FCC S	AR Summary	
3.0	Abbre	riations / Definitions	
4.0	Refere	nced Standards and Gu	idelines7
5.0	SAR I	imits	7
6.0	Descri	otion of Device Under	Test (DUT)
7.0	Option	al Accessories and Tes	t Criteria
	7.1	Antennas	
	7.2	Battery	9
	7.3	Body worn Accessorie	es9
	7.4	Audio Accessories	9
8.0	Descri	otion of Test System	
	8.1	Descriptions of Robot	ics/Probes/Readout Electronics
	8.2	Description of Phanto	m(s)
	8.3	Description of Simula	ted Tissue11
9.0	Additi	onal Test Equipment	
10.0	SAR N	leasurement System V	alidation and Verification12
	10.1	System Validation	
	10.2	System Verification	
	10.3	Equivalent Tissue Tes	t Results
11.0	Enviro	nmental Test Condition	ns
12.0	DUT	est Setup and Methodo	blogy
	12.1	Measurements	
	12.2	DUT Configuration(s)	
	12.3	DUT Positioning Proc	edures
		12.3.1 Body	
		12.3.2 Head	

		12.3.3 Face
	12.4	DUT Test Channels
	12.5	SAR Result Scaling Methodology16
	12.6	DUT Test Plan17
13.0	DUT 1	Cest Data17
	13.1	LMR assessments for FCC 17
	13.1.1	Assessments for UHF (450-470MHz)17
	13.2	Assessment at the Body and Face for ISED, Canada17
	14.0	Shortened Scan Assessment
15.0	Results	s Summary 19
16.0	Variab	ility Assessment
17.0	System	n Uncertainty

APPENDICES

- A Measurement Uncertainty Budget
- B Probe Calibration Certificates
- C Dipole Calibration Certificates

Part 2 of 2

APPENDICES

- D System Verification Check Scans
- E DUT Scans
- F Shorten Scan of Highest SAR Configuration
- G DUT Test Position Photos
- H DUT, Body worn and Audio accessories Photos

Report Revision History

Date	Revision	Comments	
04/13/2024	А	Initial release of PCII	
05/10/2024	В	To remove the IC MODEL: HCUE1082K from 1.0 Introduction.	
05/14/2024	С	To add IC MODEL: HCUE1082G to 1.0 Introduction.	
00/11/2021	C		

1.0 Introduction

This report details the utilization, test setup, test equipment, and test results of the Specific Absorption Rate (SAR) measurements performed at the Motorola Solutions Inc. EME Test Laboratory for handheld portable model number CU1410BKV4BA (HCUE1081K). The information herein is to show evidence of Class II Permissive Change compliance based on the SAR evaluation of the current shipping products due component changes, PCB re-layout and PCB dual source. This device is classified as Occupational/Controlled Environment and models certified are listed as below:

Model	Description
CU1410BKV4BA (HCUE1081K)	CLS1410 BLACK RL IC
AP1810BKN8BB (RLA1002K)	CLS1810T BULK (AP)
CU1110GYN1BA (HCUE1080K)	CLS1110 BLACK RL IC
CU1110GYN1BB (HCUE1080K)	CLS1110 BLACK BULK
CU1410BKV4BB (HCUE1081K)	CLS1410 BLACK BULK
CU1410BKV4BS (HCUE1142K)	CLS1410 BLACK IN STORE RL IC
GS1810BKN8BB (RLA1001K)	CLS1810T BULK (GS)
IC MODEL: HCUE1082G	TANAPA CLS1413 BLACK CAN RL IC
P24VPC03D2BA (HCUE1157K)	VL50 UHF 1W 8CH BLK RL IC

2.0 FCC SAR Summary

Table 1

Equipment Class	Frequency band (MHz)	Max Calc at Body (W/kg)	Max Calc at Face (W/kg)	
		1g-SAR	1g-SAR	
TNF	450-470	*1.62	*1.42	

Notes: * denotes SAR results from previous filing remain the same.

3.0 Abbreviations / Definitions

CNR:	Calibration Not Required
CW:	Continuous Wave
DUT:	Device Under Test
EME:	Electromagnetic Energy
FM:	Frequency Modulation
LMR:	Land Mobile Radio
NA:	Not Applicable
PTT:	Push to Talk
RSM:	Remote Speaker Microphone
SAR:	Specific Absorption Rate
TNF:	Licensed Non-Broadcast Transmitter Held to Face

Audio accessories: These accessories allow communication while the DUT is worn on the body.

Body worn accessories: These accessories allow the DUT to be worn on the body of the user.

Maximum Power: Defined as the upper limit of the production line final test station.

4.0 Referenced Standards and Guidelines

This product is designed to comply with the following applicable national and international standards and guidelines.

- Federal Communications Commission, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields", OET Bulletin 65, FCC, Washington, D.C.: 1997.
- Institute of Electrical and Electronics Engineers (IEEE) C95.1-2019
- International Commission on Non-Ionizing Radiation Protection (ICNIRP) 2020
- Ministry of Health (Canada) Safety Code 6 (2015), Limits of Human Exposure to Radio frequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz
- RSS-102 (Issue 5) Radio Frequency (RF) Exposure Compliance of Radio communication Apparatus (All Frequency Bands)
- Australian Communications Authority Radio communications (Electromagnetic Radiation -Human Exposure) Standard (2014)
- ANATEL, Brazil Regulatory Authority, Resolution No 700 of September 28, 2018 "Approves the Regulation on the Assessment of Human Exposure to Electric, Magnetic and Electromagnetic Fields Associated with the Operation of Radio communication Transmitting Stations.
- IEC/IEEE 62209-1528-2020- Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Part 1528: Human models, instrumentation, and procedures (Frequency range of 4 MHz to 10 GHz)
- FCC KDB 643646 D01 SAR Test for PTT Radios v01r03
- FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04
- FCC KDB 865664 D02 RF Exposure Reporting v01r02
- FCC KDB 447498 D01 General RF Exposure Guidance v06

5.0 SAR Limits

Table 2

	SAR (W/kg)		
EXPOSURE LIMITS	(General Population /	(Occupational /	
EAI OSURE EIVIIIS	Uncontrolled Exposure	Controlled Exposure	
	Environment)	Environment)	
Spatial Average - ANSI -	0.08	0.4	
(averaged over the whole body)			
Spatial Peak - ANSI -	1.6	8.0	
(averaged over any 1-g of tissue)			
Spatial Peak – ICNIRP/ANSI -	4.0	20.0	
(hands/wrists/feet/ankles averaged over 10-g)			
Spatial Peak - ICNIRP -	2.0	10.0	
(Head and Trunk 10-g)			

6.0 Description of Device Under Test (DUT)

This portable device operates in the LMR bands using frequency modulation (FM) signals incorporating traditional simplex two-way radio transmission protocol.

The LMR bands in this device operate in a half duplex system. A half duplex system only allows the user to transmit or receive. This device cannot transmit and receive simultaneously. The user must stop transmitting in order to receive a signal or listen for a response, regardless of PTT button or use of voice activated audio accessories. This type of operation, along with the RF safety booklet, which instructs the user to transmit no more than 50% of the time, justifies the use of 50% duty factor for this device.

Table 3 below summarizes the technologies, bands, maximum duty cycles and maximum output powers. Maximum output powers are defined as upper limit of the production line final test station.

Table	3
-------	---

Radio Type	Band (MHz)	Transmission	Duty Cycle (%)	Nominal Power (W)	Declared Max Power (W)
LMR	450-470	FM	*50	1.00	1.30
Note: * includes 500/ DTT encurtion					

Note: * includes 50% PTT operation

The intended operating positions are "at the face" with the DUT at least 1 inch from the mouth, and "at the body" by means of the offered body worn accessories. Body worn audio and PTT operation is accomplished by means of optional remote accessories that are connected to the radio.

7.0 Optional Accessories and Test Criteria

This device is offered with optional accessories. All accessories were individually evaluated during the test plan creation to determine if testing was required per the guidelines outlined in section 4.0 to access compliance of this device. The following sections identify the test criteria and details for each accessory category applicable for this PCII filing only. Detail listing of all approved accessories available in the original filing report.

7.1 Antennas

Table	4
-------	---

Antenna No.	Antenna Models	Description	Selected for test	Tested
1	Fixed	450-470MHz, Helix, ½ Wave, 2dBi	Yes	Yes

7.2 Battery

Table 5

Battery No.	Battery Models	Description	Selected for test	Tested	Comments
1	PMNN4497A	Battery Li-Ion 1800mAh 3.7V	Yes	Yes	

7.3 Body worn Accessories

Table 6

Body worn No.	Body worn Models	Description	Selected for test	Tested	Comments
1	HCLN4013C	Swivel Belt Holster	Yes	Yes	


7.4 Audio Accessories

There is only one audio accessory applicable for this PCII filing as listed in Table below.

Table 7

Audi	o No.	Audio Acc. Models	Description	Selected for test	Tested	Comments
	1	HKLN4606A	Remote Speaker Microphone	Yes	Yes	Default Audio

8.0 Description of Test System

DASY8TM Test System

8.1 Descriptions of Robotics/Probes/Readout Electronics

Table 8

Dosimetric System type	System version	DAE type	Probe Type
Schmid & Partner Engineering AG SPEAG DASY 8	V16.2.2.1588	DAE4	EX3DV4 (E-Field)

The **DASY8TM system** operates per the instructions in the DASY8TM Users Manual. The complete manual is available directly from SPEAGTM. All measurement equipment used to assess SAR compliance was calibrated according to ISO/IEC 17025 A2LA guidelines. Section 9.0 presents additional test equipment information. Appendices B and C present the applicable calibration certificates.

8.2 Description of Phantom(s)

Г	a	b	le	9

Phantom Type	Phantom(s) Used	Material Parameters	Phantom Dimensions LxWxD (mm)	Material Thickness (mm)	Support Structure Material	Loss Tangent (wood)
Triple Flat	NA	200MHz - 6GHz; Er = 3-5, Loss Tangent = ≤ 0.05	280x175x175			
SAM	NA	300 MHz - 6 GHz; Er = < 5, Loss Tangent = ≤ 0.05	Human Model	2mm +/- 0.2mm	Wood	< 0.05
Oval Flat	\checkmark	300 MHz - 6 GHz; Er = 4+/- 1, Loss Tangent = ≤ 0.05	600x400x190			

8.3 Description of Simulated Tissue

The sugar based simulate tissue is produced by placing the correct measured amount of De-ionized water into a large container. Each of the dried ingredients are weighed and added to the water carefully to avoid clumping. If the solution has a high sugar concentration the water is pre-heated to aid in dissolving the ingredients. The solution is mixed thoroughly, covered, and allowed to sit overnight prior to use.

The simulated tissue mixture was mixed based on the Simulated Tissue Composition indicated in Table 10. During the daily testing of this product, the applicable mixture was used to measure the Di-electric parameters at each of the tested frequencies to verify that the Di-electric parameters were within the tolerance of the tissue specifications.

Table 10)
Ingredients	450MHz
	Head
Sugar	56.0
Diacetin	0
De ionized-Water	39.1
Salt	3.8
HEC	1.0
Bact.	0.1

Simulated Tissue Composition (percent by mass) Table 10

9.0 Additional Test Equipment

The Table below lists additional test equipment used during the SAR assessment.

Equipment Type	Model Number	Serial Number	Calibration Date	Calibration Due Date
SPEAG PROBE	EX3DV4	3612	10/22/2021	10/22/2024
SPEAG DAE	DAE4	1483	10/10/2022	10/10/2025
POWER AMPLIFIER	50W 1000A	14715	CNR	CNR
VECTOR SIGNAL GENERATOR	E4438C	MY42081753	8/30/2023	8/30/2024
BI-DIRECTIONAL COUPLER	3020A	40295	6/9/2023	6/9/2024
POWER METER	E4418B	MY45100911	8/11/2023	8/11/2024
POWER METER	E4416A	MY50001037	8/9/2023	8/9/2024
POWER SENSOR	E9301B	MY50290001	6/16/2023	6/16/2024
POWER SENSOR	E9301B	MY50280001	5/19/2023	5/19/2024
DATA LOGGER	DSB	16326820	11/26/2023	11/26/2024
DATA LOGGER	DSB	16326831	11/26/2023	11/26/2024
THERMOMETER	HH806AU	080307	12/15/2023	12/15/2024
TEMPERATURE PROBE	80PK-22	06032017	12/15/2023	12/15/2024
NETWORK ANALYZER	E5071B	MY42403218	9/15/2023	9/15/2024
DIELECTRIC ASSESSMENT KIT	DAK-3.5	1156	4/11/2023	4/11/2024*
DATA LOGGER	DSB	16398306	12/31/2023	12/31/2024
THERMOMETER	HH806AU	080307	12/15/2023	12/15/2024
TEMPERATURE PROBE	80PK-22	06032017	12/15/2023	12/15/2024
SPEAG DIPOLE	D450V3	1053	2/17/2022	2/17/2025
POWER METER	E4419B	MY45103725	6/18/2023	6/18/2024
POWER SENSOR	E4412A	MY61060011	4/10/2023	4/10/2024*

Table 11

Note: * Denotes SAR assessment was done before the equipment calibration due date.

10.0 SAR Measurement System Validation and Verification

DASY output files of the probe/dipole calibration certificates and system verification test results are included in appendices B, C & D respectively.

10.1 System Validation

The SAR measurement system was validated according to procedures in KDB 865664. The validation status summary is shown in the Table below.

Dates	Probe Ca Poi		Probe SN	Measured Tissue Parameters		Validation		
	1 01	ш	BIN	σ€r		Sensitivity	Linearity	Isotropy
	CW							
01/08/2024	Body	450	3612	0.83	42.48	Pass	Pass	Pass

10.2 System Verification

System verification checks were conducted each day during the SAR assessment. The results are normalized to 1W. Appendix D includes DASY plots with the largest deviation from the qualified source SAR target for each dipole (Bolded). The Table below summarizes the daily system check results used for the SAR assessment.

Probe Serial #	Tissue Type	Dipole Kit / Serial #	Ref SAR @ 1W (W/kg)	System Check Results Measured (W/kg)	System Check Test Results when normalized to 1W (W/kg)	Tested Date	Deviation (%)
	IEEE/IEC	SPEAG		1.13	4.84	03/19/2024	-1.7
3612	Head	D450V3	$4.60\pm10\%$	1.09	4.80	03/20/2024	-5.2
	Tieau	/ 1053		1.12	4.76	03/21/2024	-2.6

Table 13

10.3 Equivalent Tissue Test Results

Simulated tissue prepared for SAR measurements is measured daily and within 24 hours prior to actual SAR testing to verify that the tissue is within +/- 5% of target parameters at the center of the transmit band. This measurement is done using the applicable equipment indicated in section 9.0. The Table below summarizes the measured tissue parameters used for the SAR assessment.

Table 14

Frequency (MHz)	Tissue Type	Conductivity Target (S/m)	Dielectric Constant Target	Conductivity Meas. (S/m)	Dielectric Constant Meas.	Tested Date
450.000	IEEE/IEC Head	0.87 (0.83-0.91)	43.5 (41.3-45.7)	0.840	42.033 42.290	3/19/2024 3/20/2024
460.000	IEEE/IEC Head	0.87 (0.83-0.91)	43.4 (41.3-45.6)	0.859 0.885	42.083 42.818	3/20/2024 3/21/2024
470.000	IEEE/IEC Head	0.87 (0.83-0.91)	43.4 (41.2-45.6)	0.868	41.880	3/20/2024

11.0 Environmental Test Conditions

The EME Laboratory's ambient environment is well controlled resulting in very stable simulated tissue temperature and therefore stable dielectric properties. Simulated tissue temperature is measured prior to each scan to insure it is within $+/-2^{\circ}$ C of the temperature at which the dielectric properties were determined. The liquid depth within the phantom used for measurements was at least 15cm. Additional precautions are routinely taken to ensure the stability of the simulated tissue such as covering the phantoms when scans are not actively in process in order to minimize evaporation. The lab environment is continuously monitored. The Table below presents the range and average environmental conditions during the SAR tests reported herein:

	Target	Measured
Ambient Temperature	18 − 25 °C	Range: 19.9 – 22.0°C
		Avg. 20.9 °C
Tissue Temperature	18 – 25 °C	Range: 20.5 – 20.8°C
		Avg. 20.6°C

Relative humidity target range is a recommended target

The EME Lab RF environment uses a Spectrum Analyzer to monitor for extraneous large signal RF contaminants that could possibly affect the test results. If such unwanted signals are discovered the SAR scans are repeated.

12.0 DUT Test Setup and Methodology

12.1 Measurements

SAR measurements were performed using the DASY system described in section 8.0 using zoom scans. Oval flat phantoms filled with applicable simulated tissue were used for body and face testing.

The Table below includes the step sizes and resolution of area and zoom scans per KDB 865664 requirements.

Descr	iption	\leq 3 GHz	> 3 GHz					
Maximum distance from close (geometric center of probe ser	•	$5 \pm 1 \text{ mm}$	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$					
Maximum probe angle from p normal at the measurement loo		30° ± 1°	$20^{\circ} \pm 1^{\circ}$					
		$\leq 2 \text{ GHz:} \leq 15 \text{ mm}$ 2 - 3 GHz: $\leq 12 \text{ mm}$	$3 - 4 \text{ GHz:} \le 12 \text{ mm}$ $4 - 6 \text{ GHz:} \le 10 \text{ mm}$					
Maximum area scan spatial re	solution: ΔxArea, ΔyArea	When the x or y dimensi the measurement plane of than the above, the meas	prientation, is smaller					
		must be \leq the correspond the test device with at least	ding x or y dimension of					
Maximum zoom scan spatial 1	resolution: ΔxZoom, ΔyZoom	point on the test device. $\leq 2 \text{ GHz: } \leq 8 \text{ mm}$ $2 - 3 \text{ GHz: } \leq 5 \text{ mm}^*$	$3 - 4 \text{ GHz:} \le 5 \text{ mm}^*$ $4 - 6 \text{ GHz:} \le 4 \text{ mm}^*$					
Maximum zoom scan spatial resolution, normal to phantom surface	uniform grid: ΔzZoom(n)	≤ 5 mm	$3-4 \text{ GHz:} \le 4 \text{ mm}$ $4-5 \text{ GHz:} \le 3 \text{ mm}$ $5-6 \text{ GHz:} \le 2 \text{ mm}$					
IEEE P1528-2011 for details.								
_	* When zoom scan is required and the reported SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is \leq 1.4 W/kg, \leq 8 mm, \leq 7 mm and \leq 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.							

Table 16

12.2 DUT Configuration(s)

The DUT is a portable device operational at the body and face as described in section 6.0 while using the applicable accessories listed in section 7.0. All accessories listed in section 7.0 of this report were considered when implementing the guidelines specified in KDB 643646.

12.3 DUT Positioning Procedures

The positioning of the device for each body location is described below and illustrated in Appendix G.

12.3.1 Body

The DUT was positioned in normal use configuration against the phantom with the offered body worn accessory as well as with and without the offered audio accessories as applicable.

12.3.2 Head

Not applicable.

12.3.3 Face

The DUT was positioned with its' front and back sides separated 2.5cm from the phantom.

12.4 DUT Test Channels

The number of test channels was determined by using the following IEEE 1528 equation. The use of this equation produces the same or more test channels compared to the FCC KDB 447498 number of test channels formula.

 $N_c = 2 * roundup[10 * (f_{high} - f_{low}) / f_c] + 1$

Where

 N_c = Number of channels F_{high} = Upper channel F_{low} = Lower channel F_c = Center channel

12.5 SAR Result Scaling Methodology

The calculated 1-gram and 10-gram averaged SAR results indicated as "Max Calc. 1g-SAR" in the data Tables is determined by scaling the measured SAR to account for power leveling variations and drift. Appendix F includes a shortened scan to justify SAR scaling for drift. For this device the "Max Calc. 1g-SAR" is scaled by using the following formula:

 $Max_Calc = SAR_meas \cdot 10^{\frac{-Drift}{10}} \cdot \frac{P_max}{P_int} \cdot DC$ $P_max = Maximum Power (W)$ $P_int = Initial Power (W)$ Drift = DASY drift results (dB) $SAR_meas = Measured 1-g \text{ or } 10-g \text{ Avg. SAR (W/kg)}$ DC = Transmission mode duty cycle in % where applicable 50% duty cycle is applied for PTT operation

Note: for conservative results, the following are applied: If P_int > P_max, then P_max/P_int = 1. Drift = 1 for positive drift

Additional SAR scaling was applied using the methodologies outlined in FCC KDB 865664 using tissue sensitivity values. SAR was scaled for conditions where the tissue permittivity was measured above the nominal target and for tissue conductivity that was measured below the nominal target. Negative or reduced SAR scaling is not permitted.

12.6 DUT Test Plan

The guidelines and requirements outlined in section 4.0 were used to assess compliance of this device. All modes of operation identified in section 6.0 were considered during the development of the test plan. All tests were performed in CW mode and 50% duty cycle was applied to PTT configurations in the final results.

13.0 DUT Test Data

13.1 LMR assessments for FCC

13.1.1 Assessments for UHF (450-470MHz)

The DUT was assessed at the highest applicable configuration at the body and face found during the previous compliance assessment on file with FCC. The table below indicates the SAR results that have been performed and the SAR plots of the highest results (bolded) are presented in the Appendix E.

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	SAR (W/kg)	Max Calc. 1g- SAR (W/kg)	Run#			
Highest Body Configuration												
Fixed	PMNN4497A	HCLN4013C	HKLN4606A	450.0000	0.87	-0.42 -0.27	1.96 1.69	1.62 1.13	Previous Highest SAR at Body FZ-AB-210831- 01# MA-AB-240319- 04			
			Highest Face C	Configuration	n							
Fixed	PMNN4497A	Radio @ front 2.5cm		450.0000	1.09	-0.46			Previous Highest SAR at Face ZZ-FACE-200427- 14# MA-FACE-			
					1.03	-0.13	1.05	0.68	240320-05			

Table 18

13.2 Assessment at the Body and Face for ISED, Canada

Based on the assessment results for body and face per KDB643646, additional tests were not required for ISED, Canada frequency range (450-470MHz) as the testing performed complies with Industry Canada frequency range.

As per ISED Notice 2016-DRS001, additional tests were required for the low, mid and high frequency channels for the configuration with the highest SAR value. The SAR results are in Table 19. SAR plots of the highest results per Table (bolded) are presented in the Appendix E.

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	-	SAR Drift (dB)	Meas. 1g- SAR (W/kg)	Max Calc. 1g- SAR (W/kg)	Run#	
	Highest Body Configuration									
			HKLN4606A	450.0000	0.87	-0.42	1.96	1.62	Previous Highest SAR at Body FZ-AB-210831- 01#	
Fixed	PMNN4497A	HCLN4013C		HKLN4606A	-	1.03	-0.27	1.69	1.13	MA-AB-240319- 04
				460.0000	1.01	-0.24	1.04	0.71	MA-AB-240320- 03	
				470.0000	1.05	-0.25	0.69	0.45	MA-AB-240320- 04	
			Highest Face C	Configuration	n					
					450.0000	1.09	-0.46	2.14	1.42	Previous Highest SAR at Face ZZ-FACE-200427- 14#
Fixed	PMNN4497A	A Radio @ front 2.5cm	None		1.03	-0.13	1.05	0.68	MA-FACE- 240320-05	
				460.0000	1.01	-0.27	1.83	1.25	MA-FACE- 240321-03	
					470.0000	1.05	-0.27	1.20	0.79	MA-FACE- 240320-07

Table 19

14.0 Shortened Scan Assessment

A "shortened" scan using the highest SAR configuration overall from above was performed to validate the SAR drift of the full DASY8TM coarse and zoom scans. Note that the shortened scan represents the zoom scan performance result; this is obtained by first running a coarse scan to find the peak area and then, using a newly charged battery, a zoom scan only was performed. The results of the shortened cube scan presented in Appendix D demonstrate that the scaling methodology used to determine the calculated SAR results presented herein are valid. The SAR result from the Table below is provided in Appendix F.

Table	20
-------	----

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	-	SAR Drift (dB)		Max Calc. 1g-SAR (W/kg)	Run#
Fixed	PMNN4497A	Radio @ front 2.5cm	None	460.0000	1.01	-0.11	1.98	1.31	MA-FACE- 240321-05

15.0 Results Summary

Based on the test guidelines from section 4.0 and satisfying frequencies within FCC bands and ISED Canada Frequency bands, the highest Operational Maximum Calculated 1-gram average SAR values found for this filing:

Designator	Frequency band (MHz)	Max Calc at Body (W/kg) 1g-SAR	Max Calc at Face (W/kg) 1g-SAR									
	FCC											
LMR	450-470	*1.62	*1.42									
	ISED											
LMR	450-470	*1.62	*1.42									

Table	21
-------	----

All results are scaled to the maximum output power.

Notes: * denotes SAR results from previous filing remain the same.

The test results clearly demonstrate compliance with FCC Occupational/Controlled Environment RF Exposure limits of 8 W/kg averaged over 1 gram per the requirements of FCC 47 CFR § 2.1093 and RSS-102 (Issue 5).

16.0 Variability Assessment

Per the guidelines in KDB 865664 SAR variability assessment is not required because SAR results are below 4.0W/kg (Occupational).

17.0 System Uncertainty

A system uncertainty analysis is not required for this report per KDB 865664 because the highest report SAR value for Occupational exposure is less than 7.5W/kg.

Per the guidelines of ISO/IEC 17025 a reported system uncertainty is required and therefore measurement uncertainty budget is included in Appendix A.

Appendix A

Measurement Uncertainty Budget

Uncertainty Budget for System Validation (dipole & flat phantom) for 300 MHz to 800MHz

							h =	<i>i</i> =	
a	b	с	d	e = f(d,k)	f	a	cxf/ e	cxg /e	k
u	U	-		$J(u,\kappa)$	J	g	-		Γ.
	IEEE	Tol. (±	Prob.		Ci	<i>ci</i> (10	1 g	10 g	
	1528	(± %)	Dist.		(1 g)	(10 g)	\boldsymbol{u}_i	\boldsymbol{u}_i	
Uncertainty Component	section	, ()	201000	Div.	(- 8/	8/	(±%)	(±%)	Vi
Measurement System									
Probe Calibration	E.2.1	6.7	N	1.00	1	1	6.7	6.7	×
Axial Isotropy	E.2.2	4.7	R	1.73	1	1	2.7	2.7	×
Spherical Isotropy	E.2.2	9.6	R	1.73	0	0	0.0	0.0	×
Boundary Effect	E.2.3	1.0	R	1.73	1	1	0.6	0.6	~
Linearity	E.2.4	4.7	R	1.73	1	1	2.7	2.7	~
System Detection Limits	E.2.5	1.0	R	1.73	1	1	0.6	0.6	~
Readout Electronics	E.2.6	0.3	N	1.00	1	1	0.3	0.3	~
Response Time	E.2.7	1.1	R	1.73	1	1	0.6	0.6	~
Integration Time	E.2.8	0.0	R	1.73	1	1	0.0	0.0	~
RF Ambient Conditions - Noise	E.6.1	3.0	R	1.73	1	1	1.7	1.7	×
RF Ambient Conditions - Reflections	E.6.1	0.0	R	1.73	1	1	0.0	0.0	×
Probe Positioner Mechanical Tolerance	E.6.2	0.4	R	1.73	1	1	0.2	0.2	×
Probe Positioning w.r.t. Phantom	E.6.3	1.4	R	1.73	1	1	0.8	0.8	×
Max. SAR Evaluation (ext., int., avg.)	E.5	3.4	R	1.73	1	1	2.0	2.0	×
Dipole									
Dipole Axis to Liquid Distance	8,E.4.2	2.0	R	1.73	1	1	1.2	1.2	~
Input Power and SAR Drift Measurement	8, 6.6.2	5.0	R	1.73	1	1	2.9	2.9	×
Phantom and Tissue Parameters									
Phantom Uncertainty	E.3.1	4.0	R	1.73	1	1	2.3	2.3	×
Liquid Conductivity (target)	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	×
Liquid Conductivity (measurement)	E.3.3	3.3	R	1.73	0.64	0.43	1.2	0.8	×
Liquid Permittivity (target)	E.3.2	5.0	R	1.73	0.6	0.49	1.7	1.4	×
Liquid Permittivity (measurement)	E.3.3	1.9	R	1.73	0.6	0.49	0.6	0.5	×
Combined Standard Uncertainty			RSS				10	9	99999
Expanded Uncertainty (95% CONFIDENCE LEVEL)			k=2				19	18	

Notes for uncertainty budget Tables:

a) Column headings a-k are given for reference.

b) Tol. - tolerance in influence quantity.

c) Prob. Dist. – Probability distribution

d) N, R - normal, rectangular probability distributions

e) Div. - divisor used to translate tolerance into normally distributed standard uncertainty

f) *ci* - sensitivity coefficient that should be applied to convert the variability of the uncertainty component into a variability of SAR.

g) *ui* – SAR uncertainty

h) vi - degrees of freedom for standard uncertainty and effective degrees of freedom for the expanded uncertainty

Uncertainty Budget for Device Under Test, for 300 MHz to 800 MHz

				<i>e</i> =			h = c x f /	i = c x g /	
a	b	с	d	f(d,k)	f	g	<i>e</i>	e c x g /	k
	IEEE	Tol.	Prob		Ci	Ci	1 g	10 g	
	1528	(± %)	Dist		(1 g)	(10 g)	u_i	u_i	
Uncertainty Component	section	(2 /0)	Dist	Div.	(15)	(10 g)	$(\pm \%)$	$(\pm \%)$	Vi
Measurement System							(_, , ,)	(_, , , ,	
Probe Calibration	E.2.1	6.7	N	1.00	1	1	6.7	6.7	∞
Axial Isotropy	E.2.2	4.7	R	1.73	0.707	0.707	1.9	1.9	∞
Hemispherical Isotropy	E.2.2	9.6	R	1.73	0.707	0.707	3.9	3.9	∞
Boundary Effect	E.2.3	1.0	R	1.73	1	1	0.6	0.6	∞
Linearity	E.2.4	4.7	R	1.73	1	1	2.7	2.7	∞
System Detection Limits	E.2.5	1.0	R	1.73	1	1	0.6	0.6	∞
Readout Electronics	E.2.6	0.3	Ν	1.00	1	1	0.3	0.3	∞
Response Time	E.2.7	1.1	R	1.73	1	1	0.6	0.6	∞
Integration Time	E.2.8	1.1	R	1.73	1	1	0.6	0.6	∞
RF Ambient Conditions - Noise	E.6.1	3.0	R	1.73	1	1	1.7	1.7	∞
RF Ambient Conditions - Reflections	E.6.1	0.0	R	1.73	1	1	0.0	0.0	∞
Probe Positioner Mech. Tolerance	E.6.2	0.4	R	1.73	1	1	0.2	0.2	×
Probe Positioning w.r.t Phantom	E.6.3	1.4	R	1.73	1	1	0.8	0.8	×
Max. SAR Evaluation (ext., int., avg.)	E.5	3.4	R	1.73	1	1	2.0	2.0	∞
Test sample Related									
Test Sample Positioning	E.4.2	3.2	Ν	1.00	1	1	3.2	3.2	29
Device Holder Uncertainty	E.4.1	4.0	Ν	1.00	1	1	4.0	4.0	8
SAR drift	6.6.2	5.0	R	1.73	1	1	2.9	2.9	∞
Phantom and Tissue Parameters									
Phantom Uncertainty	E.3.1	4.0	R	1.73	1	1	2.3	2.3	∞
Liquid Conductivity (target)	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	8
Liquid Conductivity (measurement)	E.3.3	3.3	N	1.00	0.64	0.43	2.1	1.4	8
Liquid Permittivity (target)	E.3.2	5.0	R	1.73	0.6	0.49	1.7	1.4	8
Liquid Permittivity (measurement)	E.3.3	1.9	N	1.00	0.6	0.49	1.1	0.9	8
Combined Standard Uncertainty			RSS				12	11	482
Expanded Uncertainty (95% CONFIDENCE LEVEL)			<i>k</i> =2				23	23	

Notes for uncertainty budget Tables:

a) Column headings a-k are given for reference.

b) Tol. - tolerance in influence quantity.

c) Prob. Dist. - Probability distribution

d) N, R - normal, rectangular probability distributions

e) Div. - divisor used to translate tolerance into normally distributed standard uncertainty

f) *ci* - sensitivity coefficient that should be applied to convert the variability of the uncertainty component into a variability of SAR.

g) ui – SAR uncertainty

h) vi - degrees of freedom for standard uncertainty and effective degrees of freedom for the expanded uncertainty