

DECLARATION OF COMPLIANCE SAR ASSESSMENT Part 1 of 2

Motorola Solutions Inc. EME Test Laboratory

Motorola Solutions Malaysia Sdn Bhd (Innoplex) Plot 2A, Medan Bayan Lepas, Mukim 12 SWD 11900 Bayan Lepas Penang, Malaysia. Date of Report: 03/25/2020

Report Revision: E

Responsible Engineer:Lee Kin Kting (EME Engineer)Report Author:Lee Kin Kting (EME Engineer)Date/s Tested:01/24/2020 - 01/27/2020Manufacturer:Motorola Solutions Inc.

Manufacturer: Motorola Solutions Inc.

Applicant Name: Motorola Solutions Inc.

DUT Description: Handheld Portable – CLP1080e 1W UHF 8CH MODEL (BRUS)

Test TX mode(s): CW (PTT)

Max. Power output: 1.35W

Nominal Power: 1.00W

Tx Frequency Bands: 450.000 – 470.000MHz

Signaling type: FM

Model(s) Tested: CLU1080BHLCA(PMUE5521A)

Model(s) Certified: CLU1080BHLCA(PMUE5521A), CLU1080BHLCB(PMUE5521A),

CLU1010BHLCA(PMUE5517A), CLU1010BHLCB(PMUE5517A),

CLU1083BHLCA(PMUE5525A) /CLP1083e, CLU1013BHLCB(PMUE5527A) / CLP1013e

Serial Number(s): 0095WA0300

Classification: Occupational/Controlled Environment

FCC ID: AZ489FT4960 IC: 109U-89FT4960

ISED Test Site registration: 24843
FCC Test Firm Registration

Number:

823256

The test results clearly demonstrate compliance with FCC Occupational/Controlled Environment limits of 8W/kg averaged over 1 gram per the requirements of FCC 47 CFR § 2.1093 and RSS-102 (Issue 5).

Based on the information and the testing results provided herein, the undersigned certifies that when used as stated in the operating instructions supplied, said product complies with the national and international reference standards and guidelines listed in section 4.0 of this report (no deviation from standard methods). This report shall not be reproduced without written approval from an officially designated representative of the Motorola Solutions Inc EME Laboratory.

I attest to the accuracy of the data and assume full responsibility for the completeness of these measurements. This reporting format is consistent with the suggested guidelines of the TIA TSB-150 December 2004. The results and statements contained in this report pertain only to the device(s) evaluated.

Tiong Nguk Ing Deputy Technical Manager (Approved Signatory) Approval Date: 03/25/2020

Part 1 of 2

1.0	Introduction	4
2.0	FCC SAR Summary	4
3.0	Abbreviations / Definitions	4
4.0	Referenced Standards and Guidelines	5
5.0	SAR Limits	6
6.0	Description of Device Under Test (DUT)	6
7.0	Optional Accessories and Test Criteria	7
	7.1 Antenna	7
	7.2 Batteries	7
	7.3 Body worn Accessories	7
	7.4 Audio Accessories	8
8.0	Description of Test System	9
	8.1 Descriptions of Robotics/Probes/Readout Electronics	9
	8.2 Description of Phantom(s)	. 10
	8.3 Description of Simulated Tissue	. 10
9.0	Additional Test Equipment	.11
10.0	SAR Measurement System Validation and Verification	. 12
	10.1 System Validation	. 12
	10.2 System Verification	. 12
	10.3 Equivalent Tissue Test Results	. 13
11.0	Environmental Test Conditions	. 13
12.0	DUT Test Setup and Methodology	. 14
	12.3 Measurements	. 14
	12.4 DUT Configuration(s)	. 14
	12.5 DUT Positioning Procedures	. 15
	12.5.1 Body	. 15
	12.5.2 Head	
	12.5.3 Face	
	12.6 DUT Test Channels	
	12.7 SAR Result Scaling Methodology	
	12.8 DUT Test Plan	
13.0	DUT Test Data	
	13.1 Assessment at the Body for 450.000 – 470.000MHz band	
	13.2 Assessment for ISED, Canada	
110	13.3 Shortened Scan Assessment	
	Results Summary	
	Variability Assessment	
16.0	System Uncertainty	. 19

API	PENDICES	
A	Measurement Uncertainty Budget	19
В	Probe Calibration Certificates	22
C	Dipole Calibration Certificates	36
Par	rt 2 of 2	
API	PENDICES	
D	System Verification Check Scans	2
E	DUT Scans	5
F	Shorten Scan of Highest SAR Configuration	8
G	DUT Test Position Photos	10
Н	DUT, Body worn and audio accessories Photos	11

Report Revision History

Date	Revision	Comments			
01/31/2020	A	Initial release			
03/09/2020	В	Updates sale model number			
03/19/2020	С	Include IC model number			
3/20/2020	D	Corrected the antenna model and description			
3/25/2020	Е	Corrected the DUT configuration explanation in section 12.4			

1.0 Introduction

This report details the utilization, test setup, test equipment, and test results of the Specific Absorption Rate (SAR) measurements performed at the Motorola Solutions Inc. EME Test Laboratory for handheld portable model number CLU1080BHLCA (PMUE5521A). This device is classified as Occupational/Controlled Environment.

2.0 FCC SAR Summary

Table 1

Equipment Class	Frequency band (MHz)	Max Calc at Body (W/kg)		
TNT	450.000 - 470.000	2.11		

3.0 Abbreviations / Definitions

CNR: Calibration Not Required

CW: Continuous Wave DUT: Device Under Test

TNT: Licensed Non-Broadcast Transmitter Worn on Body

EME: Electromagnetic Energy FM: Frequency Modulation

NA: Not Applicable PTT: Push to Talk

SAR: Specific Absorption Rate

Body worn accessories: These accessories allow the DUT to be worn on the body of

the user.

Maximum Power: Defined as the upper limit of the production line final test station.

4.0 Referenced Standards and Guidelines

This product is designed to comply with the following applicable national and international standards and guidelines.

- IEC62209-1 (2016) Procedure to determine the specific absorption rate (SAR) for handheld devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)
- Federal Communications Commission, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields", OET Bulletin 65, FCC, Washington, D.C.: 1997.
- IEEE 1528 (2013), Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques
- American National Standards Institute (ANSI) / Institute of Electrical and Electronics Engineers (IEEE) C95. 1-1992
- Institute of Electrical and Electronics Engineers (IEEE) C95.1-2005
- International Commission on Non-Ionizing Radiation Protection (ICNIRP) 1998
- Ministry of Health (Canada) Safety Code 6 (2015), Limits of Human Exposure to Radio frequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz
- RSS-102 (Issue 5) Radio Frequency (RF) Exposure Compliance of Radio communication Apparatus (All Frequency Bands)
- Australian Communications Authority Radio communications (Electromagnetic Radiation -Human Exposure) Standard (2014)
- ANATEL, Brazil Regulatory Authority, Resolution No. 303 of July 2, 2002 "Regulation of the limitation of exposure to electrical, magnetic, and electromagnetic fields in the radio frequency range between 9 kHz and 300 GHz." and "Attachment to resolution # 303 from July 2, 2002"
- IEC62209-2 Edition 1.0 2010-03, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Human models, instrumentation, and procedures Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz).
- FCC KDB 643646 D01 SAR Test for PTT Radios v01r03
- FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04
- FCC KDB 865664 D02 RF Exposure Reporting v01r02
- FCC KDB 447498 D01 General RF Exposure Guidance v06

5.0 SAR Limits

Table 2

	SAR (W/kg)			
EXPOSURE LIMITS	(General Population / Uncontrolled Exposure Environment)	(Occupational / Controlled Exposure Environment)		
Spatial Average - ANSI -				
(averaged over the whole body)	0.08	0.4		
Spatial Peak - ANSI -				
(averaged over any 1-g of tissue)	1.6	8.0		
Spatial Peak – ICNIRP/ANSI -				
(hands/wrists/feet/ankles averaged over 10-g)	4.0	20.0		
Spatial Peak - ICNIRP -				
(Head and Trunk 10-g)	2.0	10.0		

6.0 Description of Device Under Test (DUT)

This device operates in a half duplex system. A half duplex system only allows the user to transmit or receive. This device cannot transmit and receive simultaneously. The user must stop transmitting in order to receive a signal or listen for a response, regardless of PTT button or use of voice activated audio accessories. This type of operation, along with the RF safety booklet, which instructs the user to transmit no more than 50% of the time, justifies the use of 50% duty factor for this device.

Table 3 below summarizes the bands, maximum duty cycles and maximum output powers. Maximum output powers are defined as upper limit of the production line final test station.

Table 3

Band (MHz)	Duty Cycle (%)	Max Power (W)				
450.000 – 470.000	*50	1.35				

Note - * includes 50% PTT operation

The intended operating positions are "at the body" with the DUT, no external microphone available for this device, thus PTT operation at the face is not applicable for this model.

7.0 Optional Accessories and Test Criteria

This device is offered with optional accessories. All accessories were individually evaluated during the test plan creation to determine if testing was required per the guidelines outlined in 4.0 to assess compliance of the device.

7.1 Antenna

There is one internal antenna offered for this product. The table below lists its descriptions.

Table 4

Antenna No.	Antenna Models	Description	Selected for test	Tested
1	Internal Antenna	450-470MHz ,1/4 wave, -2dBi	Yes	Yes

7.2 Batteries

There are two batteries offered for this product. The table below lists its descriptions.

Table 5

Battery No.	Battery Models	Description	Comments
1	HKNN4013A	Battery Pack, 1800 mAh Li-Ion	Default battery for body
2	HKNN4013ASP01	Battery Cellpack Assembly, BT90 1800 mAh Li- Ion	

7.3 Body worn Accessories

All body worn accessories were considered. The Table below lists the body worn accessories, and body worn accessory descriptions.

Table 6

Body worn No.	Body worn Models	Description	Selected for test	Tested	Comments
1	PMLN8064A	CLP Magnetic Case Kit	Yes	Yes	
2	PMLN8065A	CLP Belt Clip Holster	Yes	Yes	Tested with PMLN8066A
3	PMLN8066A	CLP Nova High Capacity Li-Ion Battery Door Kit	Yes	Yes	Tested with PMLN8065A

Report ID: P19112-EME-00050

7.4 Audio Accessories

All offered audio accessories were evaluated during the test plan generation. The table below lists the audio accessories, and their descriptions.

Table 7

Audio No.	Audio Accessories	Description	Selected for test	Tested	Comments
1	PMLN8077A	Over-The Ear Earpiece, Single Pin	Yes	Yes	
2	PMLN8078A	Over-The Ear Earpiece, Single Pin, Inbox	No	No	By similarity to PMLN8077A. With plastic bag packaging.
3	PMLN8125A	Audio Accessory-Earpiece, Over-The-Ear Earpiece, Single Pin, Short Cord	Yes	No	Intended for test. Per KDB provisions test not required.

8.0 Description of Test System

8.1 Descriptions of Robotics/Probes/Readout Electronics

Table 8

Dosimetric System type	System version	DAE type	Probe Type
Schmid & Partner Engineering AG SPEAG DASY 5	52.10.2.1495	DAE4	EX3DV4 (E-Field)

The DASY5TM system is operated per the instructions in the DASY5TM Users Manual. The complete manual is available directly from SPEAGTM. All measurement equipment used to assess SAR compliance was calibrated according to ISO/IEC 17025 A2LA guidelines. Section 9.0 presents additional test equipment information. Appendices B and C present the applicable calibration certificates. The E-field probe first scans a coarse grid over a large area inside the phantom in order to locate the interpolated maximum SAR distribution. After the coarse scan measurement, the probe is automatically moved to a position at the interpolated maximum. The subsequent scan can directly use this position as reference for the cube evaluations.

8.2 Description of Phantom(s)

Table 9

		Material	Phantom Dimensions LxWxD	Material Thickness	Support Structure	Loss Tangent							
Phantom Type	Phantom(s) Used	Parameters	(mm)	(mm)	Material	(wood)							
Triple Flat	NA	200MHz -6GHz; Er = 3-5, Loss Tangent = ≤0.05	280x175x175										
SAM	NA	300MHz -6GHz; Er = < 5, Loss Tangent = ≤0.05	Human Model	2mm +/- 0.2mm	Wood	< 0.05							
Oval Flat	V	300MHz -6GHz; Er = 4+/- 1, Loss Tangent = ≤0.05	600x400x190										

8.3 Description of Simulated Tissue

The sugar based simulate tissue is produced by placing the correct measured amount of De-ionized water into a large container. Each of the dried ingredients are weighed and added to the water carefully to avoid clumping. If the solution has a high sugar concentration the water is pre-heated to aid in dissolving the ingredients.

The simulated tissue mixture was mixed based on the Simulated Tissue Composition indicated in Table 10. During the daily testing of this product, the applicable mixture was used to measure the Di-electric parameters at each of the tested frequencies to verify that the Di-electric parameters were within the tolerance of the tissue specifications.

Simulated Tissue Composition (percent by mass)

Table 10

Ingredients	450MHz
Sugar	56.0
Diacetin	0
De ionized –Water	39.10
Salt	3.80
HEC	1.0
Bact.	0.1

9.0 Additional Test Equipment

The Table below lists additional test equipment used during the SAR assessment.

Table 11

			Calibration	
Equipment Type	Model Number	Serial Number	Date	Calibration Due Date
SPEAG PROBE	EX3DV4	7511	10/24/2019	10/24/2020
SPEAG DAE	DAE4	729	10/16/2019	10/16/2020
POWER AMPLIFIER	50W 1000A	14715	CNR	CNR
POWER METER	E4419B	MY45103725	06/10/2019	06/10/2021
POWER SENSOR	E9301B	MY55210003	04/26/2019	04/26/2020
BI-DIRECTIONAL COUPLER	3020A	40295	09/12/2019	09/12/2020
POWER METER	E4418B	MY45100911	08/30/2019	08/30/2021
VECTOR SIGNAL GENERATOR	E4438C	MY42081753	09/05/2019	09/05/2021
POWER SENSOR	E4412A	US38488023	03/24/2019	03/24/2020
TEMPERATURE PROBE	80PK-22	05032017	12/24/2019	12/24/2020
THERMOMETER	HH202A	35881	12/24/2019	12/24/2020
TEMPERATURE PROBE	PR-10-3-100-1/4-6-E	WNWR020579	07/06/2019	07/06/2020
DATA LOGGER	DSB	16326820	11/25/2019	11/25/2020
DIGITAL THERMOMETER	1523	3492108	05/03/2019	05/03/2020
DIELECTRIC ASSESSMENT KIT	DAK-3.5	1120	07/11/2019	07/11/2020
NETWORK ANALYZER	E5071B	MY42403218	09/13/2019	09/13/2020
SPEAG DIPOLE	D450V3	1053	10/19/2018	10/19/2020
POWER METER	E4418B	MY45100739	12/09/2019	12/09/2020
POWER SENSOR	8481B	MY41091243	12/17/2019	12/17/2020

Report ID: P19112-EME-00050

10.0 SAR Measurement System Validation and Verification

DASY output files of the probe/dipole calibration certificates and system verification test results are included in appendices B, C & D respectively.

10.1 System Validation

The SAR measurement system was validated according to procedures in KDB 865664. The validation status summary Table is below.

Table 12

Dates	Probe Calibration Point		Probe SN		red Tissue ameters		Validation	
	PO	IIIt	SIN	σ $\epsilon_{ m r}$		Sensitivity	Linearity	Isotropy
			C	W				
11/26/2019	Head	450	7511	0.89	42.3	Pass Pass Pass		

10.2 System Verification

System verification checks were conducted each day during the SAR assessment. The results are normalized to 1W. Appendix D includes DASY plots for each day during the SAR assessment. The Table below summarizes the daily system check results used for the SAR assessment.

Table 13

	Probe Serial #	Tissue Type	Dipole Kit / Serial #	Ref SAR @ 1W (W/kg)	System Check Results Measured (W/kg)	System Check Test Results when normalized to 1W (W/kg)	Tested Date
- 1			SPEAG		1.14	4.56	01/24/2020
	7511	IEEE/IEC	212.10	4.57 +/- 10%		1100	01/2 1/2020

Note: # Tissue sheet date cover next testing day (within 24 hrs)

10.3 Equivalent Tissue Test Results

Simulated tissue prepared for SAR measurements is measured daily and within 24 hours prior to actual SAR testing to verify that the tissue is within +/- 5% of target parameters at the center of the transmit band. This measurement is done using the applicable equipment indicated in section 9.0. The Table below summarizes the measured tissue parameters used for the SAR assessment.

Table 14

Frequency (MHz)	Tissue Type	Conductivity Target (S/m)	Dielectric Constant Target	Conductivity Meas. (S/m)	Dielectric Constant Meas.	Tested Date
450		0.87	43.5	0.86	42.0	01/24/2020
		(0.83-0.91)	(41.3-45.7)	0.88	42.3	01/26/2020
460	IEEE/	0.87	43.4	0.86	41.8	01/24/2020
400	IEC	(0.83-0.91)	(41.3-45.6)	0.89	42.1	01/26/2020
470		0.87 (0.83-0.91)	43.4 (41.2-45.6)	0.90	41.9	01/26/2020#

Note: # Tissue sheet date cover next testing day (within 24 hrs)

11.0 Environmental Test Conditions

The EME Laboratory's ambient environment is well controlled resulting in very stable simulated tissue temperature and therefore stable dielectric properties. Simulated tissue temperature is measured prior to each scan to insure it is within +/ - 2°C of the temperature at which the dielectric properties were determined. The liquid depth within the phantom used for measurements was at least 15cm. Additional precautions are routinely taken to ensure the stability of the simulated tissue such as covering the phantoms when scans are not actively in process in order to minimize evaporation. The lab environment is continuously monitored. The Table below presents the range and average environmental conditions during the SAR tests reported herein:

Table 15

	Target	Measured
Ambient Temperature	18 − 25 °C	Range: 20.1 - 23.2°C Avg. 21.6 °C
Tissue Temperature	18 – 25 °C	Range: 20.7 - 21.2°C Avg. 20.9°C

Relative humidity target range is a recommended target

The EME Lab RF environment uses a Spectrum Analyzer to monitor for extraneous large signal RF contaminants that could possibly affect the test results. If such unwanted signals are discovered the SAR scans are repeated.

12.0 DUT Test Setup and Methodology

12.3 Measurements

SAR measurements were performed using the DASY system described in section 8.0 using zoom scans. Oval flat phantoms filled with applicable simulated tissue were used for body testing.

The Table below includes the step sizes and resolution of area and zoom scans per KDB 865664 requirements.

Table 16

Descri	ption	≤3 GHz	> 3 GHz		
Maximum distance from closes (geometric center of probe sens	-	5 ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$		
Maximum probe angle from pronormal at the measurement local	•	30° ± 1°	20° ± 1°		
		≤ 2 GHz: ≤ 15 mm	$3 - 4 \text{ GHz:} \le 12 \text{ mm}$		
		$2 - 3 \text{ GHz: } \le 12 \text{ mm}$	$4-6$ GHz: ≤ 10 mm		
		When the x or y dimension of the test device, in			
Maximum area scan spatial re	esolution: Av Area Av Area	the measurement plane orientation, is smaller			
Maximum area sean spatial to	esolution. Axarca, Ayarca	than the above, the measurement resolution must			
		be \leq the corresponding x or y dimension of the			
		test device with at least o	ne measurement point		
		on the test device.			
Maximum zoom scan spatial re	esolution: ΔxZoom, ΔyZoom	\leq 2 GHz: \leq 8 mm	$3 - 4 \text{ GHz: } \leq 5 \text{ mm*}$		
		$2-3 \text{ GHz: } \leq 5 \text{ mm*}$	$4-6 \text{ GHz: } \leq 4 \text{ mm*}$		
Maximum zoom scan spatial	uniform grid: ΔzZoom(n)		$3-4$ GHz: ≤ 4 mm		
resolution, normal to		≤ 5 mm	$4-5 \text{ GHz:} \leq 3 \text{ mm}$		
phantom surface			$5 - 6$ GHz: ≤ 2 mm		

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

12.4 DUT Configuration(s)

The DUT is a portable device operational at the body only as described in section 6.0 while using the applicable accessories listed in section 7.0. All accessories listed in section 7.0 of this report were considered when implementing the guidelines specified in KDB 643646.

^{*} When zoom scan is required and the reported SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is \leq 1.4 W/kg, \leq 8 mm, \leq 7 mm and \leq 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

Report ID: P19112-EME-00050

12.5 **DUT Positioning Procedures**

The positioning of the device for each body location is described below and illustrated in Appendix G.

12.5.1 Body

The DUT was positioned in normal use configuration against the phantom with the offered body worn accessory.

12.5.2 Head

Not applicable.

12.5.3 Face

Not applicable.

12.6 DUT Test Channels

The number of test channels was determined by using the following IEEE 1528 equation. The use of this equation produces the same or more test channels compared to the FCC KDB 447498 number of test channels formula.

$$N_c = 2 * roundup[10 * (f_{high} - f_{low}) / f_c] + 1$$

Where

 N_c = Number of channels

 $F_{high} = Upper channel$

 $F_{low} = Lower channel$

 F_c = Center channel

12.7 SAR Result Scaling Methodology

The calculated 1-gram averaged SAR results indicated as "Max Calc. 1g-SAR" in the data Tables is determined by scaling the measured SAR to account for power leveling variations and drift. Appendix F includes a shortened scan to justify SAR scaling for drift. For this device the "Max Calc. 1g-SAR" is scaled using the following formula:

$$Max_Calc = SAR_meas \cdot 10^{\frac{-Drift}{10}} \cdot \frac{P_max}{P_int} \cdot DC$$

 $P_{max} = Maximum Power (W)$

P int = Initial Power (W)

Drift = DASY drift results (dB)

SAR_meas = Measured 1-g or 10-g Avg. SAR (W/kg)

DC = Transmission mode duty cycle in % where applicable

50% duty cycle is applied for PTT operation

Note: for conservative results, the following are applied:

If $P_{int} > P_{max}$, then $P_{max}/P_{int} = 1$.

Drift = 1 for positive drift

Additional SAR scaling was applied using the methodologies outlined in FCC KDB 865664 using tissue sensitivity values. SAR was scaled for conditions where the tissue permittivity was measured above the nominal target and for tissue conductivity that was measured below the nominal target. Negative or reduced SAR scaling is not permitted.

12.8 DUT Test Plan

The guidelines and requirements outlined in section 4.0 were used to assess compliance of this device. All modes of operation identified in section 6.0 were considered during the development of the test plan. All tests were performed in CW modes and 50% duty cycle was applied to PTT configurations in the final results.

13.0 DUT Test Data

13.1 Assessment at the Body for 450.000 – 470.000 MHz band

Conducted power measurements for channel within FCC allocated frequency range 450.000 - 470.000 MHz was measured and listed in Table 17.

Table 17

Tost From (MIIa)	Power (W)
Test Freq. (MHz)	HKNN4013A
450.000	1.29
460.000	1.35
470.000	1.33

Assessments at the Body with Body worn PMLN8064A

Assessment of the internal antenna with offered batteries, body worn and audio accessories were performed. Testing of additional channels was not required per KDB447498. SAR plots of the highest results per Table 18 (bolded) are presented in Appendix E.

Table 18

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)			SAR	Max Calc. 1g- SAR (W/kg)	Run#
			-	450.000					
Internal	HKNN4013A	PMLN8064A	PMLN8077A	460.000	1.35	-0.74	3.32	1.97	AN-AB- 200124-12
				470.000					
			Assessment Add	itional Batte	ery				
				450.000					
Internal	HKNN4013A SP01	PMLN8064A	PMLN8077A	460.000	1.35	-0.37	3.26	1.77	AN-AB- 200124-13
				470.000					

Report ID: P19112-EME-00050

Assessments at the Body with Body worn PMLN8065A

Assessment of the internal antenna with offered batteries, body worn and audio accessories were performed. Testing of additional channels was not required per KDB447498. SAR plots of the highest results per Table 19 (bolded) are presented in Appendix E.

Table 19

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)			0	Max Calc. 1g- SAR (W/kg)	Run#
				450.000					
Internal	HKNN4013A	PMLN8065A	PMLN8077A	460.000	1.35	-0.55	1.72	0.98	AN-AB- 200126-02
				470.000					
			Assessment Add	itional Batte	ery				
				450.000					
Internal	HKNN4013A SP01	A PMLN8065A	PMLN8077A	460.000	1.35	-0.22	1.68	0.88	AN-AB- 200126-03
				470.000					

13.2 Assessment for ISED, Canada

Based on the assessment results for body per KDB643646, additional tests were not required for ISED Canada frequency range (450-470 MHz) as testing performed is in compliance with ISED Canada frequency range.

As per ISED Notice 2016-DRS001, additional tests were required for the low, mid and high frequency channels for the configuration with the highest SAR value. The SAR results are in Table 20 below. SAR plot of the highest results per Table (bolded) are presented in Appendix E.

Table 20

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Pwr		SAR	Max Calc. 1g- SAR (W/kg)	Run#
				450.000	1.29	-0.99	2.93	1.93	AN-AB- 200126-04
Internal	HKNN4013A	PMLN8064A	PMLN8077A	460.000	1.35	-0.74	3.32	1.97	AN-AB- 200124-12
				470.000	1.33	-1.00	2.37	1.51	AN-AB- 200127-01#

13.3 Shortened Scan Assessment

A "shortened" scan using the highest SAR configuration overall from above was performed to validate the SAR drift of the full DASY5TM coarse and zoom scans. Note that the shortened scan represents the zoom scan performance result; this is obtained by first running a coarse scan to find the peak area and then, using a newly charged battery, a zoom scan was performed. The results of the shortened cube scan presented in Appendix F demonstrate that the scaling methodology used to determine the calculated SAR results presented herein are valid. The SAR result from the Table below is provided in Appendix F.

Table 21

		Carry		Test Freq	Pwr		SAR	Max Calc. 1g- SAR	
Antenna	Battery	Accessory	Accessory	(MHz)	(W)	(dB)	(W/kg)	(W/kg)	Run#
Internal	HKNN4013	DMI NIOCAA	PMLN8077A	460.000	1.35	-0.57	3.70	2.11	AN-AB-

14.0 Results Summary

Based on the test guidelines from section 4.0 and satisfying frequencies within FCC and ISED frequency band, the highest Operational Maximum Calculated 1-gram average SAR values found for this filing:

Table 22

Technologies	Frequency band (MHz)	Max Calc at Body (W/kg)
Technologies	Frequency band (MHz)	1g-SAR
	FCC US & ISED	Canada
FM	450.000 – 470.000	2.11

15.0 Variability Assessment

Per the guidelines in KDB 865664 SAR variability assessment is not required because SAR results are below 4.0W/kg (Occupational/Controlled Environment).

16.0 System Uncertainty

A system uncertainty analysis is not required for this report per KDB 865664 because the highest report SAR value for Occupational exposure is less than 7.5W/kg.

Per the guidelines of ISO 17025 a reported system uncertainty is required and therefore measurement uncertainty budget is included in Appendix A.

Appendix A Measurement Uncertainty Budget

Table A.1: Uncertainty Budget for Device Under Test for 450 MHz

	b	c	d	e = f(d,k)	£		h = c x f / e	$i = c \times g / e$	k
Uncertainty Component	IEEE 1528 section	Tol. (± %)	Prob Dist	$e = f(u, \kappa)$ Div.	ci (1 g)	ci (10 g)	1 g u _i (±%)	10 g u _i (±%)	v_i
Measurement System									
Probe Calibration	E.2.1	6.7	N	1.00	1	1	6.7	6.7	∞
Axial Isotropy	E.2.2	4.7	R	1.73	0.707	0.707	1.9	1.9	8
Hemispherical Isotropy	E.2.2	9.6	R	1.73	0.707	0.707	3.9	3.9	8
Boundary Effect	E.2.3	1.0	R	1.73	1	1	0.6	0.6	8
Linearity	E.2.4	4.7	R	1.73	1	1	2.7	2.7	8
System Detection Limits	E.2.5	1.0	R	1.73	1	1	0.6	0.6	8
Readout Electronics	E.2.6	0.3	N	1.00	1	1	0.3	0.3	8
Response Time	E.2.7	1.1	R	1.73	1	1	0.6	0.6	8
Integration Time	E.2.8	1.1	R	1.73	1	1	0.6	0.6	8
RF Ambient Conditions - Noise	E.6.1	3.0	R	1.73	1	1	1.7	1.7	8
RF Ambient Conditions - Reflections	E.6.1	0.0	R	1.73	1	1	0.0	0.0	8
Probe Positioner Mech. Tolerance	E.6.2	0.4	R	1.73	1	1	0.2	0.2	8
Probe Positioning w.r.t Phantom	E.6.3	1.4	R	1.73	1	1	0.8	0.8	8
Max. SAR Evaluation (ext., int., avg.)	E.5	3.4	R	1.73	1	1	2.0	2.0	8
Test sample Related									
Test Sample Positioning	E.4.2	3.2	N	1.00	1	1	3.2	3.2	29
Device Holder Uncertainty	E.4.1	4.0	N	1.00	1	1	4.0	4.0	8
SAR drift	6.6.2	5.0	R	1.73	1	1	2.9	2.9	∞
Phantom and Tissue Parameters									
Phantom Uncertainty	E.3.1	4.0	R	1.73	1	1	2.3	2.3	∞
Liquid Conductivity (target)	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	∞
Liquid Conductivity (measurement)	E.3.3	3.3	N	1.00	0.64	0.43	2.1	1.4	∞
Liquid Permittivity (target)	E.3.2	5.0	R	1.73	0.6	0.49	1.7	1.4	∞
Liquid Permittivity (measurement)	E.3.3	1.9	N	1.00	0.6	0.49	1.1	0.9	∞
Combined Standard Uncertainty			RSS				11	11	477
Expanded Uncertainty (95% CONFIDENCE LEVEL)			k=2				23	22	

Notes for uncertainty budget Tables:

- a) Column headings *a-k* are given for reference.
- b) Tol. tolerance in influence quantity.
- c) Prob. Dist. Probability distribution
- d) N, R normal, rectangular probability distributions
- e) Div. divisor used to translate tolerance into normally distributed standard uncertainty
- f) *ci* sensitivity coefficient that should be applied to convert the variability of the uncertainty component into a variability of SAR.
- g) ui SAR uncertainty
- h) vi degrees of freedom for standard uncertainty and effective degrees of freedom for the expanded uncertainty

Table A.2: Uncertainty Budget for System Validation (dipole & flat phantom) for 450 MHz

							,		
							h =	i =	
	b		a	e = f(d,k)	£	~	cxf	cx	\boldsymbol{k}
a	D	<u> </u>	d	$J(a,\kappa)$	J	g	/ e	g/e	K
Uncertainty Component	IEEE 1528 section	Tol. (± %)	Prob Dist	Div.	c _i (1 g)	c_i (10 g)	$\begin{array}{c} 1 \ g \\ U_i \\ (\pm \%) \end{array}$	10 g U _i (±%)	v_i
Measurement System									
Probe Calibration	E.2.1	6.7	N	1.00	1	1	6.7	6.7	∞
Axial Isotropy	E.2.2	4.7	R	1.73	1	1	2.7	2.7	∞
Spherical Isotropy	E.2.2	9.6	R	1.73	0	0	0.0	0.0	∞
Boundary Effect	E.2.3	1.0	R	1.73	1	1	0.6	0.6	∞
Linearity	E.2.4	4.7	R	1.73	1	1	2.7	2.7	∞
System Detection Limits	E.2.5	1.0	R	1.73	1	1	0.6	0.6	∞
Readout Electronics	E.2.6	0.3	N	1.00	1	1	0.3	0.3	∞
Response Time	E.2.7	1.1	R	1.73	1	1	0.6	0.6	∞
Integration Time	E.2.8	0.0	R	1.73	1	1	0.0	0.0	∞
RF Ambient Conditions - Noise	E.6.1	3.0	R	1.73	1	1	1.7	1.7	∞
RF Ambient Conditions - Reflections	E.6.1	0.0	R	1.73	1	1	0.0	0.0	∞
Probe Positioner Mechanical Tolerance	E.6.2	0.4	R	1.73	1	1	0.2	0.2	∞
Probe Positioning w.r.t. Phantom	E.6.3	1.4	R	1.73	1	1	0.8	0.8	∞
Max. SAR Evaluation (ext., int., avg.)	E.5	3.4	R	1.73	1	1	2.0	2.0	∞
Dipole									
Dipole Axis to Liquid Distance	8, E.4.2	2.0	R	1.73	1	1	1.2	1.2	∞
Input Power and SAR Drift Measurement	8, 6.6.2	5.0	R	1.73	1	1	2.9	2.9	∞
Phantom and Tissue Parameters									
Phantom Uncertainty	E.3.1	4.0	R	1.73	1	1	2.3	2.3	8
Liquid Conductivity (target)	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	∞
Liquid Conductivity (measurement)	E.3.3	3.3	R	1.73	0.64	0.43	1.2	0.8	8
Liquid Permittivity (target)	E.3.2	5.0	R	1.73	0.6	0.49	1.7	1.4	∞
Liquid Permittivity (measurement)	E.3.3	1.9	R	1.73	0.6	0.49	0.6	0.5	∞
Combined Standard Uncertainty			RSS				10	9	99999
Expanded Uncertainty			k-2				10	1.0	
(95% CONFIDENCE LEVEL)			k=2				19	18	

Notes for uncertainty budget Tables:

- a) Column headings *a-k* are given for reference.
- b) Tol. tolerance in influence quantity.
- c) Prob. Dist. Probability distribution
- d) N, R normal, rectangular probability distributions
- e) Div. divisor used to translate tolerance into normally distributed standard uncertainty
- f) *ci* sensitivity coefficient that should be applied to convert the variability of the uncertainty component into a variability of SAR.
- g) ui SAR uncertainty
- h) vi degrees of freedom for standard uncertainty and effective degrees of freedom for the expanded uncertainty

Appendix B Probe Calibration Certificates

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Motorola Solutions MY

Certificate No: EX3-7511_Oct19

CALIBRATION CERTIFICATE

Object

EX3DV4 - SN:7511

Calibration procedure(s)

QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v5, QA CAL-23.v5,

QA CAL-25.v7

Calibration procedure for dosimetric E-field probes

Calibration date:

October 24, 2019

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	03-Apr-19 (No. 217-02892/02893)	Apr-20
Power sensor NRP-Z91	SN: 103244	03-Apr-19 (No. 217-02892)	Apr-20
Power sensor NRP-Z91	SN: 103245	03-Apr-19 (No. 217-02893)	Apr-20
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-19 (No. 217-02894)	Apr-20
DAE4	SN: 660	07-Oct-19 (No. DAE4-660_Oct19)	Oct-20
Reference Probe ES3DV2	SN: 3013	31-Dec-18 (No. ES3-3013_Dec18)	Dec-19
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-18)	In house check: Jun-20
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-18)	In house check: Oct-19

Calibrated by:

Name Jeton Kastrati Function Laboratory Technician

Approved by:

Katja Pokovic

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Technical Manager

Issued: October 24, 2019

Certificate No: EX3-7511_Oct19

Page 1 of 13

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura

Accreditation No.: SCS 0108

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL NORMx,y,z ConvF tissue simulating liquid sensitivity in free space sensitivity in TSL / NORMx,y,z diode compression point

CF A, B, C, D

DCP

crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters

Polarization φ

φ rotation around probe axis

Polarization 9

9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., $\vartheta = 0$ is normal to probe axis

Connector Angle

information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- i) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom
 exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: EX3-7511_Oct19

Page 2 of 13

EX3DV4 - SN:7511

October 24, 2019

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7511

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.46	0.37	0.44	± 10.1 %
DCP (mV) ^B	99.0	96.6	99.9	

Calibration Results for Modulation Response

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Max dev.	Unc ^E (k=2)
0	CW	Х	0.0	0.0	1.0	0.00	118.4	±3.8 %	± 4.7 %
		Y	0.0	0.0	1.0		133.1		
		Z	0.0	0.0	1.0		117.4	-1417	

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: EX3-7511_Oct19

A The uncertainties of Norm X,Y,Z do not affect the E2-field uncertainty inside TSL (see Pages 5 and 6).

Numerical linearization parameter: uncertainty not required.
 Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the

EX3DV4-SN:7511

October 24, 2019

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7511

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	0.8
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Certificate No: EX3-7511_Oct19

Page 4 of 13

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7511

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
150	52.3	0.76	12.15	12.15	12.15	0.00	1.00	± 13.3 %
300	45.3	0.87	10.87	10.87	10.87	0.08	1.20	± 13.3 %
450	43.5	0.87	10.30	10.30	10.30	0.10	1.30	± 13.3 %
750	41.9	0.89	9.57	9.57	9.57	0.46	0.80	± 12.0 %
835	41.5	0.90	9.28	9.28	9.28	0.33	1.01	± 12.0 %
900	41.5	0.97	9.06	9.06	9.06	0.49	0.81	± 12.0 %
1450	40.5	1.20	8.17	8.17	8.17	0.10	0.80	± 12.0 %
1810	40.0	1.40	7.94	7.94	7.94	0.28	0.80	± 12.0 %
1900	40.0	1.40	7.69	7.69	7.69	0.34	0.80	± 12.0 %
2100	39.8	1.49	7.73	7.73	7.73	0.33	0.80	± 12.0 %
2300	39.5	1.67	7.35	7.35	7.35	0.36	0.90	± 12.0 %
2450	39.2	1.80	7.06	7.06	7.06	0.33	0.90	± 12.0 %
2600	39.0	1.96	6.81	6.81	6.81	0.39	0.90	± 12.0 %
3500	37.9	2.91	6.66	6.66	6.66	0.35	1.30	± 13.1 %
3700	37.7	3.12	6.56	6.56	6.56	0.35	1.30	± 13.1 %

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.

Fat frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Certificate No: EX3-7511_Oct19

Page 5 of 13

The day and the Convey for indicated target tissue parameters.

Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

EX3DV4-SN:7511

October 24, 2019

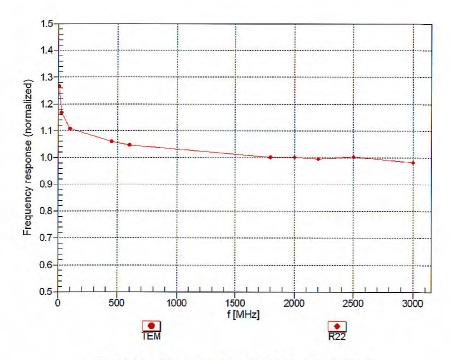
DASY/EASY - Parameters of Probe: EX3DV4 - SN:7511

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^C	Relative Permittivity F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
150	61.9	0.80	11.72	11.72	11.72	0.00	1.00	± 13.3 %
300	58.2	0.92	11.12	11.12	11.12	0.04	1.20	± 13.3 %
450	56.7	0.94	10.59	10.59	10.59	0.08	1.30	± 13.3 %
750	55.5	0.96	9.52	9.52	9.52	0.49	0.80	± 12.0 %
835	55.2	0.97	9.26	9.26	9.26	0.40	0.80	± 12.0 %
900	55.0	1.05	9.14	9.14	9.14	0.42	0.84	± 12.0 %
1450	54.0	1.30	7.97	7.97	7.97	0.30	0.80	± 12.0 %
1810	53.3	1.52	7.64	7.64	7.64	0.34	0.80	± 12.0 %
1900	53.3	1.52	7.37	7.37	7.37	0.44	0.80	± 12.0 %
2100	53.2	1.62	7.46	7.46	7.46	0.31	0.86	± 12.0 %
2300	52.9	1.81	7.21	7.21	7.21	0.35	0.90	± 12.0 %
2450	52.7	1.95	6.97	6.97	6.97	0.36	0.90	± 12.0 %
2600	52.5	2.16	6.88	6.88	6.88	0.32	0.90	± 12.0 %
3500	51.3	3.31	6.11	6.11	6.11	0.40	1.35	± 13.1 %
3700	51.0	3.55	6.02	6.02	6.02	0.40	1.35	± 13.1 %

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.

Fat frequencies below 3 GHz, the validity of tissue parameters (cand o) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (cand o) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

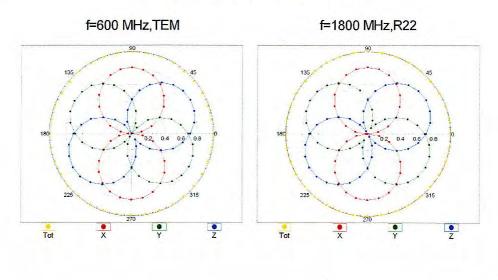

Fat frequencies below 3 GHz, the validity of tissue parameters (cand o) and of the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

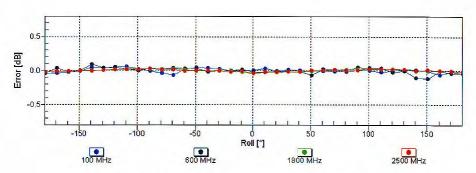
Certificate No: EX3-7511 Oct19

Page 6 of 13

diameter from the boundary.

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

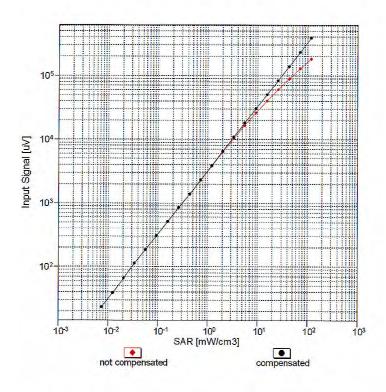


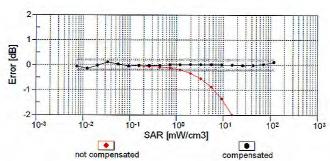

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: EX3-7511_Oct19

Page 7 of 13

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

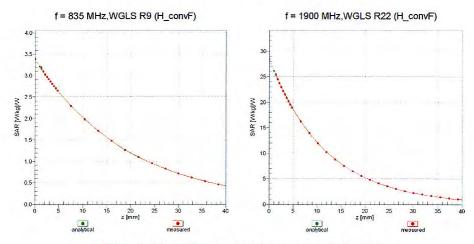



Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

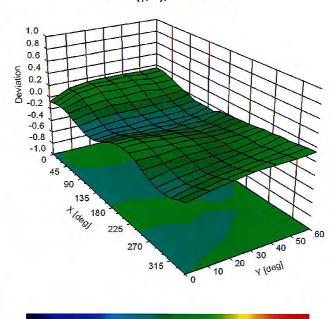
Certificate No: EX3-7511_Oct19

Page 8 of 13

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)



Uncertainty of Linearity Assessment: ± 0.6% (k=2)


Certificate No: EX3-7511_Oct19

Page 9 of 13

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (ϕ, ϑ) , f = 900 MHz

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: EX3-7511_Oct19

Page 10 of 13

Appendix: Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Max dev.	Unc ^E (k=2)
0	CW	Х	0.0	0.0	1.0	0.00	118.4	±3.8 %	± 4.7 %
		Y	0.0	0.0	1.0		133.1		
		Z	0.0	0.0	1.0		117.4		
10100- CAE	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	X	6.43	67.6	19.8	5.67	141.8	±1.4 %	± 4.7 %
		Y	6.81	70.2	22.1		112.8		
No. of Parties		Z	6.38	67.4	19.7		140.0		
10108- CAG	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	Х	6.29	67.3	19.8	5.80	138.5	±2.2 %	± 4.7 %
		Y	7.56	73.7	24.5		110.1		
		Z	6.28	67.3	19.8		136.5		
10110- CAG	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	Х	5.97	67.0	19.8	5.75	134.4	±2.5 %	± 4.7 %
		Υ	6.87	72.6	24.2		149.0		
A COL	A CONTRACTOR OF THE STATE OF	Z	5.93	66.8	19.6		132.2		
10154- CAG	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	Х	5.97	67.0	19.8	5.75	134.3	±2.5 %	± 4.7 %
		Υ	6.95	73.0	24.5		149.0		
		Z	5.95	66.9	19.6		132.6		
10156- CAG	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	Х	5.77	67.1	19.8	5.79	129.9	±2.5 %	± 4.7 %
		Y	6.92	74.0	25.2		144.8		
		Z	5.72	66.8	19.7		128.0		
10160- CAE	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	Х	6.41	67.5	20.0	5.82	140.2	±2.5 %	± 4.7 %
		Y	8.27	76.0	25.8		111.2		
******		Z	6.37	67.4	19.9		137.5		
10169- CAE	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	Х	4.81	67.0	20.0	5.73	116.5	±2.7 %	± 4.7 %
		Υ	7.29	81.0	29.2		129.3		
		Z	4.77	66.7	19.8		114.7		
10175- CAG	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	Х	4.80	66.9	20.0	5.72	116.1	±2.5 %	± 4.7 %
		Υ	6.87	79.0	28.1		129.3		
10.1==		Z	4.80	66.9	19.9		114.1		
10177- CAI	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	X	4.82	67.1	20.1	5.73	115.5	±2.5 %	± 4.7 %
		Υ	6.68	78.1	27.6		129.4		
40404	1.TE EDD (00 ED) (1. DD (15	Z	4.78	66.8	19.9		113.9	4	
10181- CAE	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	X	4.88	67.4	20.3	5.72	116.3	±2.5 %	± 4.7 %
		Y	6.81	78.7	27.9		129.1		
10007	LEE EDD (OO EDLM EON EE	Z	4.80	66.8	19.9		114.1		
10297- AAD	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	X	6.37	67.7	20.2	5.81	138.2	±2.5 %	± 4.7 %
		Y	7.95	75.1	25.4		110.4		
10011	LTE 500 (00 5000 1000) ==	Z	6.32	67.5	20.0		136.2		
10311- AAD	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	X	6.90	68.1	20.4	6.06	144.1	±2.5 %	± 4.7 %
		Υ	8.57	75.6	25.7		113.8		
		Z	6.90	68.0	20.4		140.7		

Certificate No: EX3-7511_Oct19

EX3DV4- SN:7511

October 24, 2019

10415- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc duty cycle)	X	3.27	71.5	20.0	1.54	130.5	±3.0 %	± 4.7 %
		Y	7.44	100.0	36.1	1	146.5		
		Z	3.30	71.7	20.1		128.2		1
10435- AAF	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	5.67	70.0	23.2	7.82	134.0	±2.2 %	± 4.7 %
		Y	6.40	76.6	28.9		142.3		
		Z	5.66	69.8	23.0		132.2		
10467- AAF	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	Х	5.67	70.0	23.2	7.82	133.7	±1.4 %	± 4.7 %
		Υ	5.81	72.6	26.0		142.6		1
		Z	5.65	69.7	22.9		131.7		
10470- AAF	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	Х	5.64	69.8	23.0	7.82	133.5	±1.4 %	± 4.7 %
		Y	5.73	71.9	25.4		142.7		
		Z	5.69	69.9	23.0		131.9		
10473- AAE	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	Х	5.67	70.1	23.2	7.82	133.5	±1.2 %	± 4.7 %
		Υ	5.65	71.4	25.1		142.7		
		Z	5.67	69.8	23.0		131.5		
10485- AAF	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	Х	6.02	67.8	21.6	7.59	110.4	±1.2 %	± 4.7 %
		Y	6.00	69.0	23.2		121.1		
	L-	Z	6.30	68.9	22.1		149.7		
10488- AAF	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	Х	6.35	67.6	21.5	7.70	114.9	±1.2 %	± 4.7 %
		Y	6.26	68.5	22.9		124.7		-
		Z	6.37	67.6	21.4	17.55	113.3		
10491- AAE	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	6.74	68.0	21.6	7.74	119.3	±1.2 %	± 4.7 %
		Y	6.58	68.6	22.9		129.0		
		Z	6.73	67.8	21.5		117.8		
10494- AAF	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	Х	6.75	68.1	21.7	7.74	119.1	±1.2 %	± 4.7 %
		Y	6.56	68.6	23.0		128.9	75.	
		Z	6.74	67.9	21.6		117.6		
10503- AAF	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	Х	6.37	67.7	21.5	7.72	114.8	±1.4 %	± 4.7 %
		Υ	6.34	68.9	23.2		124.8		
		Z	6.36	67.4	21.3		113.4		
10506- AAF	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	6.72	68.0	21.7	7.74	118.9	±1.4 %	± 4.7 %
		Y	6.56	68.6	23.0		128.6		
		Z	6.73	67.9	21.6		117.8		
10509- AAE	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	Х	7.35	68.6	22.0	7.99	124.0	±1.4 %	± 4.7 %
		Y	7.06	68.7	23.0		133.6		
		Z	7.37	68.5	22.0		122.9		

Certificate No: EX3-7511_Oct19

Page 12 of 13

10512- AAF	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	Х	7.09	68.6	21.9	7.74	122.9	±1.4 %	± 4.7 %
		Y	6.83	69.0	23.0		131.8		
		Z	7.10	68.5	21.8		121.3		
10571- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 90pc duty cycle)	Х	3.42	71.9	20.4	1.99	127.1	±1.9 %	±4.7 %
		Υ	9.13	99.3	33.8		140.7		
		Z	3.61	72.9	21.0		124.4		

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No: EX3-7511_Oct19

Page 13 of 13

FCC ID: AZ489FT4960 / 109U-89FT4960 Report ID: P19112-EME-00050

Appendix C Dipole Calibration Certificates

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client Motorola Solutions MY

Certificate No: D450V3-1053_Oct18

Object	D450V3 - SN:10	53	
Calibration procedure(s)	QA CAL-15.v8		
, , , , , , , , , , , , , , , , , , ,		edure for dipole validation kits bel	ow 700 MHz
	Sumbration proof	saaro for alpoic validation kits bei	OW 700 WII 12
Calibration date:	October 19, 201	8.	
This calibration certificate docume	nts the traceability to nat	ional standards, which realize the physical un	its of measurements (SI).
The measurements and the uncer	tainties with confidence p	probability are given on the following pages ar	nd are part of the certificate.
All calibrations have been conduct	ed in the closed laborato	ry facility: environment temperature (22 ± 3)°0	C and humidity < 70%.
Calibration Equipment used (M&T)	E critical for calibration)		
	r .		
Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Onformen OO all Attances	SN: 5277 (20x)	04-Apr-18 (No. 217-02682)	Apr-19
	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
Type-N mismatch combination	SN: 5047.2 / 06327 SN: 3877	04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-3877_Dec17)	Apr-19 Dec-18
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4			
Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards	SN: 3877 SN: 654	30-Dec-17 (No. EX3-3877_Dec17)	Dec-18
Type-N mismatch combination Reference Probe EX3DV4 DAE4	SN: 3877 SN: 654 ID # SN: GB41293874	30-Dec-17 (No. EX3-3877_Dec17) 05-Jul-18 (No. DAE4-654_Jul18)	Dec-18 Jul-19 Scheduled Check
Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B	SN: 3877 SN: 654	30-Dec-17 (No. EX3-3877_Dec17) 05-Jul-18 (No. DAE4-654_Jul18) Check Date (in house)	Dec-18 Jul-19 Scheduled Check In house check: Jun-20
Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A	SN: 3877 SN: 654 ID # SN: GB41293874	30-Dec-17 (No. EX3-3877_Dec17) 05-Jul-18 (No. DAE4-654_Jul18) Check Date (in house) 12-Jun-18 (No. 217-02285/02284)	Dec-18 Jul-19 Scheduled Check In house check: Jun-20 In house check: Jun-20
Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards	SN: 3877 SN: 654 ID # SN: GB41293874 SN: MY41498087	30-Dec-17 (No. EX3-3877_Dec17) 05-Jul-18 (No. DAE4-654_Jul18) Check Date (in house) 12-Jun-18 (No. 217-02285/02284) 12-Jun-18 (No. 217-02285)	Dec-18 Jul-19 Scheduled Check In house check: Jun-20 In house check: Jun-20 In house check: Jun-20
Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A	SN: 3877 SN: 654 ID # SN: GB41293874 SN: MY41498087 SN: 000110210	30-Dec-17 (No. EX3-3877_Dec17) 05-Jul-18 (No. DAE4-654_Jul18) Check Date (in house) 12-Jun-18 (No. 217-02285/02284) 12-Jun-18 (No. 217-02285) 12-Jun-18 (No. 217-02284)	Dec-18 Jul-19 Scheduled Check In house check: Jun-20 In house check: Jun-20 In house check: Jun-20 In house check: Jun-20
Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A RF generator HP 8648C	SN: 3877 SN: 654 ID # SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700	30-Dec-17 (No. EX3-3877_Dec17) 05-Jul-18 (No. DAE4-654_Jul18) Check Date (in house) 12-Jun-18 (No. 217-02285/02284) 12-Jun-18 (No. 217-02285) 12-Jun-18 (No. 217-02284) 04-Aug-99 (in house check Jun-18)	Dec-18 Jul-19 Scheduled Check In house check: Jun-20 In house check: Jun-20 In house check: Jun-20 In house check: Jun-20
Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A RF generator HP 8648C	SN: 3877 SN: 654 ID # SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700 SN: US41080477	30-Dec-17 (No. EX3-3877_Dec17) 05-Jul-18 (No. DAE4-654_Jul18) Check Date (in house) 12-Jun-18 (No. 217-02285/02284) 12-Jun-18 (No. 217-02285) 12-Jun-18 (No. 217-02284) 04-Aug-99 (in house check Jun-18) 31-Mar-14 (in house check Oct-18)	Dec-18 Jul-19
Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A RF generator HP 8648C Network Analyzer Agilent E8358A	SN: 3877 SN: 654 ID # SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700 SN: US41080477 Name	30-Dec-17 (No. EX3-3877_Dec17) 05-Jul-18 (No. DAE4-654_Jul18) Check Date (in house) 12-Jun-18 (No. 217-02285/02284) 12-Jun-18 (No. 217-02285) 12-Jun-18 (No. 217-02284) 04-Aug-99 (in house check Jun-18) 31-Mar-14 (in house check Oct-18)	Dec-18 Jul-19 Scheduled Check In house check: Jun-20 In house check: Jun-20 In house check: Jun-20 In house check: Jun-20
Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A RF generator HP 8648C Network Analyzer Agilent E8358A	SN: 3877 SN: 654 ID # SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700 SN: US41080477 Name	30-Dec-17 (No. EX3-3877_Dec17) 05-Jul-18 (No. DAE4-654_Jul18) Check Date (in house) 12-Jun-18 (No. 217-02285/02284) 12-Jun-18 (No. 217-02285) 12-Jun-18 (No. 217-02284) 04-Aug-99 (in house check Jun-18) 31-Mar-14 (in house check Oct-18)	Dec-18 Jul-19 Scheduled Check In house check: Jun-20 In house check: Jun-20 In house check: Jun-20 In house check: Jun-20
Fype-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A RF generator HP 8648C Network Analyzer Agilent E8358A Calibrated by:	SN: 3877 SN: 654 ID # SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700 SN: US3642U01700 SN: US41080477 Name Claudio Leubler	30-Dec-17 (No. EX3-3877_Dec17) 05-Jul-18 (No. DAE4-654_Jul18) Check Date (in house) 12-Jun-18 (No. 217-02285/02284) 12-Jun-18 (No. 217-02285) 12-Jun-18 (No. 217-02284) 04-Aug-99 (in house check Jun-18) 31-Mar-14 (in house check Oct-18) Function Laboratory Technician	Dec-18 Jul-19 Scheduled Check In house check: Jun-20 In house check: Jun-20 In house check: Jun-20 In house check: Jun-20
Fype-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A RF generator HP 8648C Network Analyzer Agilent E8358A Calibrated by:	SN: 3877 SN: 654 ID # SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700 SN: US3642U01700 SN: US41080477 Name Claudio Leubler	30-Dec-17 (No. EX3-3877_Dec17) 05-Jul-18 (No. DAE4-654_Jul18) Check Date (in house) 12-Jun-18 (No. 217-02285/02284) 12-Jun-18 (No. 217-02285) 12-Jun-18 (No. 217-02284) 04-Aug-99 (in house check Jun-18) 31-Mar-14 (in house check Oct-18) Function Laboratory Technician	Dec-18 Jul-19 Scheduled Check In house check: Jun-20 In house check: Jun-20 In house check: Jun-20 In house check: Jun-20

Certificate No: D450V3-1053_Oct18

Page 1 of 8

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

 b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016

 iEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010

d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D450V3-1053_Oct18

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.2
Extrapolation	Advanced Extrapolation	
Phantom	ELI4 Flat Phantom	Shell thickness: 2 ± 0.2 mm
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	43.5	0.87 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	44.1 ± 6 %	0.87 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.14 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	4.57 W/kg ± 18.1 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	0.762 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	3.05 W/kg ± 17.6 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	56.7	0.94 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.5 ± 6 %	0.92 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	-	

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	1.12 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	4.53 W/kg ± 18.1 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	0.753 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	3.05 W/kg ± 17.6 % (k=2)

Certificate No: D450V3-1053_Oct18

Page 3 of 8

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	57.6 Ω - 4.4 jΩ
Return Loss	- 21.7 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	55.1 Ω - 7.0 jΩ
Return Loss	- 21.7 dB

General Antenna Parameters and Design

1.351 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	December 16, 2005	

Certificate No: D450V3-1053_Oct18

DASY5 Validation Report for Head TSL

Date: 19.10.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 450 MHz; Type: D450V3; Serial: D450V3 - SN:1053

Communication System: UID 0 - CW; Frequency: 450 MHz

Medium parameters used: f = 450 MHz; $\sigma = 0.87 \text{ S/m}$; $\varepsilon_r = 44.1$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN3877; ConvF(10.5, 10.5, 10.5) @ 450 MHz; Calibrated: 30.12.2017

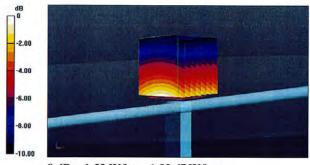
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn654; Calibrated: 05.07.2018

Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:1003

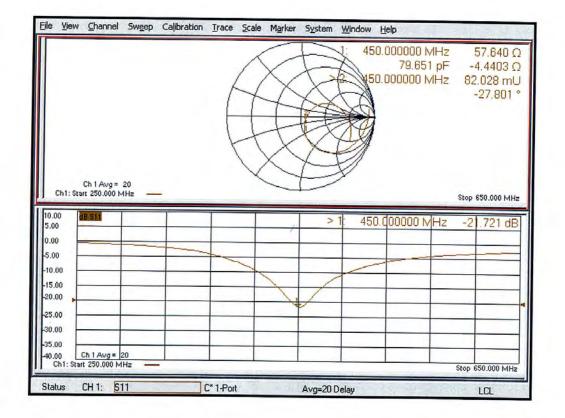
DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Dipole Calibration for Head Tissue/d=15mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 38.89 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 1.74 W/kg


SAR(1 g) = 1.14 W/kg; SAR(10 g) = 0.762 W/kg

Maximum value of SAR (measured) = 1.52 W/kg

0 dB = 1.52 W/kg = 1.82 dBW/kg

Impedance Measurement Plot for Head TSL

Certificate No: D450V3-1053_Oct18

DASY5 Validation Report for Body TSL

Date: 19.10.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 450 MHz; Type: D450V3; Serial: D450V3 - SN:1053

Communication System: UID 0 - CW; Frequency: 450 MHz

Medium parameters used: f = 450 MHz; $\sigma = 0.92 \text{ S/m}$; $\varepsilon_r = 55.5$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

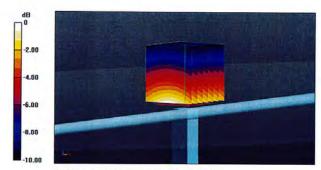
Probe: EX3DV4 - SN3877; ConvF(10.8, 10.8, 10.8) @ 450 MHz; Calibrated: 30.12.2017

· Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn654; Calibrated: 05.07.2018

Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:1003

DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

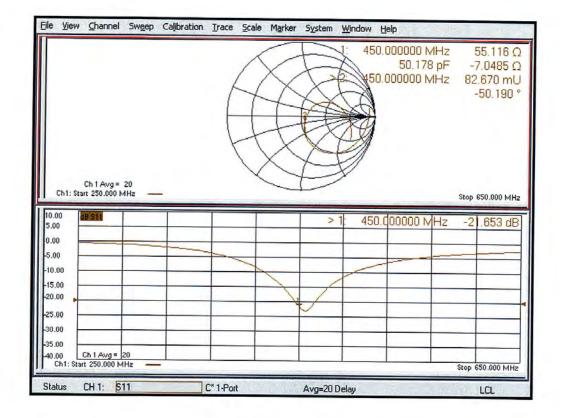

Dipole Calibration for Body Tissue/d=15mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 41.78 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 1.72 W/kg

SAR(1 g) = 1.12 W/kg; SAR(10 g) = 0.753 W/kgMaximum value of SAR (measured) = 1.50 W/kg



0 dB = 1.50 W/kg = 1.76 dBW/kg

Certificate No: D450V3-1053_Oct18

Page 7 of 8

Impedance Measurement Plot for Body TSL

Dipole Data

As stated in KDB 865664, only dipoles used for longer calibration intervals required to provide supporting information and measurement to qualify for extended calibration interval.

Dipole 450-1053	Head		
	Impedance		Return Loss
Date Measured	real Ω	imag jΩ	dB
11/08/2018	53.78	-7.39	-21.97
11/10/2019	53.95	-6.72	-22.49