Г

	DLA SOLUTIONS	MS ISO/IEC 17025 TESTING SAMM No.0826	
DECL	ARATION OF COMPLIANCE S	AR ASSESSMENT Part 1 of 2	
EME Test Motorola Solutions Ma Plot 2A, Mec	Colutions Inc. Laboratory laysia Sdn Bhd (Innoplex) lan Bayan Lepas, yan Lepas Penang, Malaysia.	Date of Report: 03/29/2018 Report Revision: A	
Responsible Engineer:Saw Sun Hock (EME Engineer)Report Author:Saw Sun Hock (EME Engineer)Date/s Tested:1/25/2018-1/26/2018; 1/29/2018Manufacturer:Vertex Standard LMR, Inc.DUT Description:Handheld Portable – BC250D-G6-4, 403-470MHz, 4W, No KeypadTest TX mode(s):CW (PTT)Max. Power output:5.5WNominal Power:4.6WTx Frequency Bands:LMR 403-470MHzSignaling type:FM, 4FSKModel(s) Tested:BC250D-G6-4Model(s) Certified:BC250D-G6-4Serial Number(s):3W8C011010, 3W8C011007Classification:Occupational/ControlledFCC ID:AZ489FT4949; LMR 403-470MHzThis report contains results that are immaterial for FCC equipment approval, which are clearly identified.			
FCC Test Firm Registratio Number:	n 823256		
over 1 gram per the requirements Based on the information and the testin supplied, said product complies with th shall not be reproduced without written I attest to the accuracy of the data and	of FCC 47 CFR § 2.1093. g results provided herein, the undersigned e national and international reference stan a approval from an officially designated re- assume full responsibility for the completer	certifies that when used as stated in the operating instructions dards and guidelines listed in section 4.0 of this report. This report presentative of the Motorola Solutions Inc EME Laboratory. ness of these measurements. This reporting format is consistent with ements contained in this report pertain only to the device(s)	
Tion; Deputy Teo	g Nguk Ing chnical Manager Date: 3/29/2018		

Part 1 of 2

1.0	Introduction					
2.0	FCC SAR Summary					
3.0	Abbreviations / Definitions					
4.0	Referenced Standards and Guidelines					
5.0		imits				
6.0	Descri	ption of Device Under Test (DUT)	.6			
7.0	Option	al Accessories and Test Criteria	.7			
	7.1	Antennas	.7			
	7.2	Battery	.7			
	7.3	Body worn Accessories,	.7			
	7.4	Audio Accessories	.8			
8.0	Descri	ption of Test System	.8			
	8.1	Descriptions of Robotics/Probes/Readout Electronics	.8			
	8.2	Description of Phantom(s)	.9			
	8.3	Description of Simulated Tissue	.9			
9.0	Additi	onal Test Equipment	10			
10.0	SAR N	Aeasurement System Validation and Verification	10			
	10.1	System Validation	10			
	10.2	System Verification	10			
	10.3	Equivalent Tissue Test Results	11			
11.0	Enviro	nmental Test Conditions	12			
12.0	DUT 1	Cest Setup and Methodology	12			
	12.1	Measurements	12			
	12.2	DUT Configuration(s)	13			
	12.3	DUT Positioning Procedures	13			
		12.3.1 Body	13			
		12.3.2 Head				
	10.4	12.3.3 Face				
		DUT Test Channels				
	12.5	SAR Result Scaling Methodology				
12.0	12.6	DUT Test Plan				
13.0						
	13.1	LMR assessments at the Body for 406.1- 470 MHz band				
	13.2	LMR assessments at the Face for 406.1-470 MHz band				
	13.3	Assessment at outside FCC Part 90				
140	13.4	Shortened Scan Assessment				
		ility Assessment				
		s Summary				
16.0	0 System Uncertainty					

APPENDICES

Α	Measurement Uncertainty Budget	19
	Probe Calibration Certificates	
С	Dipole Calibration Certificates	41

Part 2 of 2

APPENDICES

D	System Verification Check Scans	2
	DUT Scans	
F	Shorten Scan of Highest SAR Configuration	12
	DUT Test Position Photos	
Η	DUT, Body worn and audio accessories Photos	15

Report Revision History

Date	Revision	Comments
03/29/2018	А	Initial release

1.0 Introduction

This report details the utilization, test setup, test equipment, and test results of the Specific Absorption Rate (SAR) measurements performed at the Motorola Solutions Inc. EME Test Laboratory for handheld portable model number BC250D-G6-4. This device is classified as Occupational/Controlled.

2.0 FCC SAR Summary

Table 1				
Equipment Class	Frequency band (MHz)	Max Calc at Body (W/kg)	Max Calc at Face (W/kg)	
	(IVIIIZ)	1g-SAR	1g-SAR	
TNF	406.1- 470MHz	4.09	2.83	

3.0 Abbreviations / Definitions

CNR: Calibration Not Required CW: Continuous Wave DUT: Device Under Test EME: Electromagnetic Energy FM: Frequency Modulation LMR: Land Mobile Radio NA: Not Applicable PTT: Push to Talk RF: Radio Frequency RSM: Remote Speaker Microphone SAR: Specific Absorption Rate TNF: Licensed Non-Broadcast Transmitter Held to Face 4FSK: 4 Level Frequency Shift Keying

Audio accessories: These accessories allow communication while the DUT is worn on the body.

Body worn accessories: These accessories allow the DUT to be worn on the body of the user.

Maximum Power: Defined as the upper limit of the production line final test station.

4.0 Referenced Standards and Guidelines

This product is designed to comply with the following applicable national and international standards and guidelines.

- IEC62209-1 (2005) Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)
- Federal Communications Commission, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields", OET Bulletin 65, FCC, Washington, D.C.: 1997.
- IEEE 1528 (2013), Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques
- American National Standards Institute (ANSI) / Institute of Electrical and Electronics Engineers (IEEE) C95. 1-1992
- Institute of Electrical and Electronics Engineers (IEEE) C95.1-2005
- International Commission on Non-Ionizing Radiation Protection (ICNIRP) 1998
- Ministry of Health (Canada) Safety Code 6 (2015), Limits of Human Exposure to Radio frequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz
- RSS-102 (Issue 5) Radio Frequency (RF) Exposure Compliance of Radio communication Apparatus (All Frequency Bands)
- Australian Communications Authority Radio communications (Electromagnetic Radiation -Human Exposure) Standard (2014)
- ANATEL, Brazil Regulatory Authority, Resolution No. 303 of July 2, 2002 "Regulation of the limitation of exposure to electrical, magnetic, and electromagnetic fields in the radio frequency range between 9 kHz and 300 GHz." and "Attachment to resolution # 303 from July 2, 2002"
- IEC62209-2 Edition 1.0 2010-03, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Human models, instrumentation, and procedures Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz).
- FCC KDB 643646 D01 SAR Test for PTT Radios v01r03
- FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04
- FCC KDB 865664 D02 RF Exposure Reporting v01r02
- FCC KDB 447498 D01 General RF Exposure Guidance v06

5.0 SAR Limits

	SAR (W/kg)			
EXPOSURE LIMITS	(General Population / Uncontrolled Exposure Environment)	(Occupational / Controlled Exposure Environment)		
Spatial Average - ANSI -				
(averaged over the whole body)	0.08	0.4		
Spatial Peak - ANSI -				
(averaged over any 1-g of tissue)	1.6	8.0		
Spatial Peak – ICNIRP/ANSI -				
(hands/wrists/feet/ankles averaged over 10-g)	4.0	20.0		
Spatial Peak - ICNIRP -				
(Head and Trunk 10-g)	2.0	10.0		

Table 2

6.0 Description of Device Under Test (DUT)

This device operates using analog frequency modulation (FM) signaling incorporating simplex two-way radio transmission protocol.

This radio contains transmit and receive circuitry for digital two way radio communications. The modulation scheme used for digital two-way radio communications is 4 Level Frequency Shift Keying (4FSK).

4FSK is a modulation technique that transmits information by altering the frequency of the carrier frequency (RF) signal. Data is converted into complex symbols, which alter the RF signal and transmit the information. When the signal is received, the change in frequency is converted back into symbols and then into the original data. The system can accommodate 2-voice channels in a standard 12.5 kHz channel as used in two-way radio.

Table 3 below summarizes the technologies, bands, maximum duty cycles and maximum output powers. Maximum output powers are defined as upper limit of the production line final test station.

		Table 3		
Technology	Band (MHz)	Transmission	Duty Cycle (%)	Max Power (W)
LMR	403-470MHz	FM	*50	5.50

Note - * includes 50% PTT operation

The intended operating positions are "at the face" with the DUT at least 2.5cm from the mouth, and "at the body" by means of the offered body worn accessories. Body worn audio and PTT operation is accomplished by means of optional remote accessories that are connected to the radio.

7.0 Optional Accessories and Test Criteria

This device is offered with optional accessories. All accessories were individually evaluated during the test plan creation to determine if testing was required per the guidelines outlined in "SAR Test Reduction Considerations for Occupational PTT Radios" FCC KDB 643646 to assess compliance of this device. The following sections identify the test criteria and details for each accessory category. Refer to Exhibit 7B for antenna separation distances.

7.1 Antennas

There are optional removable antennas offered for this product. The Table below lists their descriptions.

Antenna No.	Antenna Models	Description	Selected for test	Tested
1	AAM32X001	Whip antenna, 400-470 MHz, ¹ / ₂ wave, 2 dBi	Yes	Yes
2	AAM43X001	Stubby antenna, 450-470 MHz, 1/2 wave, 2 dBi	Yes	Yes

Table 4

7.2 Battery

There is only one battery offered for this product. The Table below lists their descriptions.

Table 5					
Battery No.	Battery Models	Description	Selected for test	Tested	Comments
1	FNB-V143-LI (AAM29X001)	Impres Li-ion 2300mAh, Non UNI.	Yes	Yes	Default battery

7.3 Body worn Accessories,

There is only one body worn offered for this product. The Table below lists their descriptions.

		Table 6			
Body worn No.	Body worn Models	Description	Selected for test	Tested	Comments
1	AAM34X001	Belt Clip 28	Yes	Yes	

7.4 Audio Accessories

There is only one audio offered for this product. The Table below lists their descriptions. Exhibit 7B illustrates photos of the tested audio accessories.

Table	7

Audio No.	Audio Acc. Models	Description	Selected for test	Tested	Comments
1	MH-Z101B	Speaker Microphone	Yes	Yes	Default Audio

8.0 Description of Test System

8.1 Descriptions of Robotics/Probes/Readout Electronics

Table 8						
Dosimetric System type	System version	DAE type	Probe Type			
Schmid & Partner Engineering AG SPEAG DASY 5	52.8.8.1222	DAE4	ES3DV3 (E-Field)			

The DASY5TM system is operated per the instructions in the DASY5TM Users Manual. The complete manual is available directly from SPEAGTM. All measurement equipment used to assess SAR compliance was calibrated according to ISO/IEC 17025 A2LA guidelines. Section 9.0 presents additional test equipment information. Appendices B and C present the applicable calibration certificates. The E-field probe first scans a coarse grid over a large area inside the phantom in order to locate the interpolated maximum SAR distribution. After the coarse scan measurement, the probe is automatically moved to a position at the interpolated maximum. The subsequent scan can directly use this position as reference for the cube evaluations.

	Table 9							
Phantom Type	Phantom(s) Used	Material Parameters	Phantom Dimensions LxWxD (mm)	Material Thickness (mm)	Support Structure Material	Loss Tangent (wood)		
Triple Flat	NA	200MHz - 6GHz; Er = 3-5, Loss Tangent = ≤ 0.05	280x175x175					
SAM	NA	300MHz - 6GHz; Er = < 5, Loss Tangent = ≤ 0.05	Human Model	2mm +/- 0.2mm	Wood	< 0.05		
Oval Flat	\checkmark	300MHz - 6GHz; Er = 4+/- 1, Loss Tangent = ≤ 0.05	600x400x190					

8.2 **Description of Phantom(s)**

8.3 Description of Simulated Tissue

The sugar based simulate tissue is produced by placing the correct measured amount of De-ionized water into a large container. Each of the dried ingredients are weighed and added to the water carefully to avoid clumping. If the solution has a high sugar concentration the water is pre-heated to aid in dissolving the ingredients. For Diacetin and similar type simulates, sugar and HEC ingredients are not needed. The solution is mixed thoroughly, covered, and allowed to sit overnight prior to use.

The simulated tissue mixture was mixed based on the Simulated Tissue Composition indicated in Table 10. During the daily testing of this product, the applicable mixture was used to measure the Di-electric parameters at each of the tested frequencies to verify that the Di-electric parameters were within the tolerance of the tissue specifications.

Table IV					
	450MHz				
Ingredients	Head	Body			
Sugar	56.00	46.50			
Diacetin	0	0			
De ionized – Water	39.10	50.53			
Salt	3.80	1.87			
HEC	1.00	1.00			
Bact.	0.10	0.10			

Simulated Tissue Composition (percent by mass)

9.0 **Additional Test Equipment**

The Table below lists additional test equipment used during the SAR assessment.

Table 11						
Equipment Type	Model Number	Serial Number	Calibration Date	Calibration Due Date		
Speag Probe	ES3DV3	3196	05/17/17	05/17/18		
Speag DAE	DAE4	684	05/12/17	05/12/18		
Amplifier	10W1000C	312859	CNR	CNR		
Power Meter	E4419B	MY45103725	05/22/17	05/22/19		
Vector Signal Generator	E4438C	MY42081753	04/08/17	04/08/18		
Power Sensor	E9301B	MY50280001	06/23/17	06/23/18		
BI-Direction Coupler	3020A	40295	09/04/17	09/04/18		
Power Meter	E4418B	MY45100911	07/14/17	07/14/19		
Power Sensor	E9301B	MY41495594	07/20/17	07/20/18		
Temperature & Humidity Logger	TM320	06153216	08/11/17	08/11/18		
Thermometer	HH202A	18812	10/13/17	10/13/18		
Temperature Probe	JHSS-18U- RSC-6	AGIL700245	10/13/17	10/13/18		
Dielectric Assessment Kit	DAK-3.5	1120	03/16/17	03/16/18		
Network Analyzer	E5071B	MY42403218	08/24/17	08/24/18		
Speag Dipole	D450V3	1054	10/25/17	10/25/19		

Table 11

10.0 SAR Measurement System Validation and Verification

DASY output files of the probe/dipole calibration certificates and system verification test results are included in appendices B, C & D respectively.

10.1 **System Validation**

The SAR measurement system was validated according to procedures in KDB 865664. The validation status summary Table is below.

Table 12								
Dates	Probe Calibration Point		Probe Measured Tissue SN Parameters		Validation			
	POL	ш	SIN	σε		Sensitivity	Linearity	Isotropy
				CW	V			
05/31/2017	Body	450	3196	0.92	54.6	Pass	Pass	Pass
06/01/2017	Head	450	5190	0.89	43.3	Pass	Pass	Pass

10.2 System Verification

System verification checks were conducted each day during the SAR assessment. The results are normalized to 1W. Appendix D includes DASY plots for each day during the SAR assessment. The Table below summarizes the daily system check results used for the SAR assessment.

	Table 13						
Probe Serial #	Tissue Type	Dipole Kit / Serial #	Ref SAR @ 1W (W/kg)	System Check Results Measured (W/kg)	System Check Test Results when normalized to 1W (W/kg)	Tested Date	
	FCC Body		4.57 +/- 10%	1.25	5.00	1/24/2018*	
3196	FCC Body	SPEAG D450V3 /	4.37 +/- 10%	1.25	5.00	1/29/2018	
5190	IEEE/IEC Head	1054	4.48 +/- 10%	1.22	4.88	1/25/2018*	
	IEEE/IEC Heau		4.40 +/- 10%	1.19	4.76	1/29/2018	

Table 13

Note: * System performance check cover next testing day (within 24 hours)

10.3 Equivalent Tissue Test Results

Simulated tissue prepared for SAR measurements is measured daily and within 24 hours prior to actual SAR testing to verify that the tissue is within +/- 5% of target parameters at the center of the transmit band. This measurement is done using the applicable equipment indicated in section 9.0. The Table below summarizes the measured tissue parameters used for the SAR assessment.

Frequency (MHz)	Tissue Type	Conductivity Target (S/m)	Dielectric Constant Target	Conductivity Meas. (S/m)	Dielectric Constant Meas.	Tested Date	
402	FCC Body	0.93 (0.89-0.98)	57.2 (54.3-60.0)	0.92	55.2	1/29/2018	
403	IEEE/ IEC Head	0.87 (0.83-0.91)	44.1 (41.9-46.3)	0.85	44.1	1/29/2018	
406	FCC Body	0.93 (0.89-0.98)	57.1 (54.3-60.0)	0.92	55.1	1/29/2018	
406	IEEE/ IEC Head	0.87 (0.83-0.91)	44.0 (41.8-46.2)	0.85	44.0	1/29/2018	
		0.94	57.0	0.92	54.7	1/25/2018	
422	FCC Body	(0.89-0.98)	(54.1-59.8)	0.94	54.9	1/29/2018	
122	IEEE/ IEC Head	0.89 (0.85-0.93)	41.9 (39.8-44.0)	0.88	44.0	1/26/2018	
	ECC Dody	0.94	56.7	0.94	54.2	1/25/2018	
450	FCC Body	(0.89-0.99)	(53.9-59.5)	0.96	54.4	1/29/2018	
430	IEEE/	0.87	43.5	0.90	43.3	1/26/2018	
	IEC Head	(0.83-0.91)	(41.3-45.7)	0.89	43.2	1/29/2018	
	FCC Body	0.94 (0.89-0.99)	56.6 (53.8-59.5)	0.96	53.8	1/25/2018	
470	IEEE/	0.87	43.4	0.91	42.8	1/26/2018	
	IEC Head	(0.83-0.91)	(41.2-45.6)	0.91	42.7	1/29/2018	

Та	ble	14

11.0 Environmental Test Conditions

The EME Laboratory's ambient environment is well controlled resulting in very stable simulated tissue temperature and therefore stable dielectric properties. Simulated tissue temperature is measured prior to each scan to insure it is within $+/-2^{\circ}C$ of the temperature at which the dielectric properties were determined. The liquid depth within the phantom used for measurements was at least 15cm. Additional precautions are routinely taken to ensure the stability of the simulated tissue such as covering the phantoms when scans are not actively in process in order to minimize evaporation. The lab environment is continuously monitored. The Table below presents the range and average environmental conditions during the SAR tests reported herein:

Table 15				
	Target	Measured		
		Range: 20.9 – 22.8°C		
Ambient Temperature	18 – 25 °C	Avg. 21.7 °C		
		Range: 20.1-21.5°C		
Tissue Temperature	NA	Avg. 20.5°C		

Relative humidity target range is a recommended target

The EME Lab RF environment uses a Spectrum Analyzer to monitor for extraneous large signal RF contaminants that could possibly affect the test results. If such unwanted signals are discovered the SAR scans are repeated.

12.0 DUT Test Setup and Methodology

12.1 Measurements

SAR measurements were performed using the DASY system described in section 8.0 using zoom scans. Oval flat phantoms filled with applicable simulated tissue were used for body and face testing.

The Table below includes the step sizes and resolution of area and zoom scans per KDB 865664 requirements.

Table 16						
≤3 GHz	> 3 GHz					
5 ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$					
$30^{\circ} \pm 1^{\circ}$	$20^{\circ} \pm 1^{\circ}$					
the measurement plane of than the above, the measurement be \leq the corresponding x	rientation, is smaller urement resolution must or y dimension of the					
$\leq 2 \text{ GHz:} \leq 8 \text{ mm}$ $2 - 3 \text{ GHz:} \leq 5 \text{ mm}^*$	$3 - 4 \text{ GHz:} \le 5 \text{ mm}^*$ $4 - 6 \text{ GHz:} \le 4 \text{ mm}^*$					
\leq 5 mm	$3-4 \text{ GHz:} \le 4 \text{ mm}$ $4-5 \text{ GHz:} \le 3 \text{ mm}$ $5-6 \text{ GHz:} \le 2 \text{ mm}$					
	$\leq 3 \text{ GHz}$ $5 \pm 1 \text{ mm}$ $30^{\circ} \pm 1^{\circ}$ $\leq 2 \text{ GHz:} \leq 15 \text{ mm}$ $2 - 3 \text{ GHz:} \leq 12 \text{ mm}$ When the x or y dimensi the measurement plane of than the above, the meass be \leq the corresponding x test device with at least of on the test device. $\leq 2 \text{ GHz:} \leq 8 \text{ mm}$ $2 - 3 \text{ GHz:} \leq 5 \text{ mm}^*$					

Table 16

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

* When zoom scan is required and the reported SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is \leq 1.4 W/kg, \leq 8 mm, \leq 7 mm and \leq 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

12.2 DUT Configuration(s)

The DUT is a portable device operational at the body and face as described in section 6.0 while using the applicable accessories listed in section 7.0. All accessories listed in section 7.0 of this report were considered when implementing the guidelines specified in KDB 643646.

12.3 DUT Positioning Procedures

The positioning of the device for each body location is described below and illustrated in Appendix G.

12.3.1 Body

The DUT was positioned in normal use configuration against the phantom with the offered body worn accessory as well as with the offered audio accessories as applicable.

12.3.2 Head

Not applicable.

12.3.3 Face

The DUT was positioned with its' front side separated 2.5cm from the phantom.

12.4 DUT Test Channels

The number of test channels was determined by using the following IEEE 1528 equation. The use of this equation produces the same or more test channels compared to the FCC KDB 447498 number of test channels formula.

 $N_c = 2 * roundup [10 * (f_{high} - f_{low}) / f_c] + 1$

Where

 N_c = Number of channels F_{high} = Upper channel F_{low} = Lower channel F_c = Center channel

12.5 SAR Result Scaling Methodology

The calculated 1-gram averaged SAR results indicated as "Max Calc. 1g-SAR" in the data Tables is determined by scaling the measured SAR to account for power leveling variations and drift. Appendix F includes a shortened scan to justify SAR scaling for drift. For this device the "Max Calc. 1g-SAR are scaled using the following formula:

$$Max_Calc = SAR_meas \cdot 10^{\frac{-Drift}{10}} \cdot \frac{P_max}{P_int} \cdot DC$$

P_max = Maximum Power (W) P_int = Initial Power (W) Drift = DASY drift results (dB) SAR_meas = Measured 1-g or 10-g Avg. SAR (W/kg) DC = Transmission mode duty cycle in % where applicable 50% duty cycle is applied for PTT operation

```
Note: for conservative results, the following are applied:
If P_int > P_max, then P_max/P_int = 1.
Drift = 1 for positive drift
```

Additional SAR scaling was applied using the methodologies outlined in FCC KDB 865664 using tissue sensitivity values. SAR was scaled for conditions where the tissue permittivity was measured above the nominal target and for tissue conductivity that was measured below the nominal target. Negative or reduced SAR scaling is not permitted.

12.6 DUT Test Plan

The guidelines and requirements outlined in section 4.0 were used to assess compliance of this device. All modes of operation identified in section 6.0 were considered during the development of the test plan. All tests were performed in CW modes and 50% duty cycle was applied to PTT configurations in the final results.

DUT Test Data 13.0

13.1 LMR assessments at the Body for 406.1- 470 MHz band

Battery FNB-V143LI (AAM29X001) was selected as the default battery for assessments at the Body, only offered one type battery (refer to Exhibit 7B for battery illustration). The default battery was used during conducted power measurements for all test channels within FCC allocated frequency range which are listed in Table 17. The channel with the highest conducted power will be identified as the default channel per KDB 643646 (SAR Test for PTT Radios).

Table 17								
Test Freq (MHz)	Power (W)							
406.1250	5.28							
422.1000	5.48							
430.0000	5.47							
438.0000	5.27							
450.0000	5.38							
460.0000	5.44							
470.0000	5.45							

T-LL 17

Assessments at the Body with Body worn AAM34X001

DUT assessment with offered antennas, default battery and, default body worn accessory per KDB 643646. Refer to Table 17 for highest output power channel.

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g- SAR (W/kg)	Max Calc. 1g-SAR (W/kg)	Run#			
				406.1250								
		AAM34X001	MH-Z101B				422.1000	5.48	-0.34	6.88	3.73	AZ(FAZ)-AB- 180125-01#
				430.0000								
AAM32X001	FNB-V143LI (AAM29X001)			438.0000								
	(111112)11001)			450.0000								
				460.0000								
				470.0000	5.47	-0.44	2.90	1.61	AZ(FAZ)-AB- 180125-02#			

Table	18
-------	----

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g- SAR (W/kg)	Max Calc. 1g-SAR (W/kg)	Run#
				450.0000					
AAM43X001	FNB-V143LI	AAM34X001	MH-Z101B	460.0000					
(AAN)	(AAM29X001)			470.0000	5.50	-0.47	5.23	2.91	AZ(FAZ)-AB- 180125-03#

Table 18 (Continued)

13.2 LMR assessments at the Face for 406.1-470 MHz band

Battery FNB-V143LI (AAM29X001) was selected as the default battery for assessments at the Face, only offered one type battery (refer to Exhibit 7B for battery illustration). The default battery was used during conducted power measurements for all test channels within FCC allocated frequency range which are listed in Table 17. The channel with the highest conducted power will be identified as the default channel per KDB 643646 (SAR Test for PTT Radios).

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g- SAR (W/kg)	Max Calc. 1g-SAR (W/kg)	Run#	
				406.1250						
		@ front	None		422.1000	5.50	-0.32	5.26	2.83	AZ(FAZ)-FACE- 180126-01#
	FNB-V143LI			430.0000						
AAM32X001	(AAM29X001)			438.0000						
				450.0000						
						460.0000				
				470.0000						
		@ front		450.0000						
AAM43X001	AAM43X001 FNB-V143LI		None	460.0000						
	(AAM29X001)			470.0000	5.45	-0.50	4.03	2.28	AZ(FAZ)-FACE- 180126-02#	

Table 19

13.3 Assessment at outside FCC Part 90

Assessment of outside FCC Part 90 using highest SAR configuration from above. SAR plots of the highest results per Table (bolded) are presented in Appendix E.

	Table 20									
Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (W/kg)	Max Calc. 1g- SAR (W/kg)	Run#	
	Body									
AAM32X001	FNB-V143LI (AAM29X001)	AAM34X001	MH-Z101B	403.0000	5.38	-0.39	9.13	5.11	FIE-AB-180129-03	
Face										
AAM32X001	FNB-V143LI (AAM29X001)	@ front	None	403.0000	5.38	-0.48	8.14	4.65	ZR(FAZ)-FACE- 180129-08	

Table 20

13.4 Shortened Scan Assessment

A "shortened" scan using the highest SAR configuration overall from above was performed to validate the SAR drift of the full DASY5TM coarse and zoom scans. Note that the shortened scan represents the zoom scan performance result; this is obtained by first running a coarse scan to find the peak area and then, using a newly charged battery, a zoom scan only was performed. The results of the shortened cube scan presented in Appendix D demonstrate that the scaling methodology used to determine the calculated SAR results presented herein are valid. The SAR result from the Table below is provided in Appendix F.

Table	21
Lanc	41

					Init	SAR	Meas.	Max Calc.		
		Carry	Cable	Test Freq	Pwr	Drift	1g-SAR	1g-SAR		
Antenna	Battery	Accessory	Accessory	(MHz)	(W)	(dB)	(W/kg)	(W/kg)	Run#	
AAM32X001	FNB-V143LI (AAM29X001)	AAM34X001	MH-Z101B	422.10000	5.49	-0.19	7.81	4.09	FIE-AB-180129-05	

14.0 Variability Assessment

Per the guidelines in KDB 865664 SAR variability assessment is required because SAR results are above 4.0 W/kg (Occupational).

The Table below includes test results of the original measurement(s), the repeated measurement(s), and the ratio (SAR_{high}/SAR_{low}) for the applicable test configuration(s).

Table 2

Run#	Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq. (MHz)	Adj Calc. 1g-SAR (W/kg)	Ratio	Comments
AZ(FAZ)-AB-180125- 01#	A AM22X001	FNB-V143LI	A A M2 4¥001	MII 7101D	422 10000	3.73	1.10	No additional repeated scans is required due to
FIE-AB-180129-05	AAM32X001	(AAM29X001)	AAM34X001	MH-Z101B	422.10000	4.09	1.10	the Ratio $(SAR_{high}/SAR_{low}) < 1.20$

15.0 Results Summary

Based on the test guidelines from section 4.0 and satisfying frequencies within FCC, US Frequency band, the highest Operational Maximum Calculated 1-gram average SAR values found for this filing:

Designator	Frequency band (MHz)	Max Calc at Body (W/kg)	Max Calc at Face (W/kg)	
	(141112)	1g-SAR	1g-SAR	
FCC, US	406.1- 470	4.09	2.83	

16.0 System Uncertainty

A system uncertainty analysis is not required for this report per KDB 865664 because the highest report SAR value Occupational exposure is less than 7.5W/kg.

Per the guidelines of ISO 17025/IEC 17025 a reported system uncertainty is required and therefore measurement uncertainty budget is included in Appendix A.

Appendix A Measurement Uncertainty Budget

Table A.1: Uncertainty Budget for Device Under Test, for 450 MHz

Table A.1. Uncertainty budget to						_	<i>h</i> =	<i>i</i> =	
a	b	с	d	e = f(d,k)	f	g	cxf/e	cxg/e	k
	TEEE	Tol.		$e = f(u, \kappa)$				-	n
	1528		Prob		<i>c</i> _i	<i>c</i> _i	1 g	10 g	
	section	(± %)	Dist		(1 g)	(10 g)	u _i	u _i	
Uncertainty Component	section			Div.			(±%)	(±%)	v _i
Measurement System									
Probe Calibration	E.2.1	6.7	N	1.00	1	1	6.7	6.7	∞
Axial Isotropy	E.2.2	4.7	R	1.73	0.707	0.707	1.9	1.9	∞
Hemispherical Isotropy	E.2.2	9.6	R	1.73	0.707	0.707	3.9	3.9	∞
Boundary Effect	E.2.3	1.0	R	1.73	1	1	0.6	0.6	∞
Linearity	E.2.4	4.7	R	1.73	1	1	2.7	2.7	∞
System Detection Limits	E.2.5	1.0	R	1.73	1	1	0.6	0.6	8
Readout Electronics	E.2.6	0.3	Ν	1.00	1	1	0.3	0.3	∞
Response Time	E.2.7	1.1	R	1.73	1	1	0.6	0.6	∞
Integration Time	E.2.8	1.1	R	1.73	1	1	0.6	0.6	∞
RF Ambient Conditions - Noise	E.6.1	3.0	R	1.73	1	1	1.7	1.7	∞
RF Ambient Conditions - Reflections	E.6.1	0.0	R	1.73	1	1	0.0	0.0	∞
Probe Positioner Mech. Tolerance	E.6.2	0.4	R	1.73	1	1	0.2	0.2	8
Probe Positioning w.r.t Phantom	E.6.3	1.4	R	1.73	1	1	0.8	0.8	8
Max. SAR Evaluation (ext., int., avg.)	E.5	3.4	R	1.73	1	1	2.0	2.0	8
Test sample Related									
Test Sample Positioning	E.4.2	3.2	N	1.00	1	1	3.2	3.2	29
Device Holder Uncertainty	E.4.1	4.0	Ν	1.00	1	1	4.0	4.0	8
SAR drift	6.6.2	5.0	R	1.73	1	1	2.9	2.9	8
Phantom and Tissue Parameters									
Phantom Uncertainty	E.3.1	4.0	R	1.73	1	1	2.3	2.3	8
Liquid Conductivity (target)	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	8
Liquid Conductivity (measurement)	E.3.3	3.3	N	1.00	0.64	0.43	2.1	1.4	8
Liquid Permittivity (target)	E.3.2	5.0	R	1.73	0.6	0.49	1.7	1.4	8
Liquid Permittivity (measurement)	E.3.3	1.9	Ν	1.00	0.6	0.49	1.1	0.9	8
Combined Standard Uncertainty			RSS				12	11	482
Expanded Uncertainty									
(95% CONFIDENCE LEVEL)			k=2				23	23	

Notes for uncertainty budget Tables:

a) Column headings a-k are given for reference.

b) Tol. - tolerance in influence quantity.

c) Prob. Dist. – Probability distribution

d) N, R - normal, rectangular probability distributions

e) Div. - divisor used to translate tolerance into normally distributed standard uncertainty

f) *ci* - sensitivity coefficient that should be applied to convert the variability of the uncertainty component into a variability of SAR.

g) ui - SAR uncertainty

h) *vi* - degrees of freedom for standard uncertainty and effective degrees of freedom for the expanded uncertainty

Table A.2. Uncertainty Duuget	\mathbf{D}	stem	anua	non (urb	one a	nat pr			
							<i>h</i> =	<i>i</i> =	
a	b	с	d	e = f(d,k)	f	g	cxf/e	cxg/e	k
		Tol.	Prob.		<i>c</i> _{<i>i</i>}	с,	1 g	10 g	
	IEEE 1528	(± %)	Dist.		(1 g)	(10 g)	u _i	u ;	
Uncertainty Component	section			Div.			(±%)	(±%)	v _i
Measurement System									
Probe Calibration	E.2.1	6.7	Ν	1.00	1	1	6.7	6.7	00
Axial Isotropy	E.2.2	4.7	R	1.73	1	1	2.7	2.7	00
Spherical Isotropy	E.2.2	9.6	R	1.73	0	0	0.0	0.0	00
Boundary Effect	E.2.3	1.0	R	1.73	1	1	0.6	0.6	8
Linearity	E.2.4	4.7	R	1.73	1	1	2.7	2.7	8
System Detection Limits	E.2.5	1.0	R	1.73	1	1	0.6	0.6	×
Readout Electronics	E.2.6	0.3	Ν	1.00	1	1	0.3	0.3	8
Response Time	E.2.7	1.1	R	1.73	1	1	0.6	0.6	8
Integration Time	E.2.8	0.0	R	1.73	1	1	0.0	0.0	œ
RF Ambient Conditions - Noise	E.6.1	3.0	R	1.73	1	1	1.7	1.7	œ
RF Ambient Conditions - Reflections	E.6.1	0.0	R	1.73	1	1	0.0	0.0	œ
Probe Positioner Mechanical Tolerance	E.6.2	0.4	R	1.73	1	1	0.2	0.2	œ
Probe Positioning w.r.t. Phantom	E.6.3	1.4	R	1.73	1	1	0.8	0.8	œ
Max. SAR Evaluation (ext., int., avg.)	E.5	3.4	R	1.73	1	1	2.0	2.0	œ
Dipole									
Dipole Axis to Liquid Distance	8, E.4.2	2.0	R	1.73	1	1	1.2	1.2	œ
Input Power and SAR Drift Measurement	8, 6.6.2	5.0	R	1.73	1	1	2.9	2.9	8
Phantom and Tissue Parameters									
Phantom Uncertainty	E.3.1	4.0	R	1.73	1	1	2.3	2.3	œ
Liquid Conductivity (target)	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	8
Liquid Conductivity (measurement)	E.3.3	3.3	R	1.73	0.64	0.43	1.2	0.8	8
Liquid Permittivity (target)	E.3.2	5.0	R	1.73	0.6	0.49	1.7	1.4	8
Liquid Permittivity (measurement)	E.3.3	1.9	R	1.73	0.6	0.49	0.6	0.5	8
Combined Standard Uncertainty			RSS				10	9	99999
Expanded Uncertainty									
(95% CONFIDENCE LEVEL)			k=2				19	18	

Notes for uncertainty budget Tables:

a) Column headings *a*-*k* are given for reference.

b) Tol. - tolerance in influence quantity.

c) Prob. Dist. – Probability distribution

d) N, R - normal, rectangular probability distributions

e) Div. - divisor used to translate tolerance into normally distributed standard uncertainty

f) *ci* - sensitivity coefficient that should be applied to convert the variability of the uncertainty component into a variability of SAR.

g) ui - SAR uncertainty

h) *vi* - degrees of freedom for standard uncertainty and effective degrees of freedom for the expanded uncertainty

Appendix B Probe Calibration Certificates

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA. Multilateral Agreement for the recognition of calibration certificates

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

S

С

S

Certificate No: ES3-3196_May17 Client Motorola MY CALIBRATION CERTIFICATE ES3DV3 - SN:3196 Object QA CAL-01.v9, QA CAL-12.v9, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure(s) Calibration procedure for dosimetric E-field probes May 17, 2017 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)*C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Cal Date (Certificate No.) Scheduled Calibration Primary Standards ID: SN: 104778 04-Apr-17 (No. 217-02521/02522) Apr-18 Power meter NRP Power sensor NRP-Z91 SN: 103244 04-Apr-17 (No. 217-02521) Apr-18 SN: 103245 04-Apr-17 (No. 217-02525) Apr-18 Power sensor NRP-Z91 Reference 20 dB Attenuator SN: S5277 (20x) 07-Apr-17 (No. 217-02528) Apr-18 31-Dec-16 (No. ES3-3013_Dec16) Dec-17 Reference Probe ES3DV2 SN: 3013 DAE4 SN: 660 7-Dec-16 (No. DAE4-660_Dec16) Dec-17

Check Date (in house) Scheduled Check Secondary Standards ID SN: GB41293874 Power meter E4419B 06-Apr-16 (in house check Jun-16) In house check: Jun-18 Power sensor E4412A 06-Apr-16 (in house check Jun-16) SN: MY41498087 In house check: Jun-18 Power sensor E4412A In house check: Jun-18 SN: 000110210 06-Apr-16 (in house check Jun-16) RF generator HP 8648C SN: US3642U01700 04-Aug-99 (in house check Jun-16) In house check: Jun-18 Network Analyzer HP 8753E SN: US37390585 18-Oct-01 (in house check Oct-16) In house check: Oct-17

	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	7=19-
Approved by:	Katja Pokovic	Technical Manager	fletty
			Issued: May 18, 2017
This calibration certificate	e shall not be reproduced except in fu	Il without written approval of the laboratory	6

Certificate No: ES3-3196_May17

Page 1 of 18

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

- S Schweizerischer Kalibrierdienst
- C Service suisse d'étalonnage
- S Servizio svizzero di taratura
 - Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary: tissue simulating liquid TSL sensitivity in free space NORMx,y,z sensitivity in TSL / NORMx,y,z ConvF diode compression point DCP crest factor (1/duty_cycle) of the RF signal CF A, B, C, D modulation dependent linearization parameters o rotation around probe axis Polarization ϕ 3 rotation around an axis that is in the plane normal to probe axis (at measurement center), Polarization 9 i.e., 9 = 0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, 'SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx, y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx, y,z are only intermediate values, i.e., the uncertainties of NORMx, y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW
- signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom
 exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: ES3-3196_May17

Page 2 of 18

Probe ES3DV3

SN:3196

Manufactured: June 16, 2008 Calibrated: May 17, 2017

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: ES3-3196_May17

Page 3 of 18

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3196

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	1.25	1.26	1.30	± 10.1 %
DCP (mV) ⁸	101.5	100.5	99.8	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	с	D dB	VR mV	Unc ^E (k=2)
0	CW	X	0.0	0.0	1.0	0.00	191.9	±3.5 %
		Y	0.0	0.0	1.0		203.8	
		Z	0.0	0.0	1.0		204.9	

Note: For details on UID parameters see Appendix.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

⁴ The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

¹ Numerical linearization parameter: uncertainty not required. ² Numerical linearization parameter: uncertainty not required. ² Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No: ES3-3196_May17

Page 4 of 18

ES3DV3-- SN:3196

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3196

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ⁶	Depth ^C (mm)	Unc (k=2)
150	52.3	0.76	7.46	7.46	7.46	0.08	1.25	±13.3 %
300	45.3	0.87	7.36	7.36	7.36	0.12	1.60	± 13.3 %
450	43.5	0.87	7.11	7.11	7.11	0.20	1.60	± 13.3 %
750	41.9	0.89	6.82	6.82	6.82	0.71	1.27	± 12.0 %
835	41.5	0.90	6.63	6.63	6.63	0.53	1.40	± 12.0 %
900	41.5	0.97	6.45	6.45	6.45	0.74	1.20	± 12.0 %
1450	40.5	1.20	5.78	5.78	5.78	0.74	1.15	± 12.0 %
1810	40.0	1.40	5.58	5.58	5.58	0.42	1.62	± 12.0 %
1900	40.0	1.40	5.42	5.42	5.42	0.71	1.26	± 12.0 %
2100	39.8	1.49	5.44	5.44	5.44	0.78	1.22	± 12.0 %
2300	39.5	1.67	5.00	5.00	5.00	0.74	1.27	± 12.0 %
2450	39.2	1.80	4.74	4.74	4.74	0.65	1.38	± 12.0 %
2600	39.0	1.96	4.60	4.60	4.60	0.75	1.25	± 12.0 %

Calibration Parameter Determined in Head Tissue Simulating Media

⁶ Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency was a set of the convF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency was a set of the convF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency was a set of the convF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency was a set of the convF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency was a set of the convF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency was a set of the convF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency was a set of the convF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency was a set of the convF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency was a set of the convF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency was a set of the convF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency was a set of the convF assessments at 30, 64, 128, 150 and 200 MHz respectively. Above 5 GHz frequency was a set of the convF assessments at 30, 64, 128, 150 and 200 MHz respectively. Above 5 GHz frequency was a set of the convF assessments at 30, 64, 128, 150 and 200 MHz respectively. Above 5 GHz frequency was a set of the convF assessments at 30, 64, 128, 150 and 200 MHz respectively. Above 5 GHz frequency was a set of the convF assessments at 30, 64, 128, 150 and 200 MHz respectively. Above 5 GHz frequency was a set of the convF assessments at 30, 64, 128, 150 and 200 MHz respectiv

below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvE assessments at 30, 64, 128, 150 and 220 MHz respectively. Acove 5 GHz inequency validity can be extended to ± 10 MHz. The validity of tissue parameters (s and c) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (c and d) is restricted to ± 5%. The uncertainty is the RSS of the ConvE uncertainty for indicated target tissue parameters. (c and d) is restricted to ± 5%. The uncertainty is the RSS of the ConvE uncertainty for indicated target tissue parameters. (c and d) is restricted to ± 5%. The uncertainty is the RSS of the ConvE uncertainty for indicated target tissue parameters. (c and d) is restricted to ± 5%. The uncertainty is the RSS of the Ana/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: ES3-3196_May17

Page 5 of 18

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3196

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
150	61.9	0.80	7.06	7.06	7.06	0.09	1.25	± 13.3 %
300	58.2	0.92	6.92	6.92	6.92	0.10	1.60	± 13.3 %
450	56.7	0.94	7.00	7.00	7.00	0.13	1.60	±13.3 %
750	55.5	0.96	6.44	6.44	6.44	0.80	1.13	± 12.0 %
835	55.2	0.97	6.31	6.31	6.31	0.50	1.47	± 12.0 %
900	55.0	1.05	6.27	6.27	6.27	0.52	1.47	± 12.0 %
1450	54.0	1.30	5.40	5.40	5.40	0.71	1.19	± 12.0 %
1810	53.3	1.52	5.11		5.11	0.40	1.83	± 12.0 %
1900	53.3	1.52	4.91	4.91	4.91	0.60	1.47	± 12.0 %
2100	53.2	1.62	5.24	5.24	5.24	0.60	1.49	± 12.0 %
2300	52.9	1.81	4.72	4.72	4.72	0.80	1.27	± 12.0 %
2450	52.7	1.95	4.58	4.58	4.58	0.80	1.13	± 12.0 %
2600	52.5	2.16	4.40	4.40	4.40	0.80	1.20	± 12.0 %

Calibration Parameter Determined in Body Tissue Simulating Media

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.
⁷ At frequencies below 3 GHz, the validity of tissue parameters (s and *a*) can be relaxed to ± 10% if liquid compensation formula is applied to the parameters (s and *a*) is negatively if each of the prostricted to ± 6%. The uncertainty is the RSS of the RSS of

measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (c and o) is restricted to ± 5%. The uncertainty is the RSS of

the ConvF uncertainty for indicated target tissue parameters. ⁹ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

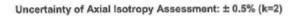
Certificate No: E\$3-3196_May17

Page 6 of 18

ES3DV3- SN:3196

1.5 1.4 1.3 Frequency response (normalized) 1.2 1.1 1.0 0.9 0.8 0.7 0.6 0.5-2000 2500 3000 1500 ά 500 1000 f [MHz] 1EM + R22

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

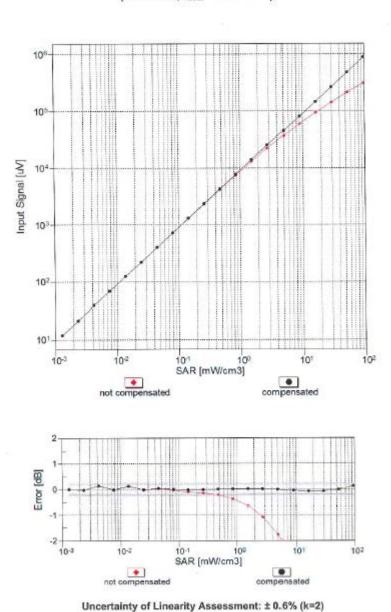

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: ES3-3196_May17

Page 7 of 18

ES3DV3-SN:3196

f=600 MHz,TEM f=1800 MHz,R22 33 e Z e Z e Y × Tot Tot 0.5-Error [dB] 0.0 -0.5 -150 -100 -50 50 100 150 Roll [*] 100 MHz 600 MHz 2500 MHz 1800 MHz

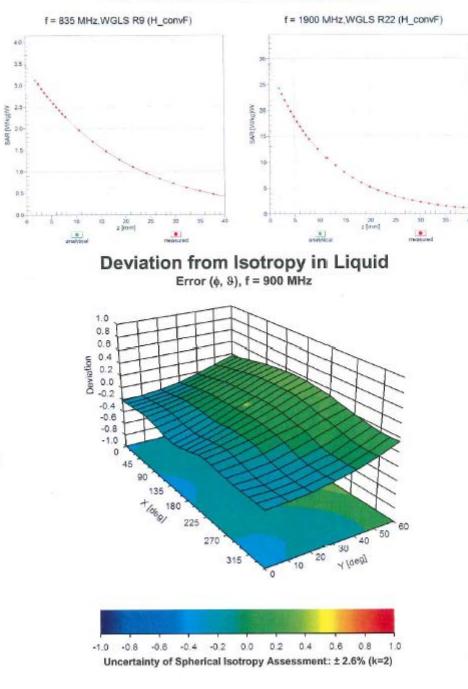

Certificate No: ES3-3196_May17

Page 8 of 18

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

ES3DV3- SN:3196

May 17, 2017



Dynamic Range f(SAR_{head}) (TEM cell, f_{eval}= 1900 MHz)

Certificate No: ES3-3196_May17

Page 9 of 18

ES3DV3- SN:3196

Conversion Factor Assessment

Certificate No: ES3-3196_May17

Page 10 of 18

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3196

Other Probe Parameters

Triangular
6.7
enabled
disabled
337 mm
10 mm
10 mm
4 mm
2 mm
2 mm
2 mm
3 mm

Certificate No: ES3-3196_May17

Page 11 of 18

May 17, 2017

ES3DV3-SN:3196

Appendix: Modulation Calibration Parameters

UID	Communication System Name		A	В	с	D dB	VR mV	Unc ^E (k=2)
	0111		dB	dBõV	1.0			±3.5 %
)	CW	X	0.0	0.0	1.0	0.00	191.9 203.8	±3.5 %
		Y	0.0	0.0	1.0			
		Z	0.0	0.0	1.0	0.04	204.9	1078
10011- CAB	UMTS-FDD (WCDMA)	x	3.15	66.2	18.1	2.91	131.3	±0.7 %
		Y	3.25	66.4	17.9		143.9	
		Z	3.34	67.3	18.9		144.4	
10097- CAB	UMTS-FDD (HSDPA)	×	4.57	66.5	18.5	3.98	141.0	±0.9 %
		Y	4.44	65.6	17.9		129.2	
		Z	4.57	66.5	18.7		131.2	
10098- CAB	UMTS-FDD (HSUPA, Subtest 2)	х	4.63	66.8	18.7	3.98	141.2	±0.9 %
		Y	4.48	65.8	18.0		129.6	
		Z	4.56	66.4	18.7		130.5	
10100- CAC	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	х	6.64	68.4	20.3	5.67	148.8	±1.4 %
		Y	6.31	66.9	19.3		134.7	
		Z	6.47	67.7	20.0		137.4	
10101- CAC	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	×	7.41	67.5	20.1	6.42	132.2	±1.9 %
		Y	7.45	67.4	19.8		144.4	
		Z	7.62	68.2	20.6		147.4	
10108- CAD	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	x	6.50	67.9	20.2	5.80	144.9	±1.4 %
		Y	6.20	66.5	19.1		132.7	
		Z	6.38	67.4	20.0		134.5	
10109- CAD	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	×	7.19	67.3	20.0	6.43	128.8	±1.7 %
		Y	7.22	67.1	19.7	1	141.7	
		Z	7.36	67.8	20.5		143.1	
10110- CAD	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	×	6.14	67.1	19.8	5.75	140.8	±1.4 %
		Y	5.93	66.1	19.0		128.6	
		Z	6.05	66.8	19.7		131.2	
10111- CAD	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	×	7.21	68.0	20.5	6.44	148.8	±1.7 %
		Υ	6.96	66.8	19.6		137.4	
		Z	7.09	67.5	20.3		138.9	
10117- CAB	IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)	х	10.47	69.6	21.8	8.07	135.7	±2.7 %
		Y	10.30	69.0	21.3		145.6	
		Z	10.27	69.1	21.6		124.4	
10140- CAC	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	×	7.66	67.8	20.3	6.49	133.4	±1.7 %
		Y	7.64	67.6	20.0		145.3	
		Z	7.83	68.4	20.7		148.8	
10142- CAD	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	×	5.97	67.0	19.8	5.73	137.4	±1.7 %
		Y	5.99	66.8	19.4		149.4	
		Z	5.87	66.5	19.6		128.3	
10143- CAD	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	×	6.96	67.8	20.4	6.35	145.0	±1.4 %
		Y	6.67	66.5	19.4		130.6	
		Z	6.87	67.4	20.3		135.1	

Certificate No: ES3-3196_May17

Page 12 of 18

ES3DV3- SN:3196

May 17, 2017

10145- CAD	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	х	5.66	66.4	19.5	5.76	132.2	±1.4 %
		Y	5.72	66.4	19.3		145.5	
		z	5.83	67.1	20.0		146.9	
10146- CAD	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	×	6.59	67.3	20.2	6.41	134.3	±1.7 %
		Y	6.70	67.5	20.1		148.7	
		Z	6.57	67.3	20.2		128.0	
10149- CAC	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	×	7.42	68.1	20.5	6.42	148.9	±1.7 %
		Y	7.16	66.9	19.7		137.3	
		Z	7.32	67.6	20.4		139.9	
10154- CAD	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	×	6.08	66.9	19.7	5.75	135.0	±1.4 %
		Y	5.91	66.0	19.0		128.3	
10455	ITE FOR ICO FOMA PON DE LO MU	Z	6.02	66.6	19.7		129.1	
10155- CAD	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	×	7.10	67.6	20.3	6.43	144.0	±1.7 %
		Y	6.93	66.7	19.6		135.0	
10156-	I TE EDD (SO EDMA FOX) FD. 5 MIL	Z	7.06	67.4	20.3		136.1	
CAD	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	×	5.86	66.6	19.6	5.79	132.5	±1.4 %
		Υ	5.94	66.6	19.4		148.0	
10157-	I TE EDD (SC EDMA 50% DB 5 Miles	Z	6.04	67.3	20.1		149.4	
CAD	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	x	6.88	67.5	20.3	6.49	139.1	±1.4 %
		Y	6.70	66.6	19.6		130.0	
10160-	LTE-FDD (SC-FDMA, 50% RB, 15 MHz,	Z	6.83	67.3	20.3	E 00	131.8	
CAC	QPSK)	X	6.52	67.4	19.9	5.82	139.8	±1.4 %
		Y Z	6.31	66.4	19.2		131.6	
10161-	LTE-FDD (SC-FDMA, 50% RB, 15 MHz,	2 X	6.47	67.2	19.9	6.43	134.3	14 7 4/
CAC	16-QAM)	 γ	7.46	68.0	20.5	0.45	147.9 139.9	±1.7 %
		Z	7.28	67.2	19.8		141.3	
10166- CAD	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	X	5.26	67.8 67.0	20.4 19.8	5.46	141.3	±1.2 %
0.10		γ	5.10	65.9	18.9		137.5	
		z	5.20	66.6	19.7		140.5	
10167- CAD	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	x	6.21	68.0	20.5	6.21	147.9	±1.4 %
		Y	6.11	67.3	19.9		141.5	
		Z	6.20	67.9	20.6		145.1	
10169- CAC	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	x	5.11	67.1	20.0	5.73	137.1	±1.2 %
		Υ	4.97	66.1	19.2		128.7	
		Z	5.09	66.9	20.1		134.8	
10170- CAC	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	x	6.01	68.6	21.2	6.52	140.6	±1.7 %
		Y	5.76	67.1	20.0		128.6	
10.15		Z	5.90	68.0	21.0		135.3	
10175- CAD	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	×	5.08	67.0	19.9	5.72	138.1	±1.7 %
		Y	5.19	67.1	19.8		149.2	
10170		Z	5.09	66.9	20.1		135.6	
10176- CAD	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	x	5.98	68.5	21.1	6.52	139.5	±1.7 %
		Y	5.72	67.0	20.0		127.8	
		Z	5.92	68.1	21.0		136.1	

Certificate No: ES3-3196_May17

Page 13 of 18

ES3DV3-SN:3196

May 17, 2017

0177- CAF	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	х	5.09	67.0	20.0	5.73	137.8	±1.7 %
		Y	5.15	66.9	19.7		149.7	
		Z	5.09	66.9	20.1		135.5	
0178- CAD	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16- QAM)	х	5.96	68.4	21.0	6.52	139.4	±1.4 %
		Y	5.74	67.0	20.0		128.0	
		Z	5.93	68.2	21.1		135.7	
0181- CAC	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	х	5.08	67.0	20.0	5.72	137.3	±1.4 %
		Y	5.15	66.9	19.7		149.8	
		Z	5.08	66.9	20.0		136.0	
10182- CAC	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	х	5.99	68.5	21.1	6.52	140.2	±1.4 %
		Y	5.75	67.1	20.1		128.3	
		Z	5.92	68.1	21.0		136.0	
10184- CAD	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	x	5.08	67.0	20.0	5.73	137.5	±1.4 %
		Y	5.13	66.8	19.6		149.7	
		Z	5.08	66.8	20.0	0.54	135.5	
10185- CAD	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16- QAM)	×	5.99	68.5	21.1	6.51	140.4	±1.4 %
		Y	5.77	67.2	20.1		128.7	
		Z	5.95	68.3	21.1	5.70	135.9	+1.0.00
10187- CAD	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	×	5.10	67.0	20.0	5.73	137.7	±1.2 %
		Y	4.94	65.9	19.1		127.3	
		Z	5.11	66.9	20.1	0.50	135.0	+4.7.0/
10188- CAD	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	×	5.99	68.5	21.1	6.52	141.3	±1.7 %
		Y	5.75	67.1	20.1	1	129.1	
	IFFE AND MALE HIT IS AN A CAMPAN	Z	5.94	68.2	21.0	8.10	149.3	±2.5 %
10196- CAB	IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK)	X	10.32	69.9	22.1	0.10	136.9	12.5 %
		Y	9.93	68.6	21.2		144.6	
10225-	UMTS-FDD (HSPA+)	Z	10.25	69.7	22.1	5.97	126.9	±1.4 %
10225- CAB	UMTS-FDD (HSPA+)	X	6.96	66.8	19.5 19.4	0.57	142.8	11.4 70
		Y	7.05	67.0	19.4		144.5	-
10274- CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rei8.10)	X	7.10 6.05	67.3 67.2	19.9	4.87	146.9	±1.2 %
CAB	(Valo. 10)	Y	5.88	66.4	18.5	+	136.3	
		z	6.02	67.0	19.2		140.4	
10275- CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Ret8.4)	X	4.38	66.5	18.7	3.96	128.6	±0.9 %
21.02		Y	4.48	66.7	18.6		141.5	
		Z	4.53	67.1	19.2		146.6	
10297- AAB	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	X	6.39	67.4	20.0	5.81	134.6	±1.4 %
		Y	6.16	66.3	19.1		126.6	
		Z	6.34	67.1	19.9		130.2	
10298- AAC	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	х	5.70	66.4	19.5	5.72	128.8	±1.4 %
		Y	5.79	66.5	19.4		144.2	
		Z	5.89	67.2	20.1		146.6	
10299- AAC	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	x	6.71	67.5	20.2	6.39	135.5	±1.4 %
		Y	6.54	66.6	19.5		127.4	
		Z	-				129.0	

Certificate No: ES3-3196_May17

Page 14 of 18

ES3DV3- SN:3196

May 17, 2017

10311- AAB	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	X	7.01	68.2	20.4	6.06	141.6	±1.7 %
		Y	6.76	67.1	19.6		133.7	
		Z	6.92	67.8	20.3		135.3	
10415- VAA	IEEE 802.11b WIFI 2.4 GHz (DSSS, 1 Mbps, 99pc duty cycle)	x	2.59	67.8	18.6	1.54	148.4	±0.7 %
		Y	2.50	66.6	17.5		141.3	
		Z	2.62	68.0	19.0		142.7	
10418- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps, 99pc duty cycle, Long preambule)	×	10.26	69.8	22.1	8.14	147.2	±2.5 %
		Y	9.97	68.8	21.4		139.1	
		Z	10.18	69.6	22.1		141.7	
10430- AAA	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1)	x	9.52	69.2	22.0	8.28	133.2	±1.9 %
		Y	9.19	68.0	21.1		124.7	
		Z	9.46	69.0	22.0		127.4	
10431- AAA	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1)	x	10.13	69.7	22.3	8.38	141.6	±2.5 %
		Y	9.84	68.7	21.5		133.3	
		Z	10.08	69.6	22.3		136.1	
10432- AAA	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1)	X	10.35	69.9	22.3	8.34	145.3	±2.5 %
		Y	10.06	68.8	21.5		137.2	
		Z	10.28	69.7	22.3		139.8	
10433- AAA	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1)	х	10.59	70.1	22.4	8.34	149.7	±2.5 %
		Y	10.26	69.0	21.5		139.9	
		Z	10.53	69.9	22.4		144.9	
10434- AAA	W-CDMA (BS Test Model 1, 64 DPCH)	х	9.81	69.7	22.5	8.60	132.3	±2.2 %
		Y	9.51	68.5	21.6		125.0	
		Ζ	9.78	69.6	22.5		129.2	
10435- AAB	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	7.19	72.9	24.2	7.82	127.6	±2.2 %
		Y	7.59	73.8	24.4		147.3	
		Z	7.07	72.3	24.1		124.7	
10457- AAA	UMTS-FDD (DC-HSDPA)	x	8.35	67.3	20.1	6.62	139.7	±1.4 %
		Y	8.12	66.5	19.4		128.3	
		Z	8.32	67.2	20.1		135.4	
10460- AAA	UMTS-FDD (WCDMA, AMR)	×	2.90	68.0	19.1	2.39	143.8	±0.9 %
		Y	2.85	67.4	18.5		132.5	
		Z	2.99	68.8	19.7		138.4	
10461- AAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	х	7.38	73.6	24.6	7.82	132.5	±3.0 %
		Y	7.55	73.6	24.3		145.4	
		Z	7.23	72.9	24.4		126.5	
10462- AAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	7.72	73.8	24.9	8.30	126.2	±2.7 %
		Y	8.15	74.7	25.1	-	140.6	
		Z	8.45	76.2	26.4		149.1	
10464- AAA	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	7.27	73.2	24.4	7.82	127.9	±2.5 %
		Y	7.46	73.4	24.2		140.3	
		Z	7.79	75.0	25.6		148.8	

Certificate No: ES3-3196_May17

Page 15 of 18

E\$3DV3~ SN:3196

May 17, 2017

10465- AAA	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16- QAM, UL Subframe=2,3,4,7,8,9)	x	7.64	73.4	24.7	8.32	124.5	±3.0 %
		Y	8.16	74,7	25.1		140.5	
		Z	8.38	75.9	26.3		147.0	
10467- \AB	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	x	7.11	72.6	24.1	7.82	125.3	±2.5 %
		Y	7.44	73.3	24.2		139.5	
		Z	7.82	75.2	25.6		149.0	
10468- VAB	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16- QAM, UL Subframe=2,3,4,7,8,9)	х	8.57	76.6	26.4	8.32	149.6	±3.0 %
		Υ	8.14	74.6	25.1		140.9	
		Z	8.46	76.3	26.4		149.0	
10470- AAB	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	×	7.89	75.4	25.6	7.82	148.3	±2.7 %
		Y	7.51	73.6	24.3		140.6	
		Z	7.81	75.1	25.6		148.1	
10471- AAB	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16- QAM, UL Subframe=2,3,4,7,8,9)	X	8.51	76.4	26.3	8.32	149.0	±3.0 %
		Y	8.14	74.6	25.1		141.1	
		Z	8.44	76.2	26.4		148.4	
10473- AAB	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	x	7.86	75.3	25.5	7.82	148.1	±2.7 %
		Y	7.48	73.5	24.3		141.1	
		Z	7.76	74.9	25.5		147.8	
10474- AAB	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16- QAM, UL Subframe=2,3,4,7,8,9)	x	8.51	76.4	26.3	8.32	149.1	±3.0 %
		Y	8.13	74.6	25.1		141.7	
		Z	8.40	76.0	26.3		147.9	
10477- AAB	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16- QAM, UL Subframe=2,3,4,7,8,9)	×	8.57	76.7	26.5	8.32	148.4	±3.0 %
		Y	8.17	74.7	25.2		142.2	
		Z	8.39	76.0	26.3		148.1	
10479- AAA	LTE-TDD (\$C-FDMA, 50% RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	×	7.41	72.1	23.7	7.74	130.6	±2.7 %
		Y	7.11	70.5	22.6		126.0	
		Z	7.44	72.1	23.9		130.3	
10480- AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	×	8.20	73.1	24.4	8.18	136.4	±3.0 %
		Y	7.90	71.6	23.3		130.3	
		Z	8.19	73.0	24.5		134.3	
10482- AAA	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	8.16	73.0	24.1	7.71	142.7	±3.3 %
		Y	7.79	71.3	22.9		136.9	
		Z	8.07	72.6	24.1		140.2	
10483- AAA	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	x	8.56	71.7	23.7	8.39	127.2	±2.7 %
		Y	9.01	72.7	24.0		148.0	
10.107		Z	9.13	73.5	24.9		148.2	10.515
10485- AAB	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	×	8.29	73.3	24.2	7.59	148.2	±2.5 %
		Y	7.91	71.7	23.0		140.3	
10100		Z	8.08	72.6	24.0	0.00	141.9	10.7.1
10486- AAB	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	8.80	71.9	23.9	8.38	130.9	±2.7 %
		Y	9.04	72.2	23.7		149.2	L
		Z	8.62	71.3	23.6		125.3	
10488- AAB	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	×	8.12	71.6	23.3	7.70	128.9	±2.7 %
		Y	8.42	72.1	23.3		147.2	
		Z	8.65	73.3	24.4		147.8	

Certificate No: ES3-3196_May17

Page 16 of 18

ES3DV3- SN:3196

May 17, 2017

10489-	LTE-TDD (SC-FDMA, 50% RB, 10 MHz,		0.44	70.0	00.0	8.31	137.4	+0.7.6/
AAB	16-QAM, UL Subframe=2,3,4,7,8,9)	X	9.11	72.0	23.9	0.31		±2.7 %
		Y	8.58	70.0	22.4		127.9	
		Z	8.95	71.5	23.6		130.3	
10491- AAB	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	8.67	72.3	23.5	7.74	135.2	±2.5 %
		Y	8.08	70.0	22.1		125.2	
		Z	8.48	71.6	23.3		128.7	
10492- AAB	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	x	9.70	72.6	24.1	8.41	144.0	±2.7 %
		Y	9.18	70.6	22.8		135.3	
		Z	9.54	72.0	23.9		138.6	
10494- AAB	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	×	8.68	72.5	23.7	7.74	133.9	±2.5 %
		Y	8.08	70.2	22.2		124.5	
		Z	8.51	71.9	23.5		127.7	
10495- AAB	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	x	9.60	72.5	24.1	8.37	142.9	±2.7 %
		Y	9.17	70.8	22.9		135.6	
10107		Z	9.48	72.1	23.9		137.9	
10497- AAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	8.00	72.9	24.1	7.67	144.0	±3.0 %
		Y	7.60	71.0	22.7		136.2	
		Z	7.89	72.4	24.0		139.2	
10498- AAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	×	8.34	71.4	23.6	8.40	124.4	±3.0 %
		Y	8.78	72.3	23.8		144.6	
		Z	8.94	73.3	24.8		145.4	
10500- AAA	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	×	7.79	71.1	23.1	7.67	125.5	±2.5 %
		Y	8.03	71.5	23.0		140.7	
		Z	8.44	73.3	24.4		146.1	
10501- AAA	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	x	8.98	72.0	24.0	8.44	133.9	±2.7 %
		Y	8.50	70.0	22.6		125.3	
		Z	8.84	71.5	23.8		128.5	
10503- AAB	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	х	8.11	71.6	23.3	7.72	128.9	±2.5 %
		Y	8.46	72.3	23.4		147.4	
10.55.1		Z	8.77	73.7	24.6		149.9	
10504- AAB	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	x	9.12	72.1	23.9	8.31	137.9	±3.0 %
		Y	8.56	69.9	22.4		127.3	-
40500		Z	8.98	71.6	23.7		132.5	
10506- AAB	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	x	8.66	72.5	23.7	7.74	133.6	±2.2 %
		Y	8.00	70.0	22.1		122.6	
10507	LTE TOP (NO POLIS JOINT DO JO	Z	8.54	72.0	23.6		129.3	
10507- AAB	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	x	9.56	72.4	24.0	8.36	142.4	±3.0 %
		Υ	9.00	70.3	22.6		132.3	
		Z	9.54	72.3	24.1		139.8	
10509- AAB	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	x	9.43	73.2	24.1	7.99	139.9	±2.7 %
		Y	8.75	70.8	22.6		128.7	
		Z	9.34	72.9	24.1		135.9	

Certificate No: ES3-3196_May17

Page 17 of 18

May 17, 2017

10510- AAB	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	×	9.51	71.0	23.2	8.49	122.3	±2.7 %
		Y	9.71	71.2	23.1		140.2	
		Z	10.19	72.9	24.4		147.3	
10512- AAB	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	x	9.02	72.8	23.7	7.74	135.0	±2.5 %
		Y	8.41	70.7	22.3		126.5	
		Z	9.01	72.8	23.8		133.0	
10513- AAB	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	x	10.08	73.0	24.3	8.42	147.1	±2.7 %
		Y	9.44	70.8	22.8		136.6	
		Z	10.02	72.8	24.3		144.2	
10515- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc duty cycle)	х	2.69	68.5	18.9	1.58	145.5	±0.7 %
		Y	2.62	67.5	18.1		139.0	
		Z	2.73	68.7	19.3		143.9	
10564- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 9 Mbps, 99pc duty cycle)	x	10.41	69.9	22.3	8.25	146.6	±2.2 %
		Y	10.14	68.9	21.5		138.8	
		Z	10.38	69.8	22.3		142.6	
10571- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 90pc duty cycle)	x	3.47	71.3	20.1	1.99	145.7	±0.7 %
		Y	3.22	69.4	19.0		137.8	
		Z	3.47	71.3	20.4		142.7	
10572- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 90pc duty cycle)	x	3.56	71.9	20.4	1.99	144.9	±0.7 %
		Y	3.39	70.5	19.4		138.7	
		Z	3.52	71.7	20.6		142.1	
10575- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps, 90pc duty cycle)	×	10.83	70.6	22.9	8.59	146.0	±2.7 %
		Y	10.51	69.5	22.0		140.4	
		Z	10.78	70.4	22.9		142.4	
10576- AAA	IEEE 802.11g WiFI 2.4 GHz (DSSS- OFDM, 9 Mbps, 90pc duty cycle)	X	10.88	70.7	22.9	8.60	147.2	±2.7 %
		Y	10.55	69.6	22.1		139.9	
		Z	10.79	70.5	22.9		141.6	
10591- AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS0, 90pc duty cycle)	×	10.96	70.7	22.9	8.63	148.2	±2.7 %
		Y	10.64	69.6	22.0		142.7	
		Z	10.91	70.5	22.9		144.1	
10592- AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS1, 90pc duty cycle)	x	11.14	• 70.9	23.1	8.79	147.7	±2.7 %
		Y	10.84	69.8	22.3		143.1	
		Z	11.11	70.8	23.1		144.3	
10599- AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS0, 90pc duty cycle)	x	11.15	70.1	22.5	8.79	126.8	±2.5 %
		Y	10.76	69.0	21.7		121.8	
		Z	11.13	70.1	22.6		124.8	
10600- AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS1, 90pc duty cycle)	×	11.22	70.2	22.6	8.88	126.7	±2.2 %
		Y	10.85	69.1	21.8		122.4	
		Z	11.24	70.2	22.7		124.7	

^E Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No: ES3-3196_May17

Page 18 of 18

Appendix C Dipole Calibration Certificates

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Motorola Solutions MY

п

i.		C
		S
	and the	

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Certificate No: D450V3-1054_Oct17

s

Object	D450V3 - SN:10	54	
Calibration procedure(s)	QA CAL-15.v8 Calibration proce	edure for dipole validation kits bel	ow 700 MHz
Calibration date:	October 25, 201	7	
The measurements and the unce	artainties with confidence p	ional standards, which realize the physical un robability are given on the following pages ar ny facility: environment temperature (22 ± 3)°	d are part of the certificate.
Calibration Equipment used (M&			
Primary Standards Power meter NRP	1D #	Cal Date (Certificate No.)	Scheduled Calibration
Power sensor NRP-Z91	SN: 104778 SN: 103244	04-Apr-17 (No. 217-02521/02522)	Apr-18
ower sensor NRP-Z91	SN: 103244 SN: 103245	04-Apr-17 (No. 217-02521)	Apr-18
eference 20 dB Attenuator	SN: 103245 SN: 5277 (20x)	04-Apr-17 (No. 217-02522)	Apr-18
	SN: 5047.2 / 06327	07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529)	Apr-18
	WH. 0047.2100321	01-Abi-17 (IAO: 217-02053)	Apr-18
ype-N mismatch combination		31-Dec.16 (No EV2-9977 Dec.16)	Dec 17
ype-N mismatch combination Reference Probe EX3DV4	SN: 3877 SN: 654	31-Dec-16 (No. EX3-3877_Dec16) 24-Jul-17 (No. DAE4-654_Jul17)	Dec-17 Jul-18
ype-N mismatch combination Reference Probe EX3DV4 DAE4	SN: 3877		
ype-N mismatch combination Reference Probe EX3DV4)AE4 Secondary Standards	SN: 3877 SN: 654	24-Jul-17 (No. DAE4-654_Jul17)	Jul-18 Scheduled Check
ype-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Yower meter E4419B	SN: 3877 SN: 654 ID #	24-Jul-17 (No. DAE4-654_Jul17) Check Date (in house)	Jul-18 Scheduled Check In house check: Jun-18
Pype-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A	SN: 3877 SN: 654 ID # SN: GB41293874	24-Jul-17 (No. DAE4-654_Jul17) Check Date (in house) 06-Apr-16 (No. 217-02285/02284)	Jul-18 Scheduled Check In house check: Jun-18 In house check: Jun-18
Pype-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Regenerator HP 8648C	SN: 3877 SN: 654 ID # SN: GB41293874 SN: MY41498067	24-Jul-17 (No. DAE4-654_Jul17) <u>Check Date (in house)</u> 06-Apr-16 (No. 217-02285/02284) 06-Apr-16 (No. 217-02285)	Jul-18 Scheduled Check In house check: Jun-18 In house check: Jun-18 In house check: Jun-18
Pype-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Regenerator HP 8648C	SN: 3877 SN: 654 ID # SN: GB41293874 SN: MY41498087 SN: 000110210	24-Jul-17 (No. DAE4-654_Jul17) <u>Check Date (in house)</u> 06-Apr-16 (No. 217-02285/02284) 06-Apr-16 (No. 217-02285) 06-Apr-16 (No. 217-02284	Jul-18 Scheduled Check In house check: Jun-18 In house check: Jun-18 In house check: Jun-18 In house check: Jun-18
Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A RF generator HP 8648C	SN: 3877 SN: 654 ID # SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700	24-Jul-17 (No. DAE4-654_Jul17) <u>Check Date (in house)</u> 06-Apr-16 (No. 217-02285/02284) 06-Apr-16 (No. 217-02285) 06-Apr-16 (No. 217-02284 04-Aug-99 (in house check Jun-16)	Jul-18 Scheduled Check In house check: Jun-18 In house check: Jun-18 In house check: Jun-18 In house check: Jun-18
Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A RF generator HP 8648C Network Analyzer HP 8753E	SN: 3877 SN: 654 ID # SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700 SN: US37390585	24-Jul-17 (No. DAE4-654_Jul17) Check Date (in house) 06-Apr-16 (No. 217-02285/02284) 06-Apr-16 (No. 217-02285) . 06-Apr-16 (No. 217-02284 04-Aug-99 (in house check Jun-16) 18-Oct-01 (in house check Oct-17)	Jul-18 Scheduled Check In house check: Jun-18 In house check: Jun-18 In house check: Jun-18 In house check: Jun-18 In house check: Oct-18
Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A RF generator HP 8648C Network Analyzer HP 8753E Calibrated by:	SN: 3877 SN: 654 ID # SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700 SN: US37390585 Name	24-Jul-17 (No. DAE4-654_Jul17) <u>Check Date (in house)</u> 06-Apr-16 (No. 217-02285/02284) 06-Apr-16 (No. 217-02285) . 06-Apr-16 (No. 217-02284 04-Aug-99 (in house check Jun-16) 18-Oct-01 (in house check Oct-17) Function	Jul-18 Scheduled Check In house check: Jun-18 In house check: Jun-18 In house check: Jun-18 In house check: Jun-18 In house check: Oct-18

Certificate No: D450V3-1054_Oct17

Page 1 of 8

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

s

С

s

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D450V3-1054_Oct17

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	10111010
Phantom	ELI4 Flat Phantom	Shell thickness: 2 ± 0.2 mm
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	43.5	0.87 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	43.5 ± 6 %	0.87 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.12 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	4.48 W/kg ± 18.1 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	

normalized to 1W

3.00 W/kg ± 17.6 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

SAR for nominal Head TSL parameters

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	56.7	0.94 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.2 ± 6 %	0.93 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	1.14 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	4.57 W/kg ± 18.1 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured	condition 250 mW input power	0.759 W/kg

Certificate No: D450V3-1054_Oct17

Page 3 of 8

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	57.9 Ω - 4.1 jΩ
Return Loss	- 21.6 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	54.4 Ω - 8.9 jΩ	-
Return Loss	- 20.4 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.349 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	December 16, 2005

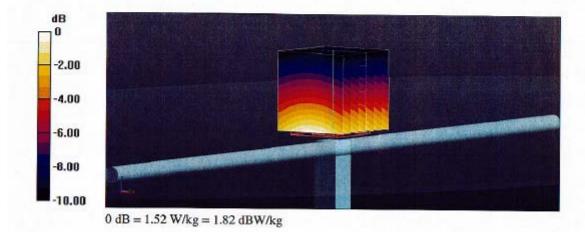
Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 25.10.2017

Test Laboratory: SPEAG, Zurich, Switzerland

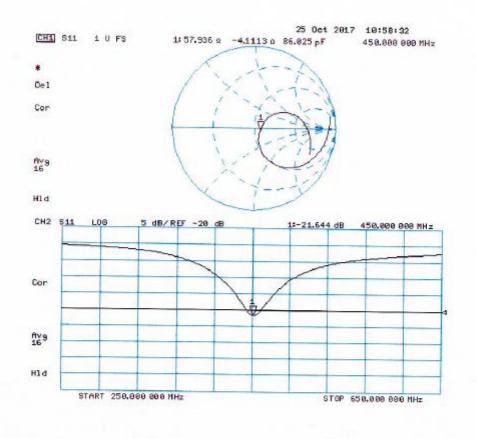
DUT: Dipole 450 MHz D450V3; Type: D450V3; Serial: D450V3 - SN:1054


Communication System: UID 0 - CW; Frequency: 450 MHz Medium parameters used: f = 450 MHz; $\sigma = 0.87$ S/m; $\epsilon_r = 43.5$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3877; ConvF(10.5, 10.5, 10.5); Calibrated: 31.12.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn654; Calibrated: 24.07.2017
- Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:1003
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Head Tissue/d=15mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 43.28 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 1.74 W/kg SAR(1 g) = 1.12 W/kg; SAR(10 g) = 0.750 W/kg Maximum value of SAR (measured) = 1.52 W/kg

Certificate No: D450V3-1054_Oct17

Page 5 of 8

Impedance Measurement Plot for Head TSL

Certificate No: D450V3-1054_Oct17

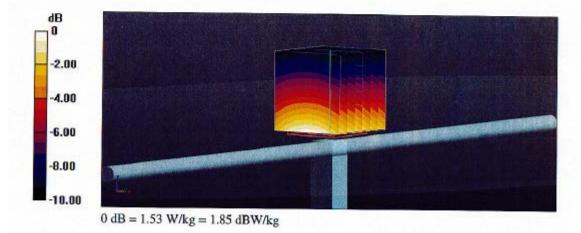
Page 6 of 8

DASY5 Validation Report for Body TSL

Date: 25.10.2017

Test Laboratory: SPEAG, Zurich, Switzerland

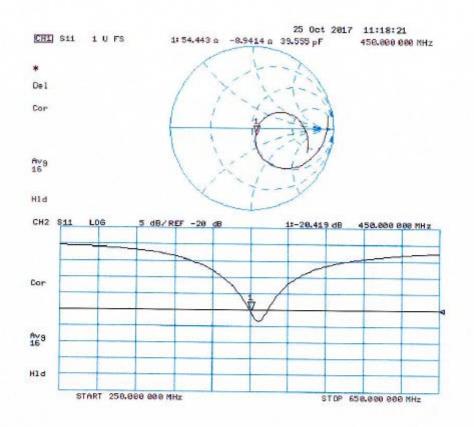
DUT: Dipole 450 MHz D450V3; Type: D450V3; Serial: D450V3 - SN:1054


Communication System: UID 0 - CW; Frequency: 450 MHz Medium parameters used: f = 450 MHz; $\sigma = 0.93$ S/m; $\epsilon_r = 55.2$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3877; ConvF(10.7, 10.7, 10.7); Calibrated: 31.12.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn654; Calibrated: 24.07.2017
- Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:1003
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Body Tissue/d=15mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 42.19 V/m; Power Drift = -0.05dB Peak SAR (extrapolated) = 1.76 W/kg SAR(1 g) = 1.14 W/kg; SAR(10 g) = 0.759 W/kg Maximum value of SAR (measured) = 1.53 W/kg

Certificate No: D450V3-1054_Oct17

Page 7 of 8

Impedance Measurement Plot for Body TSL

Certificate No: D450V3-1054_Oct17

Page 8 of 8

Dipole Data

As stated in KDB 865664, only dipoles used for longer calibration intervals required to provide supporting information and measurement to qualify for extended calibration interval. No Dipole was exceeded the annual calibration.