

DECLARATION OF COMPLIANCE SAR ASSESSMENT Part 1 of 2 Motorola Solutions Inc. Date of Report: 11/28/2016 **Report Revision: EME Test Laboratory** A Motorola Solutions Malaysia Sdn Bhd (Innoplex) Plot 2A, Medan Bayan Lepas, Mukim 12 SWD 11900 Bayan Lepas Penang, Malaysia. **Responsible Engineer:** Chang Chi Chern **Report Author:** Chang Chi Chern **Date/s Tested:** 11/23/2016 **Manufacturer:** Motorola Solutions Inc. **DUT Description:** T100 GMRS/FRS consumer radio 462-467 MHz Blue Color Test TX mode(s): CW (PTT) Max. Power output: 0.55W (GMRS and FRS) **Nominal Power:** 0.45W (GMRS and FRS) **Tx Frequency Bands:** FRS 467.5625 - 467.7125 MHz FRS 462.5625 - 462.7125 MHz GMRS 462.5500 - 462.7250 MHz Signaling type: FM Model(s) Tested: T100 (PMUE5066B) Model(s) Certified: T100 (PMUE5066B) **Serial Number(s):** 6904SW0002 **Classification:** General Population/Uncontrolled FCC ID: AZ489FT4932; FRS 467.5625 - 467.7125 MHz, FRS 462.5625 - 462.7125 MHz, GMRS 462.5500 - 462.7250 MHz This report contains results that are immaterial for FCC equipment approval, which are clearly identified. 109U-89FT4932; This report contains results that are immaterial for IC equipment IC: approval, which are clearly identified. The test results clearly demonstrate compliance with FCC General Population/Uncontrolled RF Exposure limits of 1.6 W/kg averaged over 1 gram per the requirements of OET Bulletin 65. The 10 grams result is not applicable to FCC filing. The test results clearly demonstrate compliance with ICNIRP (1998) Guidelines for limiting exposure in time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz), Health Physics 74, 494-522 RF Exposure limits of 2 W/kg averaged over 10grams of contiguous tissue. Based on the information and the testing results provided herein, the undersigned certifies that when used as stated in the operating instructions

supplied, said product complies with the national and international reference standards and guidelines listed in section 4.0 of this report. This report shall not be reproduced without written approval from an officially designated representative of the Motorola Solutions Inc EME Laboratory. I attest to the accuracy of the data and assume full responsibility for the completeness of these measurements. This reporting format is consistent with the suggested guidelines of the TIA TSB-150 December 2004. The results and statements contained in this report pertain only to the device(s) evaluated.

Tiong

Tiong Nguk Ing Deputy Technical Manager Approval Date: 12/23/2016 Certification Date: 12/23/2016

Certification No: L1161209

Part 1 of 2

1.0	Introdu	uction	4
2.0	FCC S	AR Summary	4
3.0	Abbre	viations / Definitions	4
4.0	Refere	nced Standards and Guidelines	5
5.0	SAR L	imits	6
6.0	Descri	ption of Devices under Test (DUT)	6
7.0		al Accessories and Test Criteria	
	7.1	Antenna	7
	7.2	Battery	7
	7.3	Body worn Accessory	7
	7.4	Audio Accessories	7
8.0	Descri	ption of Test System	8
	8.1	Descriptions of Robotics/Probes/Readout Electronics	8
	8.2	Description of Phantom(s)	9
	8.3	Description of Simulated Tissue	9
9.0	Additi	onal Test Equipment	10
10.0	SAR N	Aeasurement System Validation and Verification	11
	10.1	System Validation	11
	10.2	System Verification	11
	10.3	Equivalent Tissue Test Results	12
11.0	Enviro	onmental Test Conditions	12
12.0	DUT 1	Fest Setup and Methodology	13
	12.1	Measurements	13
	12.2	DUT Configuration(s)	13
	12.3	DUT Positioning Procedures	13
		12.3.1 Body	13
		12.3.2 Head	13
		12.3.3 Face	
	12.4	DUT Test Channels	
	12.5	SAR Result Scaling Methodology	
	12.6	DUT Test Plan	
13.0		Fest Data	
	13.1	Assessment at the Face for FRS band (467.5625 -467.7125 MHz)	15
	13.2	Assessment at the Face for GMRS band (462.5500 – 462.7250 MHz) and FRS band	
		(462.5625 – 462.7125 MHz)	
	13.3	Assessment for Industry Canada	
	13.4	Shortened Scan Assessment	
		aneous Transmission Exclusion for BT	
		s Summary	
		vility Assessment	
17.0	Systen	n Uncertainty	18

APPENDICES

А	Measurement Uncertainty Budget	19
	Probe Calibration Certificates	
С	Dipole Calibration Certificates	37

Part 2 of 2

APPENDICES

D	System Verification Check Scans	. 2
Е	DUT Scans	.4
F	Shorten Scan of Highest SAR Configuration	.7
G	DUT Test Position Photos	.9
Н	DUT, Body worn and audio accessories Photos	10

Report Revision History

Date	Revision	Comments
11/28/2016	А	Initial release

1.0 Introduction

This report details the utilization, test setups, test equipments, and test results of the Specific Absorption Rate (SAR) measurements performed at the Motorola Solutions Inc. EME Test Laboratory for handheld portable model number T100 (PMUE5066B). This device is classified as General Population/Uncontrolled.

2.0 FCC SAR Summary

Equipment	Frequency band (MHz)		Calc at Body (W/kg)	Max Calc at Face (W/kg)	
Class		1g-SAR	10g-SAR	1g-SAR	10g-SAR
FRF	462.5625 - 462.7125 (FRS) NA FRF 462.5500 - 462.7250 (GMRS) NA		NA	0.39	0.28
	467.5625 - 467.7125 (FRS)	NA	NA	0.17	0.12
Simultaneous Results		NA	NA	NA	NA

T 111	1
Table	
-	-

3.0 Abbreviations / Definitions

CNR: Calibration Not Required CW: Continuous Wave DUT: Device under Test EME: Electromagnetic Energy FM: Frequency Modulation FRF: Part 95 Family Radio Face Held Transmitter NA: Not Applicable PTT: Push to Talk SAR: Specific Absorption Rate FRS: Family Radio Service GMRS: General Mobile Radio Service

Body worn accessories: These accessories allow the DUT to be worn on the body of the user.

Maximum Power: Defined as the upper limit of the production line final test station.

4.0 **Referenced Standards and Guidelines**

This product is designed to comply with the following applicable national and international standards and guidelines.

- IEC62209-1 (2005) Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)
- Federal Communications Commission, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields", OET Bulletin 65, FCC, Washington, D.C.: 1997.
- IEEE 1528 (2013), Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques
- American National Standards Institute (ANSI) / Institute of Electrical and Electronics Engineers (IEEE) C95. 1-1992
- Institute of Electrical and Electronics Engineers (IEEE) C95.1-2005
- International Commission on Non-Ionizing Radiation Protection (ICNIRP) 1998
- Ministry of Health (Canada) Safety Code 6 (2015), Limits of Human Exposure to Radio frequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz
- RSS-102 (Issue 5) Radio Frequency (RF) Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)
- Australian Communications Authority Radio communications (Electromagnetic Radiation -Human Exposure) Standard (2014)
- ANATEL, Brazil Regulatory Authority, Resolution No. 303 of July 2, 2002 "Regulation of the limitation of exposure to electrical, magnetic, and electromagnetic fields in the radio frequency range between 9 kHz and 300 GHz." and "Attachment to resolution # 303 from July 2, 2002"
- IEC62209-2 Edition 1.0 2010-03, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Human models, instrumentation, and procedures Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz).
- FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04
- FCC KDB 865664 D02 RF Exposure Reporting v01r02
- FCC KDB 447498 D01 General RF Exposure Guidance v06

5.0 SAR Limits

	SAR (W/kg)
EXPOSURE LIMITS	(General Population / Uncontrolled Exposure Environment)	(Occupational / Controlled Exposure Environment)
Spatial Average - ANSI -		
(averaged over the whole body)	0.08	0.4
Spatial Peak - ANSI -		
(averaged over any 1-g of tissue)	1.6	8.0
Spatial Peak – ICNIRP/ANSI -		
(hands/wrists/feet/ankles averaged over 10-g)	4.0	20.0
Spatial Peak - ICNIRP -		
(Head and Trunk 10-g)	2.0	10.0

Table 2

6.0 Description of Devices under Test (DUT)

This portable device operates with analog Frequency Modulation (FM) incorporating traditional simplex two-way radio transmission protocol. This model's intended used is 5-5-90 (5% Transmit, 5% Receive and 90 % Standby); with a maximum transmit duty cycle of 50%.

The model represented under this filling with a fixed antenna and cover both GMRS and FRS band.

Table 3 below summarizes the bands and maximum output powers. Maximum output powers are defined as upper limit of the production line final test station.

Band (MHz)	Duty Cycle (%)	Max Power (W)
462.5625 – 462.7125 (FRS) 467.5625 – 467.7125 (FRS)	*50	0.55
462.5500 - 462.7250 (GMRS)	*50	0.55

Table 3

Note - * includes 50% PTT operation

The intended operating positions are "at the face" with the DUT at least 2.5cm from the mouth. No audio jack available for this device, thus PTT operation at the body not applicable for this model.

7.0 Optional Accessories and Test Criteria

This device is offered with optional accessories. All accessories were individually evaluated during the test plan creation to determine if testing was required per the guidelines outlined in section 4.0 to assess compliance of this device. The following sections identify the test criteria and details for each accessory category.

7.1 Antenna

This product offered with fixed antenna. The table below lists its description.

Table	4
-------	---

Antenna		Selected for	
Models	Description	test	Tested
Fixed	440 - 480 MHz , ¼ Wave, 0 dBd	Yes	Yes

7.2 Battery

One battery offered for this product. The Table below lists its description.

Table 5

Battery Models	Description	Selected for test	Tested	Comments
AAA Alkaline	3xAAA Alkaline individual batteries	Yes	Yes	

7.3 Body worn Accessory

There is one body worn offered for this product. The table below lists its description.

Table 6

Body worn Models	Description	Selected for test	Tested	Comments
1564028V01	TLKR- T3 T40 T50 T60 XTB Belt Clip	No	No	For convenient carry purpose

7.4 Audio Accessories

No audio jack available for this product, thus no audio accessories been offered.

8.0 Description of Test System

8.1 Descriptions of Robotics/Probes/Readout Electronics

Table 7

Dosimetric System type	System version	DAE type	Probe Type
Schmid & Partner Engineering AG SPEAG DASY 5	52.8.8.1222	DAE4	ES3DV3 (E-Field)

The DASY5TM system is operated per the instructions in the DASY5TM Users Manual. The complete manual is available directly from SPEAGTM. All measurement equipment used to assess SAR compliance was calibrated according to ISO/IEC 17025 A2LA guidelines. Section 9.0 presents additional test equipment information. Appendices B and C present the applicable calibration certificates. The E-field probe first scans a coarse grid over a large area inside the phantom in order to locate the interpolated maximum SAR distribution. After the coarse scan measurement, the probe is automatically moved to a position at the interpolated maximum. The subsequent scan can directly use this position as reference for the cube evaluations.

8.2 **Description of Phantom(s)**

Phantom Type	Phantom(s) Used	Material Parameters	Phantom Dimensions LxWxD (mm)	Material Thickness (mm)	Support Structure Material	Loss Tangent (wood)
Triple Flat	NA	200MHz - 6GHz; Er = 3-5, Loss Tangent = ≤ 0.05	280x175x175			
SAM	NA	300MHz - 6GHz; Er = < 5, Loss Tangent = ≤ 0.05	Human Model	2mm +/- 0.2mm	Wood	< 0.05
Oval Flat	\checkmark	300MHz - 6GHz; Er = 4+/- 1, Loss Tangent = ≤ 0.05	600x400x190			

Table 8

8.3 Description of Simulated Tissue

The sugar based simulate tissue is produced by placing the correct measured amount of De-ionized water into a large container. Each of the dried ingredients are weighed and added to the water carefully to avoid clumping. If the solution has a high sugar concentration the water is pre-heated to aid in dissolving the ingredients. For Diacetin and similar type simulates, sugar and HEC ingredients are not needed. The solution is mixed thoroughly, covered, and allowed to sit overnight prior to use.

The simulated tissue mixture was mixed based on the Simulated Tissue Composition indicated in Table 9. During the daily testing of this product, the applicable mixture was used to measure the Di-electric parameters at each of the tested frequencies to verify that the Di-electric parameters were within the tolerance of the tissue specifications.

Simulated Tissue Composition (percent by mass)

Table 9

	450 MHz		
Ingredients	Head	Body	
Sugar	56.00	46.50	
Diacetin	0	0	
De ionized –Water	39.10	50.53	
Salt	3.80	1.87	
HEC	1.00	1.00	
Bact.	0.10	0.10	

9.0 Additional Test Equipment

The Table below lists additional test equipment used during the SAR assessment.

Equipment Type	Model Number	Serial Number	Calibration Date	Calibration Due Date
Speag Probe	ES3DV3	3096	4/29/2016	4/29/2017
Speag DAE	DAE4	1483	9/27/2016	9/27/2017
Signal Generator	E4438C	MY45091270	7/26/2016	7/26/2018
Power Meter	E4418B	MY45101014	11/4/2015	11/4/2017
Power Sensor	8482B	2703A04641	6/15/2016	6/15/2017
Power Meter	E4419B	MY40330364	5/29/2015	5/29/2017
Power Sensor	8482B	MY41090719	6/15/2016	6/17/2017
Bi-directional Coupler	3020A	41931	7/15/2016	7/15/2017
Amplifier	10WD1000	28782	CNR	CNR
Thermometer	HH806AU	080307	4/8/2016	4/8/2017
Dickson Temperature Recorder	TM320	06153216	8/2/2016	8/2/2017
Temperature Probe	80PK-25	080428.01	8/5/2016	8/5/2017
Dielectric Assessment Kit	DAK-12	1051	3/8/2016	3/8/2017
Network Analyzer	E5071B	MY42403218	8/15/2016	8/15/2017
Speag Dipole	D450V3	1077	11/25/2015	11/25/2017

Table 10

10.0 SAR Measurement System Validation and Verification

DASY output files of the probe/dipole calibration certificates and system verification test results are included in appendices B, C & D respectively.

10.1 System Validation

The SAR measurement system was validated according to procedures in KDB 865664. The validation status summary Table is below.

Dates	Probe Calibration Point		Probe SN	Measured Tissue Parameters			Validation	
	POL	m	SIN	σ	€r	Sensitivity	Linearity	Isotropy
	CW							
05/30/2016	Head	450	3096	0.87	43.3	Pass	Pass	Pass

Table 11

10.2 System Verification

System verification checks were conducted each day during the SAR assessment. The results are normalized to 1W. Appendix D includes DASY plots for each day during the SAR assessment. The Table below summarizes the daily system check results used for the SAR assessment.

Table 1	2
---------	---

Probe Serial #	Tissue Type	Dipole Kit / Serial #	Ref SAR @ 1W (W/kg)		System Check Test Results when normalized to 1W (W/kg)	Tested Date
3096	IEEE/IEC Head	SPEAG D450V3 / 1077	4.57 +/- 10%	1.11	4.44	11/23/2016

10.3 Equivalent Tissue Test Results

Simulated tissue prepared for SAR measurements is measured daily and within 24 hours prior to actual SAR testing to verify that the tissue is within +/- 5% of target parameters at the center of the transmit band. This measurement is done using the applicable equipment indicated in section 9.0. The Table below summarizes the measured tissue parameters used for the SAR assessment.

Frequency (MHz)	Tissue Type	Conductivity Target (S/m)	Dielectric Constant Target	Conductivity Meas. (S/m)	Dielectric Constant Meas.	Tested Date
450	IEEE/IEC Head	0.87 (0.83-0.91)	43.5 (41.3-45.7)	0.88	43.6	11/23/2016
463	IEEE/IEC Head	0.87 (0.83-0.91)	43.4 (41.3-45.6)	0.89	43.3	11/23/2016
468	IEEE/IEC Head	0.87 (0.83-0.91)	43.4 (41.2-45.6)	0.90	43.2	11/23/2016

Table 13

11.0 Environmental Test Conditions

The EME Laboratory's ambient environment is well controlled resulting in very stable simulated tissue temperature and therefore stable dielectric properties. Simulated tissue temperature is measured prior to each scan to insure it is within $+/-2^{\circ}C$ of the temperature at which the dielectric properties were determined. The liquid depth within the phantom used for measurements was at least 15cm. Additional precautions are routinely taken to ensure the stability of the simulated tissue such as covering the phantoms when scans are not actively in process in order to minimize evaporation. The lab environment is continuously monitored. The Table below presents the range and average environmental conditions during the SAR tests reported herein:

	Target	Measured
Ambient Temperature	18 – 25 °C	Range: 20.0 –22.6°C Avg. 21.5 °C
Tissue Temperature	NA	Range: 21.0 – 21.4°C Avg. 21.3°C

Т	ab	le	14

The EME Lab RF environment uses a Spectrum Analyzer to monitor for extraneous large signal RF contaminants that could possibly affect the test results. If such unwanted signals are discovered the SAR scans are repeated.

12.0 DUT Test Setup and Methodology

12.1 Measurements

SAR measurements were performed using the DASY system described in section 8.0 using zoom scans. Oval flat phantoms filled with applicable simulated tissue were used for face testing.

The Table below includes the step sizes and resolution of area and zoom scans per KDB 865664 requirements.

Descr	iption	≤3 GHz	> 3 GHz	
Maximum distance from close (geometric center of probe ser	-	$5 \pm 1 \text{ mm}$	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$	
Maximum probe angle from p normal at the measurement loo	1	$30^{\circ} \pm 1^{\circ}$	$20^\circ\pm1^\circ$	
Maximum area scan spatial resolution: ΔxArea, ΔyArea		$ \leq 2 \text{ GHz:} \leq 15 \text{ mm} $ $ 2-3 \text{ GHz:} \leq 12 \text{ mm} $ $ 4-6 \text{ GHz:} \leq 12 \text{ mm} $ $ 4-6 \text{ GHz:} \leq 10 \text{ mm} $ $ 4-6 \text{ GHz:} \leq 10 \text{ mm} $ $ 4-6 \text{ GHz:} \leq 10 \text{ mm} $ $ 4-6 \text{ GHz:} \leq 10 \text{ mm} $ $ 4-6 \text{ GHz:} \leq 10 \text{ mm} $ $ 4-6 \text{ GHz:} \leq 10 \text{ mm} $ $ 4-6 \text{ GHz:} \leq 10 \text{ mm} $ $ 4-6 \text{ GHz:} \leq 10 \text{ mm} $ $ 4-6 \text{ GHz:} \leq 10 \text{ mm} $ $ 4-6 \text{ GHz:} \leq 10 \text{ mm} $ $ 4-6 \text{ GHz:} \leq 10 \text{ mm} $ $ 4-6 \text{ GHz:} \leq 10 \text{ mm} $ $ 5-6 \text{ ms} $ $ 5-6 \text{ GHz:} \leq 10 \text{ mm} $ $ 5-6 \text{ GHz:} = 10 \text{ mm} $ $ 5-6 \text{ GHz:} = 10 \text{ mm} $ $ 5-6 \text{ GHz:} = 10 \text{ mm} $ $ 5-6 \text{ GHz:} = 10 \text{ mm} $ $ 5-6 \text{ GHz:} = 10 \text{ mm} $ $ 5-6 \text{ GHz:} = 10 \text{ mm} $ $ 5-6 \text{ GHz:} = 10 \text{ mm} $ $ 5-6 \text{ GHz:} = 10 \text{ mm} $ $ 5-6 \text{ GHz:} = 10 \text{ mm} $ $ 5-6 \text{ GHz:} = 10 \text{ mm} $ $ 5-6 \text{ GHz:} = 10 \text{ mm} $ $ 5-6 \text{ GHz:} = 10 \text{ mm} $		
Maximum zoom scan spatial resolution: Δx Zoom, Δy Zoom		\leq 2 GHz: \leq 8 mm 2 - 3 GHz: \leq 5 mm*	$\begin{array}{l} 3-4 \text{ GHz:} \leq 5 \text{ mm}^* \\ 4-6 \text{ GHz:} \leq 4 \text{ mm}^* \end{array}$	
Maximum zoom scan spatial resolution, normal to phantom surface	uniform grid: ΔzZoom(n)	≤ 5 mm	$3 - 4 \text{ GHz} \le 4 \text{ mm}$ $4 - 5 \text{ GHz} \le 3 \text{ mm}$ $5 - 6 \text{ GHz} \le 2 \text{ mm}$	
IEEE P1528-2011 for details.	oth of a plane-wave at normal i			

Table 1	5
---------	---

* When zoom scan is required and the reported SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is \leq 1.4 W/kg, \leq 8 mm, \leq 7 mm and \leq 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

12.2 DUT Configuration(s)

The DUT is a portable device operational at the face as described in section 6.0 while using the applicable accessories listed in section 7.0. All accessories listed in section 7.0 of this report were considered.

12.3 DUT Positioning Procedures

The positioning of the device for each body location is described below and illustrated in Appendix G.

12.3.1 Body

Not applicable.

12.3.2 Head

Not applicable.

12.3.3 Face

The DUT was positioned with its' front sides separated 2.5cm from the phantom.

12.4 DUT Test Channels

The number of test channels was determined by using the following IEEE 1528 equation. The use of this equation produces the same or more test channels compared to the FCC KDB 447498 number of test channels formula.

$$N_{c} = 2 * roundup [10 * (f_{high} - f_{low}) / f_{c}] + 1$$

Where

 N_c = Number of channels F_{high} = Upper channel F_{low} = Lower channel F_c = Center channel

12.5 SAR Result Scaling Methodology

The calculated 1-gram and 10-gram averaged SAR results indicated as "Max Calc. 1g-SAR" and "Max Calc.10g-SAR" in the data Tables is determined by scaling the measured SAR to account for power leveling variations and drift. Appendix F includes a shortened scan to justify SAR scaling for drift. For this device the "Max Calc. 1g-SAR" and "Max Calc.10g-SAR" are scaled using the following formula:

$$Max_Calc = SAR_meas \cdot 10^{\frac{-Drift}{10}} \cdot \frac{P_max}{P_int} \cdot DC$$

P_max = Maximum Power (W) P_int = Initial Power (W) Drift = DASY drift results (dB) SAR_meas = Measured 1-g or 10-g Avg. SAR (W/kg) DC = Transmission mode duty cycle in % where applicable 50% duty cycle is applied for PTT operation

Note: for conservative results, the following are applied: If P_int > P_max, then P_max/P_int = 1. Drift = 1 for positive drift

Additional SAR scaling was applied using the methodologies outlined in FCC KDB 865664 using tissue sensitivity values. SAR was scaled for conditions where the tissue permittivity was measured above the nominal target and for tissue conductivity that was measured below the nominal target. Negative or reduced SAR scaling is not permitted.

12.6 DUT Test Plan

The guidelines and requirements outlined in section 4.0 were used to assess compliance of this device. All modes of operation identified in section 6.0 were considered during the development of the test plan. All tests were performed in CW and 50% duty cycle was applied to PTT configurations in the final results.

13.0 DUT Test Data

13.1 Assessment at the Face for FRS band (467.5625 -467.7125 MHz)

Assessment at the Face were done using 3xAAA Alkaline battery (refer to Exhibit 7B for battery illustration). The battery was used during conducted power measurements for all test channels within FCC allocated frequency range (467.5625 -467.7125 MHz) which are listed in Table 16.

Test Freq (MHz)	3xAAA Alkaline
• • • •	Power (W)
467.6375	0.409

Table 16

Assessment of fix antenna with offered battery with front of DUT positioned 2.5cm
facing phantom was performed. SAR plots of the highest results per Table 17
(bolded) are presented in Appendix E.

Table 17

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	$(\mathbf{d}\mathbf{D})$	Meas. 1g- SAR (W/kg)		Max Calc. 1g-SAR (W/kg)	Max Calc. 10g- SAR (W/kg)	Run#
Fixed	3xAAA Alkaline	None	None	467.6375	0.409	-0.53	0.227	0.162	0.17	0.12	ARF-FACE- 161123-05

13.2 Assessment at the Face for GMRS band (462.5500 – 462.7250 MHz) and FRS band (462.5625 – 462.7125 MHz)

Assessment at the Face were done using 3xAAA Alkaline battery (refer to Exhibit 7B for battery illustration). The battery was used during conducted power measurements for all test channels within FCC allocated frequency range (462.5500 – 462.7250 MHz and 462.5625 – 462.7125 MHz) which are listed in Table 18.

Table 18

Test Freq (MHz)	3xAAA Alkaline
• • •	Power (W)
462.6375	0.414

Assessment of fix antenna with offered battery with front of DUT positioned 2.5cm facing phantom was performed. SAR plots of the highest results per Table 19 (bolded) are presented in Appendix E.

Тя	ble	19
1 a	DIC	1/

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	SAR	Meas. 10g- SAR (W/kg)	Max Calc. 1g-SAR (W/kg)	Max Calc. 10g- SAR (W/kg)	Run#
Fixed	3xAAA Alkaline	None	None	462.6375	0.414	-0.79	0.495	0.354	0.39	0.28	ARF-FACE- 161123-04

13.3 Assessment for Industry Canada

Additional tests were not required for Industry Canada frequency range as testing performed is in compliance with Industry Canada frequency range.

13.4 Shortened Scan Assessment

A "shortened" scan using the highest SAR configuration overall from above was performed to validate the SAR drift of the full DASY5TM coarse and zoom scans. Note that the shortened scan represents the zoom scan performance result; this is obtained by first running a coarse scan to find the peak area and then, using a newly charged battery, a zoom scan only was performed. The results of the shortened cube scan presented in Appendix D demonstrate that the scaling methodology used to determine the calculated SAR results presented herein are valid. The SAR result from the Table below is provided in Appendix F.

Table	20
-------	----

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Pwr	SAR Drift (dB)	Ig-	Meas. 10g- SAR (W/kg)	Max Calc. 1g- SAR (W/kg)	Max Calc. 10g- SAR (W/kg)	Run#
Fixed	3xAAA Alkaline	None	None	462.6375	0.414	-0.52	0.514	0.370	0.38	0.28	ARF-FACE- 161123-07

14.0 Simultaneous Transmission Exclusion for BT

Not applicable.

15.0 Results Summary

Based on the test guidelines from section 4.0 and satisfying frequencies within FCC bands and Industry Canada Frequency bands, the highest Operational Maximum Calculated 1-gram and 10-gram average SAR values found for this filing:

Designator	Frequency band (MHz)		Calc at Body (W/kg)	Max Calc at Face (W/kg)			
		1g-SAR	10g-SAR	1g-SAR	10g-SAR		
FCC / Industry Canada	462.5625 – 462.7125 (FRS) 462.5500 – 462.7250 (GMRS)	NA	NA	0.39	0.28		
Industry Canada	467.5625 - 467.7125 (FRS)	NA	NA	0.17	0.12		

Table 21

The test results clearly demonstrate compliance with General Population / Uncontrolled RF Exposure limits of 1.6 W/kg averaged over 1 gram per the requirements of OET Bulletin 65. The 10 grams result is not applicable to FCC filing.

16.0 Variability Assessment

Per the guidelines in KDB 865664 SAR variability assessment is not required because SAR results are below 0.8 W/kg (General Population / Uncontrolled).

17.0 System Uncertainty

A system uncertainty analysis is not required for this report per KDB 865664 because the highest report SAR value General Population exposure is less than 1.5W/kg.

Per the guidelines of ISO 17025 a reported system uncertainty is required and therefore measurement uncertainty budget is included in Appendix A.

Appendix A Measurement Uncertainty Budget

Table A.1: Uncertainty Budget for Device Under Test for 450 MHz

							<i>h</i> =	<i>i</i> =	
a	b	с	d	e = f(d,k)	f	a	cxf/ e	cxg/ e	k
u Uncertainty Component	IEEE 1528 section	Tol. (± %)	Prob Dist	<i>J(d,K)</i> Div.	ci (1 g)	g ci (10 g)	e 1 g ui (±%)	e 10 g u _i (±%)	v _i
Measurement System									
Probe Calibration	E.2.1	6.7	Ν	1.00	1	1	6.7	6.7	x
Axial Isotropy	E.2.2	4.7	R	1.73	0.707	0.707	1.9	1.9	8 S
Hemispherical Isotropy	E.2.2	9.6	R	1.73	0.707	0.707	3.9	3.9	8
Boundary Effect	E.2.3	1.0	R	1.73	1	1	0.6	0.6	∞
Linearity	E.2.4	4.7	R	1.73	1	1	2.7	2.7	x
System Detection Limits	E.2.5	1.0	R	1.73	1	1	0.6	0.6	x
Readout Electronics	E.2.6	0.3	Ν	1.00	1	1	0.3	0.3	x
Response Time	E.2.7	1.1	R	1.73	1	1	0.6	0.6	∞
Integration Time	E.2.8	1.1	R	1.73	1	1	0.6	0.6	8
RF Ambient Conditions - Noise	E.6.1	3.0	R	1.73	1	1	1.7	1.7	x
RF Ambient Conditions -									
Reflections	E.6.1	0.0	R	1.73	1	1	0.0	0.0	∞
Probe Positioner Mech. Tolerance	E.6.2	0.4	R	1.73	1	1	0.2	0.2	∞
Probe Positioning w.r.t Phantom	E.6.3	1.4	R	1.73	1	1	0.8	0.8	∞
Max. SAR Evaluation (ext., int., avg.)	E.5	3.4	R	1.73	1	1	2.0	2.0	×
Test sample Related									
Test Sample Positioning	E.4.2	3.2	Ν	1.00	1	1	3.2	3.2	29
Device Holder Uncertainty	E.4.1	4.0	Ν	1.00	1	1	4.0	4.0	8
SAR drift	6.6.2	5.0	R	1.73	1	1	2.9	2.9	∞
Phantom and Tissue Parameters									
Phantom Uncertainty	E.3.1	4.0	R	1.73	1	1	2.3	2.3	∞
Liquid Conductivity (target)	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	∞
Liquid Conductivity									
(measurement)	E.3.3	3.3	Ν	1.00	0.64	0.43	2.1	1.4	∞
Liquid Permittivity (target)	E.3.2	5.0	R	1.73	0.6	0.49	1.7	1.4	∞
Liquid Permittivity (measurement)	E.3.3	1.9	N	1.00	0.6	0.49	1.1	0.9	∞
Combined Standard Uncertainty			RSS				11	11	477
Expanded Uncertainty (95% CONFIDENCE LEVEL)			k=2				23	22	

Notes for uncertainty budget Tables:

a) Column headings *a*-*k* are given for reference.

b) Tol. - tolerance in influence quantity.

c) Prob. Dist. – Probability distribution

d) N, R - normal, rectangular probability distributions

e) Div. - divisor used to translate tolerance into normally distributed standard

uncertainty

f) *ci* - sensitivity coefficient that should be applied to convert the variability of the uncertainty component into a variability of SAR.

g) ui - SAR uncertainty

h) vi - degrees of freedom for standard uncertainty and effective degrees of freedom for the expanded uncertainty

i =

h =

	b		d	e = f(d,k)	£	G	cxf /e	cx g/e	k
a Uncertainty Component	IEEE 1528 section	<i>c</i> Tol. (± %)	u Prob Dist	<i>J(U,K)</i> Div.	<i>c_i</i> (1 g)	<i>g</i> (10 g)	1 g U _i (±%)	10 g U _i (±%)	v _i
Measurement System									
Probe Calibration	E.2.1	6.7	N	1.00	1	1	6.7	6.7	8
Axial Isotropy	E.2.2	4.7	R	1.73	1	1	2.7	2.7	×
Spherical Isotropy	E.2.2	9.6	R	1.73	0	0	0.0	0.0	∞
Boundary Effect	E.2.3	1.0	R	1.73	1	1	0.6	0.6	8
Linearity	E.2.4	4.7	R	1.73	1	1	2.7	2.7	8
System Detection Limits	E.2.5	1.0	R	1.73	1	1	0.6	0.6	8
Readout Electronics	E.2.6	0.3	N	1.00	1	1	0.3	0.3	8
Response Time	E.2.7	1.1	R	1.73	1	1	0.6	0.6	8
Integration Time	E.2.8	0.0	R	1.73	1	1	0.0	0.0	8
RF Ambient Conditions - Noise	E.6.1	3.0	R	1.73	1	1	1.7	1.7	8
RF Ambient Conditions - Reflections	E.6.1	0.0	R	1.73	1	1	0.0	0.0	8
Probe Positioner Mechanical Tolerance	E.6.2	0.4	R	1.73	1	1	0.2	0.2	8
Probe Positioning w.r.t. Phantom	E.6.3	1.4	R	1.73	1	1	0.8	0.8	8
Max. SAR Evaluation (ext., int., avg.)	E.5	3.4	R	1.73	1	1	2.0	2.0	×
Dipole									
Dipole Axis to Liquid Distance	8, E.4.2	2.0	R	1.73	1	1	1.2	1.2	×
Input Power and SAR Drift Measurement	8, 6.6.2	5.0	R	1.73	1	1	2.9	2.9	∞
Phantom and Tissue Parameters									
Phantom Uncertainty	E.3.1	4.0	R	1.73	1	1	2.3	2.3	×
Liquid Conductivity (target)	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	×
Liquid Conductivity (measurement)	E.3.3	3.3	R	1.73	0.64	0.43	1.2	0.8	∞
Liquid Permittivity (target)	E.3.2	5.0	R	1.73	0.6	0.49	1.7	1.4	×
Liquid Permittivity (measurement)	E.3.3	1.9	R	1.73	0.6	0.49	0.6	0.5	8
Combined Standard Uncertainty			RSS				10	9	99999
Expanded Uncertainty (95% CONFIDENCE LEVEL)			k=2				19	18	

Table A.2: Uncertainty Budget for System Validation (dipole & flat phantom) for 450 MHz

Notes for uncertainty budget Tables:

a) Column headings *a*-*k* are given for reference.

b) Tol. - tolerance in influence quantity.

c) Prob. Dist. - Probability distribution

d) N, R - normal, rectangular probability distributions

e) Div. - divisor used to translate tolerance into normally distributed standard uncertainty

f) *ci* - sensitivity coefficient that should be applied to convert the variability of the uncertainty component into a variability of SAR.

g) ui - SAR uncertainty

h) *vi* - degrees of freedom for standard uncertainty and effective degrees of freedom for the expanded uncertainty

Appendix B Probe Calibration Certificates

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Client

Schweizerischer Kalibrierdienst s

Service suisse d'étalonnage С

Servizio svizzero di taratura s

Swiss Calibration Service

Accreditation No.: SCS 0108

Certificate No: ES3-3096_Apr16

Motorola Solutions MY CALIBRATION CERTIFICATE

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Object	ES3DV3 - SN:3096	3	
Calibration procedure(s)	QA CAL-25.v6	CAL-12.v9, QA CAL-14.v4, QA	CAL-23.v5,
Calibration date:	April 29, 2016		
The measurements and the unc	ertainties with confidence prob ucted in the closed laboratory f	al standards, which realize the physical units vability are given on the following pages and a acility: environment temperature (22 ± 3)*C a	are part of the certificate.
Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	06-Apr-16 (No. 217-02288/02289)	Apr-17
Power sensor NRP-Z91	SN: 103244	06-Apr-16 (No. 217-02288)	Apr-17
Power sensor NRP-Z91	SN: 103245	06-Apr-16 (No. 217-02289)	Apr-17
Reference 20 dB Attenuator	SN: \$5277 (20x)	05-Apr-16 (No. 217-02293)	Apr-17
Reference Probe ES30V2	SN: 3013	31-Dec-15 (No. ES3-3013_Dec15)	Dec-16
DAE4	SN: 660	23-Dec-15 (No. DAE4-680_Dec15)	Dec-16
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (No. 217-02285/02284)	In house check: Jun-16
Power sensor E4412A	SN: MY41498087	06-Apr-16 (No. 217-02285)	In house check: Jun-16
Power sensor E4412A	SN: 000110210	06-Apr-16 (No. 217-02284)	In house check: Jun-16
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Apr-13)	In house check: Jun-16
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-15)	In house check: Oct-16
		-	AL
	Name	Function	Signature
Calibrated by:	Claudio Leubler	Laboratory Technician	VEL

Issued: April 29, 2016

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Katja Pokovic

Certificate No: ES3-3096_Apr16

Approved by:

Technical Manager

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- S Servizio svizzero di taratura
- Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108

Glossary:	
TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization ϕ	φ rotation around probe axis
Polarization 9	9 rotation around an axis that is in the plane normal to probe axis (at measurement center),
0	i.e., 9 = 0 is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2013, *IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z; A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom
 exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: ES3-3096_Apr16

Page 2 of 14

ES3DV3 - SN:3096

April 29, 2016

Probe ES3DV3

SN:3096

Manufactured:	July 12, 2005
Repaired:	April 26, 2016
Calibrated:	April 29, 2016

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: ES3-3096_Apr16

Page 3 of 14

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3096

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (µV/(V/m) ²) ^A	0.96	0.89	0.90	± 10.1 %
DCP (mV) ⁸	105.7	104.3	104.8	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	с	D dB	VR mV	Unc ^E (k=2)
0	CŴ	X	0.0	0.0	1.0	0.00	185.2	±3.8 %
		Y	0.0	0.0	1.0		173,8	
		z	0.0	0.0	1.0		198.7	
10100- CAB	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	×	6.57	67.8	19.7	5.67	138.2	±1.7 %
		Y	6.44	67.4	19.5		131.7	
		Ζ	6.59	67.8	19.5		149.1	
10101- CAB	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	x	7.34	67.0	19.5	6.42	125.4	±1.7 %
		Y	7.61	67.9	20.1		143.6	
		Z	7.40	67.3	19.5		133.1	
10102- CAB	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	×	7.61	67.1	19.7	6.60	127.1	±1.7 %
		Y	7.91	68.2	20.3		145.4	
		Z	7.60	67.1	19,4		135.3	
10108- CAC	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	X	6.50	67.5	19.6	5.80	137.0	±1.7 %
		Y	6.39	67.1	19.5		130.5	
		Z	6.44	67.2	19.3		146.5	
10109- CAC	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	x	7.49	67.8	20.0	6.43	146.2	±1.7 %
		Y	7,37	67.5	19.9		139.9	
		Z	7,05	66.5	19.1		127.8	
10110- CAC	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	x	6.19	66.9	19.4	5.75	132.5	±1.7 %
		Y	6.08	66.6	19.3		127.5	
		Z	6.13	66.7	19.1		142.4	
10111- CAC	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	x	7.22	67.4	19.8	6.44	141.3	±2.2 %
		Y	7.13	67.2	19.9		135.8	
		Z	7.13	67.4	19.6		148.8	
10112- CAC	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	х	7.72	67.9	20.1	6.59	146.0	±1.9 %
		Y	7.63	67.7	20.1		140.7	
		Z	7.28	66.7	19.3		129.0	
10113- CAC	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	х	7.49	67.6	20.1	6.62	143.6	±1.9 %
		Y	7.36	67.3	20.0	-	137.2	
		Z	7.09	66.6	19.4		127.0	
10140- CAB	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	×	7.90	68.2	20.2	6.49	148.7	±1.9 %
		Y	7.81	68.0	20.2		143.9	
		Z	7.56	67.2	19.5		134.1	
10141- CAB	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	X	7.70	67.3	19.7	6.53	127.2	±1.9 %
		Y	7.97	68.2	20.3		146.1	
		Z	7.60	67.0	19.4		135.4	

Certificate No: ES3-3096_Apr16

Page 4 of 14

ES3DV3- SN:3096

April 29, 2016

10142-	LTE-FDD (SC-FDMA, 100% RB, 3 MHz,	x	6.04	66.7	19.3	5.73	130.8	±1.7 %
CAC	QPSK)	Y	6,19	67.4	19.7		149.8	
		ż	5.97	66.6	19.1		140.2	
10143- CAC	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	x	7.02	67.3	19.8	6.35	138.0	±1.9 %
	10 46 410	Γγ	6.90	67.1	19.7		132.9	
		Z	6.94	67.3	19.5		147.4	
10144- CAC	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	×	7.38	67.6	20.1	6.65	140.2	±1.9 %
		Y	7.28	67.5	20.1		135.4	
		Z	7.27	67.8	20.0		148.2	
10145- CAC	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	×	5.78	66.2	19.1	5.76	126.9	±1.4 %
		Y	5.95	67.1	19.6		146.3	
		Z	5.63	65.9	18.6		133.9	
10146- CAC	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	X	6.76	67.2	19.7	6.41	133.2	±1.9 %
		Y	6.66	67.0	19.7		128.2	
101/7		Z	6.59	67.1	19.5	0.70	140.7	10.0.04
10147- CAC	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	×	7.06	67.4	20.0	6.72	134.5	±2.2 %
		Y	6.96	67.2	20.0		129.8	
10110		Z	6.95	67.6	20.0		141.4	
10149- CAB	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	×	7.47	67.8	20.0	6.42	144.6	±1.9 %
		Y	7.41	67.7	20.1		140.2	
10150-	LTE-FDD (SC-FDMA, 50% RB, 20 MHz,	Z	7.13	66.8	19.4	0.00	129.1	14.0.01
CAB	64-QAM)	×	7.74	67.9	20.2	6.60	146.5	±1.9 %
		Y	7.67	67.9	20.2		142.5	
10154-	LTE-FDD (SC-FDMA, 50% RB, 10 MHz,	Z X	7.35	66.9 66.8	19.4 19.3	5.75	130.7	±1.4 %
CAC	QPSK)	Y	6.12	66.7	19.4		128.1	
		z	6.16	66.9	19.2		142.4	
10155- CAC	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	X	7.21	67.4	19.8	6.43	141.3	±1.9 %
		Y	7.16	67.4	20.0		136.7	
		Z	6.79	66.1	19.0		125.3	
10156- CAC	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	x	5.99	66.5	19.2	5.79	129.8	±1.7 %
		Y	6.16	67.3	19.8		149.3	
		Z	5.90	66.4	18.9		137.3	
10157- CAC	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	x	7.01	67.2	19.8	6.49	136.9	±1.9 %
		Y	6.93	67.2	19.9		131.7	
10450	ITE FOR (DO EDINE FOR OD AN OD	Z	6.88	67.2	19.6	0.00	143.5	1100
10158- CAC	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	×	7.49	67.6	20.1	6.62	142.3	±1.9 %
		Y	7,42	67.6	20.1		137.4	
10159- CAC	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	Z X	7.13 7.12	66.7 67.3	19.4 19.9	6.56	125.9	±2.2 %
0,10	vy wrant	Y	7.08	67.4	20.0	1	132.4	
		ż	7.02	67.5	19.8		145.3	
10160- CAB	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	x	6.61	67.3	19.5	5.82	135.9	±1.7 %
		Y	6.51	67.1	19.5		132.3	
		Z	6.62	67.4	19.5		146.9	

Certificate No: ES3-3096_Apr16

ES3DV3-- SN:3096

April 29, 2016

10161- CAB	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	х	7.52	67.7	20.0	6.43	144.3	±1.9 %
		Y	7.44	67.6	20.0		140.0	
		Z	7.11	66.6	19.2		127.8	
10162- CAB	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	×	7.75	67.9	20.1	6.58	146.0	±1.9 %
		Y	7.67	67.8	20.1		141.6	
		Z	7.35	66.8	19,4		130.4	
10166- CAC	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	x	5.41	66.8	19.4	5.46	143.9	±1.2 %
		Y	5.36	66.8	19.4		138.5	
		Z	5.14	66.1	18.8		129.3	1
10167- CAÇ	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	x	6.46	67.9	20.1	6.21	149.0	±1.7 %
		Y	6.36	67.8	20.1		143.6	
		Z	5.99	66.7	19.2		131.7	
10168- CAC	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	×	6.66	67.1	20.0	6.79	125.6	±1.9 %
		Y	6.88	68.2	20.7		144.3	
		Z	6.54	67.4	20.0		133.1	
10169- CAB	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	×	5.24	66.8	19.5	5.73	135.2	±1.4 %
		Y	5.23	66.9	19.6		133.1	
		Z	5.10	66.7	19.1		145.3	
10170- CAB	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	x	6.17	68.2	20.5	6.52	137.9	±1.7 %
		Y	6.12	68.1	20.5		134.4	
		Ż	5.93	68.0	20.2		145.0	
10171- AAB	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	×	6.20	68.4	20.5	6.49	138.1	±1.7 %
		Y	6.14	68.2	20.6		134.7	
		Z	5.91	67.8	20.0		144.8	
10175- CAC	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	×	5.24	66.9	19.6	5.72	136.0	±1.4 %
		Y	5.21	66.8	19.6		133.5	
		Z	5.07	66.5	19.0		143.3	
10176- CAC	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	×	6.20	68.3	20.5	6.52	138.9	±1.7 %
		Y	6.14	68.2	20.6		135.4	
		Z	5.91	67.8	20.1		145.0	
10177- CAE	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	x	5.26	67.0	19.6	5.73	136.2	±1.2 %
		Y	5.23	66.9	19.7		133.8	
10175		Z	5.07	66.5	19.0		143.4	
10178- CAC	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16- QAM)	×	6.19	68.2	20.5	6.52	138.8	±1.7 %
		Y	6.16	68.2	20.6		135.8	
40470		Z	5.89	67.7	20.0		144.1	
10179- CAC	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	×	6.21	68.4	20.5	6.50	138.1	±1.7 %
		Y	6.12	68.2	20.5		133.9	
10100	175 500 000 5014 1 50 510	Z	5.92	68.0	20.1	0.55	143.5	
10180- CAC	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64- QAM)	×	6.18	68.2	20.5	6.50	138.1	±1,7 %
		Y	6.15	68.3	20.6		134.8	
40404		Z	5.90	67.9	20.1		143.9	
10181- CAB	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	x	5.24	66.9	19.5	5.72	135.5	±1.4 %
		Y	5.25	67.0	19.7		133.1	
		Z	5.10	66.7	19.2		142.5	

Certificate No: ES3-3096_Apr16

Page 6 of 14

ES3DV3- SN:3096

April 29, 2016

10182- CAB	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	x	6.17	68.2	20.5	6.52	138.0	±1.7 %
		Y	6.10	68.0	20.5		133.2	
		z	5.89	67.7	20.0		142.5	
10183- AAA	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	x	6.17	68.2	20.5	6.50	137.2	±1.7 %
	· · · · · · · · · · · · · · · · · · ·	Y	6.12	68.2	20.6		133.6	
		z	5.93	68.1	20.2		142.5	
10184- CAC	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	x	5.22	66.8	19.5	5.73	134.5	±1.2 %
		Y	5.21	66.8	19.6		132.5	
		Z	5.15	66.9	19.3		141.2	
10185- CAC	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16- QAM)	x	6.18	68.2	20.5	6.51	137.2	±1.9 %
		Y	6.10	68.0	20.5		132.7	
		Z	5.93	67.9	20.1		143.9	
10186- AAC	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64- QAM)	×	6.20	68.3	20.5	6.50	136.8	±1.7 %
		Y	6.11	68.1	20.5		133.6	
		Z	6.02	68.5	20.5		142.7	
10187- CAC	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	×	5.25	66.9	19.5	5.73	134.3	±1.2 %
		Y	5.22	66.9	19.6		132.1	
		Z	5.10	66.7	19.2		141.6	
10188- CAC	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	×	6.18	68.2	20.5	6.52	136.7	±1.9 %
		Y	6.12	68.1	20.6		132.9	
		Z	5.87	67.7	20.0		143.8	
10189- AAC	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	×	6.20	68.3	20.5	6.50	137.0	±1.7 %
		Y	6,11	68.1	20.5		132,3	
10000		Z	5.97	68.2	20.2		143.8	
10297- AAA	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	×	6.45	67.2	19.5	5.81	131.4	±1.7 %
		Y	6.37	67.1	19.5		128.0	
10000		z	6.29	66.6	18.9		134.7	
10298- AAB	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	×	5.82	66.2	19.1	5.72	127.0	±1.4 %
		Y	6.03	67.2	19.7		146.8	
		Z	5.71	66.1	18.8		129.6	
10299- AAB	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	x	6.84	67.2	19.7	6.39	132.9	±1.7 %
		Y	6.74	67.0	19.7		129.6	
10000		Z	6.66	67.1	19.5	0.00	135.2	
10300- AAB	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	×	7.08	67.4	20.0	6.60	134.1	±1.9 %
		Y	7,00	67.3	20.0		130.9	
10071		Z	6.91	67.4	19.8		141.9	
10311- AAA	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	×	7.01	67.8	19.9	6.06	138.2	±1.7 %
		Y	6.99	67.8	20.0		135.2	
		Z	6.74	66.9	19.3		125.0	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

⁶ The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 8 and 9).
⁹ Numerical linearization parameter: uncertainty not required.
⁶ Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the indexident of the square of th field value.

Certificate No: ES3-3096_Apr16

Page 7 of 14

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3096

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ⁶	Depth ^G (mm)	Unc (k=2)
150	52.3	0.76	7.16	7.16	7.16	0.08	1.20	± 13.3 %
300	45.3	0.87	7,14	7.14	7.14	0.14	1.60	± 13.3 %
450	43.5	0.87	6.70	6.70	6.70	0.22	1.70	± 13.3 %
750	41.9	0.89	6.55	6.55	6.55	0.80	1.17	± 12.0 %
900	41.5	0.97	6.19	6.19	6.19	0.73	1.22	± 12.0 %
1810	40.0	1.40	5.09	5.09	5.09	0.43	1.61	± 12.0 %
1900	40.0	1.40	5.05	5.05	5.05	0.56	1.39	± 12.0 %
2300	39.5	1.67	4.75	4.75	4.75	0.59	1.41	± 12.0 %
2450	39.2	1.80	4.52	4.52	4.52	0.73	1.32	± 12.0 %
2600	39.0	1.96	4.33	4.33	4.33	0.80	1.27	± 12.0 %

Calibration Parameter Determined in Head Tissue Simulating Media

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the CorvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity validity calibration be extended to ± 110 MHz.

validity can be extended to ± 110 MHz. ¹ At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the CorveF uncertainty for indicated target tissue parameters.

the CorvF uncertainty for indicated target tissue parameters. ⁶ Alpha/Depth are determined during calibration, SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

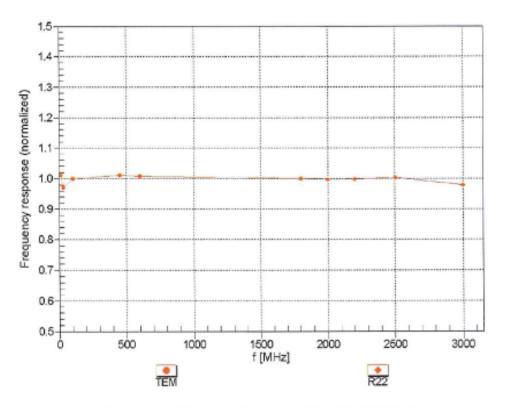
Certificate No: ES3-3096_Apr16

Page 8 of 14

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3096

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ⁶ (mm)	Unc (k=2)
150	61.9	0.80	6.97	6.97	6.97	0.08	1.50	± 13.3 %
300	58.2	0.92	6.76	6.76	6.76	0.12	1.30	± 13.3 %
450	56.7	0.94	6.82	6.82	6.82	0.15	1.30	± 13.3 %
750	55.5	0.96	6.11	6.11	6.11	0.61	1.37	± 12.0 %
900	55.0	1.05	5.97	5.97	5.97	0.62	1.32	± 12.0 %
1810	53.3	1.52	4.91	4.91	4.91	0.63	1.34	± 12.0 %
1900	53.3	1.52	4.74	4.74	4.74	0.56	1.45	± 12.0 %
2300	52.9	1.81	4.46	4.46	4.46	0.80	1.20	± 12.0 %
2450	52.7	1.95	4.31	4.31	4.31	0.80	1.18	± 12.0 %
2600	52.5	2.16	4.15	4.15	4.15	0.80	1.15	± 12.0 %

Calibration Parameter Determined in Body Tissue Simulating Media


^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the CorvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 60 and 70 MHz for CorvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

validity can be extended to ± 110 MHz. ^{*} At frequencies below 3 GHz, the validity of tissue parameters (s and d) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (s and d) is restricted to ± 5%. The uncertainty is the RSS of the Conv⁺ uncertainty for indicated target tissue parameters.

the ConvF uncertainty for indicated target tissue parameters. ⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Page 9 of 14

ES3DV3- SN:3096

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

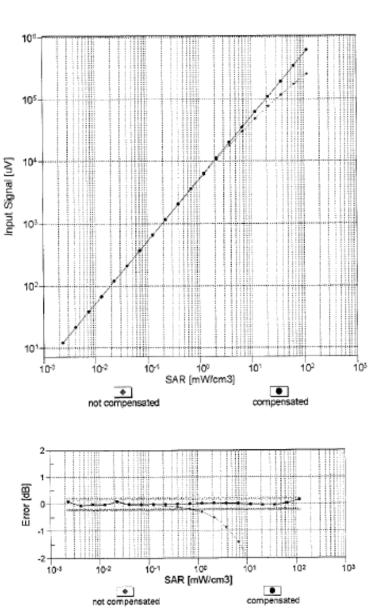
Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: ES3-3096_Apr16

Page 10 of 14

ES3DV3-- SN:3096

f=1800 MHz,R22 f=600 MHz,TEM 132 204 315 e Z • e Z Tot Tot 0.5 Error [dB] 0.0 -0.5 100 150 -100 -50 -150 Ó Roll ["] 600 MHz 2500 MHz 100 MHz 1800 MHz

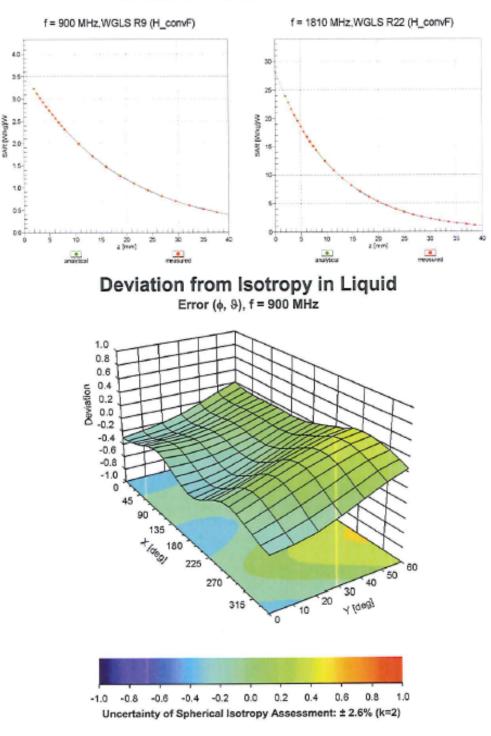

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: ES3-3096_Apr16

Page 11 of 14

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

ES3DV3-- SN:3096


Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Page 12 of 14

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

ES3DV3- SN:3096

Conversion Factor Assessment

Certificate No: ES3-3096_Apr16

Page 13 of 14

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3096

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	2.3
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Certificate No: ES3-3096_Apr16

Page 14 of 14

Appendix C Dipole Calibration Certificates

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Motorola EME

Certificate No: D450V3-1077_Nov15

S

С

s

Dbject	D450V3 - SN: 10	77	
alibration procedure(s)	QA CAL-15.v8		
	Calibration proce	dure for dipole validation kits bel	ow 700 MHz
alibration date:	November 25, 20)15	
		· · · ·	
		onal standards, which realize the physical un	
calibrations have been conduc	ted in the closed laborator	ry facility: environment temperature (22 ± 3)°	C and humidity < 70%.
alibration Equipment used (M&T	"E critical for calibration)		
		1	
rimary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
imary Standards over meter E4419B	ID # GB41293874	01-Apr-15 (No. 217-02128)	Scheduled Calibration Mar-16
nimary Standards ower meter E4419B ower sensor E4412A	ID # GB41293874 MY41498087	01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128)	the second se
rimary Standards ower meter E4419B ower sensor E4412A eference 3 dB Attenuator	ID # GB41293874 MY41498087 SN: S5054 (3c)	01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02129)	Mar-16
rimary Standards ower meter E4419B ower sensor E4412A eference 3 dB Attenuator eference 20 dB Attenuator	ID # GB41293874 MY41498087 SN: S5054 (3c) SN: S5056 (20k)	01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02129) 01-Apr-15 (No. 217-02131)	Mar-16 Mar-16
rimary Standards ower meter E4419B ower sensor E4412A eference 3 dB Attenuator eference 20 dB Attenuator ype-N mismatch combination	ID # GB41293874 MY41498087 SN: S5054 (3c) SN: S5059 (20k) SN: 55059 (20k)	01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02129) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134)	Mar-16 Mar-16 Mar-16
rimary Standards ower meter E4419B ower sensor E4412A eference 3 dB Attenuator eference 20 dB Attenuator ype-N mismatch combination eference Probe ET3DV6	ID # GB41293874 MY41498087 SN: S5054 (3c) SN: S5059 (20k) SN: 55059 (20k) SN: 5047.2 / 06327 SN: 1507	01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02129) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. ET3-1507_Dec14)	Mar-16 Mar-16 Mar-16 Mar-16
rimary Standards ower meter E4419B ower sensor E4412A eference 3 dB Attenuator eference 20 dB Attenuator ype-N mismatch combination eference Probe ET3DV6	ID # GB41293874 MY41498087 SN: S5054 (3c) SN: S5059 (20k) SN: 55059 (20k)	01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02129) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134)	Mar-16 Mar-16 Mar-16 Mar-16 Mar-16
rimary Standards ower meter E4419B ower sensor E4412A eference 3 dB Attenuator eference 20 dB Attenuator ype-N mismatch combination eference Probe ET3DV6 AE4 econdary Standards	ID # GB41293874 MY41498087 SN: S5054 (3c) SN: S5059 (20k) SN: 55059 (20k) SN: 5047.2 / 06327 SN: 1507	01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02129) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. ET3-1507_Dec14)	Mar-16 Mar-16 Mar-16 Mar-16 Mar-16 Dec-15
rimary Standards ower meter E44198 ower sensor E4412A eference 3 dB Attenuator eference 20 dB Attenuator ype-N mismatch combination eference Probe ET3DV6 AE4 econdary Standards F generator HP 8648C	ID # GB41293874 MY41498087 SN: S5054 (3c) SN: S5056 (20k) SN: 55056 (20k) SN: 5047.2 / 06327 SN: 1507 SN: 654	01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02129) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. ET3-1507_Dec14) 08-Jul-15 (No. DAE4-654_Jul15)	Mar-16 Mar-16 Mar-16 Mar-16 Dec-15 Jul-16 Scheduled Check
rimary Standards ower meter E4419B ower sensor E4412A eference 3 dB Attenuator eference 20 dB Attenuator ype-N mismatch combination eference Probe ET3DV6 AE4 econdary Standards F generator HP 8648C	ID # GB41293874 MY41498087 SN: S5054 (3c) SN: S5056 (20k) SN: 55056 (20k) SN: 5007 SN: 1507 SN: 654 ID #	01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02129) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. ET3-1507_Dec14) 08-Jul-15 (No. DAE4-654_Jul15) Check Date (in house)	Mar-16 Mar-16 Mar-16 Mar-16 Dec-15 Jul-16 Scheduled Check In house check: Apr-16
rimary Standards ower meter E44198 ower sensor E4412A eference 3 dB Attenuator eference 20 dB Attenuator ype-N mismatch combination eference Probe ET3DV6 AE4 econdary Standards F generator HP 8648C	ID # GB41293874 MY41498087 SN: S5054 (3c) SN: S5056 (20k) SN: 5047.2 / 06327 SN: 1507 SN: 654 ID # U\$3642U01700	01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02129) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. ET3-1507_Dec14) 08-Jul-15 (No. DAE4-654_Jul15) Check Date (in house) 04-Aug-99 (in house check Apr-13)	Mar-16 Mar-16 Mar-16 Mar-16 Dec-15 Jul-16 Scheduled Check
rimary Standards ower meter E44198 ower sensor E4412A eference 3 dB Attenuator eference 20 dB Attenuator ype-N mismatch combination eference Probe ET3DV6 AE4 econdary Standards F generator HP 8648C etwork Analyzer HP 8753E	ID # GB41293874 MY41498087 SN: S5054 (3c) SN: S5056 (20k) SN: 5047.2 / 06327 SN: 1507 SN: 654 ID # U\$3642U01700	01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02129) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. ET3-1507_Dec14) 08-Jul-15 (No. DAE4-654_Jul15) Check Date (in house) 04-Aug-99 (in house check Apr-13)	Mar-16 Mar-16 Mar-16 Mar-16 Dec-15 Jul-16 Scheduled Check In house check: Apr-16
rimary Standards ower meter E44198 ower sensor E4412A eference 3 dB Attenuator eference 20 dB Attenuator ype-N mismatch combination eference Probe ET3DV6 AE4 econdary Standards F generator HP 8648C etwork Analyzer HP 8753E	ID # GB41293874 MY41498087 SN: S5054 (3c) SN: S5056 (20k) SN: 5047.2 / 06327 SN: 1507 SN: 654 ID # U\$3642U01700 U\$3642U01700 U\$37390585 \$4206	01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02129) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. ET3-1507_Dec14) 08-Jul-15 (No. DAE4-654_Jul15) Check Date (in house) 04-Aug-99 (in house check Apr-13) 18-Oct-01 (in house check Oct-15)	Mar-16 Mar-16 Mar-16 Mar-16 Dec-15 Jul-16 Scheduled Check In house check: Apr-16 In house check: Oct-16 Signature
rimary Standards ower meter E44198 ower sensor E4412A eference 3 dB Attenuator eference 20 dB Attenuator ype-N mismatch combination eference Probe ET3DV6 AE4 econdary Standards F generator HP 8648C etwork Analyzer HP 8753E	ID # GB41293874 MY41498087 SN: S5054 (3c) SN: S5056 (20k) SN: 5047.2 / 06327 SN: 1507 SN: 654 ID # US3642U01700 US3642U01700 US37390585 S4206 Name	01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02129) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. ET3-1507_Dec14) 08-Jul-15 (No. DAE4-654_Jul15) Check Date (in house) 04-Aug-99 (in house check Apr-13) 18-Oct-01 (in house check Oct-15) Function	Mar-16 Mar-16 Mar-16 Mar-16 Dec-15 Jul-16 Scheduled Check In house check: Apr-16 In house check: Oct-16 Signature
Calibration Equipment used (M&T rimary Standards Power meter E44198 Power sensor E4412A leference 3 dB Attenuator leference 20 dB Attenuator leference Probe ET3DV6 IAE4 Recondary Standards IF generator HP 8648C letwork Analyzer HP 8753E Calibrated by:	ID # GB41293874 MY41498087 SN: S5054 (3c) SN: S5058 (20k) SN: 5047.2 / 06327 SN: 1507 SN: 654 ID # US3642U01700 US37390585 S4206 Name Leif Klysner	01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02129) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. ET3-1507_Dec14) 08-Jul-15 (No. DAE4-654_Jul15) Check Date (in house) 04-Aug-99 (in house check Apr-13) 18-Oct-01 (in house check Apr-13) 18-Oct-01 (in house check Oct-15) Function Laboratory Technician	Mar-16 Mar-16 Mar-16 Mar-16 Dec-15 Jul-16 Scheduled Check In house check: Apr-16 In house check: Oct-16 Signature
rimary Standards ower meter E44198 ower sensor E4412A eference 3 dB Attenuator eference 20 dB Attenuator ype-N mismatch combination eference Probe ET3DV6 AE4 econdary Standards F generator HP 8648C etwork Analyzer HP 8753E	ID # GB41293874 MY41498087 SN: S5054 (3c) SN: S5056 (20k) SN: 5047.2 / 06327 SN: 1507 SN: 654 ID # US3642U01700 US3642U01700 US37390585 S4206 Name	01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02129) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. ET3-1507_Dec14) 08-Jul-15 (No. DAE4-654_Jul15) Check Date (in house) 04-Aug-99 (in house check Apr-13) 18-Oct-01 (in house check Oct-15) Function	Mar-16 Mar-16 Mar-16 Mar-16 Dec-15 Jul-16 Scheduled Check In house check: Apr-16 In house check: Oct-16
rimary Standards ower meter E44198 ower sensor E4412A eference 3 dB Attenuator eference 20 dB Attenuator ype-N mismatch combination eference Probe ET3DV6 AE4 econdary Standards F generator HP 8648C etwork Analyzer HP 8753E alibrated by:	ID # GB41293874 MY41498087 SN: S5054 (3c) SN: S5058 (20k) SN: 5047.2 / 06327 SN: 1507 SN: 654 ID # US3642U01700 US37390585 S4206 Name Leif Klysner	01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02129) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. ET3-1507_Dec14) 08-Jul-15 (No. DAE4-654_Jul15) Check Date (in house) 04-Aug-99 (in house check Apr-13) 18-Oct-01 (in house check Apr-13) 18-Oct-01 (in house check Oct-15) Function Laboratory Technician	Mar-16 Mar-16 Mar-16 Mar-16 Dec-15 Jul-16 Scheduled Check In house check: Apr-16 In house check: Oct-16 Signature

Certificate No: D450V3-1077_Nov15

Page 1 of 8

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- Servizio svizzero di taratura S Swiss Calibration Service
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- · SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D450V3-1077_Nov15

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8	
Extrapolation	Advanced Extrapolation		
Phantom	ELI4 Flat Phantom	Shell thickness: 2 ± 0.2 mm	
Distance Dipole Center - TSL	15 mm	with Spacer	
Zoom Scan Resolution	dx, dy, dz = 5 mm		
Frequency	450 MHz ± 1 MHz		

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	43.5	0.87 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	44.0 ± 6 %	0.89 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition		
SAR measured	250 mW input power	1.16 W/kg	
SAR for nominal Head TSL parameters	normalized to 1W	4.57 W/kg ± 18.1 % (k=2)	
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition		
SAR measured	250 mW input power	0.777 W/kg	

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	56.7	0.94 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	56.3 ± 6 %	0.95 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	1.14 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	4.52 W/kg ± 18.1 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	0.749 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	2.97 W/kg ± 17.6 % (k=2)

Certificate No: D450V3-1077_Nov15

Page 3 of 8

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	58.1 Ω - 2.3 jΩ
Return Loss	- 22.1 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	55.0 Ω - 6.8 jΩ
Return Loss	- 21.9 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.349 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	1
Manufactured on	June 24, 2010	1

Certificate No: D450V3-1077_Nov15

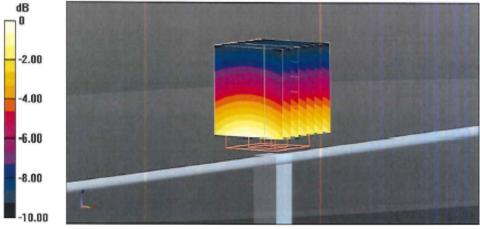
Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 25.11.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 450 MHz; Type: D450V3; Serial: D450V3 - SN: 1077

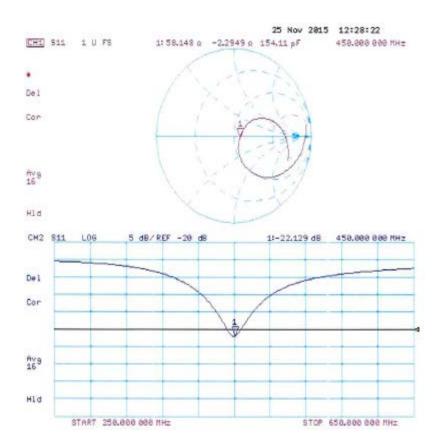

Communication System: UID 0 - CW; Frequency: 450 MHz Medium parameters used: f = 450 MHz; $\sigma = 0.89$ S/m; $\epsilon_r = 44$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: ET3DV6 SN1507; ConvF(6.58, 6.58, 6.58); Calibrated: 30.12.2014;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn654; Calibrated: 08.07.2015
- Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:1003
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/d=15mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 39.43 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 1.67 W/kg SAR(1 g) = 1.16 W/kg; SAR(10 g) = 0.777 W/kg Maximum value of SAR (measured) = 1.25 W/kg



0 dB = 1.25 W/kg = 0.97 dBW/kg

Certificate No: D450V3-1077_Nov15

Page 5 of 8

Impedance Measurement Plot for Head TSL

Certificate No: D450V3-1077_Nov15

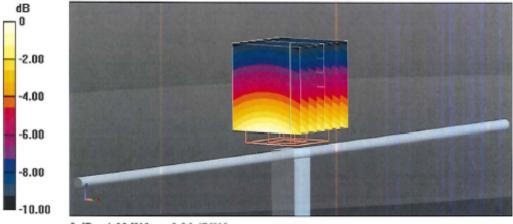
Page 6 of 8

DASY5 Validation Report for Body TSL

Date: 25.11.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 450 MHz; Type: D450V3; Serial: D450V3 - SN: 1077

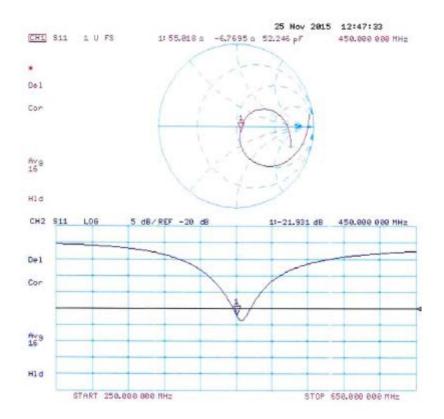

Communication System: UID 0 - CW; Frequency: 450 MHz Medium parameters used: f = 450 MHz; $\sigma = 0.95$ S/m; $\epsilon_r = 56.3$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: ET3DV6 SN1507; ConvF(7.05, 7.05, 7.05); Calibrated: 30.12.2014;
- · Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn654; Calibrated: 08.07.2015
- Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:1003
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/d=15mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 36.74 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 1.80 W/kg SAR(1 g) = 1.14 W/kg; SAR(10 g) = 0.749 W/kg Maximum value of SAR (measured) = 1.22 W/kg



0 dB = 1.22 W/kg = 0.86 dBW/kg

Certificate No: D450V3-1077_Nov15

Page 7 of 8

Impedance Measurement Plot for Body TSL

Certificate No: D450V3-1077_Nov15

Page 8 of 8

Dipole Data

As stated in KDB 865664, only dipoles used for longer calibration intervals required to provide supporting information and measurement to qualify for extended calibration interval.

Dipole D450V3 (serial number 1077) do not exceed annual calibration date, therefore further justification and validation for impedance and return loss are not required.