

DECLARATION OF COMPLIANCE SAR ASSESSMENT Part 1 of 2

Motorola Solutions Inc. **EME Test Laboratory** 8000 West Sunrise Blvd

Fort Lauderdale, FL. 33322

Date of Report: 3/26/2013

Report Revision: B

Report ID: SR10958 APX3000 U1 Rev O

130326

Responsible Engineer: Michael Sailsman(Senior Staff EME Engineer) Michael Sailsman (Senior Staff EME Engineer) **Report Author:**

Date/s Tested: 10/22/12-3/7/12 **Manufacturer/Location:** Motorola, Penang

Sector/Group/Div.: AESS – Astro Engineering Subscriber Solutions

Date submitted for test: 9/28/2012

DUT Description: 380-470MHz, 5.0W rated power, 6.25kHz/12.5kHz/25kHz, Capable of digital and

analog FM transmission. Also capable of TDMA and Bluetooth transmissions

Test TX mode(s): CW (PTT); CW (Bluetooth)

5.7W (380-470 MHz); 10 mW Bluetooth Max. Power output: **Nominal Power:** 5.0W (380-470 MHz); 10 mW Bluetooth **Tx Frequency Bands:** 380-470 MHz; 2.402-2.480 GHz (Bluetooth)

FM, TDMA, FHSS (Bluetooth) **Signaling type:** Model(s) Tested: H59QDD9PW4AN (MUE4120) Model(s) Certified: H59QDD9PW4AN (MUE4120)

536TNT0381 **Serial Number(s):**

Classification: Occupational/Controlled

FCC ID: AZ489FT4911; Rule Part 90 (406.1-470 MHz); Rule Part 15 (2402 – 2480 MHz)

Results outside FCC bands are not applicable for FCC compliance demonstration.

IC: 109U-89FT4911; (406.1-430 MHz; 450-470MHz)

* Refer to section 15 of part 1 for highest SAR summary results.

The test results clearly demonstrate compliance with FCC Occupational/Controlled RF Exposure limits of 8 W/kg averaged over 1 gram per the requirements of 47 CFR 2.1093(d). The 10 grams result is not applicable to FCC filing. The test results clearly demonstrate compliance with ICNIRP (1998) Guidelines for limiting exposure in time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz), Health Physics 74, 494-522 RF Exposure limits of 10 W/kg averaged over 10grams of contiguous tissue.

Based on the information and the testing results provided herein, the undersigned certifies that when used as stated in the operating instructions supplied, said product complies with the national and international reference standards and guidelines listed in section 3.0 of this report. This report shall not be reproduced without written approval from an officially designated representative of the Motorola Solutions Inc EME Laboratory. I attest to the accuracy of the data and assume full responsibility for the completeness of these measurements. This reporting format is consistent with the suggested guidelines of the TIA TSB-150 December 2004. The results and statements contained in this report pertain only to the device(s) evaluated.

Dearray Zakharia

Deanna Zakharia EMS EME Lab Senior Resource Manager, **Laboratory Director Approval Date:** 3/28/2013

Certification Date: 11/30/2012

Certification No.: L1121109P

Part	1 of 2					
1.0	Introduction	4				
2.0	Abbreviations / Definitions	4				
3.0	Referenced Standards and Guidelines					
4.0	SAR Limits	5				
5.0	SAR Result Scaling Methodology	6				
6.0	Description of Device Under Test (DUT)	<i>6</i>				
7.0	Optional Accessories and Test Criteria					
	7.1 Antennas					
	7.2 Batteries					
	7.3 Body worn Accessories	8				
	7.4 Audio Accessories	8				
8.0	Description of Test System	10				
	8.1 Descriptions of Robotics/Probes/Readout Electronics	10				
	8.2 Description of Phantom(s)	11				
	8.3 Description of Simulated Tissue	11				
9.0	Additional Test Equipment	12				
10.0	SAR Measurement System Verification	12				
	10.1 Equivalent Tissue Test Results	12				
	10.2 System Check Test Results	14				
11.0	Environmental Test Conditions	14				
12.0	DUT Test Methodology	15				
	12.1 Measurements	15				
	12.2 DUT Configuration(s)	15				
	12.3 DUT Positioning Procedures	15				
	12.3.1 Body	15				
	12.3.2 Head	15				
	12.3.3 Face					
	12.4 DUT Test Channels					
	12.5 DUT Test Plan					
13.0	DUT Test Data					
	13.1 Assessment at the body for 406.1-470 MHz band					
	Assessment at the body with body worn PMLN4651A					
	Assessment at the body with body worn PMLN7008A					
	Assessment at the body with body worn PMLN6327A					
	13.3 Assessment of the covert application for 406.1-470 MHz band					
	Assessment at the body with no body worn attached					
	Assessment at the body with no body worn attached					
	13.4 Assessment outside FCC Part 90 at the body					
	13.5 Assessment of IC allocated frequencies					
	13.6 Shortened Scan Assessment					
140	Simultaneous Transmission Evolusion					

FCC	ID: AZ489FT4911/ IC: 109U-89FT4911	SR 10958
15.0	Conclusion	28
APP	PENDICES	
A	Measurement Uncertainty	29
В	Probe Calibration Certificates	
C	Dipole Calibration Certificates	46
Part	2 of 2	
APP	PENDICES	
D	Test System Check Scans	2
E	DUT Scans (Shortened Scan and Highest SAR configurations)	13
F	Assessment of FCC Part 90 (406.1-470 MHz)	
G	Assessment of Outside Part 90	
Н	Assessment of IC allocated frequencies	28
I	DUT Supplementary Data (Power Slump)	29
J	DUT Test Position Photos	

Report Revision History

Date	Revision	Comments
11/30/2012	О	Initial release
3/11/2013	A	Compliance verification and clarification updates to address
		FCC filing inquiry
3/26/2013	В	General updates to address additional FCC request.

K

1.0 Introduction

This report details the utilization, test setup, test equipment, and test results of the Specific Absorption Rate (SAR) measurements performed at the Motorola Solutions Inc. EME Test Laboratory for model number H59QDD9PW4AN (MUE4120).

2.0 Abbreviations / Definitions

CNR: Calibration Not Required EME: Electromagnetic Energy

CQPSK: Compatible Quadrature Phase-Shift Keying

FHSS: Frequency Hopping Spread Spectrum

BT: Bluetooth

CW: Continuous Wave DUT: Device Under Test

DC: Duty Cycle

FM: Frequency Modulation/Factory Mutual

NA: Not Applicable PTT: Push to Talk

RSM: Remote Speaker Microphone SAR: Specific Absorption Rate

TDMA: Time Division Multiple Access

RF: Radio Frequency

C4FM: Compatible 4-level Frequency Modulation

DSP: Digital Signal Processor

Audio accessories: These accessories allow communication while the DUT is worn on the body.

Body worn accessories: These accessories allow the DUT to be worn on the body of the user.

Maximum Power: Defined as the upper limit of the production line final test station.

3.0 Referenced Standards and Guidelines

This product is designed to comply with the following applicable national and international standards and guidelines.

- IEC62209-1*(2005) Procedure to determine the specific absorption rate (SAR) for handheld devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)
- United States Federal Communications Commission, Code of Federal Regulations; Rule Part 47CFR § 2.1093 sub-part J:1999
- Federal Communications Commission, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields", OET Bulletin 65, Supplement C (Edition 01-01), FCC, Washington, D.C.: June 2001.

- IEEE 1528*(2003), Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques
- American National Standards Institute (ANSI) / Institute of Electrical and Electronics Engineers (IEEE) C95. 1-1992
- Institute of Electrical and Electronics Engineers (IEEE) C95.1-2005
- International Commission on Non-Ionizing Radiation Protection (ICNIRP) 1998
- Ministry of Health (Canada) Safety Code 6 (2009), Limits of Human Exposure to Radio frequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz
- Australian Communications Authority Radio communications (Electromagnetic Radiation -Human Exposure) Standard (2003)
- ANATEL, Brazil Regulatory Authority, Resolution No. 303 of July 2, 2002 "Regulation of the limitation of exposure to electrical, magnetic, and electromagnetic fields in the radio frequency range between 9 kHz and 300 GHz." and "Attachment to resolution # 303 from July 2, 2002"
- IEC62209-2 Edition 1.0 2010-03, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Human models, instrumentation, and procedures Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz).
 - (*) The IEC62209-1 and IEEE 1528 are applicable for hand-held devices used in close proximity to the ear only.

4.0 SAR Limits

TABLE 1

	SAR (W/kg)		
EXPOSURE LIMITS	(General Population /	(Occupational /	
	Uncontrolled Exposure	Controlled Exposure	
	Environment)	Environment)	
Spatial Average - ANSI -			
(averaged over the whole body)	0.08	0.4	
Spatial Peak - ANSI -			
(averaged over any 1-g of tissue)	1.6	8.0	
Spatial Peak – ICNIRP/ANSI -			
(hands/wrists/feet/ankles averaged over 10-g)	4.0	20.0	
Spatial Peak - ICNIRP -			
(Head and Trunk 10-g)	2.0	10.0	

5.0 SAR Result Scaling Methodology

The calculated 1-gram and 10-gram averaged SAR results indicated as "Max Calc. 1g-SAR" and "Max Calc.10g-SAR" in the data tables is determined by scaling the measured SAR to account for power leveling variations and power slump. A table and graph of output power versus time is provided in APPENDIX H. For this device the "Max Calc. 1g-SAR" and "Max Calc.10g-SAR" are scaled using the following formula:

$$Max_Calc = SAR_meas \cdot 10^{\frac{-Drift}{10}} \cdot \frac{P_max}{P_int} \cdot DC$$

P_max = Maximum Power (W)
P_int = Initial Power (W)
Drift = DASY drift results (dB)
SAR_meas = Measured 1-g or 10-g Avg. SAR (W/kg)
DC = Transmission mode duty cycle in % where applicable 50% duty cycle is applied for PTT operation

Note: for conservative results, the following are applied: If P_int > P_max, then P_max/P_int = 1. Drift = 1 for positive drift

Additional SAR scaling was applied using the methodologies outlined in FCC KDB450824 using tissue sensitivity values. SAR was scaled for conditions where the tissue permittivity was measured above the nominal target and for tissue conductivity that was measured below the nominal target. Negative or reduced SAR scaling is not permitted.

6.0 Description of Device Under Test (DUT)

This device operates using TDMA and analog frequency modulation (FM) signaling incorporating traditional simplex two-way radio transmission protocol.

Time Division Multiple Access (TDMA) is used to allocate portions of the RF signal by dividing time into two slots. Time allocation enables each unit to transmit its voice information without interference from other transmitting units. Transmission from a unit or base station is accommodated during two time-slot lengths of 30 milliseconds with frame length of 60 milliseconds. C4FM CQPSK modulation is used at 12.5 kHz channel spacing. The TDMA technique requires sophisticated algorithms and a digital signal processor (DSP) to perform voice compressions/decompressions and RF modulation/demodulation. The maximum duty cycle for TDMA is 50% for F2 (2 slot TDMA) protocol and is controlled by software. The FM signal is continuous. However, because of hand shaking or Push-To-Talk (PTT) between users and/or base stations a conservative 50% duty cycle is applied. This device also incorporates a Class 1 Bluetooth device which is a Frequency Hopping Spread Spectrum (FHSS) technology. The Bluetooth radio modem is used to wireless link audio accessories. The maximum actual transmission duty cycle is imposed by the Bluetooth standard. The maximum duty cycle for BT is 76.1%.

The model represented under this filing utilizes removable antennas and an internal fixed antenna (Bluetooth) capable of transmitting in the 380-470 MHz and 2.402-2.480 GHz (Bluetooth) bands respectively. The nominal output powers are 5.0 W (380-470 MHz) with

maximum output powers of 5.7 W 380-470 MHz. The nominal BT output power is 0.010 W and the maximum output power is 0.010 W as defined by upper limit of the production line final test station. The intended operating positions are "at the body" by means of the offered body worn accessories. Body worn audio operation is accomplished by means of optional remote accessories that are connected to the radio. Operation at the body without an audio accessory attached is possible by means of wireless BT accessories. The device is also intended to be used in covert applications without a body worn accessory attached. In covert applications the device is placed between the users' body and pants/clothing using any of the offered batteries. A specific flexible covert antenna is offered for this configuration. Only the offered surveillance audio and wireless BT accessories are intended to be used for this application. Note that PTT engagement is hosted from approved wired or BT wireless accessories. This device is not intended for operations at the face.

7.0 Optional Accessories and Test Criteria

This device is offered with optional accessories. All accessories were individually evaluated during the test plan creation to determine if testing was required per the guidelines outlined in "SAR Test Reduction Considerations for Occupational PTT Radios" FCC KDB 643646 D01 dated 4/4/11 to assess compliance of this device. The following sections identify the test criteria and details for each accessory category. Refer to Exhibit 7B for antenna separation distances.

7.1 Antennas

There are three removable antennas and one BT internal antenna offered for this product. The table below lists their descriptions.

Antenna Models Description Selected for test **Tested** UHF1/dribble antenna; 380-470MHz/1575 *PMAE4080A MHz 1/4 wave Yes Yes Whip UHF/GPS antenna; 380-520MHz/1575 PMAE4065A MHz 1/4 wave Yes Yes stubby UHF1antenna; 380-470MHz/1575 FAF5259A MHz 1/4 wave Yes Yes internal Bluetooth; 2402-2481 MHz 1/4 wave 84009370001 Yes NA

TABLE 2

7.2 Batteries

There are four batteries offered for this product. The table below lists the batteries, and battery description.

TABLE 3

Battery Models	Description	Selected for test	Tested	Comments
NNTN8128B	APX2000 IMPRES Li Ion Battery			
ININTINO120D	Slim	Yes	Yes	
NNTN8129A	APX4000 IMPRES Li Ion High Cap			
ININIINOIZ9A	Battery FM	Yes	Yes	
PMNN4424A	APX4000 IMPRES Li Ion High Cap			Similar to NNTN8129A
PIVIININ4424A	Battery non FM	No	No	Sillinar to NNTN8129A
NNTN8305A	APX3000 IMPRES Li Ion Ultra			
ININTIN83U3A	Slim Battery	Yes	Yes	

All batteries applicable to both standard and covert applications

^{*}For covert applications only

7.3 Body worn Accessories

All body worn accessories were considered. The table below lists the body worn accessories, and body worn accessory descriptions.

TABLE 4

Body worn Models	Description	Selected for test	Tested	Comments
				Applicable only to NNTN8305A
PMLN6327A	Belt mounted carry holster w/swivel clip	Yes	Yes	battery
PMLN4651A	2" belt clip	Yes	Yes	Not applicable to NNTN8305A battery
PMLN7008A	2.5" belt clip	Yes	Yes	Not applicable to NNTN8305A battery

7.4 Audio Accessories

All audio accessories were considered. The table below lists the offered audio accessories and their descriptions. Exhibit 7B illustrates photos of the tested audio accessories.

TABLE 5

Audio Acc.				
Models	Description	Selected for test	Tested	Comments
	IMPRES Display Submersible RSM			
HMN4104B	w/jack & Ch. Selector	Yes	Yes	
	Display RSM w/o Display and w/o			Similar to HMN4104B – same cable
HMN4101B	Channel Knob	No	No	length and connector pins
				Similar to HMN4104B – same cable
HMN4103B	Display RSM w/o Channel Knob	No	No	length and connector pins
	Rx-Only Secondry Audio Accessory for			Similar to RMN5116A – connects to
RLN6424A	DRSM	No	No	RSM
PMLN5275B	Core H/D headset	Yes	Yes	
	Plus 3-wire – Black – One programmable			Tested In covert and standard
PMLN5111A	button	Yes	Yes	application
RMN5116A	Temple transducer headset	Yes	Yes	Tested with HMN4104B
	Large Plus Noise cancelling RSM IP55			
PMMN4062A	3.5MM jack (Rx only)	Yes	Yes	
PMMN4069A	APX Basic Smart RSM, IP55	No	No	Similar to PMMN4062A
				Similar to PMMN4062A – same
PMMN4025A	Smart RSM	No	No	cable length and connector pins
	Standard Large IP57 RSM (based on			
PMMN4065A	PMM4046 w/ larger speaker)	Yes	Yes	
PMMN4024A	Core RSM	Yes	Yes	
PMLN5102A	Core Ultra-lite headset	Yes	Yes	
PMLN5101A	IMPRES Temple Transducer	Yes	Yes	
RMN5058A	Core L/W Headset	Yes	Yes	
	Plus 2 wire with translucent tube – Beige			Tested In covert application.
RLN5883A	 One programmable button 	Yes	Yes	Similar to RLN5882A
	Plus 2 wire with translucent tube – Black			
RLN5882A	 One programmable button 	Yes	Yes	Tested In standard application.
	Plus 2 wire. Beige - one programmable			
RLN5881A	button	No	No	Similar to RLN5882A

TABLE 5 (Continued)

Audio Acc.				
Models	Description	Selected for test	Tested	Comments
	Plus 2 wire. Black - one programmable	2000000	2.02.2.2.	Tested In covert and standard
RLN5880A	button	Yes	Yes	application
	IMPRES IP57 Submersible Remote			
PMMN4040A	Speaker Microphone	Yes	Yes	
PMMN4046A	IMPRES Speaker Mic w/ vol IP57	Yes	Yes	
PMMN4050A	IMPRES RSM, NC	No	No	Similar to PMMN4046A
PMLN5096B	Core Earset D-Shell	Yes	Yes	
				Tested In covert and standard
PMLN5097A	IMPRES 3 wire surveillance –BLK	Yes	Yes	application
PMLN5653A	IMPRES Ear Mic System	Yes	Yes	
RLN4922A	Complete discrete earpiece kit	Yes	Yes	Tested In covert and standard application with BDN6729A, BDN6730A, BDN6731A and BDN6783A
	Earpiece with Microphone and Push-to-	3.7	3.7	G: '1
BDN6667A	Talk Combined (2-Wire), Beige	No	No	Similar to BDN6729A
BDN6729A	Earpiece with Microphone and Push-to- Talk Combined (2-Wire), Black	Yes	Yes	Tested with BDN6783A and RLN4922A
BDN6669A	Extra Loud Earpiece with Microphone and Push-to-Talk Combined (2-Wire), Beige	No	No	Similar to BDN6731A
	Extra Loud Earpiece with Microphone and Push-to-Talk Combined (2-Wire), Black	Yes	Yes	Tested with BDN6783A and RLN4922A
	Earpiece with Microphone and Push-to-	105	105	TELL (1) ELL
BDN6668A	Talk Separate (3-Wire), Beige	No	No	Similar to BDN6730A
	1 \ // &			
BDN6730A	Earpiece with Microphone and Push-to- Talk Separate (3-Wire), Black	Yes	Yes	Tested with BDN6783A and RLN4922A
BDN6783A	3.5 mm audio adapter	Yes	Yes	Tested In covert and standard application with BDN6729A, BDN6731A, BDN6783A and RLN4922A
	Receive-Only Earpiece with Standard			
BDN6727A	Earphone (1-Wire), Black	No	No	Receive only
	Extra Loud Receive-Only Earpiece with	3.7	> T	D : 1
BDN6728A	Standard Earphone (1-Wire), Black	No	No	Receive only
	Wireless accessory, near field pairing Extra Loud Receive-Only Earpiece with	Yes	Yes	Used for BT and covert tests.
BDN6665A	Standard Earphone (1-Wire), Beige	No	No	Receive only
	Receive-Only Earpiece with Standard	110	110	Receive only
BDN6664A	Earphone (1-Wire), Beige	No	No	Receive only
RLN5878A	Core 1 wire – Black	No	No	Receive only
RLN5879A	Core 1 wire- Beige	No	No	Receive only
	3.5mm Rx only earpiece w/trancelucent	· =	110	
RLN4941A	tube-Short coiled cbl	No	No	Receive only
	.5mm Rx only earbud for REM spk mic short coiled cbl	No	No	Receive only
WADN4190B	3.5mm ear rcv w/ coil CBL-Short cbl	No	No	Receive only

8.0 Description of Test System

8.1 Descriptions of Robotics/Probes/Readout Electronics

Table 6

Dosimetric System type	System version	DAE type	Probe Type
Schmid & Partner			ES3DV3
Engineering AG	52.8.2.969	DAE4	(E-Field)
SPEAG DASY 5			(L-Ficia)

The DASY5™ system is operated per the instructions in the DASY5™ Users Manual. The complete manual is available directly from SPEAG™. All measurement equipment used to assess EME SAR compliance was calibrated according to ISO/IEC 17025 A2LA guidelines. Section 9.0 presents additional test equipment information. Appendices B and C present the applicable calibration certificates. The E-field probe first scans a coarse grid over a large area inside the phantom in order to locate the interpolated maximum SAR distribution. After the coarse scan measurement, the probe is automatically moved to a position at the interpolated maximum. The subsequent scan can directly use this position as reference for the cube evaluations.

8.2 Description of Phantom(s)

TABLE 7

Phantom type	Phantom ID (s)	Material Parameters	Phantom Dimensions LxWxD (mm)	Material Thickness (mm)	Support Structure Material	Loss Tangent (wood)
Dual Flat	NA					
SAM	NA	300MHz -6GHz; Er = 4+/- 1,		2mm		
Elliptical	OVAL1016	Loss Tangent = ≤0.05	600x400x190	+/- 0.2mm	Wood	< 0.05
Single Flat	80602002C-S2					

8.3 Description of Simulated Tissue

The sugar based simulate tissue is produced by placing the correct measured amount of De-ionized water into a large container. Each of the dried ingredients are weighed and added to the water carefully to avoid clumping. If the solution has a high sugar concentration the water is pre-heated to aid in dissolving the ingredients. For Diacetin and similar type simulates, sugar and HEC ingredients are not needed. The solution is mixed thoroughly, covered, and allowed to sit overnight prior to use.

The simulated tissue mixture was mixed based on the Simulated Tissue Composition indicated in table 8 below for 450MHz. During the daily testing of this product, the applicable mixture was used to measure the Di-electric parameters at each of the tested frequencies to verify that the Di-electric parameters were within the tolerance of the tissue specifications.

Simulated Tissue Composition (by mass) TABLE 8

	% of listed	4501	МНz
Reference Standards	ingredients	Head	Body
FCC Supplement C (Edition 01-01) to OET Bulletin 65 (Edition			
91-01)	Sugar	56.0	46.5
IEEE 1528-2003	Diacetin	NA	NA
	De ionized –		
IEC62209-1 (2005)	Water	39.1	50.53
	Salt	3.8	1.87
	HEC	1	1
CENELEC – EN62209-1 (2006)	Bact.	0.1	0.1

Reference section 10.1 for target parameters

9.0 Additional Test Equipment

The table below lists additional test equipment used during the SAR assessment.

TABLE 9

IADLE 9							
Equipment Type	Model Number	Serial Number	Calibration Date	Calibration Due Date			
Power Meter (Agilent)	E4419B	MY50000505	9/4/2012	9/4/2013			
Power Meter (Agilent)	E4418B	US39251267	2/6/2012	2/6/2013			
Power Meter (Agilent)	E4419B	MY45103725	3/1/2013	3/1/2014			
Power Meter (Agilent)	E4418B	GB40206480	11/2/2012	11/2/2013			
E-Series Avg. Power Sensor (Agilent)	E9301B	MY41495730	4/3/2012	4/3/2013			
E-Series Avg. Power Sensor (Agilent)	E9301B	MY41495733	4/3/2012	4/3/2013			
E-Series Avg. Power Sensor (Agilent)	E9301B	MY50280001	8/3/2012	8/3/2013			
E-Series Avg. Power Sensor (Agilent)	E9301B	MY50290001	8/3/2012	8/3/2013			
Power Sensor (Agilent)	8482B	3318A07393	2/6/2012	2/6/2013			
Power Sensor (Agilent)	8481B	3318A10894	4/5/2012	4/5/2013			
Bi-Directional Coupler (NARDA)	3020A	40295	6/4/2012	6/4/2014			
Bi-Directional Coupler (NARDA)	3022	70181	11/14/2011	11/14/2013			
Signal Generator (HP)	E4421B	US40051446	8/2/2012	8/2/2014			
AMP (Amplifier Research)	1W1000	16625	CNR	*CNR			
AMP (ComTech PST)	AR88258-10	M3Y6A00-1007	CNR	*CNR			
Bi-Directional Coupler (NARDA)	3020A	40296	2/9/2012	2/9/2014			
Signal Generator (Agilent)	E4428C	MY47381119	6/24/2011	6/24/2013			
AMP (Amplifier Research)	10WD1000	28782	CNR	CNR			
Dickson Temperature Recorder	TM325	12121144	5/18/2012	5/18/2013			
Omega Digital Thermometer with J Type TC Probe	HH202A	18800	2/22/2012	2/22/2013			
Omega Digital Thermometer with J Type TC Probe	HH202A	18801	5/23/2012	5/23/2013			
Omega Digital Thermometer with J Type TC Probe	HH202A	18812	6/25/2012	6/25/2013			
Agilent PNA-L Network Analyzer	N5230A	MY45001092	6/4/2012	6/4/2013			
Dielectric Probe Kit (HP)	85070C	US99360076	CNR	*CNR			
Agilent PNA-L Network Analyzer	N5230A	MY45001092	6/4/2012	6/4/2013			
SPEAG Probe	ES3DV3	3301	7/30/2012	7/30/2013			
SPEAG DAE	DAE4	1231	3/5/2012	3/5/2013			
SPEAG DAE	DAE3	401	3/9/2012	3/9/2013			
SPEAG Dipole	D450V3	1077	11/15/2011	11/15/2013			

^{*}Calibration is not required by the OEM. The dielectric probe kit is used in conjunction with a calibrated network analyzer. The dielectric probe is calibrated for short, open and load using the calibrated network analyzer. A saline solution is routinely measured as an additional checkpoint.

10.0 SAR Measurement System Verification

The system performance check was conducted daily and within 24 hours prior to testing. DASY output files of the probe/dipole calibration certificates and system performance test results are included in appendices B, C, D respectively.

10.1 Equivalent Tissue Test Results

Simulated tissue prepared for SAR measurements is measured daily and within 24 hours prior to actual SAR testing to verify that the tissue is within +/- 5% of target parameters at the center of the transmit band. This measurement is done using the applicable equipment indicated in section 9.0. The table below summarizes the measured tissue parameters used for the SAR assessment.

TABLE 10

		1	ADLE IV			
					Dielectric	
Frequency		Conductivity	Dielectric Constant	Conductivity	Constant	
(MHz)	Tissue Type	Target (S/m)	Target	Meas. (S/m)	Meas.	Tested Date
				0.96	55.2	10/22/12
				Constant Conductivity Constant Meas. (S/m) Meas. Tested Date 0.96 55.2 10/22/12 0.95 54.2 10/23/12 0.97 55.0 10/24/12 0.97 54.3 10/25/12 0.97 54.3 10/25/12 0.96 54.8 10/30/12 0.96 54.7 10/31/12 0.96 56.4 11/2/12 0.96 56.4 11/2/12 0.92 56.7 3/4/13 0.96 58.1 3/7/13 0.96 58.1 3/7/13 0.96 55.3 10/31/12 0.96 55.3 10/31/12 0.90 55.2 10/31/12 0.90 55.8 10/30/12 0.91 57.7 11/2/12 0.91 57.7 11/2/12 0.93 55.2 10/23/12 0.94 56.0 10/24/12 0.95 55.0 10/25/12 0.91 55.8 10/26/12 0.91 55.8 10/26/12 0.92 55.5 10/26/12 0.92 55.5 10/26/12 0.90 56.2 3/4/13 0.94 58.7 3/7/13 0.94 58.7 3/7/13 0.94 58.7 3/7/13 0.94 58.7 3/7/13 0.94 58.7 3/7/13 0.94 58.7 3/7/13 0.94 58.7 3/7/13 0.95 54.3 10/23/12 0.96 54.5 10/25/12 0.96 54.5 10/25/12 0.96 54.5 10/25/12 0.96 54.5 10/25/12 0.96 54.5 10/25/12 0.97 55.2 10/23/12 0.96 54.5 10/25/12 0.97 54.2 10/23/12 0.96 54.2 10/23/12 0.97 0.97 54.2 10/23/12 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.9	10/23/12	
				0.97	55.0	10/24/12
				0.97	54.3	10/25/12
450	FCC Body	0.94	56.7	0.95	55.1	10/26/12
430	FCC Body	(0.89 - 0.99)	(53.9-59.5)	0.96	54.8	10/30/12
				0.96	54.7	10/31/12
			Dielectric Constant Target Conductivity Meas. (S/m) Constant Meas. Tested Date 0.96 55.2 10/22/12 0.95 54.2 10/23/12 0.97 55.0 10/24/12 0.97 54.3 10/25/12 0.97 54.3 10/25/12 0.95 55.1 10/26/12 (53.9-59.5) 0.96 54.8 10/30/12 0.96 54.8 10/30/12 0.96 54.7 10/31/12 0.96 56.4 11/2/12 0.96 58.1 3/7/13 57.4 0.89 56.1 10/30/12 (54.5-60.3) 0.89 55.3 10/31/12 57.4 0.90 55.2 10/31/12 4 0.90 55.8 10/30/12 57.1 0.91 57.7 11/2/12 0.93 55.2 10/23/12 0.94 56.9 10/22/12 0.95 55.0 10/25/12 0.91 55.8<			
				0.92	56.7	3/4/13
				0.96	58.1	3/7/13
200	ECC D 1	0.93	57.4	0.89	56.1	10/30/12
380	FCC Body	(0.88-0.98)	(54.5-60.3)	0.89	55.3	10/31/12
		0.93	57.4	0.90	55.2	10/31/12
393	FCC Body	(0.89-0.98)		0.90	55.8	
		(0.89-0.98)	(34.4-00.1)	0.91	57.7	11/2/12
				0.94	55.9	10/22/12
			,	0.93	55.2	10/31/12 11/2/12 3/4/13 3/7/13 10/30/12 10/31/12 10/31/12 10/30/12 11/2/12 10/22/12 10/23/12 10/24/12 10/25/12 10/26/12 10/26/12 10/30/12 3/4/13 3/7/13
406	FCC Body	0.93 (0.89-0.98)		0.94	56.0	10/24/12
		(0.69-0.98)	(34.3-00.0)	0.95	0.89 56.1 10/30/12 0.89 55.3 10/31/12 0.90 55.2 10/31/12 0.90 55.8 10/30/12 0.91 57.7 11/2/12 0.94 55.9 10/22/12 0.93 55.2 10/23/12 0.94 56.0 10/24/12 0.95 55.0 10/25/12 0.91 55.8 10/26/12 0.96 54.7 10/25/12 0.92 55.5 10/26/12 0.93 55.2 10/30/12	
				0.91	55.8	10/26/12
				0.96	54.7	10/25/12
				0.92	55.5	10/26/12
422	FCC Body	0.94 (0.89-0.98)		0.93	55.2	10/30/12
		(0.89-0.98)	(34.1-39.6)	0.90	56.2	3/4/13
				0.94	58.7	3/7/13
430	FCC Body	0.94 (0.89-0.98)		0.94	55.1	10/30/12
				0.95	54.3	10/23/12
438	FCC Body	0.94				-
		(0.89-0.99)	(54.0-59.7)			t
		0.94	567			
454	FCC Body	(0.89-0.99)				
		(**** ****)	(55.5)	0.97	34.3	10/23/12
		0.94	56.6	0.97	54.2	10/23/12
470	FCC Body	(0.89-0.99)	(53.8-59.5)	0.98	54.2	10/25/12
	1 cc Body			0.98	54.6	10/30/12

10.2 System Check Test Results

System performance checks were conducted each day during the SAR assessment. The results are normalized to 1W. APPENDIX D includes DASY plots for each day during the SAR assessment. The table below summarizes the daily system check results used for the SAR assessment.

TABLE 11

Probe	an an	_	Reference SAR @	Results Measured	System Check Test Results when normalized to 1W	Tested
Serial #	Tissue Type	Serial #	1W (W/kg)	(W/kg)	(W/kg)	Date
				1.13	4.53	10/22/12
				1.12	4.48	10/23/12
				1.12	4.48	10/24/12
				1.12	4.48	10/25/12
3301	450 MHz	D450V3/	*4.49 +/- 10%	1.13	4.52	10/26/12
3301	FCC Body	1077	4.47 1/- 10/0	1.15	4.60	10/30/12
				1.14	4.56	10/31/12
				1.15	4.60	11/02/12
				0.92	4.52	3/4/13
				1.14	4.56	3/7/13

^{*}Dipole manufacture's reference target

11.0 Environmental Test Conditions

The EME Laboratory's ambient environment is well controlled resulting in very stable simulated tissue temperature and therefore stable dielectric properties. Simulated tissue temperature is measured prior to each scan to insure it is within +/ - 2°C of the temperature at which the dielectric properties were determined. The liquid depth within the phantom used for measurements was at least 15cm. Additional precautions are routinely taken to ensure the stability of the simulated tissue such as covering the phantoms when scans are not actively in process in order to minimize evaporation. The lab environment is continuously monitored. The table below presents the range and average environmental conditions during the SAR tests reported herein:

TABLE 12

	Target	Measured
		Range: 21.6 – 22.8°C
Ambient Temperature	18 − 25 °C	Avg. 22.1°C
		Range: 40.0 – 61.5%
Relative Humidity	30 – 70 %	Avg. 54.3%
		Range: 20.7-23.1°C
Tissue Temperature	NA	Avg. 21.35°C

Relative humidity target range is a recommended target

The EME Lab RF environment uses a Spectrum Analyzer to monitor for extraneous large signal RF contaminants that could possibly affect the test results. If such unwanted signals are discovered the SAR scans are repeated.

12.0 DUT Test Methodology

12.1 Measurements

SAR measurements were performed using the DASY system described in section 8.0 using zoom scans. Elliptical flat and rectangular 80x60cm phantoms filled with applicable simulated tissue were used for body testing.

12.2 **DUT Configuration(s)**

The DUT is a portable device operational at the body as described in section 6.0 while using the applicable accessories listed in section 7.0. All accessories listed in section 7.0 of this report were considered when implementing the guidelines specified in KDB 643646 D01.

12.3 DUT Positioning Procedures

The positioning of the device for each body location is described below and illustrated in APPENDIX I.

12.3.1 Body

For non-covert assessment the DUT was positioned in normal use configuration against the phantom with the offered body worn accessory as well as with and without the offered audio accessories as applicable. For covert applications the default configuration is with a BT wireless POD without any cable attached to the device. Only the backside (battery side) of the device is intended to be placed between the users' body and pants or clothing using the specifically offered covert antenna. Note: PTT is engaged by an approved BT wireless POD with an integral PTT button.

12.3.2 Head

Not applicable.

12.3.3 Face

Not applicable.

12.4 DUT Test Channels

The number of test channels was determined by using the following IEEE 1528 equation. The use of this equation produces the same or more test channels compared to the FCC KDB 447498 number of test channels formula.

 $N_c = 2 * roundup[10 * (f_{high} - f_{low}) / f_c] + 1$

Where

 N_c = Number of channels

 $F_{high} = Upper channel$

 $F_{low} = Lower channel$

 F_c = Center channel

12.5 DUT Test Plan

The guidelines and requirements outlined in "SAR Test Reduction Considerations for Occupational PTT Radios" FCC KDB 643646 D01 dated 4/4/11 were used to assess compliance of this device. All modes of operation identified in section 6.0 were considered during the development of the test plan. All tests were performed in 100% CW mode and then 50% duty cycle was applied to the final results. For covert applications the default configuration is with BT wireless POD (which has an integral PTT button included) without any cable attached to the device. All offered batteries are applicable to the covert application. Only the specific surveillance audio accessories noted in section 7.0 are intended for use in the covert application. Note that per FCC guidelines assessment of the covert antenna was performed using an 80x60 cm phantom to demonstrate that appropriate coupling is maintained between the phantom and the DUT/antenna. Part 2 of 2 APPENDIX F of this report shows the requested compliance verification SAR plots.

13.0 DUT Test Data

13.1 Assessment at the body for 406.1-470 MHz band

The battery NNTN8128B was selected as the default battery for assessments at the Body since it is the thinnest battery for non covert application (refer to Exhibit 7B for the dimension of the battery). The conducted power measurement for all test channels within Part 90 frequency range using the default battery NNTN8128B is indicated in Table 13. The channel with the highest conducted power will be identified as the default channel per KDB 643646 D01 SAR Test for PTT Radios v01r01. SAR plots of the highest results per table (bolded) are presented in APPENDICES E-F.

TABLE 13

Test Freq (MHz)	Power (W)
406.125	5.73
422.1	5.71
438.1	5.73
453.9875	5.71
469.9875	5.73

Assessment at the body with body worn PMLN4651A

Assessment of each of the applicable offered antennas with the default battery, body worn PMLN4651A and applicable additional offered batteries per KDB 643646 D01 SAR Test for PTT Radios v01r01 – Body SAR Test Considerations for Body worn Accessories. Refer to Table 13 for highest output power channel.

TABLE 14

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (mW/g)	Meas. 10g- SAR (mW/g)	Max Calc. 1g- SAR (mW/g)	Max Calc. 10g- SAR (mW/g)	Run#
	·	·	•	406.1250		0.49	6.86	5.01	3.49	2.55	CM-Ab-121022-03
				422.100							
PMAE4065A	NNTN8128B	PMLN4651A	HMN4104B	438.1000							
				453.9875							
				469.9875							
				406.1250	5.72	0.34	5.11	3.67	.67 2.56 1.84	CM-Ab-121022-05	
				422.100							
FAF5259A	NNTN8128B	PMLN4651A	HMN4104B	438.1000							
				453.9875							
				469.9875							
			Assessmer	nt of the ado	lition	al offere	ed battery				
				406.1250	5.68	-0.35	7.51	5.53	4.08	3.01	CM-Ab-121022-06
				422.100							
PMAE4065A	NNTN8129A	PMLN4651A	HMN4104B	438.1000							
				453.9875							
				469.9875							

Assessment at the body with body worn PMLN7008A

Assessment of each of the applicable offered antennas with the default battery, body worn PMLN7008A and applicable additional offered batteries per KDB 643646 D01 SAR Test for PTT Radios v01r01 – Body SAR Test Considerations for Body worn Accessories. Refer to Table 13 for highest output power channel.

TABLE 15

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (mW/g)	Meas. 10g- SAR (mW/g)	Max Calc. 1g- SAR (mW/g)	Max Calc. 10g- SAR (mW/g)	Run#
				406.1250	5.65	0.67	7.35	5.38	3.71	2.71	CM-Ab-121022-07
				422.100							
PMAE4065A	NNTN8128B	PMLN7008A	HMN4104B	438.1000	5.54	-0.55	7.09	5.08	4.14	2.97	ErC-Ab-121023-02
				453.9875	5.60	-0.52	5.60	3.99	3.21	2.29	ErC-Ab-121023-03
				469.9875	5.62	-0.38	4.75	3.34	2.63	1.85	ErC-Ab-121023-04
				406.1250	5.53	0.35	6.37	4.58	3.28	2.36	ErC-Ab-121023-05
				422.100							
FAF5259A	NNTN8128B	PMLN7008A	HMN4104B	438.1000							
				453.9875							
				469.9875							
			Assessmer	t of the add	lition	al offere	ed battery	,			
				406.1250							
				422.100							
PMAE4065A	NNTN8129A	PMLN7008A	HMN4104B	438.1000	5.57	-0.41	6.54	4.71	3.68	2.65	ErC-Ab-121023-06
		453.9875									
				469.9875							

Assessment at the body with body worn PMLN6327A

Assessment of each of the applicable offered antennas with battery body worn PMLN6327A and applicable battery NNTN8305A per KDB 643646 D01 SAR Test for PTT Radios v01r01 – Body SAR Test Considerations for Body worn Accessories. Refer to Table 13 for highest output power channel.

TABLE 16

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)			Meas. 1g-SAR (mW/g)	Meas. 10g- SAR (mW/g)	Max Calc. 1g- SAR (mW/g)	Max Calc. 10g- SAR (mW/g)	Run#
				406.1250	5.58	0.12	6.77	4.97	3.46	2.54	ErC-Ab-121023-07
				422.100							
PMAE4065A	NNTN8305A	PMLN6327A	HMN4104B	438.1000							
				453.9875							
				469.9875							
				406.1250	5.50	0.03	6.11	4.48	3.17	2.32	ErC-Ab-121023-08
				422.100							
FAF5259A	NNTN8305A	PMLN6327A	HMN4104B	438.1000							
				453.9875							
				469.9875							

Assessment at the Body with additional audio accessories

Assessment of applicable additional offered audio accessories per KDB 643646 D01 SAR Test for PTT Radios v01r01. Refer to Table 13 for highest output power channel.

Table 17

				Table	17						
Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (mW/g)	Meas. 10g- SAR (mW/g)	Max Calc. 1g-SAR (mW/g)	Max Calc. 10g- SAR (mW/g)	Run#
	•	·		406.1250							
				422.100							
PMAE4065A	NNTN8128B	PMLN7008A	HMN4104B w/RMN5116A	438.1000	5.60	-0.40	7.72	5.55	4.31	3.10	ErC-Ab-121023-09
			Wittensort	453.9875							
				469.9875							
				406.1250							
				422.100							
PMAE4065A	NNTN8128B	PMLN7008A	RLN5882A	438.1000	5.52	-0.36	7.18	5.14	4.03	2.88	ErC-Ab-121023-10
				453.9875							
				469.9875							
				406.1250							
				422.100							
PMAE4065A	NNTN8128B	PMLN7008A	PMLN5111A	438.1000	5.68	-0.04	6.36	4.57	3.22	2.31	ErC-Ab-121023-11
				453.9875							
				469.9875							
				406.1250							
				422.100							
PMAE4065A	NNTN8128B	PMLN7008A	PMMN4062A	438.1000	5.61	-0.37	8.13	5.90	4.50	3.26	CM-Ab-121023-12
				453.9875							
				469.9875							
				406.1250							
				422.100							
PMAE4065A	NNTN8128B	PMLN7008A	PMMN4065A	438.1000	5.62	-0.36	6.81	4.88	3.75	2.69	CM-Ab-121023-13
				453.9875							
				469.9875							
				406.1250							
				422.100							
PMAE4065A	NNTN8128B	PMLN7008A	PMMN4024A	438.1000	5.60	-0.43	7.58	5.43	4.26	3.05	CM-Ab-121023-14
				453.9875							
				469.9875							
				406.1250							
				422.100							
PMAE4065A	NNTN8128B	PMLN7008A	PMLN5101A	438.1000	5.61	-0.44	7.87	5.65	4.42	3.18	CM-Ab-121023-15
				453.9875							
				469.9875							

Table 17 continued

			14	bie 17 cd	711 (111	ucu					
Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR	Meas. 10g- SAR (mW/g)	Max Calc. 1g-SAR (mW/g)	Max Calc. 10g- SAR (mW/g)	Run#
Antenna	Dattery	Accessory	Cable Accessory	406.1250	(**)	(uD)	(III VV/g)	(III VV/g)	(III VV/g)	(III VV/g)	Kuii//
				422.100							
PMAE4065A	NNTN8128B	PMLN7008A	PMLN5275B	438.1000	5 67	-0.48	7.32	5.26	4.11	2.95	CM Ab 121022 16
111112100011	111111111202	11112117	111121102702	453.9875	3.07	-0.40	7.32	3.20	4.11	2.93	CIVI-A0-121023-10
				469.9875							
				406.1250							
PMAE4065A	NNTN9129D	DMI N17008 A	RMN5058A	422.100	5.56	0.20	7.26	5.06	4.12	2.05	CN 41 121022 17
I WAL-1003A	11111110120D	I WILIV/000A	KWINJOJOA	438.1000	5.56	-0.39	7.36	5.26	4.13	2.95	CM-Ab-121023-17
				453.9875							
				469.9875							
				406.1250							
DM 4 E 4065 A	NINITNIO120D	DMI NI7009 A	DMANANIAOAOA	422.100		0.44			4.00	2.06	<u> </u>
PMAE4065A	ININTIN8128B	PMLN/008A	PMMN4040A	438.1000	5.53	-0.44	7.51	5.37	4.28	3.06	CM-Ab-121023-18
				453.9875							Run# CM-Ab-121023-16 CM-Ab-121023-17 CM-Ab-121023-18 CM-Ab-121023-19 CM-Ab-121023-20 CM-Ab-121023-20
				469.9875							
				406.1250							
D) () E (0 (5)	N 17 10 1 2 0 D	D) (I) IZ000 1	D 0 0 140 4 6 4	422.100							
PMAE4065A	NN1N8128B	PMLN7008A	PMMN4046A		5.56	-0.38	7.97	5.72	4.46	3.20	CM-Ab-121023-19
				453.9875							
				469.9875							
				406.1250							
				422.100							
PMAE4065A	NNTN8128B	PMLN7008A	PMLN5102A	438.1000	5.65	-0.40	6.96	4.99	3.85	2.76	CM-Ab-121023-20
				453.9875							
				469.9875							
				406.1250							
				422.100							
PMAE4065A	NNTN8128B	PMLN7008A	PMLN5096B	438.1000	5.55	-0.42	7.20	5.15	4.07	2.91	CM-Ab-121023-21
				453.9875							
				469.9875							
				406.1250							
				422.100							
PMAE4065A	NNTN8128B	PMLN7008A	PMLN5097A	438.1000	5.71	-0.46	7.30	5.22	4.06	2.90	ErC-Ab-121024-02
				453.9875							
				469.9875							

Table 17 continued

			14	bie 17 co	7111111	ucu					
Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR	Meas. 10g- SAR (mW/g)	Max Calc. 1g-SAR (mW/g)	Max Calc. 10g- SAR (mW/g)	Run#
11110111111	Buttery	riccessory	Cubic recessory	406.1250	(**)	(ub)	(III / / / B)	(111 / / / 8)	(111 / / / 8)	(111 / / / 8)	24411//
				422.100							
PMAE4065A	NNTN8128B	PMLN7008A	PMLN5653A	438.1000	5 60	-0.41	7.69	5.49	4.23	3.02	ErC Ab 121024 03
11/11/12/10/07/1	11111111202	11112117,00011	1111211000011	453.9875	3.09	-0.41	7.09	3.49	4.23	3.02	EIC-A0-121024-03
				469.9875							
				406.1250							
				422.100							
PMAF4065A	NNTN8128B	PMLN7008A	BDN6729A	438.1000	5 72	0.46	7.09	5 72	4.44	2 10	ErC Ab 121024 04
I WILL TOOST	11111110120D	I WILLY OOOL	w/BDN6783A	453.9875	3.12	-0.46	7.98	5.73	4.44	3.19	EIC-A0-121024-04
				469.9875							
				406.1250							
PM 4 E 4065 A	NNTN9129R	PMLN7008A	BDN6730A	422.100		0.44	7.70	5.50	4.42	2.10	E-C AL 121024 05
I WAL-1003A	11111110120D	I WILIV/000A	w/BDN6783A	438.1000	5.55	-0.44	7.79	5.59	4.43	3.18	ErC-Ab-121024-05
			453.9875							ErC-Ab-121024-04 ErC-Ab-121024-04 ErC-Ab-121024-05 ErC-Ab-121024-06 ErC-Ab-121024-07 ErC-Ab-121024-07	
				469.9875							
				406.1250							
DM 4 E 4065 A	NINITNIQ12QD	PMLN7008A	BDN6731A	422.100	5.50	0.51	7.40	5.20	4.20	2.00	F.C. 41, 121024.06
FMAE4003A	ININTINO120D	FIVILIN/000A	w/BDN6783A		5.58	-0.51	7.48	5.38	4.30	3.09	ErC-Ab-121024-06
				453.9875							
				469.9875							
				406.1250							
			BDN6729A	422.100							
PMAE4065A	NNTN8128B	PMLN7008A	w/BDN6783A w/RLN4922A	438.1000	5.59	-0.41	7.84	5.64	4.39	3.16	ErC-Ab-121024-07
				453.9875							
				469.9875							
				406.1250							
			BDN6730A	422.100							
PMAE4065A	NNTN8128B	PMLN7008A	w/BDN6783A w/RLN4922A	438.1000	5.67	-0.42	7.55	5.44	4.18	3.01	ErC-Ab-121024-08
			W/REI(1)2211	453.9875							
				469.9875							
				406.1250							
			BDN6731A	422.100							
PMAE4065A	NNTN8128B	PMLN7008A	w/BDN6783A	438.1000	5.68	-0.37	7.80	5.58	4.26	3.05	ErC-Ab-121024-09
			w/RLN4922A	453.9875							
				469.9875							

13.2 Assessment of wireless BT configuration

Assessment using the overall highest SAR configuration at the body from above using previously approved applicable BT pod NTN2574B for wireless operation.

TABLE 18

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Pwr			Meas. 10g- SAR (mW/g)	Max Calc. 1g-SAR (mW/g)	Max Calc. 10g- SAR (mW/g)	Run#
			406.1250								
) IT) 10 5 7 4 D	422.100							
PMAE4065A	NNTN8128B	PMLN7008A	NTN2574B (wireless BT pod)	438.1000	5.68	-0.43	8.97	6.44	4.97	3.57	ErC-Ab-121024-10
			(whereas B1 pea)	453.9875						3.57 EFC-Ab-121024-10	
				469.9875							

13.3 Assessment of the covert application for 406.1-470 MHz band

The battery NNTN8305A was selected as the default battery for assessments at the body in the covert application since it is the thinnest battery for covert application (refers to Exhibit 7B for the dimension of the battery). The conducted power measurement for all test channels within Part 90 frequency range using the default battery is indicated in Table 19. The channel with the highest conducted power will be identified as the default channel per KDB 643646 D01 SAR Test for PTT Radios v01r01. SAR plots of the highest results per table (bolded) are presented in APPENDICES F.

TABLE 19

Test Freq (MHz)	Power (W)
406.125	5.74
422.100	5.73
438.100	5.74
453.9875	5.72
469.9875	5.74

Assessment at the body with no body worn attached

Assessment of covert application without body worn accessories attached using the offered covert antenna PMAE4080A and each of the offered batteries per KDB 643646 D01 SAR Test for PTT Radios v01r01. Wireless BT pod NTN2574B was used to facilitate radio PTT. Refer to Table 19 for highest output power channel.

TABLE 20

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (mW/g)	Meas. 10g- SAR (mW/g)	Max Calc. 1g-SAR (mW/g)	Max Calc. 10g-SAR (mW/g)	Run#
				406.125	5.74	-0.28	10.10	6.85	5.39	3.65	ErC-Ab-121025-02
		NENGSZAD	422.100	5.77	-0.83	8.31	5.62	5.03	3.40	ErC-Ab-121025-07	
PMAE4080A	NNTN8305A	A None (w	NTN2574B (wireless BT pod)	438.100	5.78	-0.18	8.79	5.90	4.58	3.07	ErC-Ab-121025-09
			<u> </u>	453.9875	5.56	-0.45	7.72	5.15	4.39	2.93	CM-Ab-121025-11
				469.9875	5.74	-0.21	7.20	4.77	3.78	2.50	CM-Ab-121025-15
				406.125	5.76	-0.35	10.20	6.87	5.53	3.72	ErC-Ab-121025-05
) IED 10 55 4D	422.100							
PMAE4080A	NNTN8128B	None	NTN2574B (wireless BT pod)	438.100							
			(whereas B1 pea)	453.9875							
				469.9875							
				406.125	5.56	-0.18	10.40	6.79	5.56	3.63	CM-Ab-121024-19
) IED 10 55 4D	422.100								
PMAE4080A	NNTN8129A	None	NTN2574B (wireless BT pod)	438.100							
			(wheless B1 pod)	453.9875							
				469.9875							

Assessment of other audio accessories at the body

Assessment of applicable additional offered audio accessories per KDB 643646 D01 SAR Test for PTT Radios v01r01. Refer to Table 19 for highest output power channel.

TABLE 21

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq	Init	SAR Drift (dB)	Meas. 1g-SAR (mW/g)	Meas. 10g- SAR (mW/g)	Max Calc. 1g-SAR (mW/g)	Max Calc. 10g- SAR (mW/g)	Run#
				406.1250	5.77	-0.32	11.10	7.49	5.97	4.03	ErC-Ab-121026-02
				422.100							
PMAE4080A	NNTN8129A	None	RLN5883A	438.1000							
				453.9875							
				469.9875							
				406.1250		-0.44	11.40	7.72	6.31	4.27	ErC-Ab-121026-03
				422.100	5.70	-0.91	9.21	6.19	5.68	3.82	ErC-Ab-121026-04
PMAE4080A	NNTN8129A	None	PMLN5111A	438.1000							
				453.9875							
				469.9875							
				406.1250	5.73	-0.36	11.20	7.60	6.08	4.13	ErC-Ab-121026-05
				422.100	5.71	-0.84	9.76	6.54	5.92	3.97	ErC-Ab-121026-06
PMAE4080A	NNTN8129A	None	RLN5880A	438.1000							
			453.9875								
				469.9875							
				406.1250	5.72	-0.32	12.00	8.08	6.46	4.35	ErC-Ab-121026-07
				422.100	5.70	-0.69	10.40	6.98	6.10	4.09	ErC-Ab-121026-08
PMAE4080A	NNTN8129A	None	PMLN5097A	438.1000							
				453.9875							
				469.9875							
				406.1250	5.73	-0.35	12.20	8.23	6.61	4.46	ErC-Ab-121026-09
				422.100	5.77	-0.90	7.73	5.19	4.75	3.19	ErC-Ab-121026-10
PMAE4080A	NNTN8129A	None	BDN6729A	438.1000							
			w/BDN6783A	453.9875							
				469.9875							
				406.1250	5.75	-0.40	10.10	6.82	5.54	3.74	ErC-Ab-121026-11
				422.100							
PMAE4080A	NNTN8129A	None	BDN6730A	438.1000							
			w/BDN6783A	453.9875							
				469.9875							
_				406.1250	5.70	-0.36	11.90	8.06	6.46	4.38	ErC-Ab-121026-12
				422.100	5.67	-0.78	9.35	6.28	5.62	3.78	CM-Ab-121026-13
PMAE4080A	NNTN8129A	None	BDN6731A w/BDN6783A	438.1000							
			WIDDINGTON	453.9875							
				469.9875							

Table 21 continued

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (mW/g)	Meas. 10g- SAR (mW/g)	Max Calc. 1g-SAR (mW/g)	Max Calc. 10g- SAR (mW/g)	Run#
				406.1250	5.65	-0.36	11.80	8.01	6.47	4.39	CM-Ab-121026-14
				422.100	5.69	-0.30	12.40	8.37	6.66	4.49	CM-Ab-121026-15
			RLN4922A /	*422.100	5.71	-0.26	4.01	2.72	2.13	2.44	JsT-Ab-130304-03
PMAE4080A	NNTN8129A	None	BDN6729A /	*422.100	5.75	-0.86	4.24	2.82	2.58	1.72	JsT-Ab-130307-02
		BDN6783A	438.1000								
				453.9875							
				469.9875							
				406.1250	5.65	-0.34	11.80	8.00	6.44	4.36	CM-Ab-121026-16
			RLN4922A /	422.100	5.71	-0.89	7.89	5.30	4.84	3.25	CM-Ab-121026-17
PMAE4080A	NNTN8129A	None	BDN6730A /	438.1000							
			BDN6783A	453.9875							
				469.9875							
				406.1250	5.67	-0.34	11.90	8.01	6.47	4.35	CM-Ab-121026-18
			RLN4922A /	422.100	5.64	-0.75	9.67	6.50	5.81	3.90	CM-Ab-121026-19
PMAE4080A	NNTN8129A	None	BDN6731A /	438.1000							
			BDN6783A	453.9875							
				469.9875		-					

^{*}Additional verification assessment requested per FCC guidance using an 80x60 cm phantom. See Appendix F and exhibit 7B for SAR plots and test setup.

13.4 Assessment outside FCC Part 90 at the body

Assessment outside FCC Part 90 with each of the offered antennas using the highest SAR test configuration from Part 90 assessments above. SAR plots of the highest results per table (bolded) are presented in APPENDIX G.

Table 22

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Pwr	Drift	Meas. 1g-SAR (mW/g)		Max Calc. 1g-SAR (mW/g)		Run#
PMAE4065A	NNTN8128B	PMLN7008A	NTN2574B (wireless BT pod)	380.0125	5.70	-0.36 -2.71		2.51	2.03	1.36 2.17	CM-Ab-121030-15
FAF5259A	NNTN8128B	PMLN7008A	NTN2574B (wireless BT pod)	380.0125		-0.34		1.29	1.09	0.70	CM-Ab-121031-05
PMAE4080A	NNTN8129A	None	RLN4922A / BDN6729A / BDN6783A	380.0125 393.100		-0.19 0.04	12.00 12.40	8.20 8.51	6.27 6.20	4.28	CM-Ab-121030-11 ErC-Ab-121030-05

13.5 Assessment of IC allocated frequencies

Assessment IC allocated frequencies using the highest SAR test configuration the overall assessments above. SAR plots of the highest results per table (bolded) are presented in APPENDIX H.

Table 23

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (mW/g)		Max Calc. 1g-SAR		Run#
Antenna	Dattery	Accessory	RLN4922A /	406.125	5.65	-0.36	11.80	8.01	6.47	4.39	CM-Ab-121026-14
PMAE4080A	NNTN8129A	None	BDN6729A / BDN6783A	430.000	5.65	-0.74	7.05	4.77	4.22	2.85	CM-Ab-121030-12
				469.9875	5.71	-0.24	7.05	4.68	3.73	2.47	CM-Ab-121030-13

13.6 Shortened Scan Assessment

A "shortened" scan using the highest SAR configuration overall from above was performed to validate the SAR drift of the full DASY5TM coarse and zoom scans. Note that the shortened scan represents the zoom scan performance result; this is obtained by first running a coarse scan to find the peak area and then, using a newly charged battery, a zoom scan only was performed. The results of the shortened cube scan presented in APPENDIX E demonstrate that the scaling methodology used to determine the calculated SAR results presented herein are valid. The SAR result from the table below is provided in APPENDIX E.

TABLE 24

									Max Calc.	Max	
								Meas.	1g-	Calc.	
					Init	SAR	Meas.	10g-	SAR	10g-	
		Carry	Cable	Test Freq	Pwr	Drift	1g-SAR	SAR	(mW/g	SAR	
Antenna	Battery	Accessory	Accessory	(MHz)	(W)	(dB)	(mW/g)	(mW/g))	(mW/g)	Run#
			RLN4922A /								
			BDN6729A /								
PMAE4080A	NNTN8129A	None	BDN6783A	422.1000	5.69	-0.14	11.20	7.60	5.79	3.93	CM-Ab-121030-09

14.0 Simultaneous Transmission Exclusion

Per guidelines in KDB 648474 D01 conducted output power for the BT transmitter is \leq Pref (12mW) and the BT antenna is \geq 2.5 cm from the other antenna. Refer to exhibit 7B for an illustration. Therefore, simultaneous transmission SAR results are not reported herein.

15.0 Conclusion

Based on the test guidelines from KDB 643646, the highest Operational Maximum Calculated 1-gram and 10-gram average SAR values found for this filing:

TABLE 25

Davionatan	Frequency band	Max Calc at	Body (mW/g)	Max Calc at Face (mW/g)		
Designator	(MHz)	1g-SAR	10g-SAR	1g-SAR	10g-SAR	
IC	406.1-430; 450-470	6.66	4.49	NA	NA	
FCC	406.1-470	6.66	4.49	NA	NA	
Overall	380-470	6.66	4.49	NA	NA	

All results are scaled to the maximum output power

The test results clearly demonstrate compliance with FCC Occupational/Controlled RF Exposure limits of 8 W/kg averaged over 1 gram per the requirements of 47 CFR 2.1093(d). The 10 grams result is not applicable to FCC filing.

APPENDIX A Measurement Uncertainty

The Measurement Uncertainty tables indicated in this APPENDIX are applicable to the DUT test frequencies ranging from 100MHz to 800MHz as well as for DUT and Dipole test frequencies ranging from 300MHz to 800MHz. Therefore, the highest tolerance for the probe calibration uncertainty is indicated.

Uncertainty Budget for Device Under Test, for 100 MHz to 800 MHz

emeritary zangerrar zer									
а	ь	с	đ	e = f(d,k)	f	g	h = cxf/e	i= cxg/e	k
£ £	U	c	66	$e = f(u, \kappa)$,	š	c.xj/c	c.cg/c	Λ.
	IEEE	Tol.	Prob		c_i	c_i	l g	10 g	
	1528	(± %)	Dist		(1 g)	(10 g)	и,	и,	
Uncertainty Component	rection	(- //	22	Div.	(- 6/	(20 8)	(±%)	(±%)	v_i
Measurement System								() /	
Probe Calibration	E.2.1	10.0	N	1.00	1	1	10.0	10.0	8
Axial Isotropy	E.2.2	4.7	R	1.73	0.707	0.707	1.9	1.9	œ
Hemispherical Isotropy	E.2.2	9.6	R	1.73	0.707	0.707	3.9	3.9	œ
Boundary Effect	E.2.3	1.0	R	1.73	1	1	0.6	0.6	œ
Linearity	E.2.4	4.7	R	1.73	1	1	2.7	2.7	œ
System Detection Limits	E.2.5	1.0	R	1.73	1	1	0.6	0.6	œ
Readout Electronics	E.2.6	0.3	N	1.00	1	1	0.3	0.3	œ
Response Time	E.2.7	1.1	R	1.73	1	1	0.6	0.6	œ
Integration Time	E.2.8	1.1	R	1.73	1	1	0.6	0.6	œ
RF Ambient Conditions - Noise	E.6.1	3.0	R	1.73	1	1	1.7	1.7	8
RF Ambient Conditions - Reflections	E.6.1	0.0	R	1.73	1	1	0.0	0.0	8
Probe Positioner Mech. Tolerance	E.6.2	0.4	R	1.73	1	1	0.2	0.2	80
Probe Positioning w.r.t Phantom	E.6.3	1.4	R	1.73	1	1	0.8	0.8	8
Max. SAR Evaluation (ext., int., avg.)	E.5	3.4	R	1.73	1	1	2.0	2.0	8
Test sample Related									
Test Sample Positioning	E.4.2	3.2	N	1.00	1	1	3.2	3.2	29
Device Holder Uncertainty	E.4.1	4.0	N	1.00	1	1	4.0	4.0	8
SAR drift	6.6.2	5.0	R	1.73	1	1	2.9	2.9	8
Phantom and Tissue Parameters									
Phantom Uncertainty	E.3.1	4.0	R	1.73	1	1	2.3	2.3	8
Liquid Conductivity (target)	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	8
Liquid Conductivity (measurement)	E.3.3	3.3	N	1.00	0.64	0.43	2.1	1.4	8
Liquid Permittivity (target)	E.3.2	5.0	R	1.73	0.6	0.49	1.7	1.4	8
Liquid Permittivity (measurement)	E.3.3	1.9	N	1.00	0.6	0.49	1.1	0.9	8
Combined Standard Uncertainty			RSS				14	13	965
Expanded Uncertainty (95% CONFIDENCE LEVEL)			k=2				27	27	

Circertainty Budget for System verification (dipole & flat phantom) for 500 MHz to 500 MHz												
							h =	i =				
а	Ь	С	d	e = f(d, k)	f	g	cxf/e	cxg/e	k			
		Tol.	Prob.		c_i	c;	l g	10 g				
	IEEE 1528	(± %)	Dist.		(1 g)	(10 g)						
Uncertainty Component	rection	(- /0)	27276	Div.	(* 6)	(108)	u _i (±%)	u; (±%)	v_i			
Measurement System				Div.			(=70)	(270)	,			
Probe Calibration	E.2.1	6.7	N	1.00	1	1	6.7	6.7	oc			
Axial Isotropy	E.2.2	4.7	R	1.73	1	1	2.7	2.7	100			
Spherical Isotropy	E.2.2	9.6	R	1.73	0	0	0.0	0.0	100			
Boundary Effect	E.2.3	1.0	R	1.73	1	1	0.6	0.6	ac ac			
Linearity	E.2.4	4.7	R	1.73	1	1	2.7	2.7	100			
System Detection Limits	E.2.5	1.0	R	1.73	1	1	0.6	0.6	on on			
Readout Electronics	E.2.6	0.3	N	1.00	1	1	0.3	0.3	100			
Response Time	E.2.7	1.1	R	1.73	1	1	0.6	0.6	ac ac			
Integration Time	E.2.8	0.0	R	1.73	1	1	0.0	0.0	ac ac			
RF Ambient Conditions - Noise	E.6.1	3.0	R	1.73	1	1	1.7	1.7	100			
RF Ambient Conditions - Reflections	E.6.1	0.0	R	1.73	1	1	0.0	0.0	100			
Probe Positioner Mechanical Tolerance	E.6.2	0.4	R	1.73	1	1	0.2	0.2	100			
Probe Positioning w.r.t. Phantom	E.6.3	1.4	R	1.73	1	1	0.8	0.8	100			
Max. SAR Evaluation (ext., int., avg.)	E.5	3.4	R	1.73	1	1	2.0	2.0	100			
Dipole												
Dipole Axis to Liquid Distance	8, E.4.2	2.0	R	1.73	1	1	1.2	1.2	100			
Input Power and SAR Drift Measurement	8, 6.6.2	5.0	R	1.73	1	1	2.9	2.9	90			
Phantom and Tissue Parameters												
Phantom Uncertainty	E.3.1	4.0	R	1.73	1	1	2.3	2.3	100			
Liquid Conductivity (target)	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	90			
Liquid Conductivity (measurement)	E.3.3	3.3	N	1.00	0.64	0.43	2.1	1.4	100			
Liquid Permittivity (target)	E.3.2	5.0	R	1.73	0.6	0.49	1.7	1.4	90			
Liquid Permittivity (measurement)	E.3.3	1.9	N	1.00	0.6	0.49	1.1	0.9	90			
Combined Standard Uncertainty			RSS				10	9	99999			
Expanded Uncertainty												
(95% CONFIDENCE LEVEL)			k=2				19	19				

Notes for uncertainty budget tables:

- a) Column headings *a-k* are given for reference.
- b) Tol. tolerance in influence quantity.
- c) Prob. Dist. Probability distribution
- d) N, R normal, rectangular probability distributions
- e) Div. divisor used to translate tolerance into normally distributed standard uncertainty
- f) *ci* sensitivity coefficient that should be applied to convert the variability of the uncertainty component into a variability of SAR.
- g) ui SAR uncertainty
- h) vi degrees of freedom for standard uncertainty and effective degrees of freedom for the expanded uncertainty

APPENDIX B Probe Calibration Certificates

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Motorola EME

Certificate No: ES3-3301_Jul12

Accreditation No.: SCS 108

S

C

S

CALIBRATION CERTIFICATE

Object ES3DV3 - SN:3301

Calibration procedure(s) QA CAL-01.v8, QA CAL-12.v7, QA CAL-14.v3, QA CAL-23.v4,

QA CAL-25.v4

Calibration procedure for dosimetric E-field probes

Calibration date: July 30, 2012

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).

The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	29-Mar-12 (No. 217-01508)	Apr-13
Power sensor E4412A	MY41498087	29-Mar-12 (No. 217-01508)	Apr-13
Reference 3 dB Attenuator	SN: S5054 (3c)	27-Mar-12 (No. 217-01531)	Apr-13
Reference 20 dB Attenuator	SN: S5086 (20b)	27-Mar-12 (No. 217-01529)	Apr-13
Reference 30 dB Attenuator	SN: S5129 (30b)	27-Mar-12 (No. 217-01532)	Apr-13
Reference Probe ES3DV2	SN: 3013	29-Dec-11 (No. ES3-3013_Dec11)	Dec-12
DAE4	SN: 660	20-Jun-12 (No. DAE4-660_Jun12)	Jun-13
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-11)	In house check: Apr-13
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-11)	In house check: Oct-12

Calibrated by:

Name
Function
Signature

Katja Pokovic
Technical Manager

Approved by:

Niels Kuster
Quality Manager

This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Certificate No: ES3-3301_Jul12

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C modulation dependent linearization parameters

Polarization φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

 iEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of
 power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the
 maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ES3-3301_Jul12 Page 2 of 11

ES3DV3 - SN:3301 July 30, 2012

Probe ES3DV3

SN:3301

Manufactured: August 27, 2010 Calibrated: July 30, 2012

Calibrated for DASY/EASY Systems
(Note: non-compatible with DASY2 system!)

Certificate No: ES3-3301_Jul12

July 30, 2012 ES3DV3-SN:3301

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3301

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (µV/(V/m) ²) ^A	1.48	1.01	1.24	± 10.1 %
DCP (mV) ⁸	98.8	100.1	99.5	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dB	C dB	VR mV	Unc ^E (k=2)
0	CW	0.00	Х	0.00	0.00	1.00	125.4	±1.7 %
			Υ	0.00	0.00	1.00	140.7	
			Z	0.00	0.00	1.00	121.9	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

[^] The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

Numerical linearization parameter: uncertainty not required.

Numerical linearization parameter: uncertainty not required.

Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3301

Calibration Parameter Determined in Head Tissue Simulating Media

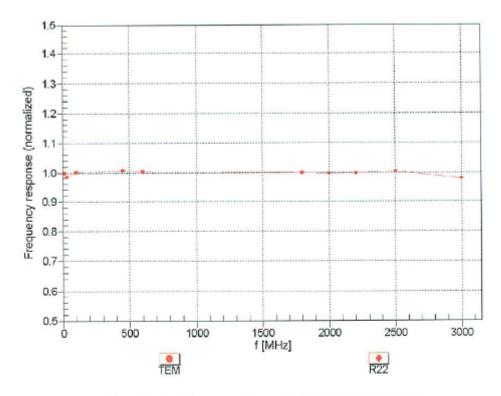
f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
300	45.3	0.87	7.21	7.21	7.21	0.24	1.04	± 13.4 %
450	43.5	0.87	6.61	6.61	6.61	0.15	1.75	± 13.4 %
750	41.9	0.89	6.23	6.23	6.23	0.72	1.20	± 12.0 %
900	41.5	0.97	5.92	5.92	5.92	0.80	1.16	± 12.0 %
1810	40.0	1.40	5.11	5.11	5.11	0.80	1.18	± 12.0 %
1950	40.0	1.40	4.87	4.87	4.87	0.52	1.53	± 12.0 %
2300	39.5	1.67	4.70	4.70	4.70	0.80	1.24	± 12.0 %
2450	39.2	1.80	4.37	4.37	4.37	0.73	1.36	± 12.0 %
2600	39.0	1.96	4.25	4.25	4.25	0.80	1.30	± 12.0 %
3500	37.9	2.91	4.23	4.23	4.23	1.00	1.05	± 13.1 %
3700	37.7	3.12	3.96	3.96	3.96	1.00	1.12	± 13.1 %

^C Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

^F At frequencies below 3 GHz, the validity of tissue parameters (ε and α) can be released to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and α) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

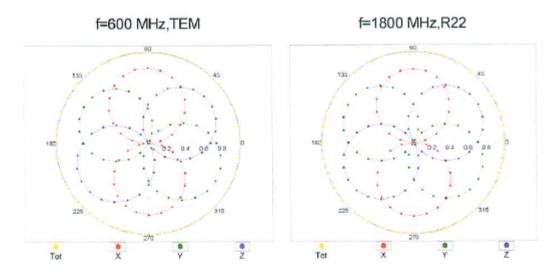
DASY/EASY - Parameters of Probe: ES3DV3 - SN:3301

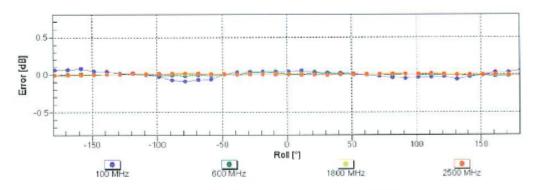
Calibration Parameter Determined in Body Tissue Simulating Media


f (MHz) ^c	Relative Permittivity ^f	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
300	58.2	0.92	7.07	7.07	7.07	0.23	1.94	± 13.4 %
450	56.7	0.94	7.03	7.03	7.03	0.10	1.80	± 13.4 %
750	55.5	0.96	6.10	6.10	6.10	0.50	1.44	± 12.0 %
900	55.0	1.05	5.95	5.95	5.95	0.38	1.77	± 12.0 %
1810	53.3	1.52	4.81	4.81	4.81	0.54	1.47	± 12.0 %
1950	53.3	1.52	4.81	4.81	4.81	0.58	1.53	± 12.0 %
2300	52.9	1.81	4.46	4.46	4.46	0.80	1.21	± 12.0 %
2450	52.7	1.95	4.28	4.28	4.28	0.80	1.11	± 12.0 %
2600	52.5	2.16	4.10	4.10	4.10	0.75	1.09	± 12.0 %
3500	51.3	3.31	3.63	3.63	3.63	1.00	1.25	± 13.1 %
3700	51.0	3.55	3.48	3.48	3.48	1.00	1.29	± 13.1 %

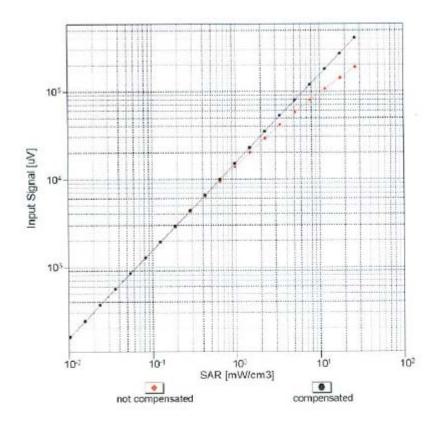
^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

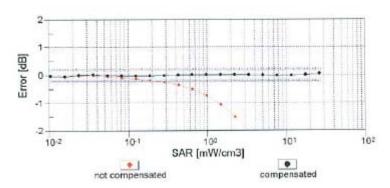
f At frequencies below 3 GHz, the validity of tissue parameters (c and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (c and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.


July 30, 2012 ES3DV3- SN:3301

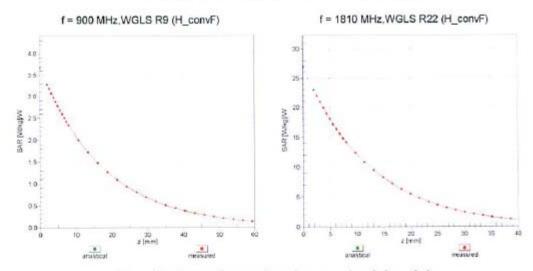

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

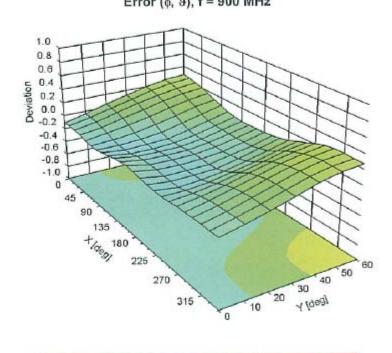
Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

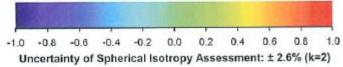

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$



Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz)




Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz

Certificate No: ES3-3301_Jul12

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3301

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	111.4
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Schmid & Partner Engineering AG

s p e a g

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

Additional Conversion Factors

for Dosimetric E-Field Probe

Type:	ES3DV3
Serial Number:	3301
Place of Assessment:	Zurich
Date of Assessment:	August 1, 2012
Probe Calibration Date:	July 30, 2012

Schmid & Partner Engineering AG hereby certifies that conversion factor(s) of this probe have been evaluated on the date indicated above. The assessment was performed using the FDTD numerical code SEMCAD of Schmid & Partner Engineering AG. Since the evaluation is coupled with measured conversion factors, it has to be recalculated yearly, i.e., following the re-calibration schedule of the probe. The uncertainty of the numerical assessment is based on the extrapolation from measured value at 300, 450 and 900 MHz.

Assessed by:

ES3DV3-SN:3301

Page 1 of 2

August 1, 2012

Schmid & Partner Engineering AG

s p e a g

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

Dosimetric E-Field Probe ES3DV3 SN:3301

Conversion factor (± standard deviation)

150 ± 50 MHz

ConvF $8.0 \pm 10\%$

 $\varepsilon_r = 52.3 \pm 5\%$

 $\sigma = 0.76 \pm 5\% \,\text{mho/m}$

(head tissue)

 $150 \pm 50 \text{ MHz}$

ConvF 7.8 ± 10%

 $\varepsilon_r = 61.9 \pm 5\%$

 $\sigma = 0.80 \pm 5\% \,\text{mho/m}$

(body tissue)

Important Note:

For numerically assessed probe conversion factors, parameters Alpha and Delta in the DASY software must have the following entries: Alpha = 0 and Delta = 1.

Please see also DASY Manual.

APPENDIX C Dipole Calibration Certificates

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

C

S

Accreditation No.: SCS 108

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signature.

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Motorola EME Certificate No: D450V3-1077_Nov11/2

CALIBRATION CERTIFICATE (Replacement of No:D450V3-1077_Nov11) Object D450V3 - SN: 1077 QA CAL-15.v6 Calibration procedure(s) Calibration procedure for dipole validation kits below 700 MHz Calibration date: November 15, 2011 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID# Cal Date (Certificate No.) Scheduled Calibration Power meter E4419B GB41293874 31-Mar-11 (No. 217-01372) Apr-12 Power sensor E4412A MY41498087 31-Mar-11 (No. 217-01372) Apr-12 Reference 3 dB Attenuator SN: S5054 (3c) 29-Mar-11 (No. 217-01369) Apr-12 Reference 20 dB Attenuator SN: S5086 (20b) 29-Mar-11 (No. 217-01367) Apr-12 Type-N mismatch combination SN: 5047.3 / 06327 29-Mar-11 (No. 217-01168) Apr-12 Reference Probe ET3DV6 SN: 1507 29-Apr-11 (No. ET3-1507_Apr11) May-12 DAE4 SN: 654 03-May-11 (No. DAE4-654_May11) May-12 Secondary Standards Check Date (in house) Scheduled Check Power sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-11) In house check: Oct-13 RF generator R&S SMT-06 100005 04-Aug-99 (in house check Oct-11) In house check: Oct-13 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-11) In house check: Oct-12 Name Signature Function Calibrated by: Jeton Kastrati Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: March 5, 2012

Certificate No: D450V3-1077_Nov11/2 Page 1 of 8

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kallbrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Callbration Service

Accredited by the Swiss Accreditation Service (SAS)

Accredited by the Swiss Accreditation No.: SCS 108

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D450V3-1077_Nov11 Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.6.2
Extrapolation	Advanced Extrapolation	
Phantom	ELI4 Flat Phantom	Shell thickness: 2 ± 0.2 mm
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	43.5	0.87 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	44.1 ± 6 %	0.85 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	398 mW input power	1.82 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	4.67 mW /g ± 18.1 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	398 mW input power	1.21 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	3.10 mW /g ± 17.6 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	56.7	0.94 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.0 ± 6 %	0.92 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	398 mW input power	1.77 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	4.49 mW / g ± 18.1 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	398 mW input power	1.18 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	2.99 mW / g ± 17.6 % (k=2)

Certificate No: D450V3-1077_Nov11

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	58.2 Ω - 5.0 jΩ
Return Loss	- 21.0 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	55.2 Ω - 7.3 jΩ
Return Loss	- 21.4 dB

General Antenna Parameters and Design

Floatrical Dalay (see discalles)	1.050
Electrical Delay (one direction)	1.353 ns
, , , , , , , , , , , , , , , , , , , ,	11000110

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	June 24, 2010

DASY5 Validation Report for Head TSL

Date: 15.11.2011

Test Laboratory: SPEAG

DUT: Dipole 450 MHz; Type: D450V3; Serial: D450V3 - SN: 1077

Communication System: CW; Frequency: 450 MHz

Medium parameters used: f = 450 MHz; $\sigma = 0.85 \text{ mho/m}$; $\varepsilon_r = 44.1$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ET3DV6 - SN1507; ConvF(6.59, 6.59, 6.59); Calibrated: 29.04.2011

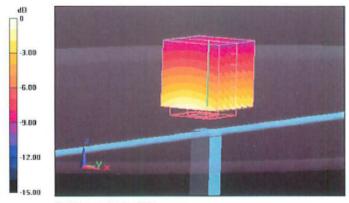
Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn654; Calibrated: 03.05.2011

Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1003

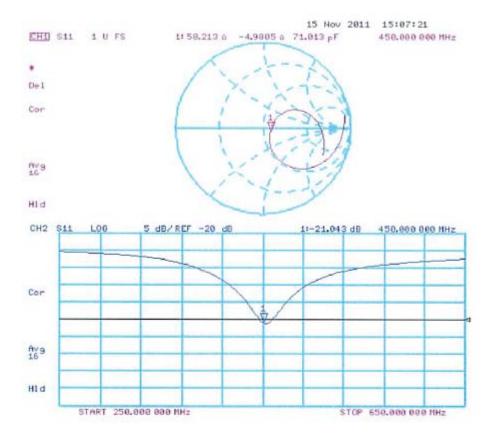
DASY52 52.6.2(482); SEMCAD X 14.4.5(3634)

Dipole Calibration for Head Tissue/d=15mm, Pin=398mW/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 49.455 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 2.765 W/kg


SAR(1 g) = 1.82 mW/g; SAR(10 g) = 1.21 mW/g

Maximum value of SAR (measured) = 1.940 mW/g

0 dB = 1.940 mW/g

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 15.11.2011

Test Laboratory: SPEAG

DUT: Dipole 450 MHz; Type: D450V3; Serial: D450V3 - SN: 1077

Communication System: CW; Frequency: 450 MHz

Medium parameters used: f = 450 MHz; $\sigma = 0.92 \text{ mho/m}$; $\varepsilon_r = 55$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ET3DV6 - SN1507; ConvF(7.05, 7.05, 7.05); Calibrated: 29.04.2011

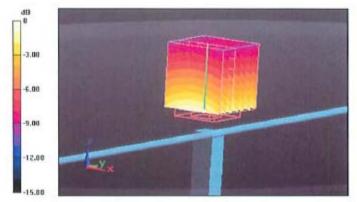
Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn654; Calibrated: 03.05.2011

Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1003

DASY52 52.6.2(482); SEMCAD X 14.4.5(3634)

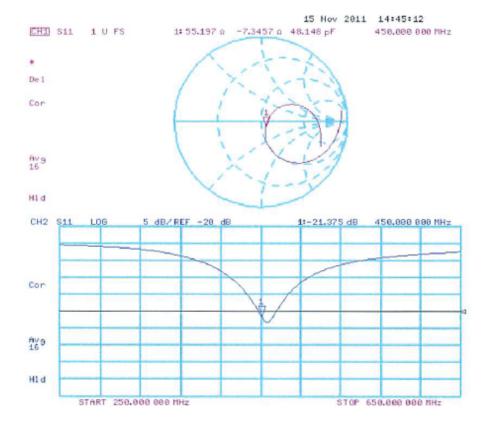
Dipole Calibration for Body Tissue/d=15mm, Pin=398mW/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 46.820 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 2.773 W/kg

SAR(1 g) = 1.77 mW/g; SAR(10 g) = 1.18 mW/g


Maximum value of SAR (measured) = 1.891 mW/g

0 dB = 1.890 mW/g

Certificate No: D450V3-1077_Nov11

Impedance Measurement Plot for Body TSL

