

Certification Test Report

FCC ID: AZ489FT4911 IC: 109U-89FT4911

FCC Rule Part: 15.247 IC Radio Standards Specification: RSS-210

ACS Report Number: 12-2141.W06.1A

Manufacturer: Motorola Solutions SDNBHD Model: H59QDD9PW4AN

Test Begin Date: October 27, 2012 Test End Date: November 2, 2012

Report Issue Date: November 7, 2012

FOR THE SCOPE OF ACCREDITATION UNDER CERTIFICATE NUMBER AT-1533

This report must not be used by the client to claim product certification, approval, or endorsement by ACLASS, ANSI, or any agency of the Federal Government.

Project Manager:

Tom Charles for This

Thierry Jean-Charles EMC Engineer Advanced Compliance Solutions, Inc.

Reviewed by:

Kirby Munroe Director, Wireless Certifications Advanced Compliance Solutions, Inc.

This test report shall not be reproduced except in full. This report may be reproduced in part with prior written consent of ACS, Inc. The results contained in this report are representative of the sample(s) submitted for evaluation.
This report contains 59 pages

TABLE OF CONTENTS

1	GENERAL
1.1	Purpose
1.2	Manufacturer Information 3
1.3	Product description
1.4	Test Methodology and Considerations 4
2	TEST FACILITIES
2.1	Location
2.2	Laboratory Accreditations/Recognitions/Certifications
2.3	Radiated & Conducted Emissions Test Site Description6
3	APPLICABLE STANDARD REFERENCES7
4	LIST OF TEST EQUIPMENT8
5	SUPPORT EQUIPMENT9
6	EQUIPMENT UNDER TEST SETUP BLOCK DIAGRAM9
7	SUMMARY OF TESTS11
7.1	Antenna Requirement – FCC: Section 15.203 11
7.2	Power Line Conducted Emissions – FCC: Section 15.207 IC: RSS-Gen 7.2.4 11
7.3	Peak Output Power - FCC Section 15.247(b)(1) IC: RSS-210 A8.4(2)
7.4	Channel Usage Requirements
7.5	Band-Edge Compliance and Spurious Emissions-FCC 15.247(d) IC:RSS-210 A8.5 35
8	CONCLUSION

1 GENERAL

1.1 Purpose

The purpose of this report is to demonstrate compliance with Part 15 Subpart C of the FCC's Code of Federal Regulations and Industry Canada's Radio Standards Specification RSS-210.

1.2 Manufacturer Information

Motorola Solutions Malaysia Sdn Bhd Plot 2, Bayan Lepas, Technoplex Industrial Park, Mukim 12, SWD (CSC) 11900 Bayan Lepas, Penang Malaysia

1.3 Product description

The H59QDD9PW4AN is a two way portable radio capable of digital and analog FM transmission and TDMA transmission. The radio also includes a Bluetooth 2.0 + EDR radio transceiver.

Mode of Operation	Frequency Range (MHz)	Number of Channels	Channel Separation (kHz)	Data Rates Supported (kbps)
GFSK	2402 - 2480	79	1000	1000
π/4-DQPSK	2402 - 2480	79	1000	2000
8DPSK	2402 - 2480	79	1000	3000

Table1.3-1: Bluetooth Radio Properties

Model Number: H59QDD9PW4AN

Test Sample Serial Number(s): 536TNT0071, 536TNT0055

Test Sample Condition: The samples were in good conditions with no observable physical damages.

1.4 Test Methodology and Considerations

The H59QDD9PW4AN Bluetooth radio was evaluated for radiated and power line conducted emissions as well as RF conducted measurements at the antenna port.

For the radiated emissions evaluation, the unit was pre-scanned in three orthogonal positions. The final measurements were performed for the EUT orientation leading to the highest emissions. The radiated emissions average results were further corrected using a duty cycle correction factor corresponding to the logarithm of the dwell time over 100 ms period.

The EUT was also evaluated for inter-modulation products from the collocated Bluetooth and the UHF radio. All inter-modulation products were found to be compliant to the requirements of 15.209.

The RF conducted evaluation was performed on the EUT modified with a temporary SMA connector at the antenna port.

The power line conducted emissions evaluations were performed for the EUT set to the hopping mode for the three available modes of operation. The results are reported for the configuration leading to the highest emissions.

Mode of Operations	Frequency	Data Rate
	(MHz)	(kbps)
	2402	1000
GFSK	2441	1000
	2480	1000
	2402	2000
π/4 DQPSK	2441	2000
	2480	2000
	2402	3000
8 DPSK	2441	3000
	2480	3000

Table 1.4-1: Bluetooth Radio Test configuration

The EUT was also evaluated for unintentional emissions when operating as a computer peripheral device. The results are documented separately in a Declaration of Conformity/Verification test report.

2 TEST FACILITIES

2.1 Location

The radiated and conducted emissions test sites are located at the following address:

Advanced Compliance Solutions, Inc. 3998 FAU Blvd, Suite 310 Boca Raton, Florida 33431 Phone: (561) 961-5585 Fax: (561) 961-5587 www.acstestlab.com

FCC Test Firm Registration #: 587595 Industry Canada Lab Code: 4175C

2.2 Laboratory Accreditations/Recognitions/Certifications

ACS is accredited to ISO/IEC 17025 by ANSI-ASQ National Accreditation Board under their ACLASS program and has been issued certificate number AT-1533 in recognition of this accreditation. Unless otherwise specified, all test methods described within this report are covered under the ISO/IEC 17025 scope of accreditation.

2.3 Radiated & Conducted Emissions Test Site Description

2.3.1 Semi-Anechoic Chamber Test Site

The EMC radiated test facility consists of an RF-shielded enclosure. The interior dimensions of the indoor semi-anechoic chamber are approximately 48 feet (14.6 m) long by 36 feet (10.8 m) wide by 24 feet (7.3 m) high and consist of rigid, 1/8 inch (0.32 cm) steel-clad, wood core modular panels with steel framing. In the shielded enclosure, the faces of the panels are galvanized and the chamber is self-supporting. 8-foot RF absorbing cones are installed on 4 walls and the ceiling. The steel-clad ground plane is covered with vinyl floor.

The turntable is driven by pneumatic motor, which is capable of supporting a 2000 lb. load. The turntable is flushed with the chamber floor which it is connected to, around its circumference, with a continuous metallic loaded spring. An EMCO Model 1050 Multi-device Controller controls the turntable position.

A pneumatic motor is used to control antenna polarizations and height relative to the ground. The height information is displayed on the control unit EMCO Model 1050.

The control room is an RF shielded enclosure attached to the semi-anechoic chamber with two bulkhead panels for connecting RF, and control cables. The dimension of the room is 7.3 m x 4.9 m x 3 m high and the entrance doors of both control and conducted rooms are 3 feet (0.91 m) by 7 feet (2.13 m).

A diagram of the Semi-Anechoic Chamber Test Site is shown in Figure 2.3.1-1 below:

Figure 2.3.1-1: Semi-Anechoic Chamber Test Site

2.3.2 Conducted Emissions Test Site Description

The dimensions of the shielded conducted room are 7.3 x 4.9 x 3 m³. As per ANSI C63.4 2003 requirements, the data were taken using two LISNs; a Solar Model 8028-50 50 Ω /50 μ H and an EMCO Model 3825, which are installed as shown in Photograph 3. For 220 V, 50 Hz, a Polarad LISN (S/N 879341/048) is used in conjunction with a 1 kVA, 50 Hz/220 V EDGAR variable frequency generator, Model 1001B, to filter conducted noise from the generator.

A diagram of the room is shown below in figure 2.3.2-1:

Figure 2.3.2-1: AC Mains Conducted EMI Site

3 APPLICABLE STANDARD REFERENCES

The following standards were used:

- ANSI C63.4-2003: Method of Measurements of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the 9KHz to 40GHz
- US Code of Federal Regulations (CFR): Title 47, Part 2, Subpart J: Equipment Authorization Procedures, 2012
- US Code of Federal Regulations (CFR): Title 47, Part 15, Subpart C: Radio Frequency Devices, Intentional Radiators, 2012
- FCC Public Notice DA 00-705 Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems, March 30, 2000
- Industry Canada Radio Standards Specification: RSS-210 Low-power License-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment, Issue 8 December 2010.
- Industry Canada Radio Standards Specification: RSS-GEN General Requirements and Information for the Certification of Radiocommunication Equipment, Issue 3, December 2010.

4 LIST OF TEST EQUIPMENT

The calibration interval of test equipment is annually or the manufacturer's recommendations. Where the calibration interval deviates from the annual cycle based on the instrument manufacturer's recommendations, it shall be stated below.

Table 4-1: Test Equipment							
						Calibration	
AssetID	Manufacturer	Model #	Equipment Type	Serial #	Last Calibration Date	Due Date	
523	Agilent	E7405	Spectrum Analyzers	MY45103293	1/5/2011	1/5/2013	
524	Chase	CBL6111	Antennas	1138	1/7/2011	1/7/2013	
2006	EMCO	3115	Antennas	2573	3/2/2011	3/2/2013	
2008	COM-Power	AH-826	Antennas	81009	NCR	NCR	
2011	Hewlett-Packard	HP 8447D	Amplifiers	2443A03952	1/2/2012	1/2/2013	
2022	EMCO	LISN3825/2R	LISN	1095	8/19/2011	8/19/2013	
2037	ACS Boca	Chamber EMI Cable Set	Cable Set	2037	1/2/2012	1/2/2013	
2044	QM	N/A	Cables	2044	1/2/2012	1/2/2013	
2045	ACS Boca	Conducted Cable Set	Cable Set	2045	1/2/2012	1/2/2013	
2064	CIRQTEL	FHT/22-10K-13/50-3A/3A	Filter	9	12/30/2011	12/30/2012	
2070	Mini Circuits	VHF-8400+	Filter	2070	1/19/2012	1/19/2013	
2072	Mini Circuits	VHF-3100+	Filter	30737	1/19/2012	1/19/2013	
2076	Hewlett Packard	HP5061-5458	Cables	2076	1/2/2012	1/2/2013	
2082	Teledyne Storm Products	90-010-048	Cables	2082	5/31/2012	5/31/2013	
2086	Merrimac	FAN-6-10K	Attenuators	23148-83-1	12/30/2011	12/30/2012	
2089	Agilient Technologies, Inc.	83017A	Amplifiers	3123A00214	12/22/2011	12/22/2012	
2091	Agilent Technologies, Inc.	8573A	Spectrum Analyzers	2407A03233	12/12/2011	12/12/2013	
2095	ETS Lindgren	TILE4! - Version 4.2.A	Software	85242	NCR	NCR	

NCR=No Calibration Required

5 SUPPORT EQUIPMENT

Item	Item Equipment Type Manufacturer Model Number Serial Number							
	No Support Equipment							

Table 5-2: Support Equipment (With charger)

ltem	Equipment Type	Equipment Type Manufacturer Model Number		Serial Number
1	Charger	Motorola Solutions	WPLN4226A	1081MTA05
2	14 VDC Power Supply	Motorola Solutions	NU20-C140150-I3	0945

6 EQUIPMENT UNDER TEST SETUP BLOCK DIAGRAM

Configuration 1 – Radiated Emissions (EUT Stand-alone)

Configuration 2 – Power Line Conducted Emissions (With charger)

7 SUMMARY OF TESTS

Along with the tabular data shown below, plots were taken of all signals deemed important enough to document.

7.1 Antenna Requirement – FCC: Section 15.203

The unit uses an internal antenna for the Bluetooth radio. The antenna is not accessible to the end-user, thus meeting the requirements of 15.203.

7.2 Power Line Conducted Emissions – FCC: Section 15.207 IC: RSS-Gen 7.2.4

7.2.1 Measurement Procedure

ANSI C63.4 sections 6 and 7 were the guiding documents for this evaluation. Conducted emissions were performed from 150 kHz to 30 MHz with the spectrum analyzer's resolution bandwidth set to 9 kHz and the video bandwidth set to 30 kHz. The calculation for the conducted emissions is as follows:

Corrected Reading = Analyzer Reading + LISN Loss + Cable Loss Margin = Applicable Limit - Corrected Reading

7.2.2 Measurement Results

Results of the test corresponding to the EUT configuration leading to the worse case emissions are shown below in Table 7.2.2-1 and Figure 7.2.2-1 to Figure 7.2.2-2.

Figure 7.2.2-1: Conducted Emissions Results – Line 1

Figure 7.2.2-2: Conducted Emissions Results – Line 2

Table 7.2.2-1: Conducted EMI Results

 Line 1 ⊠ Line 2 ☐ Line 3 Line 4 To Ground ⊠ Floating Telecom Port dBµV ☐ dBµA Plot Number: <u>12-2141CE04</u> Power Supply Description: <u>14.1</u> <u>VDC</u> 									
Frequency (MHz)	Unco Rea	prrected ading	Total Correction	Corrected	l Level	Lim	it	Margin (dB)	
	Quasi- Peak	Average	Factor (ub)	Quasi-Peak	Average	Quasi-Peak	Average	Quasi-Peak	Average
				Lir	ne 1		J		J
0.159875	40.033	22.708	1.50	41.53	24.21	65.47	55.47	23.9	31.3
0.193625	43.354	37.015	1.28	44.64	38.30	63.88	53.88	19.2	15.6
0.237599	29.097	16.661	1.07	30.16	17.73	62.18	52.18	32.0	34.5
0.258749	38.432	32.234	0.90	39.33	33.13	61.47	51.47	22.1	18.3
0.296387	25.736	12.872	0.86	26.60	13.74	60.34	50.34	33.7	36.6
0.389299	31.03	29.416	0.68	31.71	30.09	58.08	48.08	26.4	18.0
0.518563	28.347	27.501	0.53	28.87	28.03	56.00	46.00	27.1	18.0
0.622525	12.765	7.688	0.50	13.27	8.19	56.00	46.00	42.7	37.8
8.40677	30.815	28.44	1.00	31.81	29.44	60.00	50.00	28.2	20.6
8.47494	30.609	28.083	1.01	31.62	29.09	60.00	50.00	28.4	20.9
	1	i	i	Lir	ne 2	i	i	i	
0.159165	39.669	22.622	1.51	41.18	24.14	65.51	55.51	24.3	31.4
0.186013	36.135	24.22	1.31	37.44	25.53	64.21	54.21	26.8	28.7
0.259337	37.532	29.881	0.88	38.41	30.76	61.45	51.45	23.0	20.7
7.82601	33.546	32.024	0.94	34.49	32.97	60.00	50.00	25.5	17.0
7.88886	35.432	34.116	0.95	36.39	35.07	60.00	50.00	23.6	14.9
7.95348	35.366	34.86	0.96	36.33	35.82	60.00	50.00	23.7	14.2
8.01909	35.12	34.513	0.97	36.09	35.49	60.00	50.00	23.9	14.5
8.0818	35.38	35.027	0.98	36.36	36.01	60.00	50.00	23.6	14.0
8.14645	35.55	35.093	0.99	36.54	36.08	60.00	50.00	23.5	13.9
8.20961	35.316	34.729	1.00	36.32	35.73	60.00	50.00	23.7	14.3

* Note: Results are reported for the EUT configuration leading to the worst case emissions.

7.3 Peak Output Power - FCC Section 15.247(b)(1) IC: RSS-210 A8.4(2)

7.3.1 Measurement Procedure (Conducted Method)

The RF output port of the EUT was directly connected to the input of the spectrum analyzer. The display values were corrected for cable and external attenuation.

7.3.2 Measurement Results

Results are shown below in Table 7.3.2-1 to Table 7.3.2-3 and Figure 7.3.2-1 to Figure 7.3.2-9 below:

Frequency (MHz)	Power (dBm)
2402	8.144
2441	8.270
2480	8.354

Table 7.3.2-1: RF Output Power (GFSK)

₩ Agilent 15:55:12 Oct 27, 2012					R T					
Ref 10 dBm A			tten 5 dB			м	Mkr1 2.401940 GHz 8.144 dBm			
#Peak Log 10 dB/ Offst 20.7 dB					1					
M1 S2										
S3 FC AA										
Center 2.402 GHz #Res BW 3 MHz				VBW 3 M	Hz		Sweep	Sp: 10 ms (10	an 5 MHz 01 pts)	

Figure 7.3.2-1: RF Output Power (GFSK) - Low Channel

Figure 7.3.2-2: RF Output Power (GFSK) - Middle Channel

🔆 Agilent 15:56:55 Oct 27, 2012						R T				
Ref 10	dBm		А	tten 5 dB		•		M	kr1 2.4800 8.3)20 GHz 54 dBm
#Peak Log 10 dB/						1				
Offst 20.7 dB										
M1 S2 S3 FC										
~~										
Center #Res B	2.48 GH W 3 MH;	z z			VBW 3 M	Hz		Sweep	Spa 10 ms (100	an 5 MHz D1 pts)

Figure 7.3.2-3: RF Output Power (GFSK) - High Channel

Table	7.3.2-2 :	RF Outp	out Power	(π/4 DQP	SK)
					i i

Frequency (MHz)	Power (dBm)
2402	7.692
2441	7.825
2480	7.941

Figure 7.3.2-4: RF Output Power (π/4 DQPSK) - Low Channel

Figure 7.3.2-5: RF Output Power (π/4 DQPSK) - Middle Channel

Figure 7.3.2-6: RF Output Power (π/4 DQPSK) - High Channel

Table 7.3.2-3 RF	Output Power ((8DPSK)
------------------	----------------	---------

Frequency (MHz)	Power (dBm)
2402	8.118
2441	8.252
2480	8.336

Figure 7.3.2-7: RF Output Power (8DPSK) - Low Channel

Figure 7.3.2-8: RF Output Power (8DPSK) - Middle Channel

Figure 7.3.2-9: RF Output Power (8DPSK) - High Channel

7.4 Channel Usage Requirements

7.4.1 Carrier Frequency Separation – FCC: Section 15.247(a)(1) IC: RSS-210 A8.1(b)

7.4.1.1 Measurement Procedure

The RF output port of the EUT was directly connected to the input of the spectrum analyzer. The span of the spectrum analyzer was set wide enough to capture two adjacent peaks and the RBW and VBW were set to \geq 1% of the span.

7.4.1.2 Measurement Results

Results are shown below in Figure 7.4.1.2-1.

Figure 7.4.1.2-1: Carrier Frequency Separation

7.4.2 Number of Hopping Channels – FCC: Section 15.247(a)(1)(iii) IC: RSS-210 A8.1(d)

7.4.2.1 Measurement Procedure

The RF output port of the EUT was directly connected to the input of the spectrum analyzer through suitable attenuation. The span of the spectrum analyzer was set wide enough to capture the number of hopping channels. The peak detector max hold function was enabled for the measurements.

7.4.2.2 Measurement Results

Results are shown below in Figures 7.4.2.2-1 to 7.4.2.2-3.

Figure 7.4.2.2-1: Number of Hopping Channels (1 – 25)

Figure 7.4.2.2-2: Number of Hopping Channels (26 - 54)

Figure 7.4.2.2-3: Number of Hopping Channels (55 – 79)

7.4.3 Channel Dwell Time – FCC: Section 15.247(a)(1)(iii) IC: RSS-210 A8.1(d)

7.4.3.1 Measurement Procedure

The RF output port of the EUT was directly connected to the input of the spectrum analyzer. The span of the spectrum analyzer was set 0 Hz centered on a hopping channel. The RBW was set to 1 MHz and the sweep time adjusted to capture the entire dwell time per channel with peak detector max hold function.

7.4.3.2 Measurement Results

Results are shown below in Table 7.4.3.2-1 and Figure 7.4.3.2-1 to Figure 7.4.3.2-3

Packet Format	Number of Hops Per Sec. (NHPS)	Number of Hops per Channel Per Sec. (NHPCPS)	Number of hops on a 31.6 s Cycle (NHPC)	Measured Dwell Times (ms)	Dwell Times on a 31.6 s Cycle	Limit (ms)	Status
DH1	800	10.13	320	0.422	134.94	400	PASS
DH3	400	5.06	160	1.662	265.92	400	PASS
DH5	266.67	3.38	107	2.912	311.58	400	PASS

Table 7.4.3.2-1 Dwell Time on a 31.6 Second Cycle

*Notes:

NHPS = (1600 /sec)/ (NT+NR) (where NT and NR are the number of transmit and receive packets, respectively) NHPCPS = NHPS/79

NHPC = NHPCPS * 31.6s

Dwell Time per Cycle = NHPC* Measured Dwell Time

Figure 7.4.3.2-1: Channel Dwell Time – DH1

Figure 7.4.3.2-2: Channel Dwell Time – DH3

Figure 7.4.3.2-3: Channel Dwell Time – DH5

7.4.4 20dB / 99% Bandwidth - FCC: Section 15.247(a)(1)(i) IC: RSS-210 A8.1(a)

7.4.4.1 Measurement Procedure

The RF output port of the EUT was directly connected to the input of the spectrum analyzer. The spectrum analyzer span was set to 2 to 3 times the estimated bandwidth of the emission. The RBW was to \geq 1% of the estimated emission bandwidth. The trace was set to max hold with a peak detector active. The Delta function of the analyzer was utilized to determine the 20 dB bandwidth of the emission.

The 99% occupied bandwidth was measured with the spectrum analyzer span set to fully display the emission, including the emissions skirts. The RBW was to 1% of the span. The occupied 99% bandwidth was measured by using a delta marker at the lower and upper frequencies leading to 0.5% of the total power.

7.4.4.2 Measurement Results

Results are shown below in Table 7.4.4.2-1 to Table 7.4.4.2-3 and Figures 7.4.4.2-1 to 7.4.4.2-18.

Frequency [MHz]	20dB Bandwidth [kHz]	99% Bandwidth [kHz]									
2402	956	870									
2441	953	876									
2480	956	870									

Table 7.4.4.2-1: 20dB / 99% Bandwidth (GFSK)

Figure 7.4.4.2-1: 20dB BW Low Channel (GFSK)

Figure 7.4.4.2-2: 20dB BW Middle Channel (GFSK)

Figure 7.4.4.2-3: 20dB BW High Channel (GFSK)

Figure 7.4.4.2-4: 99% OBW Low Channel (GFSK)

Figure 7.4.4.2-5: 99% OBW Middle Channel (GFSK)

Figure 7.4.4.2-6: 99% OBW High Channel (GFSK)

Frequency [MHz]	20dB Bandwidth [kHz]	99% Bandwidth [kHz]
2402	1394	1245
2441	1394	1242
2480	1394	1245

Table 7.4.4.2-2: 20dB / 99% Bandwidth (π/4 DQPSK)

Figure 7.4.4.2-7: 20dB BW Low Channel (π/4 DQPSK)

Figure 7.4.4.2-8: 20dB BW Middle Channel (π/4 DQPSK)

Figure 7.4.4.2-9: 20dB BW High Channel (π/4 DQPSK)

Figure 7.4.4.2-10: 99% OBW Low Channel (π/4 DQPSK)

Figure 7.4.4.2-11: 99% OBW Middle Channel (π/4 DQPSK)

Figure 7.4.4.2-12: 99% OBW High Channel (π/4 DQPSK)

Frequency [MHz]	20dB Bandwidth [kHz]	99% Bandwidth [kHz]
2402	1391	1245
2441	1388	1248
2480	1391	1245

Table 7.4.4.2-3: 20dB / 99% Bandwidth (8DPSK)

Figure 7.4.4.2-13: 20dB BW Low Channel (8DPSK)

Figure 7.4.4.2-14: 20dB BW Middle Channel (8DPSK)

Figure 7.4.4.2-15: 20dB BW High Channel (8DPSK)

Figure 7.4.4.2-16: 99% OBW Low Channel (8DPSK)

Figure 7.4.4.2-17: 99% OBW Middle Channel (8DPSK)

Figure 7.4.4.2-18: 99% OBW High Channel (8DPSK)

7.5 Band-Edge Compliance and Spurious Emissions-FCC 15.247(d) IC:RSS-210 A8.5

7.5.1 Band-Edge Compliance of RF Conducted Emissions

7.5.1.1 Measurement Procedure

The RF output port of the EUT was connected to the input of the spectrum analyzer through suitable attenuation. The EUT was investigated at the lowest and highest channel available to determine bandedge compliance. For each measurement the spectrum analyzer's RBW was set to 100 kHz, which is \geq 1% of the span, and the VBW was set to >= 300 kHz.

7.5.1.2 Measurement Results

Results are shown in Figure 7.5.1.2-1 to Figure 7.5.1.2-12 below.

Figure 7.5.1.2-1: Lower Band-edge – Continuous Mode (GFSK)

Figure 7.5.1.2-2: Upper Band-edge – Continuous Mode (GFSK)

Figure 7.5.1.2-3: Lower Band-edge – Hopping Mode (GFSK)

Figure 7.5.1.2-4: Upper Band-edge – Hopping Mode (GFSK)

Figure 7.5.1.2-5: Lower Band-edge – Continuous Mode ($\pi/4$ DQPSK)

Figure 7.5.1.2-6: Upper Band-edge – Continuous Mode (π/4 DQPSK)

Figure 7.5.1.2-7: Lower Band-edge – Hopping Mode ($\pi/4$ DQPSK)

Figure 7.5.1.2-8: Upper Band-edge – Hopping Mode (π/4 DQPSK)

Figure 7.5.1.2-9: Lower Band-edge – Continuous Mode (8DPSK)

Figure 7.5.1.2-10: Upper Band-edge – Continuous Mode (8DPSK)

Figure 7.5.1.2-11: Lower Band-edge – Hopping Mode (8DPSK)

Figure 7.5.1.2-12: Upper Band-edge – Hopping Mode (8DPSK)

7.5.2 Band-Edge Compliance of Radiated Spurious Emissions

7.5.2.1 Measurement Procedure

Because the upper band-edge coincides with a restricted band, band-edge compliance for the upper band-edge was determined using the radiated mark-delta method. The radiated field strength of the fundamental emission was first determined and then the mark-delta method was used to determine the field strength of the band-edge emission

7.5.2.2 Measurement Results

Band-edge compliance is displayed in Table 7.5.2.2-1 to Table 7.5.2.2-3 and Figure 7.5.2.2-1 to Figure 7.5.2.2-6.

			Table	7.5.2.2-1.	opperi	Janu-eu	<u>ye - 01 (</u>	JN			
Frequency (dBuV) (MHz)		Antenna	Correction						Margin	to Limits	
		Polarity	Factors	Fundamental Level		Marker-	Band-Edge Level		(dB)		
					(dBuV/m)		Delta (dB)	(dBuV/m)		74	54
	pk	Qpk/Avg	(H/V)	(dB)	pk	Qpk/Avg		pk	Qpk/Avg	pk	Qpk/Avg
2480	114.90	114.30	Н	-8.05	106.85	75.54	58.98	47.87	16.56	26.13	37.44
2480	109.90	109.30	V	-8.05	101.85	70.54	56.22	45.63	14.32	28.37	39.68

Table 7.5.2.2-1: Upper Band-edge – GFSK

*Note: A duty cycle correction factor of 20*log(2.912/100) dB ≈ -30.72 dB, corresponding to the logarithm of the dwell time over 100ms, was applied to the average measurements.

Figure 7.5.2.2-1: Upper Band-edge (GFSK - Horizontal)

Figure 7.5.2.2-2: Upper Band-edge (GFSK - Vertical)

	Uncorrected Level		Antenna	Correction						Margin	to Limits	
Frequency	requency (dBuV)		Polarity	Factors	Fundamental Level		Marker-	rker- Band-Edge Level		(dB)		
(MHz)			-		(dBu	ıV/m)	Delta (dB)	(dBu	ıV/m)	74	54	
	pk	Qpk/Avg	(H/V)	(dB)	pk	Qpk/Avg		pk	Qpk/Avg	pk	Qpk/Avg	
2480	114.20	110.70	Н	-8.05	106.15	71.94	53.01	53.14	18.93	20.86	35.07	
2480	109.00	105.30	V	-8.05	100.95	66.54	50.87	50.08	15.67	23.92	38.33	

Table 7.5.2.2-2: Upper Band-edge – π/4 DQPSK

*Note: A duty cycle correction factor of 20*log(2.912/100) dB ≈ -30.72 dB, corresponding to the logarithm of the dwell time over 100ms, was applied to the average measurements.

Figure 7.5.2.2-3: Upper Band-edge (π/4 DQPSK - Horizontal)

Figure 7.5.2.2-4: Upper Band-edge (π/4 DQPSK - Vertical)

Uncorrected Level		Antenna	Correction						Margin	to Limits		
Frequency (dBuV)		uV)	Polarity	Factors	Fundamental Level		Marker-	Band-Edge Level		(dB)		
(MHz)					(dBu	ıV/m)	Delta (dB)	(dBu	ıV/m)	74	54	
	pk	Qpk/Avg	(H/V)	(dB)	pk	Qpk/Avg		pk	Qpk/Avg	pk	Qpk/Avg	
2480	114.20	110.70	Н	-8.05	106.15	71.94	52.59	53.56	19.35	20.44	34.65	
2480	109.60	106.00	V	-8.05	101.55	67.24	51.71	49.84	15.53	24.16	38.47	

Table 7.5.2.2-3: Upper Band-edge – 8DPSK

*Note: A duty cycle correction factor of 20*log(2.912/100) dB ≈ -30.72 dB, corresponding to the logarithm of the dwell time over 100ms, was applied to the average measurements.

Figure 7.5.2.2-5: Upper Band-edge (8DPSK- Horizontal)

Figure 7.5.2.2-6: Upper Band-edge (8DPSK - Vertical)

7.5.3 **RF Conducted Spurious Emissions**

7.5.3.1 Measurement Procedure

The RF output port of the EUT was connected to the spectrum analyzer input using a 20 dB attenuator. The EUT was investigated for conducted spurious emissions from 30MHz to 26 GHz, 10 times the highest fundamental frequency. Measurements were made at the low, center and high channels of the EUT. For each measurement, the spectrum analyzer's RBW was set to 100 kHz. A peak detector function was used with the trace set to max hold. The levels were corrected for cable and attenuator losses.

7.5.3.2 Measurement Results

Results are shown below in Figure 7.5.3.2-1 to Figure 7.5.3.2-18:

Figure 7.5.3.2-1: 30 MHz – 1 GHz – Low Channel (GFSK)

Figure 7.5.3.2-2: 1 GHz – 26 GHz – Low Channel (GFSK)

Figure 7.5.3.2-3: 30 MHz – 1 GHz – Middle Channel (GFSK)

Figure 7.5.3.2-4: 1 GHz – 26 GHz – Middle Channel (GFSK)

Figure 7.5.3.2-5: 30 MHz – 1 GHz – High Channel (GFSK)

Figure 7.5.3.2-6: 1 GHz – 26 GHz – High Channel (GFSK)

Figure 7.5.3.2-7: 30 MHz – 1 GHz – Low Channel (π/4 DQPSK)

Figure 7.5.3.2-8: 1 GHz –26 GHz – Low Channel (π/4 DQPSK)

Figure 7.5.3.2-9: 30 MHz – 1 GHz – Middle Channel ($\pi/4$ DQPSK)

Figure 7.5.3.2-10: 1 GHz –26 GHz – Middle Channel (π/4 DQPSK)

Figure 7.5.3.2-11: 30 MHz – 1 GHz – High Channel (π /4 DQPSK)

Figure 7.5.3.2-12: 1 GHz –26 GHz – High Channel (π/4 DQPSK)

Figure 7.5.3.2-13: 30 MHz – 1 GHz – Low Channel (8DPSK)

Figure 7.5.3.2-14: 1 GHz – 26 GHz – Low Channel (8DPSK)

Figure 7.5.3.2-15: 30 MHz – 1 GHz – Middle Channel (8DPSK)

Figure 7.5.3.2-16: 1 GHz – 26 GHz – Middle Channel (8DPSK)

Figure 7.5.3.2-17: 30 MHz – 1 GHz – High Channel (8DPSK)

Figure 7.5.3.2-18: 1 GHz – 26 GHz – High Channel (8DPSK)

7.5.4 Radiated Spurious Emissions - FCC Section 15.205 IC: RSS-Gen 7.2.5

7.5.4.1 Measurement Procedure

Radiated emissions tests were made over the frequency range of 30 MHz to 26 GHz, 10 times the highest fundamental frequency.

The EUT was rotated through 360° and the receive antenna height was varied from 1m to 4m so that the maximum radiated emissions level would be detected. For frequencies below 1000MHz, quasi-peak measurements were made using a resolution bandwidth RBW of 120 kHz and a video bandwidth VBW of 300 kHz. For frequencies above 1000 MHz, peak and average measurements made with RBW and VBW of 1 MHz and 3 MHz respectively.

The EUT was caused to generate a continuous carrier signal on the hopping channel. The average measurements were corrected using the logarithm of the dwell time over 100 ms period.

7.5.4.2 Measurement Results

Radiated spurious emissions found in the band of 30MHz to 26 GHz are reported in the tables below.

Frequency (MHz)	Level (dBuV)		Antenna Polarity	Correction Factors	on Corrected Level (dBuV/m)		Limit (dBuV/m)		Margin (dB)	
(2)	pk	Qpk/Avg	(H/V)	(dB)	pk	Qpk/Avg	pk	Qpk/Avg	pk	Qpk/Avg
Low Channel (2402 MHz)										
4804	54.85	50.48	Н	-1.30	53.55	18.46	74.0	54.0	20.5	35.5
4804	53.48	48.28	V	-1.30	52.18	16.26	74.0	54.0	21.8	37.7
12010	61.54	54.88	Н	11.57	73.11	35.73	83.5	63.5	10.4	27.8
12010	60.30	53.60	V	11.57	71.87	34.45	83.5	63.5	11.6	29.1
Middle Channel (2441 MHz)										
4882	49.93	42.45	Н	-1.10	48.83	10.63	74.0	54.0	25.2	43.4
4882	48.07	39.47	V	-1.10	46.97	7.65	74.0	54.0	27.0	46.3
7323	48.09	37.58	V	3.55	51.64	10.42	74.0	54.0	22.4	43.6
12205	64.80	58.38	Н	11.70	76.50	39.36	83.5	63.5	7.0	24.1
12205	65.32	58.97	V	11.70	77.02	39.95	83.5	63.5	6.5	23.5
19528	43.33	30.85	Н	8.54	51.87	8.68	83.5	63.5	31.6	54.8
			High	Channel (2480	MHz)					
4960	54.58	50.34	Н	-0.90	53.68	18.73	74.0	54.0	20.3	35.3
4960	52.16	46.77	V	-0.90	51.26	15.16	74.0	54.0	22.7	38.8
7440	48.46	37.08	V	3.97	52.43	10.33	74.0	54.0	21.6	43.7
12400	66.23	59.87	Н	11.83	78.06	40.98	83.5	63.5	5.4	22.5
12400	65.98	59.54	V	11.83	77.81	40.65	83.5	63.5	5.7	22.8
19840	44.25	31.87	V	9.71	53.96	10.86	83.5	63.5	29.5	52.6

 Table 7.5.4.2-1: Radiated Spurious Emissions Tabulated Data - GFSK

* Notes:

A duty cycle correction factor of 20*log(2.912/100) dB ≈ -30.72 dB corresponding to the logarithm
of the dwell time over 100ms was applied to the average measurements.

- The measurements above 10 GHz were performed at a distance of 1m. The limits at 1m are corrected using a distance factor of 20*log(3/1) dB ≈ 9.54 dB.
- All emissions above 19840 MHz were attenuated below the limits and the noise floor of the measurement equipment.

Evel Frequency (dBuV)		Antenna Polarity	ntenna Correction Polarity Factors		Corrected Level (dBuV/m)		Limit (dBuV/m)		Margin (dB)	
(2)	pk	Qpk/Avg	(H/V)	(dB)	pk	Qpk/Avg	pk	Qpk/Avg	pk	Qpk/Avg
Low Channel (2402 MHz)										
4804	49.69	39.60	Н	-1.30	48.39	7.58	74.0	54.0	25.6	46.4
4804	46.36	32.94	V	-1.30	45.06	0.92	74.0	54.0	28.9	53.1
12010	55.67	44.46	Н	11.57	67.24	25.31	83.5	63.5	16.3	38.2
12010	54.33	43.31	V	11.57	65.90	24.16	83.5	63.5	17.6	39.3
19216	45.66	33.01	V	8.78	54.44	11.07	83.5	63.5	29.1	52.4
			Middle	Channel (244	1 MHz)					
4882	54.16	47.27	Н	-1.10	53.06	15.45	74.0	54.0	20.9	38.5
4882	52.23	44.29	V	-1.10	51.13	12.47	74.0	54.0	22.9	41.5
7323	47.94	35.73	V	3.55	51.49	8.57	74.0	54.0	22.5	45.4
12205	60.17	51.74	Н	11.70	71.87	32.72	83.5	63.5	11.6	30.8
12205	60.57	52.10	V	11.70	72.27	33.08	83.5	63.5	11.2	30.4
19528	44.32	31.05	V	8.54	52.86	8.88	83.5	63.5	30.6	54.6
	High Channel (2480 MHz)									
4960	53.63	46.23	Н	-0.90	52.73	14.62	74.0	54.0	21.3	39.4
4960	52.72	45.19	V	-0.90	51.82	13.58	74.0	54.0	22.2	40.4
7440	47.09	33.90	V	3.97	51.06	7.15	74.0	54.0	22.9	46.9
12400	60.89	51.41	Н	11.83	72.72	32.52	83.5	63.5	10.8	31.0
12400	61.28	51.47	V	11.83	73.11	32.58	83.5	63.5	10.4	30.9

Table 7.5.4.2-2:	Radiated S	purious Emissio	ns Tabulated Da	ata – (π/4) DOPS	κ
					•••

* Notes:

• A duty cycle correction factor of 20*log(2.912/100) dB ≈ -30.72 dB corresponding to the logarithm of the dwell time over 100ms was applied to the average measurements.

- The measurements above 10 GHz were performed at a distance of 1m. The limits at 1m are corrected using a distance factor of 20*log(3/1) dB ≈ 9.54 dB.
- All emissions above 19528 MHz were attenuated below the limits and the noise floor of the measurement equipment.

Frequency (MHz)	Level (dBuV)		Antenna Polarity	Correction Factors	Corrected Level (dBuV/m)		Limit (dBuV/m)		Margin (dB)		
(11112)	pk	Qpk/Avg	(H/V)	(dB)	pk	Qpk/Avg	pk	Qpk/Avg	pk	Qpk/Avg	
Low Channel (2402 MHz)											
4804	49.50	39.83	Н	-1.30	48.20	7.81	74.0	54.0	25.8	46.2	
4804	46.57	34.35	V	-1.30	45.27	2.33	74.0	54.0	28.7	51.7	
12010	56.21	45.55	Н	11.57	67.78	26.40	83.5	63.5	15.7	37.1	
12010	55.40	45.21	V	11.57	66.97	26.06	83.5	63.5	16.5	37.4	
19216	43.56	30.69	Н	8.78	52.34	8.75	83.5	63.5	31.2	54.7	
19216	46.73	34.03	V	8.78	55.51	12.09	83.5	63.5	28.0	51.4	
Middle Channel (2441 MHz)											
4882	54.42	47.64	Н	-1.10	53.32	15.82	74.0	54.0	20.7	38.2	
4882	51.84	44.08	V	-1.10	50.74	12.26	74.0	54.0	23.3	41.7	
7323	47.96	35.84	V	3.55	51.51	8.68	74.0	54.0	22.5	45.3	
12205	60.45	52.08	Н	11.70	72.15	33.06	83.5	63.5	11.4	30.4	
12205	61.14	52.57	V	11.70	72.84	33.55	83.5	63.5	10.7	29.9	
19528	43.34	30.49	Н	8.54	51.88	8.32	83.5	63.5	31.6	55.2	
19528	44.36	31.71	V	8.54	52.90	9.54	83.5	63.5	30.6	54.0	
High Channel (2480 MHz)											
4960	53.34	46.20	Н	-0.90	52.44	14.59	74.0	54.0	21.6	39.4	
4960	52.04	44.89	V	-0.90	51.14	13.28	74.0	54.0	22.9	40.7	
7440	47.13	34.48	V	3.97	51.10	7.73	74.0	54.0	22.9	46.3	
12400	61.07	51.76	Н	11.83	72.90	32.87	83.5	63.5	10.6	30.6	
12400	60.81	51.65	V	11.83	72.64	32.76	83.5	63.5	10.9	30.7	
19840	43.74	30.69	V	9.71	53.45	9.68	83.5	63.5	30.0	53.8	

Table 7.5.4.2-3: Radiated Spu	irious Emissions	Tabulated Data -	8DPSK
-------------------------------	------------------	------------------	-------

* Notes:

• A duty cycle correction factor of 20*log(2.912/100) dB ≈ -30.72 dB corresponding to the logarithm of the dwell time over 100ms was applied to the average measurements.

• The measurements above 10 GHz were performed at a distance of 1m. The limits at 1m are corrected using a distance factor of 20*log(3/1) dB ≈ 9.54 dB.

• All emissions above 19840 MHz were attenuated below the limits and the noise floor of the measurement equipment.

7.5.4.3 Sample Calculation:

 $R_C = R_U + CF_T$

Where:

- CF_T = Total Correction Factor (AF+CA+AG)-DC (Average Measurements Only)
- R_U = Uncorrected Reading
- R_c = Corrected Level
- AF = Antenna Factor
- CA = Cable Attenuation
- AG = Amplifier Gain
- DC = Duty Cycle Correction Factor

Duty Cycle Correction Factor DC = 20*log(2.912/100) = -30.716 dB

Example Calculation: Peak Corrected Level: $54.85+(-1.30) = 53.55dB\mu V/m$ Margin: 74 dBuV/m - $53.55dB\mu V/m = 20.5dB$

Example Calculation: Average Corrected Level: 50.48 + (-1.30) - 30.72 = 18.46dBµV/m Margin: 54 dBuV/m - 18.46 dBµV/m = 35.5dB

8 CONCLUSION

In the opinion of ACS, Inc., the H59QDD9PW4AN manufactured by Motorola Solutions SDNBHD meets the requirements of FCC Part 15 subpart C and Industry Canada's Radio Standards Specification RSS-210.

END REPORT