

DECLARATION OF COMPLIANCE SAR ASSESSMENT Part 1 of 2

Motorola Solutions Inc. EME Test Laboratory

Motorola Solutions Malaysia Sdn Bhd Plot 2A, Medan Bayan Lepas,

Mukim 12 SWD 11900 Bayan Lepas Penang, Malaysia.

Date of Report: 07/02/2024

Report Revision: B

Responsible Engineer:Puteri Alifah Ilyana Binti Nor Rahim (EME Engineer) **Report Author:**Puteri Alifah Ilyana Binti Nor Rahim (EME Engineer) **Date/s Tested:**5/15/2024-5/16/2024 & 5/24/2024, 5/27/2024-5/29/2024

Manufacturer: Motorola Solutions Inc.

Manufacturer Location: Sanmina, Penang

DUT Description: Handheld Portable – TANAPA BPR 50DX 136-174 MHz 5W NKP

Test TX mode(s):CW (PTT)Max. Power output:Refer Table 3Nominal Power:Refer Table 3Tx Frequency Bands:Refer Table 3Signaling type:Refer Table 3

Model(s) Tested: AAH88LDK8AD5BN

Model(s) Certified: Refer Section 1.0 Introduction

(HVIN/PMN)

Serial Number(s): 02721AE0323

Classification: Occupational/Controlled Environment

Firmware Version (FVIN): 1001.058

Applicant Name: Motorola Solutions Inc.

Applicant Address: Plot 2A, Medan Bayan Lepas, Mukim 12 SWD, 11900 Bayan Lepas, Penang,

Malaysia

FCC ID: AZ489FT3856

This report contains results that are immaterial for FCC equipment approval, which

are clearly identified.

FCC Test Firm Registration 823256

Number:

IC: 109U-89FT3856

This report contains results that are immaterial for ISED equipment approval,

which are clearly identified.

IC Test Site registration: 24843

The test results clearly demonstrate compliance with Occupational/Controlled RF Exposure limits of 8 W/kg averaged over 1 gram per the requirements of FCC 47 CFR § 2.1093 and RSS-102 (Issue 5)

Based on the information and the testing results provided herein, the undersigned certifies that when used as stated in the operating instructions supplied, said product complies with the national and international reference standards and guidelines listed in section 4.0 of this report (no deviation from standard methods). This report shall not be reproduced without written approval from an officially designated representative of the Motorola Solutions Inc EME Laboratory. I attest to the accuracy of the data and assume full responsibility for the completeness of these measurements. This reporting format is consistent with the suggested guidelines of the TIA TSB-150 December 2004. The results and statements contained in this report pertain only to the device(s) evaluated.

Saw Sun Hock (Approval Signatory) Approved Date: 07/02/2024

Page 1 of 23

Part 1 of 2

1.0	Introdu	action	. 5
2.0	FCC S	AR Summary	. 5
3.0	Abbrev	viations / Definitions	. 5
4.0	Refere	nced Standards and Guidelines	. 6
5.0	SAR L	imits	. 6
6.0	Descrip	ption of Device Under Test (DUT)	. 7
7.0	Option	al Accessories and Test Criteria	. 7
	7.1	Antennas	. 7
	7.2	Battery	. 8
	7.3	Body worn Accessories	. 8
	7.4	Audio Accessories	. 8
8.0	Descrip	ption of Test System	.9
	8.1	Descriptions of Robotics/Probes/Readout Electronics	.9
	8.2	Description of Phantom(s)	10
	8.3	Description of Simulated Tissue	10
9.0	Additio	onal Test Equipment	11
10.0	SAR M	Measurement System Validation and Verification	11
	10.1	System Validation	11
	10.2	System Verification	12
	10.3	Equivalent Tissue Test Results	12
11.0	Enviro	nmental Test Conditions	13
12.0	DUT T	Test Setup and Methodology	13
	12.1	Measurements	13
	12.2	DUT Configuration(s)	14
	12.3	DUT Positioning Procedures	14
		12.3.1 Body	14
		12.3.2 Head	14

		12.3.3 Face	14
	12.4	DUT Test Channels	15
	12.5	SAR Result Scaling Methodology	15
	12.6	DUT Test Plan	16
13.0	DUT 7	Γest Data	16
	13.1	LMR assessments at the Body for 150.8-173.4 MHz band	16
	13.2	LMR assessments at the Face for 150.8-173.4 MHz band	17
	13.3	Assessment for outside FCC Frequency range	17
	13.4	Assessment for ISED, Canada	18
14.0	Shorte	ned Scan Assessment	19
15.0	Result	s Summary	20
16.0	Variab	pility Assessment	20
17.0	Systen	n Uncertainty	20

APPENDICES

- A Measurement Uncertainty Budget
- B Probe Calibration Certificates
- C Dipole Calibration Certificates

Part 2 of 2

APPENDICES

- D System Verification Check Scans
- E DUT Scans
- F Shorten Scan of Highest SAR Configuration
- G DUT Test Position Photos
- H DUT, Body worn and audio accessories Photos

Report Revision History

Date	Revision	Comments
05/29/2024	A	Initial release
07/02/2024	В	Update the report part 2 of 2 FCC/ISED ID at header

FCC ID: AZ489FT3856 / IC: 109U-89FT3856

1.0 Introduction

This report details the utilization, test setup, test equipment, and test results of the Specific Absorption Rate (SAR) measurements performed at the Motorola Solutions Inc. EME Test Laboratory for handheld portable model number AAH88LDK8AD5BN. This device is classify as Occupational/Controlled Environment and model certified is list as below:

Model /		
Hardware Version ID Number (HVIN)	Product Marketing Name (PMN)	Description
AAH88LDK8AD5BN	BPR 50dX	TANAPA BPR 50DX 136-174 MHZ 5W NKP

2.0 FCC SAR Summary

Table 1

Equipment Class	Frequency band (MHz)	Max Calc at Body (W/kg)	Max Calc at Face (W/kg)
		1g-SAR	1g-SAR
TNF	150.8-173.4 (LMR)	1.88	1.29

3.0 Abbreviations / Definitions

CNR: Calibration Not Required

CW: Continuous Wave
DUT: Device Under Test

EME: Electromagnetic Energy
FM: Frequency Modulation
LMR: Land Mobile Radio
NA: Not Applicable

PTT: Push to Talk

RSM: Remote Speaker Microphone SAR: Specific Absorption Rate

TNF: Licensed Non-Broadcast Transmitter Held to Face

Audio accessories: These accessories allow communication while the DUT is worn on the body.

Body worn accessories: These accessories allow the DUT to be worn on the body of the user.

Maximum Power: Defined as the upper limit of the production line final test station.

4.0 Referenced Standards and Guidelines

This product is designed to comply with the following applicable national and international standards and guidelines.

- Federal Communications Commission, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields", OET Bulletin 65, FCC, Washington, D.C.: 1997.
- Institute of Electrical and Electronics Engineers (IEEE) C95.1-2019
- International Commission on Non-Ionizing Radiation Protection (ICNIRP) 2020
- Ministry of Health (Canada) Safety Code 6 (2015), Limits of Human Exposure to Radio frequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz
- RSS-102 (Issue 5) Radio Frequency (RF) Exposure Compliance of Radio communication Apparatus (All Frequency Bands)
- Australian Communications Authority Radio communications (Electromagnetic Radiation Human Exposure) Standard (2014)
- ANATEL, Brazil Regulatory Authority, Resolution No 700 of September 28, 2018 "Approves
 the Regulation on the Assessment of Human Exposure to Electric, Magnetic and
 Electromagnetic Fields Associated with the Operation of Radio communication Transmitting
 Stations.
- IEC/IEEE 62209-1528-2020- Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Part 1528: Human models, instrumentation, and procedures (Frequency range of 4 MHz to 10 GHz)
- FCC KDB 643646 D01 SAR Test for PTT Radios v01r03
- FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04
- FCC KDB 865664 D02 RF Exposure Reporting v01r02
- FCC KDB 447498 D01 General RF Exposure Guidance v06

5.0 SAR Limits

Table 2

	SAR (W/kg)
EXPOSURE LIMITS	(General Population /	(Occupational /
EAFOSURE LIMITS	Uncontrolled Exposure	Controlled Exposure
	Environment)	Environment)
Spatial Average - ANSI -	0.08	0.4
(averaged over the whole body)		
Spatial Peak - ANSI -	1.6	8.0
(averaged over any 1-g of tissue)		
Spatial Peak – ICNIRP/ANSI -	4.0	20.0
(hands/wrists/feet/ankles averaged over 10-g)		
Spatial Peak - ICNIRP -	2.0	10.0
(Head and Trunk 10-g)		

FCC ID: AZ489FT3856 / IC: 109U-89FT3856

6.0 Description of Device Under Test (DUT)

This portable device operates in the LMR bands using frequency modulation (FM) signals incorporating traditional simplex two-way radio transmission protocol.

The LMR bands in this device operate in a half duplex system. A half duplex system only allows the user to transmit or receive. This device cannot transmit and receive simultaneously. The user must stop transmitting in order to receive a signal or listen for a response, regardless of PTT button or use of voice activated audio accessories. This type of operation, along with the RF safety booklet, which instructs the user to transmit no more than 50% of the time, justifies the use of 50% duty factor for this device.

Table 3 below summarizes the technologies, bands, maximum duty cycles and maximum output powers. Maximum output powers are defined as upper limit of the production line final test station.

Table 3

	Band		Duty Cycle	Conducted (A	verage Detector) Power
Radio Type	(MHz)	Transmission	(%)	Nominal	Declared Max Power
	(MIIIZ)		(70)	Power (W)	(W)
LMR	136-174	FM	*50	5.00	6.00

Note - * includes 50% PTT operation

The intended operating positions are "at the face" with the DUT at least 1 inch from the mouth, and "at the body" by means of the offered body worn accessories. Body worn audio and PTT operation is accomplished by means of optional remote accessories that are connected to the radio.

7.0 Optional Accessories and Test Criteria

This device is offered with optional accessories. All accessories were individually evaluated during the test plan creation to determine if testing was required per the guidelines outlined in "SAR Test Reduction Considerations for Occupational PTT Radios" FCC KDB 643646 to assess compliance of this device. The following sections identify the test criteria and details for each accessory category. Refer to Exhibit 7B for antenna separation distances.

7.1 Antennas

Table 4

Antenna No.	Antenna Models	Description	Selected for test	Tested
1	AN000464A01	136-155MHz, Whip, ½ wave, 0dBi	Yes	Yes
2	AN000465A01	152-174MHz, Whip, 1/4 wave, 0dBi	Yes	Yes

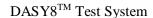
7.2 Battery

Table 5

]	Battery No.	Battery Models	Description	Selected for test	Tested	Comments
	1	PMNN4847A	MagOne Lithium Ion Battery 2200mAh	Yes	Yes	

7.3 Body worn Accessories

Table 6


Body worn No.	Body worn Models	Description	Selected for test	Tested	Comments
1	PMLN8600A	BELT CLIP MAG ONE 2 INCH	Yes	Yes	

7.4 Audio Accessories

Table 7

Audio No.	Audio Acc.	Description	Selected for	Tested	Comments
	Models		test		
1	PMMN4092A	Remote Speaker Microphone	Yes	Yes	Default Audio
2	PMLN6531A	Over-the-ear receiver with in-line	Yes	No	
		microphone/PTT/VOX switch			
3	PMLN6532A	SWIVEL EARPC W MIC/PTT MAGONE	Yes	No	
4	PMLN6534A	Earbud with in-line microphone/PTT/VOX	No	No	By Similarity to
		switch			PMLN6531A
5	PMLN6536A	2-Wire Surveillance Kit with quick disconnect	Yes	No	
		translucent tube			
6	PMLN6542A	Behind-the-head-style receiver with boom	Yes	No	
		microphone and in-line PTT switch			

8.0 Description of Test System

8.1 Descriptions of Robotics/Probes/Readout Electronics Table 8

Dosimetric System type	System version	DAE type	Probe Type
Schmid & Partner Engineering AG SPEAG DASY 8	V16.2.2.1588	DAE4	EX3DV4 (E-Field)

The **DASY8TM** system operates per the instructions in the DASY8TM Users Manual. The complete manual is available directly from SPEAGTM. All measurement equipment used to assess SAR compliance was calibrated according to ISO/IEC 17025 A2LA guidelines. Section 9.0 presents additional test equipment information. Appendices B and C present the applicable calibration certificates.

8.2 **Description of Phantom(s)**

Table 9

Phantom Type	Phantom(s) Used	Material	Phantom	Material	Support	Loss
		Parameters	Dimensions	Thickness	Structure	Tangent
			LxWxD	(mm)	Material	(wood)
			(mm)			
		200MHz -6GHz;				
Triple Flat	NA	Er = 3-5,	280x175x175		Wood	
Tripic Plat	INA	Loss Tangent =	20081738173			
		≤0.05				
		300MHz -6GHz;				
SAM	NA	Er = < 5,	Human	2mm		< 0.05
SAM	NA	Loss Tangent =	Model	+/- 0.2mm		< 0.03
		≤0.05				
Oval Flat	.1	Er = 4 + / - 1,	600x400x190			
Oval Flat	V	Loss Tangent =	000x400x190			
		≤0.05				

8.3 Description of Simulated Tissue

The sugar based simulate tissue is produced by placing the correct measured amount of De-ionized water into a large container. Each of the dried ingredients are weighed and added to the water carefully to avoid clumping. If the solution has a high sugar concentration the water is pre-heated to aid in dissolving the ingredients. The solution is mixed thoroughly, covered, and allowed to sit overnight prior to use.

The simulated tissue mixture was mixed based on the Simulated Tissue Composition indicated in Table 10. During the daily testing of this product, the applicable mixture was used to measure the Di-electric parameters at each of the tested frequencies to verify that the Di-electric parameters were within the tolerance of the tissue specifications.

Simulated Tissue Composition (percent by mass)
Table 10

Ingredients	150MHz				
J	Head				
Sugar	55.4				
Diacetin	0				
De ionized-Water	38.35				
Salt	5.15				
HEC	1.0				
Bact.	0.1				

9.0 Additional Test Equipment

The Table below lists additional test equipment used during the SAR assessment.

Table 11

Equipment Type	Model Number	Serial Number	Calibration Date	Calibration Due Date
SPEAG PROBE	EX3DV4	3612	10/22/2021	10/22/2024
SPEAG DAE	DAE4	1483	10/10/2022	10/10/2025
POWER AMPLIFIER	50W100D	14715	CNR	CNR
SIGNAL GENERATOR (VECTOR ESG 250KHZ-6GHZ)	E4438C	MY42081753	8/30/2023	8/30/2024
BI-DIRECTIONAL COUPLER	3020A	40295	6/9/2023	6/9/2024
POWER METER	E4416A	MY50001037	8/9/2023	8/9/2024
POWER METER	E4418B	MY45100911	8/11/2023	8/11/2024
POWER SENSOR	E9301B	MY50290001	6/16/2023	6/16/2024
POWER SENSOR	E4412A	MY61020016	8/21/2023	8/21/2024
DATA LOGGER	DSB	16326820	11/26/2023	11/26/2024
DATA LOGGER	DSB	16326831	11/26/2023	11/26/2024
THERMOMETER	HH806AU	080307	12/15/2023	12/15/2024
TEMPERATURE PROBE	80PK-22	06032017	12/15/2023	12/15/2024
DATA LOGGER	DSB	16398306	12/31/2023	12/31/2024
NETWORK ANALYZER	E5071B	MY42403218	9/15/2023	9/15/2024
DIELECTRIC ASSESSMENT KIT	DAK-12	1051	10/16/2023	10/16/2024
THERMOMETER	HH806AU	080307	12/15/2023	12/15/2024
SPEAG DIPOLE	CLA150	4016	1/6/2023	1/6/2026
POWER METER	E4419B	MY45103725	6/18/2023	6/18/2024
POWER SENSOR	E9301B	MY55210006	2/1/2024	2/1/2025

10.0 SAR Measurement System Validation and Verification

DASY output files of the probe/dipole calibration certificates and system verification test results are included in appendices B, C & D respectively.

10.1 System Validation

The SAR measurement system was validated according to procedures in KDB 865664. The validation status summary Table is below.

Table 12

Dates	Probe Ca Poi		Probe SN	_	ured Tissue cameters	Validation			
	1 01	IIt	514	σ $\epsilon_{ m r}$		Sensitivity	Linearity	Isotropy	
	CW								
01/08/2024	Head	150	3612	0.77	49.88	Pass	Pass	Pass	

10.2 System Verification

System verification checks were conducted each day during the SAR assessment. The results are normalized to 1W. Appendix D includes DASY plots with the largest deviation from the qualified source SAR target for each dipole (Bolded). The Table below summarizes the daily system check results used for the SAR assessment.

Table 13

Probe Serial #	Tissue Type	Dipole Kit / Serial #	Ref SAR @ 1W (W/kg)	System Check Results Measured (W/kg)	System Check Test Results when normalized to 1W (W/kg)	Tested Date	Deviation (%)
				3.84	3.84	5/14/2024	1.9
		CDEAG	EAG 3.77 + 10%	3.99	3.99	5/15/2024@	5.8
3612	IEEE/IEC	CLA150		4.05	4.05	5/16/2024	7.4
Head	/ 4016	$3.77 \pm 10\%$	3.78	3.78	5/24/2024	0.3	
		7 4010		3.67	3.67	5/27/2024@	-2.7
				3.64	3.64	5/29/2024	-3.4

Note: '@' indicates that tissue test result covers next test day (within 24 hours)

10.3 Equivalent Tissue Test Results

Simulated tissue prepared for SAR measurements is measured daily and within 24 hours prior to actual SAR testing to verify that the tissue is within +/- 5% of target parameters at the center of the transmit band. This measurement is done using the applicable equipment indicated in section 9.0. The Table below summarizes the measured tissue parameters used for the SAR assessment.

Table 14

Frequency	Tissue	Conductivity	Dielectric	Conductivity	Dielectric	Tested
(MHz)	Type	Target (S/m)	Constant	Meas. (S/m)	Constant	Date
			Target		Meas.	
138		0.75	52.9	0.76	50.48	5/16/2024
138		(0.71-0.79)	(50.2-55.5)	0.78	52.64	5/29/2024
144.4		0.76	52.6	0.78	50.18	5/15/2024@
144.4		(0.72-0.79)	(49.9-55.2)	0.78	52.38	5/29/2024
	IEEE/IEC			0.78	49.90	5/15/2024@
150	Head	0.76 (0.72-0.80)	52.3	0.77	49.93	5/16/2024
130			(49.7-54.9)	0.79	49.97	5/24/2024
				0.73	50.13	5/27/2024@
150.8		0.76	52.3	0.79	49.93	5/24/2024
150.6		(0.72-0.80)	(49.6-54.9)	0.73	50.09	5/27/2024

Table 14 (Continued)

Frequency	Tissue	Conductivity	Dielectric	Conductivity	Dielectric	Tested
(MHz)	Type	Target (S/m)	Constant	Meas. (S/m)	Constant	Date
			Target		Meas.	
152.0		0.76	52.3	0.78	49.81	5/15/2024@
132.0		(0.72-0.80)	(49.6-54.8)	0.73	50.03	5/27/2024
159.1	IEEE/IEC	0.77	51.9	0.79	49.46	5/15/2024@
139.1	Head	(0.73-0.81)	(49.3-54.5)	0.73	49.67	5/27/2024@
173.4		0.78	51.2	0.80	48.81	5/15/2024
1/3.4		(0.74-0.82)	(48.6-53.8)	0.74	48.98	5/27/2024

Note: '@' indicates that tissue test result covers next test day (within 24 hours)

11.0 Environmental Test Conditions

The EME Laboratory's ambient environment is well controlled resulting in very stable simulated tissue temperature and therefore stable dielectric properties. Simulated tissue temperature is measured prior to each scan to insure it is within +/ - 2°C of the temperature at which the dielectric properties were determined. The liquid depth within the phantom used for measurements was at least 15cm. Additional precautions are routinely taken to ensure the stability of the simulated tissue such as covering the phantoms when scans are not actively in process in order to minimize evaporation. The lab environment is continuously monitored. The Table below presents the range and average environmental conditions during the SAR tests reported herein:

Table 15

	Target	Measured
Ambient Temperature	18 − 25 °C	Range: 19.3 – 21.8°C
		Avg. 20.4 °C
Tissue Temperature	18 − 25 °C	Range: 20.5 – 22.1 °C
		Avg. 21°C

Relative humidity target range is a recommended target

The EME Lab RF environment uses a Spectrum Analyzer to monitor for extraneous large signal RF contaminants that could possibly affect the test results. If such unwanted signals are discovered the SAR scans are repeated.

12.0 DUT Test Setup and Methodology

12.1 Measurements

SAR measurements were performed using the DASY system described in section 8.0 using zoom scans. Oval flat phantoms filled with applicable simulated tissue were used for body and face testing.

The Table below includes the step sizes and resolution of area and zoom scans per KDB 865664 requirements.

Report ID: P41384-EME-00001

Table 16

Descr	iption	≤3 GHz	> 3 GHz		
Maximum distance from close (geometric center of probe sen	•	5 ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$		
Maximum probe angle from p	robe axis to phantom surface	30° ± 1°	20° ± 1°		
		≤ 2 GHz: ≤ 15 mm	3 – 4 GHz: ≤ 12 mm		
		$2-3$ GHz: ≤ 12 mm	$4-6$ GHz: ≤ 10 mm		
		When the x or y dimension of the test device, in			
Maximum area scan spatial re	solution: Av Area Av Area	the measurement plane orientation, is smaller			
Waximum area sean spatial re	solution. Axarca, Ayarca	than the above, the measurement resolution			
		must be \leq the corresponding x or y dimension of			
		the test device with at least one measurement			
		point on the test device.			
Maximum zoom scan spatial r	resolution: ΔxZoom, ΔyZoom	≤ 2 GHz: ≤ 8 mm	$3-4 \text{ GHz:} \leq 5 \text{ mm*}$		
		$2-3 \text{ GHz:} \leq 5 \text{ mm*}$	$4-6 \text{ GHz: } \leq 4 \text{ mm*}$		
Maximum zoom scan	uniform grid: ΔzZoom(n)		3 – 4 GHz: ≤ 4 mm		
spatial resolution, normal to		≤ 5 mm	$4-5$ GHz: ≤ 3 mm		
phantom surface			$5-6 \text{ GHz: } \leq 2 \text{ mm}$		

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

12.2 DUT Configuration(s)

The DUT is a portable device operational at the body and face as described in section 6.0 while using the applicable accessories listed in section 7.0. All accessories listed in section 7.0 of this report were considered when implementing the guidelines specified in KDB 643646.

12.3 DUT Positioning Procedures

The positioning of the device for each body location is described below and illustrated in Appendix G.

12.3.1 Body

The DUT was positioned in normal use configuration against the phantom with the offered body worn accessory as well as with and without the offered audio accessories as applicable.

12.3.2 Head

Not applicable.

12.3.3 Face

The DUT was positioned with its' front and back sides separated 2.5cm from the phantom.

^{*} When zoom scan is required and the reported SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is \leq 1.4 W/kg, \leq 8 mm, \leq 7 mm and \leq 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

12.4 DUT Test Channels

The number of test channels was determined by using the following IEEE 1528 equation. The use of this equation produces the same or more test channels compared to the FCC KDB 447498 number of test channels formula.

$$N_c = 2 * roundup[10 * (f_{high} - f_{low}) / f_c] + 1$$

Where

 N_c = Number of channels

 $F_{high} = Upper channel$

 $F_{low} = Lower channel$

 F_c = Center channel

12.5 SAR Result Scaling Methodology

The calculated 1-gram and 10-gram averaged SAR results indicated as "Max Calc. 1g-SAR" in the data Tables is determined by scaling the measured SAR to account for power leveling variations and drift. Appendix F includes a shortened scan to justify SAR scaling for drift. For this device the "Max Calc. 1g-SAR" is scaled by using the following formula:

$$Max_Calc = SAR_meas \cdot 10^{\frac{-Drift}{10}} \cdot \frac{P_max}{P_int} \cdot DC$$

 $P_{max} = Maximum Power (W)$

P_int = Initial Power (W)

Drift = DASY drift results (dB)

SAR_meas = Measured 1-g or 10-g Avg. SAR (W/kg)

DC = Transmission mode duty cycle in % where applicable

50% duty cycle is applied for PTT operation

Note: for conservative results, the following are applied:

If $P_{int} > P_{max}$, then $P_{max}/P_{int} = 1$.

Drift = 1 for positive drift

Additional SAR scaling was applied using the methodologies outlined in FCC KDB 865664 using tissue sensitivity values. SAR was scaled for conditions where the tissue permittivity was measured above the nominal target and for tissue conductivity that was measured below the nominal target. Negative or reduced SAR scaling is not permitted.

12.6 DUT Test Plan

The guidelines and requirements outlined in section 4.0 were used to assess compliance of this device. All modes of operation identified in section 6.0 were considered during the development of the test plan. All tests were performed in CW mode and 50% duty cycle was applied to PTT configurations in the final results.

13.0 DUT Test Data

13.1 LMR assessments at the Body for 150.8-173.4 MHz band

Battery PMNN4847A was selected as the default battery for assessments at the Body (refer to Exhibit 7B for battery illustration). The default battery was used during conducted power measurements for all test channels within FCC allocated frequency range (150.8-173.4MHz) which are listed in Table 17. The channel with the highest conducted power will be identified as the default channel per KDB 643646 (SAR Test for PTT Radios).

Table 17

Test Freq (MHz)	Power (W)
138.0000	5.86
144.4000	5.98
150.8000	5.95
152.0125	5.92
154.9875	5.87
159.1000	6.00
166.3000	5.73
173.4000	5.85

Assessments at the Body with Body worn PMLN8600A

DUT assessment with offered antennas, default battery and, default body worn accessory per KDB 643646. Refer to Table 17 for highest output power channel. SAR plots of the highest results per Table (bolded) are presented in Appendix E.

Table 18

	Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	-	SAR Drift (dB)		Max Calc. 1g-SAR (W/kg)	Run#
	AN000464A01		PMLN8600A	PMLN6542A	150.8000	5.86	-0.72	1.43	0.86	AMF-AB- 240527-05
L	AN000465A01	PMNN4847A			ALN8600A PMLN6542A	150 1000 5	5.02	0.52	3.24	1 00
	AN000403A01				159.1000	5.83	5.83 -0.52	3.24	1.88	240527-02

Report ID: P41384-EME-00001

Assessment of additional audio accessories per "KDB 643646 Body SAR Test Consideration for Audio Accessories without Built-in Antenna; Sec 1, A" where the overall reported SAR is < 4.0W/kg, tested for that audio accessory is not necessary.

13.2 LMR assessments at the Face for 150.8-173.4 MHz band

Battery PMNN4847A was selected as the default battery for assessments at the Body (refer to Exhibit 7B for battery illustration). The default battery was used during conducted power measurements for all test channels within FCC allocated frequency range (150.8-173.4MHz) which are listed in Table 19. The channel with the highest conducted power will be identified as the default channel per KDB 643646 (SAR Test for PTT Radios).

Table 19

Test Freq (MHz)	Power (W)
138.0000	5.86
144.4000	5.98
150.8000	5.95
152.0125	5.92
154.9875	5.87
159.1000	6.00
166.3000	5.73
173.4000	5.85

DUT assessment with offered antennas, default battery with front of DUT positioned 2.5cm facing phantom per KDB 643646. Optional batteries were tested per the requirements of KDB 643646. Refer to Table 19 for highest output power channel. The SAR plots of the highest results per Table (bolded) are presented in Appendix E.

Table 20

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)		Max Calc. 1g-SAR (W/kg)	Run#
AN000464A01	DMNIN 40 47 A	Name @ Court	N	150.8000	5.75	-0.41	0.99	0.57	MA-FACE- 240524-03@
AN000465A01	PMNN4847A	None @ front	None	159.1000	6.00	-0.63	2.24	1.29	BAD-FACE- 240515-07@

13.3 Assessment for outside FCC Frequency range

Additional assessment of outside FCC frequency range using highest SAR configuration from above.

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (W/kg)	Max Calc. 1g-SAR (W/kg)	Run#
			Во	dy					
AN000464A01	PMNN4847A	PMLN8600A	PMLN6542A	138.0000	5.44	-0.16	0.85	0.49	MA-AB- 240529-03
AN000404A01				144.4000	5.65	-0.73	0.37	0.23	MA-AB- 240529-04
			Fa	ce					
AN000464A01	PMNN4847A	4847A None @ front	None	138.0000	5.72	-0.25	1.34	0.74	MA-FACE- 240516-12
ANUUU404AU1				144.4000	5.98	-0.31	1.19	0.64	BAD-FACE- 240515-06@

13.4 Assessment for ISED, Canada

Based on the assessment results for body and face per KDB643646, additional tests were not required for ISED, Canada frequency range (138-174 MHz) as the testing performed complies with Industry Canada frequency range.

As per ISED Notice 2016-DRS001, additional tests were required for the low, mid and high frequency channels for the configuration with the highest SAR value. The SAR results are in Table 22. SAR plots of the highest results per Table (bolded) are presented in the Appendix E.

Table 22

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (W/kg)	Max Calc. 1g-SAR (W/kg)	Run#
			Во	ody					
			PMLN6542A	152.0125	5.77	-0.31	1.68	0.94	BAD-AB- 240527-07
AN000465A01	PMNN4847A	A PMLN8600A		159.1000	5.83	-0.52	3.24	1.88	AMF-AB- 240527-02
				173.4000	5.75	-0.49	0.43	0.25	BAD-AB- 240527-09

Table 22 (Continued)

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)		Meas. 1g-SAR (W/kg)	Max Calc. 1g-SAR (W/kg)	Run#
			Fa	ice					
	DM (NTN) 40 47 A		e @ front None 159.1000 6.00 -0.63	152.0125	5 76	0.27	1.16	0.64	AMF-FACE-
				1.10	0.04	240515-16			
AN000465A01		None @ front		159.1000	6.00	0.62	2.24	1.29	BAD-FACE-
AN000403A01	PIVIININ464/A				0.00	-0.03	2.24	1.29	240515-07@
				173.4000	5 61	0.24	0.48	0.28	AMF-FACE-
					3.01	-0.34	0.48	0.28	240515-18

14.0 Shortened Scan Assessment

A "shortened" scan using the highest SAR configuration overall from above was performed to validate the SAR drift of the full DASY8TM coarse and zoom scans. Note that the shortened scan represents the zoom scan performance result; this is obtained by first running a coarse scan to find the peak area and then, using a newly charged battery, a zoom scan only was performed. The results of the shortened cube scan presented in Appendix D demonstrate that the scaling methodology used to determine the calculated SAR results presented herein are valid. The SAR result from the Table below is provided in Appendix F.

Table 23

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)				Max Calc. 1g-SAR (W/kg)	Run#
AN000465A01	PMNN4847A	PMLN8600A	PMLN6542A	159.1000	5.78	-0.35	3.18	1.79	BAD-AB- 240528-04@

FCC ID: AZ489FT3856 / IC: 109U-89FT3856

15.0 Results Summary

Based on the test guidelines from section 4.0 and satisfying frequencies within FCC bands and ISED Canada Frequency bands, the highest Operational Maximum Calculated 1-gram average SAR values found for this filing:

Table 24

Designator	Frequency band	Max Calc at Body (W/kg)	Max Calc at Face (W/kg)							
	(MHz)	1g-SAR	1g-SAR							
FCC										
LMR	150.8-173.4	1.88	1.29							
		ISED								
LMR	138-174	1.88	1.29							
Overall										
LMR	136-174	1.88	1.29							

All results are scaled to the maximum output power.

The test results clearly demonstrate compliance with FCC/ISED Occupational/Controlled Environment RF Exposure limits of 8 W/kg averaged over 1 gram per the requirements of FCC 47 CFR § 2.1093 and RSS-102 (Issue 5).

16.0 Variability Assessment

Per the guidelines in KDB 865664 SAR variability assessment is not required because SAR results are below 4.0W/kg (Occupational).

17.0 System Uncertainty

A system uncertainty analysis is not required for this report per KDB 865664 because the highest report SAR value for Occupational exposure is less than 7.5W/kg.

Per the guidelines of ISO/IEC 17025 a reported system uncertainty is required and therefore measurement uncertainty budget is included in Appendix A.

Appendix A

Measurement Uncertainty Budget

Uncertainty Budget for System Validation (dipole & flat phantom) for 150 MHz

							h =	i =	
a	b	c	d	e = f(d,k)	f	g	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	c x g / e	k
u u	IEEE	Tol.	Prob.	j(ujiv)	c _i	c _i (10	1 g	10 g	
	1528	%)	Dist.		(1 g)	g)	u_i	u_i	
Uncertainty Component	section			Div.			(±%)	(±%)	v_i
Measurement System									
Probe Calibration	E.2.1	6.0	N	1.00	1	1	6.0	6.0	∞
Axial Isotropy	E.2.2	4.7	R	1.73	1	1	2.7	2.7	8
Spherical Isotropy	E.2.2	9.6	R	1.73	0	0	0.0	0.0	8
Boundary Effect	E.2.3	1.0	R	1.73	1	1	0.6	0.6	8
Linearity	E.2.4	4.7	R	1.73	1	1	2.7	2.7	∞
System Detection Limits	E.2.5	1.0	R	1.73	1	1	0.6	0.6	8
Readout Electronics	E.2.6	0.3	N	1.00	1	1	0.3	0.3	8
Response Time	E.2.7	1.1	R	1.73	1	1	0.6	0.6	8
Integration Time	E.2.8	0.0	R	1.73	1	1	0.0	0.0	8
RF Ambient Conditions - Noise	E.6.1	3.0	R	1.73	1	1	1.7	1.7	8
RF Ambient Conditions - Reflections	E.6.1	0.0	R	1.73	1	1	0.0	0.0	8
Probe Positioner Mechanical Tolerance	E.6.2	0.4	R	1.73	1	1	0.2	0.2	8
Probe Positioning w.r.t. Phantom	E.6.3	1.4	R	1.73	1	1	0.8	0.8	8
Max. SAR Evaluation (ext., int., avg.)	E.5	3.4	R	1.73	1	1	2.0	2.0	8
Dipole									
Dipole Axis to Liquid Distance	8, E.4.2	2.0	R	1.73	1	1	1.2	1.2	8
Input Power and SAR Drift Measurement	8, 6.6.2	5.0	R	1.73	1	1	2.9	2.9	8
Phantom and Tissue Parameters									
Phantom Uncertainty	E.3.1	4.0	R	1.73	1	1	2.3	2.3	8
Liquid Conductivity (target)	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	∞
Liquid Conductivity (measurement)	E.3.3	3.3	R	1.73	0.64	0.43	1.2	0.8	∞
Liquid Permittivity (target)	E.3.2	5.0	R	1.73	0.6	0.49	1.7	1.4	∞
Liquid Permittivity (measurement)	E.3.3	1.9	R	1.73	0.6	0.49	0.6	0.5	8
Combined Standard Uncertainty			RSS				9	9	99999
Expanded Uncertainty									
(95% CONFIDENCE LEVEL)			k=2				18	17	

Notes for uncertainty budget Tables:

- a) Column headings *a-k* are given for reference.
- b) Tol. tolerance in influence quantity.
- c) Prob. Dist. Probability distribution
- d) N, R normal, rectangular probability distributions
- e) Div. divisor used to translate tolerance into normally distributed standard uncertainty
- f) *ci* sensitivity coefficient that should be applied to convert the variability of the uncertainty component into a variability of SAR.
- g) ui SAR uncertainty
- h) vi degrees of freedom for standard uncertainty and effective degrees of freedom for the expanded uncertainty

Uncertainty Budget for Device Under Test, for 100 MHz to 800 MHz

, o				e =			h = c x f /	i = c x g /	
a	b	с	d	f(d,k)	f	g	e	e	k
		Tol.	Prob		c_i	Ci	1 g	10 g	
	IEEE	(±	D: -4		(1 -)	(10 -)			
T	1528 section	%)	Dist	D'	(1 g)	(10 g)	u_i	u_i	
Uncertainty Component	section			Div.			(±%)	(±%)	Vi
Measurement System	E 0.1	6.0	NI	1.00	1	1	6.0	6.0	
Probe Calibration	E.2.1	6.0	N	1.00	1	1	6.0	6.0	∞
Axial Isotropy	E.2.2	4.7	R	1.73	0.707	0.707	1.9	1.9	∞
Hemispherical Isotropy	E.2.2	9.6	R	1.73	0.707	0.707	3.9	3.9	∞
Boundary Effect	E.2.3	1.0	R	1.73	1	1	0.6	0.6	∞
Linearity	E.2.4	4.7	R	1.73	1	1	2.7	2.7	∞
System Detection Limits	E.2.5	1.0	R	1.73	1	1	0.6	0.6	∞
Readout Electronics	E.2.6	0.3	N	1.00	1	1	0.3	0.3	∞
Response Time	E.2.7	1.1	R	1.73	1	1	0.6	0.6	∞
Integration Time	E.2.8	1.1	R	1.73	1	1	0.6	0.6	∞
RF Ambient Conditions - Noise	E.6.1	3.0	R	1.73	1	1	1.7	1.7	∞
RF Ambient Conditions -			_	. =0					
Reflections	E.6.1	0.0	R	1.73	1	1	0.0	0.0	∞
Probe Positioner Mech. Tolerance	E.6.2	0.4	R	1.73	1	1	0.2	0.2	∞
Probe Positioning w.r.t Phantom	E.6.3	1.4	R	1.73	1	1	0.8	0.8	∞
Max. SAR Evaluation (ext., int., avg.)	E.5	3.4	R	1.73	1	1	2.0	2.0	∞
Test sample Related									
Test Sample Positioning	E.4.2	3.2	N	1.00	1	1	3.2	3.2	29
Device Holder Uncertainty	E.4.1	4.0	N	1.00	1	1	4.0	4.0	8
SAR drift	6.6.2	5.0	R	1.73	1	1	2.9	2.9	∞
Phantom and Tissue Parameters									
Phantom Uncertainty	E.3.1	4.0	R	1.73	1	1	2.3	2.3	∞
Liquid Conductivity (target)	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	∞
Liquid Conductivity (measurement)	E.3.3	3.3	N	1.00	0.64	0.43	2.1	1.4	∞
Liquid Permittivity (target)	E.3.2	5.0	R	1.73	0.6	0.49	1.7	1.4	∞
Liquid Permittivity (measurement)	E.3.3	1.9	N	1.00	0.6	0.49	1.1	0.9	∞
Combined Standard Uncertainty			RSS				11	11	419
Expanded Uncertainty (95% CONFIDENCE LEVEL)			k=2				22	22	

Notes for uncertainty budget Tables:

- a) Column headings *a-k* are given for reference.
- b) Tol. tolerance in influence quantity.
- c) Prob. Dist. Probability distribution
- d) N, R normal, rectangular probability distributions
- e) Div. divisor used to translate tolerance into normally distributed standard uncertainty
- f) ci sensitivity coefficient that should be applied to convert the variability of the uncertainty component into a variability of SAR.
- g) ui SAR uncertainty
- h) vi degrees of freedom for standard uncertainty and effective degrees of freedom for the expanded uncertainty