

DECLARATION OF COMPLIANCE SAR ASSESSMENT Part 1 of 2

Motorola Solutions Inc. EME Test Laboratory

Motorola Solutions Malaysia Sdn Bhd Plot 2A, Medan Bayan Lepas,

Mukim 12 SWD 11900 Bayan Lepas Penang, Malaysia.

Date of Report: 08/05/2020

Report Revision: A

Responsible Engineer: Jian Sheng Ch'ng (EME Engineer) **Report Author:** Lee Kin Kting (Senior Technician)

Date/s Tested: 6/28/2020, 6/30/2020, 7/1/2020-7/2/2020, 7/7/2020-7/8/2020, 7/20/2020-

7/21/2020, 7/23/2020, 07/31/2020, 08/04/2020

Manufacturer: Motorola Solutions Inc.

DUT Description: Handheld Portable – XPR 7550 IS 136-174 MHz 5W FKP GPS GOB CSA

Test TX mode(s): CW (PTT)
Max. Power output: 6.0W
Nominal Power: 5.0W

Tx Frequency Bands: 136-174 MHz

Signaling type: FM

Model(s) Tested: AAH56JDN9PA3AN (PMUD3254A), (IC MODEL: PMUD3254ABCNAA)
Model(s) Certified: AAH56JDN9PA3AN (PMUD3254A), (IC MODEL: PMUD3254ABCNAA)

Serial Number(s): 627TWK0669

Classification: Occupational / Controlled Applicant Name: Motorola Solutions Inc

Applicant address: 8000 West Sunrise Boulevard, Fort Lauderdale, Florida 33322

FCC ID: AZ489FT3848; LMR 150.8-173.4 MHz

IC: This report contains results that are immaterial for FCC equipment approval, which

are clearly identified.

109U-89FT3848;LMR 138-174 MHz

This report contains results that are immaterial for ISED equipment approval, which are

clearly identified.

ISED Test Site registration: 24843

FCC Test Firm Registration

823256

Number:

The test results clearly demonstrate compliance with FCC Occupational/Controlled RF Exposure limits of 8 W/kg averaged over 1 gram per the requirements of FCC 47 CFR § 2.1093 and RSS-102 (Issue 5).

Based on the information and the testing results provided herein, the undersigned certifies that when used as stated in the operating instructions supplied, said product complies with the national and international reference standards and guidelines listed in section 4.0 of this report (no deviation from standard methods). This report shall not be reproduced without written approval from an officially designated representative of the Motorola Solutions Inc EME Laboratory.

I attest to the accuracy of the data and assume full responsibility for the completeness of these measurements. This reporting format is consistent with the suggested guidelines of the TIA TSB-150 December 2004. The results and statements contained in this report pertain only to the device(s) evaluated.

Tiong Nguk Ing Deputy Technical Manager (Approved Signatory) Approval Date: 8/5/2020

Part 1 of 2

1.0	Introdu	action	.4
2.0	FCC S	AR Summary	. 4
3.0	Abbrev	viations / Definitions	. 4
4.0	Refere	nced Standards and Guidelines	. 5
5.0	SAR L	imits	. 6
6.0	Descrip	ption of Device Under Test (DUT)	. 6
7.0	Option	al Accessories and Test Criteria	.7
	7.1	Antennas	.7
	7.2	Battery	.7
	7.3	Body worn Accessories	.8
	7.4	Audio Accessories	.8
8.0	Descrip	ption of Test System	.9
	8.1	Descriptions of Robotics/Probes/Readout Electronics	.9
	8.2	Description of Phantom(s)	10
	8.3	Description of Simulated Tissue	10
9.0	Additio	onal Test Equipment	11
10.0	SAR M	Neasurement System Validation and Verification	12
	10.1	System Validation	
	10.2	System Verification	12
	10.3	Equivalent Tissue Test Results	12
11.0	Enviro	nmental Test Conditions	14
12.0	DUT T	Test Setup and Methodology	14
	12.1	Measurements	14
	12.2	DUT Configuration(s)	15
	12.3	DUT Positioning Procedures	15
		12.3.1 Body	15
		12.3.2 Head	
	10.4	12.3.3 Face	
	12.4	DUT Test Channels	
	12.5	SAR Result Scaling Methodology	
10.0	12.6	DUT Test Plan	
13.0		Sest Data	
	13.1	LMR assessments at the Body for 150.8-173.4 MHz band	
	13.2	LMR assessment at the Face for 150.8-173.4 MHz band	
	13.3	Assessment for ISED, Canada	
1.4.0	13.4	Shortened Scan Assessment	
		s Summary	
		ility Assessment	
16.0	System	Uncertainty	22

APPENDICES A Measurement

A	Measurement Uncertainty Budget	. 23
	Probe Calibration Certificates	
	Dipole Calibration Certificates	

Part 2 of 2

APPENDICES

D	System Verification Check Scans	2
	DUT Scans	
F	Shorten Scan of Highest SAR Configuration	76
	DUT Test Position Photos	
Н	DUT, Body worn and audio accessories Photos	81

Report Revision History

Date	Revision	Comments
08/05/2020	A	Initial release

1.0 Introduction

This report details the utilization, test setup, test equipment, and test results of the Specific Absorption Rate (SAR) measurements performed at the Motorola Solutions Inc. EME Test Laboratory for handheld portable model number AAH56JDN9PA3AN (PMUD3254A). This device is classified as Occupational/ Controlled.

2.0 FCC SAR Summary

Table 1

Equipment Class	Frequency band (MHz)	Max Calc at Body (W/kg)	Max Calc at Face (W/kg)				
		1g-SAR	1g-SAR				
TNF	150.8-173.4MHz	2.21	0.83				

3.0 Abbreviations / Definitions

CNR: Calibration Not Required

CW: Continuous Wave DUT: Device Under Test EME: Electromagnetic Energy FM: Frequency Modulation LMR: Land Mobile Radio

NA: Not Applicable PTT: Push to Talk

SAR: Specific Absorption Rate

TNF: Licensed Non-Broadcast Transmitter Held to Face

Audio accessories: These accessories allow communication while the DUT is worn

on the body.

Body worn accessories: These accessories allow the DUT to be worn on the body of

the user.

Maximum Power: Defined as the upper limit of the production line final test station.

4.0 Referenced Standards and Guidelines

This product is designed to comply with the following applicable national and international standards and guidelines.

- IEC62209-1 (2016) Procedure to determine the specific absorption rate (SAR) for handheld devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)
- Federal Communications Commission, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields", OET Bulletin 65, FCC, Washington, D.C.: 1997.
- IEEE 1528 (2013), Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques
- American National Standards Institute (ANSI) / Institute of Electrical and Electronics Engineers (IEEE) C95. 1-1992
- Institute of Electrical and Electronics Engineers (IEEE) C95.1-2005
- International Commission on Non-Ionizing Radiation Protection (ICNIRP) 1998
- Ministry of Health (Canada) Safety Code 6 (2015), Limits of Human Exposure to Radio frequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz
- RSS-102 (Issue 5) Radio Frequency (RF) Exposure Compliance of Radio communication Apparatus (All Frequency Bands)
- Australian Communications Authority Radio communications (Electromagnetic Radiation -Human Exposure) Standard (2014)
- ANATEL, Brazil Regulatory Authority, Resolution No. 303 of July 2, 2002 "Regulation of the limitation of exposure to electrical, magnetic, and electromagnetic fields in the radio frequency range between 9 kHz and 300 GHz." and "Attachment to resolution # 303 from July 2, 2002"
- IEC62209-2 Edition 1.0 2010-03, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Human models, instrumentation, and procedures Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz).
- FCC KDB 643646 D01 SAR Test for PTT Radios v01r03
- FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04
- FCC KDB 865664 D02 RF Exposure Reporting v01r02
- FCC KDB 447498 D01 General RF Exposure Guidance v06

5.0 SAR Limits

Table 2

	SAR (W/kg)			
EXPOSURE LIMITS	(General Population / Uncontrolled Exposure Environment)	(Occupational / Controlled Exposure Environment)		
Spatial Average - ANSI -		,		
(averaged over the whole body)	0.08	0.4		
Spatial Peak - ANSI -				
(averaged over any 1-g of tissue)	1.6	8.0		
Spatial Peak – ICNIRP/ANSI -				
(hands/wrists/feet/ankles averaged over 10-g)	4.0	20.0		
Spatial Peak - ICNIRP -				
(Head and Trunk 10-g)	2.0	10.0		

6.0 Description of Device Under Test (DUT)

This portable device operates using frequency modulation (FM) signal incorporating traditional simplex two-way radio transmission protocol.

The band in this device operates in a half duplex system. A half duplex system only allows the user to transmit or receive. This device cannot transmit and receive simultaneously. The user must stop transmitting in order to receive a signal or listen for a response, regardless of PTT button or use of voice activated audio accessories. This type of operation, along with the RF safety booklet, which instructs the user to transmit no more than 50% of the time, justifies the use of 50% duty factor for this device.

Table 3 below summarizes the technology, band, maximum duty cycle and maximum output power. The maximum output power is defined as upper limit of the production line final test station.

Table 3

Band (MHz)	Transmission	Duty Cycle (%)	Max Power (W)
136-174	FM	*50	6.0

Note - * includes 50% PTT operation

The intended operating positions are "at the face" with the DUT at least 2.5 cm from the mouth, and "at the body" by means of the offered body worn accessories. Body worn audio and PTT operation is accomplished by means of optional remote accessories that are connected to the radio.

7.0 Optional Accessories and Test Criteria

This device is offered with optional accessories. All accessories were individually evaluated during the test plan creation to determine if testing was required per the guidelines outlined in "SAR Test Reduction Considerations for Occupational PTT Radios" FCC KDB 643646 to assess compliance of this device. The following sections identify the test criteria and details for each accessory category. Refer to Exhibit 7B for antenna separation distances.

7.1 Antennas

There are optional removable antennas offered for this product. The Table below lists their descriptions.

Table 4

Antenna No.	Antenna Models	Description	Selected for test	Tested
1	PMAD4067C*	PMAD4067C* VHF+GPS HELICAL ANTENNA (136-147 MHz) , 5/8 wave, -6.0dBi		Yes
2	PMAD4068C VHF+GPS HELICAL ANTENNA (147-160 MHz) , 5/8wave, -6.0dBi		Yes	Yes
3	PMAD4069C	D4069C VHF+GPS HELICAL ANTENNA (160-174 MHz) , 5/8wave, -6.0dBi		Yes
4	PMAD4088B	VHF Wide Band Antenna (136-174 MHz) , 5/8wave, -6.0dBi	Yes	Yes

Note -*Antenna PMAD4067C bandwidth is outside FCC range

7.2 Battery

There is only 1 battery offered for this product. The Table below lists their descriptions.

Table 5

Battery No.	Battery Models	Description	Selected for test	Tested	Comments
1	NNTN8386A	Battery IMPRES Li-Ion CSA157 IP68 2300T	Yes	Yes	

7.3 Body worn Accessories

All body worn accessories were considered. The Table below lists the body worn accessories, and body worn accessory descriptions.

Table 6

Body worn No.	Body worn Models	Description	Selected for test	Tested	Comments
1	PMLN6086A	ATEX Belt Clip 2.5 inch	Yes	Yes	
2	PMLN6097A	Hard Leather Cary Case 2.5 inch Swivel FKP	Yes	Yes	
3	PMLN6099A	Soft Leather Cary Case 2.5 inch Swivel FKP	Yes	Yes	

7.4 Audio Accessories

All audio accessories were considered. The Table below lists the offered audio accessories and their descriptions. Exhibit 7B illustrates photos of the tested audio accessories.

Table 7

	Table 7					
Audio No.	Audio Acc. Models	Description	Selected for test	Tested	Comments	
1	PMMN4050A	IMPRES Large RSM With Ear jack, Noise Canceling	Yes	Yes	Default Audio	
2	NNTN8379A	Dual Muff CSA 157 Headset 24NRR	Yes	*No	Test with NNTN8378A	
3	NNTN8380A	Dual Muff CSA 157 Headset 26NRR	No	No	By similarity to NNTN8379A	
4	NNTN8382B	IMPRES INC RSM, IP57	Yes	*No		
5	NNTN8383B	IMPRES INC RSM, Audio Jack	Yes	*No		
6	PMLN5275C	Heavy Duty Headset	Yes	*No		
7	NNTN8378A	CSA 157 PTT Adapter, Nexus 4 Pole	Yes	*No	Test with NNTN8379A	
8	PMMN4067B	ATEX CSA Remote Speaker Microphone Bottom of Form	Yes	*No		

Note - * SAR \leq 4.0 W/kg, test not require as per KDB 643646 D01

8.0 Description of Test System

8.1 Descriptions of Robotics/Probes/Readout Electronics

Table 8

Dosimetric System type	System version	DAE type	Probe Type
Schmid & Partner Engineering AG SPEAG DASY 5	52.10.2.1495 & 52.10.4.1527	DAE4	EX3DV4 (E-Field)

The DASY5TM system is operated per the instructions in the DASY5TM Users Manual. The complete manual is available directly from SPEAGTM. All measurement equipment used to assess SAR compliance was calibrated according to ISO/IEC 17025 A2LA guidelines. Section 9.0 presents additional test equipment information. Appendices B and C present the applicable calibration certificates. The E-field probe first scans a coarse grid over a large area inside the phantom in order to locate the interpolated maximum SAR distribution. After the coarse scan measurement, the probe is automatically moved to a position at the interpolated maximum. The subsequent scan can directly use this position as reference for the cube evaluations.

8.2 Description of Phantom(s)

FCC ID: AZ489FT3848 / IC: 109U-89FT3848

Table 9

		_Material	Phantom Dimensions LxWxD	Material Thickness	Support Structure	Loss Tangent
Phantom Type	Phantom(s) Used	Parameters	(mm)	(mm)	Material	(wood)
Triple Flat	NA	200MHz -6GHz; Er = 3-5, Loss Tangent = ≤0.05	280x175x175			
SAM	NA	300MHz -6GHz; Er = < 5, Loss Tangent = ≤0.05	Human Model	2mm +/- 0.2mm	Wood	< 0.05
Oval Flat	V	300MHz -6GHz; Er = 4+/- 1, Loss Tangent = ≤0.05	600x400x190			

8.3 Description of Simulated Tissue

The sugar based simulate tissue is produced by placing the correct measured amount of De-ionized water into a large container. Each of the dried ingredients are weighed and added to the water carefully to avoid clumping. If the solution has a high sugar concentration the water is pre-heated to aid in dissolving the ingredients. The solution is mixed thoroughly, covered, and allowed to sit overnight prior to use.

The simulated tissue mixture was mixed based on the Simulated Tissue Composition indicated in Table 10. During the daily testing of this product, the applicable mixture was used to measure the Di-electric parameters at each of the tested frequencies to verify that the Di-electric parameters were within the tolerance of the tissue specifications.

Simulated Tissue Composition (percent by mass)

Table 10

Ingredients	150MHz
Sugar	55.4
De ionized –Water	38.35
Salt	5.15
HEC	1.0
Bact.	0.1

9.0 Additional Test Equipment

The Table below lists additional test equipment used during the SAR assessment.

Table 11

SPEAG PROBE EX3DV4 7533 11/06/2019 11/06/2020 SPEAG PROBE EX3DV4 7511 10/24/2019 10/24/2020 SPEAG DAE* DAE4 1488 07/23/2019 07/23/2020 SPEAG DAE DAE4 729 10/16/2019 10/16/2020 DIELECTRIC ASSESSMENT KITT DAK-12 1069 02/25/2020 02/25/2021 NETWORK ANALYZER E5071B MY42403218 09/13/2019 09/13/2020 AMPLIFIER 10W1000C 312859 CNR CNR BI-DIRECTIONAL COUPLER 3020A 41931 07/09/2020 07/09/2021 POWER METER E4418B MY45107917 07/01/2019 07/01/2021 POWER METER E4418B MY45100737 08/30/2019 08/30/2021 POWER METER E4418B MY45100739 12/09/2019 12/09/2020 POWER METER E4418B MY45100739 12/09/2019 06/10/2021 POWER METER E4418B MY451007911 08/30/2019 08/30/2019 POWER SENSOR	Table 11								
SPEAG PROBE EX3DV4 7511 10/24/2019 10/24/2020 SPEAG DAE* DAE4 1488 07/23/2019 07/23/2020 SPEAG DAE DAE4 729 10/16/2019 10/16/2020 DIELECTRIC ASSESSMENT KIT DAK-12 1069 02/25/2020 02/25/2021 NETWORK ANALYZER E5071B MY42403218 09/13/2019 09/13/2020 AMPLIFIER 10W1000C 312859 CNR CNR BI-DIRECTIONAL COUPLER 3020A 41931 07/09/2020 07/09/2021 POWER METER E4418B MY45107917 07/01/2019 07/01/2021 POWER METER E4416A MY50001037 08/30/2019 08/30/2021 POWER METER E4418B MY45100739 12/09/2019 12/09/2020 POWER METER E4418B MY45100739 12/09/2019 06/10/2021 POWER METER E4418B MY45100911 08/30/2019 08/30/2021 POWER SENSOR 8481B MY41091243 12/17/2019 12/17/2020 POWER SENSOR	Equipment Type	Model Number	Serial Number	Calibration Date	Calibration Due Date				
SPEAG DAE* DAE4 1488 07/23/2019 07/23/2020 SPEAG DAE DAE4 729 10/16/2019 10/16/2020 DIELECTRIC ASSESSMENT KIT DAK-12 1069 02/25/2020 02/25/2021 NETWORK ANALYZER E5071B MY42403218 09/13/2019 09/13/2020 AMPLIFIER 10W1000C 312859 CNR CNR BI-DIRECTIONAL COUPLER 3020A 41931 07/09/2020 07/09/2021 POWER METER E4418B MY45107917 07/01/2019 07/01/2021 POWER METER E4416A MY50001037 08/30/2019 08/30/2021 POWER METER E4418B MY45100739 12/09/2019 12/09/2020 POWER METER E4418B MY45103725 06/10/2019 06/10/2021 POWER METER E4418B MY45100911 08/30/2019 08/30/2021 POWER SENSOR 8481B MY41091243 12/17/2019 12/17/2020 POWER SENSOR E9301B MY50280001 04/22/2020 04/22/2021 POWER SENSOR </td <td>SPEAG PROBE</td> <td>EX3DV4</td> <td>7533</td> <td>11/06/2019</td> <td>11/06/2020</td>	SPEAG PROBE	EX3DV4	7533	11/06/2019	11/06/2020				
SPEAG DAE DAE4 729 10/16/2019 10/16/2020 DIELECTRIC ASSESSMENT KIT DAK-12 1069 02/25/2020 02/25/2021 NETWORK ANALYZER E5071B MY42403218 09/13/2019 09/13/2020 AMPLIFIER 10W1000C 312859 CNR CNR BI-DIRECTIONAL COUPLER 3020A 41931 07/09/2020 07/09/2021 POWER METER E4418B MY45107917 07/01/2019 07/01/2021 POWER METER E4416A MY50001037 08/30/2019 08/30/2021 POWER METER E4418B MY45100739 12/09/2019 12/09/2020 POWER METER E4418B MY45103725 06/10/2019 06/10/2021 POWER METER E4418B MY45100911 08/30/2019 08/30/2021 POWER SENSOR 8481B MY45100911 08/30/2019 08/30/2021 POWER SENSOR E9301B MY50280001 04/22/2020 04/22/2021 POWER SENSOR E9301B MY55210006 04/22/2020 04/22/2021 POWE	SPEAG PROBE	EX3DV4	7511	10/24/2019	10/24/2020				
DIELECTRIC ASSESSMENT KIT DAK-12 1069 02/25/2020 02/25/2021 NETWORK ANALYZER E5071B MY42403218 09/13/2019 09/13/2020 AMPLIFIER 10W1000C 312859 CNR CNR BI-DIRECTIONAL COUPLER 3020A 41931 07/09/2020 07/09/2021 POWER METER E4418B MY45107917 07/01/2019 07/01/2021 POWER METER E4416A MY50001037 08/30/2019 08/30/2021 POWER METER E4418B MY45100739 12/09/2019 12/09/2020 POWER METER E4419B MY45103725 06/10/2019 06/10/2021 POWER METER E4418B MY45100911 08/30/2019 08/30/2021 POWER SENSOR 8481B MY41091243 12/17/2019 12/17/2020 POWER SENSOR E9301B MY50280001 04/22/2020 04/22/2021 POWER SENSOR E9301B MY55210006 04/22/2020 04/22/2021 POWER SENSOR E4412A US38488023 04/23/2020 04/23/2021	SPEAG DAE*	DAE4	1488	07/23/2019	07/23/2020				
KIT DAK-12 1069 02/25/2020 02/25/2021 NETWORK ANALYZER E5071B MY42403218 09/13/2019 09/13/2020 AMPLIFIER 10W1000C 312859 CNR CNR BI-DIRECTIONAL COUPLER 3020A 41931 07/09/2020 07/09/2021 POWER METER E4418B MY45107917 07/01/2019 07/01/2021 POWER METER E4416A MY50001037 08/30/2019 08/30/2021 POWER METER E4418B MY45100739 12/09/2019 12/09/2020 POWER METER E4419B MY45103725 06/10/2019 06/10/2021 POWER METER E4418B MY45100911 08/30/2019 08/30/2021 POWER SENSOR 8481B MY41091243 12/17/2019 12/17/2020 POWER SENSOR E9301B MY50280001 04/22/2020 04/22/2021 POWER SENSOR E9301B MY55210006 04/22/2020 04/22/2021 POWER SENSOR E4412A US38488023 04/23/2020 04/23/2021 VECTOR SIGNAL	SPEAG DAE	DAE4	729	10/16/2019	10/16/2020				
AMPLIFIER 10W1000C 312859 CNR CNR BI-DIRECTIONAL COUPLER 3020A 41931 07/09/2020 07/09/2021 POWER METER E4418B MY45107917 07/01/2019 07/01/2021 POWER METER E4416A MY50001037 08/30/2019 08/30/2021 POWER METER E4418B MY45100739 12/09/2019 12/09/2020 POWER METER E4419B MY45103725 06/10/2019 06/10/2021 POWER METER E4418B MY45100911 08/30/2019 08/30/2021 POWER SENSOR 8481B MY41091243 12/17/2019 12/17/2020 POWER SENSOR E9301B MY50280001 04/22/2020 04/22/2021 POWER SENSOR E9301B MY55210006 04/22/2020 04/22/2021 POWER SENSOR E4412A US38488023 04/23/2020 02/05/2021 POWER SENSOR E4412A US38488023 04/23/2020 04/23/2021 VECTOR SIGNAL GENERATOR E4438C MY47272101 10/29/2019 10/29/2021		DAK-12	1069	02/25/2020	02/25/2021				
BI-DIRECTIONAL COUPLER 3020A 41931 07/09/2020 07/09/2021 POWER METER E4418B MY45107917 07/01/2019 07/01/2021 POWER METER E4416A MY50001037 08/30/2019 08/30/2021 POWER METER E4418B MY45100739 12/09/2019 12/09/2020 POWER METER E4419B MY45103725 06/10/2019 06/10/2021 POWER METER E4418B MY45100911 08/30/2019 08/30/2021 POWER SENSOR 8481B MY41091243 12/17/2019 12/17/2020 POWER SENSOR E9301B MY50280001 04/22/2020 04/22/2021 POWER SENSOR E9301B MY55210006 04/22/2020 04/22/2021 POWER SENSOR 8481B 3318A10982 02/05/2020 02/05/2021 POWER SENSOR E4412A US38488023 04/23/2020 04/23/2021 VECTOR SIGNAL GENERATOR E4438C MY47272101 10/29/2019 10/29/2021 VECTOR SIGNAL GENERATOR E4438C MY45091270 08/13/2018 08/13/2020	NETWORK ANALYZER	E5071B	MY42403218	09/13/2019	09/13/2020				
COUPLER 3020A 41931 07/09/2020 07/09/2021 POWER METER E4418B MY45107917 07/01/2019 07/01/2021 POWER METER E4416A MY50001037 08/30/2019 08/30/2021 POWER METER E4418B MY45100739 12/09/2019 12/09/2020 POWER METER E4419B MY45103725 06/10/2019 06/10/2021 POWER METER E4418B MY45100911 08/30/2019 08/30/2021 POWER SENSOR 8481B MY41091243 12/17/2019 12/17/2020 POWER SENSOR E9301B MY50280001 04/22/2020 04/22/2021 POWER SENSOR E9301B MY55210006 04/22/2020 04/22/2021 POWER SENSOR 8481B 3318A10982 02/05/2020 02/05/2021 POWER SENSOR E4412A US38488023 04/23/2020 04/23/2021 VECTOR SIGNAL GENERATOR E4438C MY47272101 10/29/2019 10/29/2021 VECTOR SIGNAL GENERATOR E4438C MY45091270 08/13/2018 08/13/2020	AMPLIFIER	10W1000C	312859	CNR	CNR				
POWER METER E4416A MY50001037 08/30/2019 08/30/2021 POWER METER E4418B MY45100739 12/09/2019 12/09/2020 POWER METER E4419B MY45103725 06/10/2019 06/10/2021 POWER METER E4418B MY45100911 08/30/2019 08/30/2021 POWER SENSOR 8481B MY41091243 12/17/2019 12/17/2020 POWER SENSOR E9301B MY50280001 04/22/2020 04/22/2021 POWER SENSOR E9301B MY55210006 04/22/2020 04/22/2021 POWER SENSOR 8481B 3318A10982 02/05/2020 02/05/2021 POWER SENSOR E4412A US38488023 04/23/2020 04/23/2021 VECTOR SIGNAL GENERATOR E4438C MY47272101 10/29/2019 10/29/2021 VECTOR SIGNAL GENERATOR E4438C MY45091270 08/13/2018 08/13/2020 DATA LOGGER DSB 16326820 11/25/2019 11/25/2020		3020A	41931	07/09/2020	07/09/2021				
POWER METER E4418B MY45100739 12/09/2019 12/09/2020 POWER METER E4419B MY45103725 06/10/2019 06/10/2021 POWER METER E4418B MY45100911 08/30/2019 08/30/2021 POWER SENSOR 8481B MY41091243 12/17/2019 12/17/2020 POWER SENSOR E9301B MY50280001 04/22/2020 04/22/2021 POWER SENSOR E9301B MY55210006 04/22/2020 04/22/2021 POWER SENSOR 8481B 3318A10982 02/05/2020 02/05/2021 POWER SENSOR E4412A US38488023 04/23/2020 04/23/2021 VECTOR SIGNAL E4438C MY47272101 10/29/2019 10/29/2021 VECTOR SIGNAL E4438C MY45091270 08/13/2018 08/13/2020 DATA LOGGER DSB 16326820 11/25/2019 11/25/2020	POWER METER	E4418B	MY45107917	07/01/2019	07/01/2021				
POWER METER E4419B MY45103725 06/10/2019 06/10/2021 POWER METER E4418B MY45100911 08/30/2019 08/30/2021 POWER SENSOR 8481B MY41091243 12/17/2019 12/17/2020 POWER SENSOR E9301B MY50280001 04/22/2020 04/22/2021 POWER SENSOR E9301B MY55210006 04/22/2020 04/22/2021 POWER SENSOR 8481B 3318A10982 02/05/2020 02/05/2021 POWER SENSOR E4412A US38488023 04/23/2020 04/23/2021 VECTOR SIGNAL GENERATOR E4438C MY47272101 10/29/2019 10/29/2021 VECTOR SIGNAL GENERATOR E4438C MY45091270 08/13/2018 08/13/2020 DATA LOGGER DSB 16326820 11/25/2019 11/25/2020	POWER METER	E4416A	MY50001037	08/30/2019	08/30/2021				
POWER METER E4418B MY45100911 08/30/2019 08/30/2021 POWER SENSOR 8481B MY41091243 12/17/2019 12/17/2020 POWER SENSOR E9301B MY50280001 04/22/2020 04/22/2021 POWER SENSOR E9301B MY55210006 04/22/2020 04/22/2021 POWER SENSOR 8481B 3318A10982 02/05/2020 02/05/2021 POWER SENSOR E4412A US38488023 04/23/2020 04/23/2021 VECTOR SIGNAL GENERATOR E4438C MY47272101 10/29/2019 10/29/2021 VECTOR SIGNAL GENERATOR E4438C MY45091270 08/13/2018 08/13/2020 DATA LOGGER DSB 16326820 11/25/2019 11/25/2020	POWER METER	E4418B	MY45100739	12/09/2019	12/09/2020				
POWER SENSOR 8481B MY41091243 12/17/2019 12/17/2020 POWER SENSOR E9301B MY50280001 04/22/2020 04/22/2021 POWER SENSOR E9301B MY55210006 04/22/2020 04/22/2021 POWER SENSOR 8481B 3318A10982 02/05/2020 02/05/2021 POWER SENSOR E4412A US38488023 04/23/2020 04/23/2021 VECTOR SIGNAL GENERATOR E4438C MY47272101 10/29/2019 10/29/2021 VECTOR SIGNAL GENERATOR E4438C MY45091270 08/13/2018 08/13/2020 DATA LOGGER DSB 16326820 11/25/2019 11/25/2020	POWER METER	E4419B	MY45103725	06/10/2019	06/10/2021				
POWER SENSOR E9301B MY50280001 04/22/2020 04/22/2021 POWER SENSOR E9301B MY55210006 04/22/2020 04/22/2021 POWER SENSOR 8481B 3318A10982 02/05/2020 02/05/2021 POWER SENSOR E4412A US38488023 04/23/2020 04/23/2021 VECTOR SIGNAL GENERATOR E4438C MY47272101 10/29/2019 10/29/2021 VECTOR SIGNAL GENERATOR E4438C MY45091270 08/13/2018 08/13/2020 DATA LOGGER DSB 16326820 11/25/2019 11/25/2020	POWER METER	E4418B	MY45100911	08/30/2019	08/30/2021				
POWER SENSOR E9301B MY55210006 04/22/2020 04/22/2021 POWER SENSOR 8481B 3318A10982 02/05/2020 02/05/2021 POWER SENSOR E4412A US38488023 04/23/2020 04/23/2021 VECTOR SIGNAL GENERATOR E4438C MY47272101 10/29/2019 10/29/2021 VECTOR SIGNAL GENERATOR E4438C MY45091270 08/13/2018 08/13/2020 DATA LOGGER DSB 16326820 11/25/2019 11/25/2020	POWER SENSOR	8481B	MY41091243	12/17/2019	12/17/2020				
POWER SENSOR 8481B 3318A10982 02/05/2020 02/05/2021 POWER SENSOR E4412A US38488023 04/23/2020 04/23/2021 VECTOR SIGNAL GENERATOR E4438C MY47272101 10/29/2019 10/29/2021 VECTOR SIGNAL GENERATOR E4438C MY45091270 08/13/2018 08/13/2020 DATA LOGGER DSB 16326820 11/25/2019 11/25/2020	POWER SENSOR	E9301B	MY50280001	04/22/2020	04/22/2021				
POWER SENSOR E4412A US38488023 04/23/2020 04/23/2021 VECTOR SIGNAL GENERATOR E4438C MY47272101 10/29/2019 10/29/2021 VECTOR SIGNAL GENERATOR E4438C MY45091270 08/13/2018 08/13/2020 DATA LOGGER DSB 16326820 11/25/2019 11/25/2020	POWER SENSOR	E9301B	MY55210006	04/22/2020	04/22/2021				
VECTOR SIGNAL GENERATOR E4438C MY47272101 10/29/2019 10/29/2021 VECTOR SIGNAL GENERATOR E4438C MY45091270 08/13/2018 08/13/2020 DATA LOGGER DSB 16326820 11/25/2019 11/25/2020	POWER SENSOR	8481B	3318A10982	02/05/2020	02/05/2021				
GENERATOR E4438C MY472/2101 10/29/2019 10/29/2021 VECTOR SIGNAL GENERATOR E4438C MY45091270 08/13/2018 08/13/2020 DATA LOGGER DSB 16326820 11/25/2019 11/25/2020	POWER SENSOR	E4412A	US38488023	04/23/2020	04/23/2021				
GENERATOR E4438C MY45091270 08/13/2018 08/13/2020 DATA LOGGER DSB 16326820 11/25/2019 11/25/2020		E4438C	MY47272101	10/29/2019	10/29/2021				
		E4438C	MY45091270	08/13/2018	08/13/2020				
TEMPERATURE PROBE 80PK-22 05032017 12/24/2019 12/24/2020	DATA LOGGER	DSB	16326820	11/25/2019	11/25/2020				
	TEMPERATURE PROBE	80PK-22	05032017	12/24/2019	12/24/2020				
THERMOMETER HH202A 35881 12/24/2019 12/24/2020	THERMOMETER	HH202A	35881	12/24/2019	12/24/2020				
THERMOMETER HH806AU 080307 12/31/2019 12/31/2020	THERMOMETER	HH806AU	080307	12/31/2019	12/31/2020				
TEMPERATURE PROBE 80PK-22 06032017 12/31/2019 12/31/2020	TEMPERATURE PROBE	80PK-22	06032017	12/31/2019	12/31/2020				
SPEAG DIPOLE CLA150 4016 10/10/2018 10/10/2020	SPEAG DIPOLE	CLA150	4016	10/10/2018	10/10/2020				

Note: '*' indicates that the equipment is used for SAR assessment before calibration due date

10.0 SAR Measurement System Validation and Verification

DASY output files of the probe/dipole calibration certificates and system verification test results are included in appendices B, C & D respectively.

10.1 System Validation

The SAR measurement system was validated according to procedures in KDB 865664. The validation status summary Table is below.

Table 12

Dates	Probe Calibration Point		Probe SN	Measured Tissue Parameters		Validation		
	Pol	III	SIN	σ $\epsilon_{ m r}$		Sensitivity	Linearity	Isotropy
11/20/2019	Head	150	7533	0.74	51.7	Pass	Pass	Pass
11/26/2019	Head	150	7511	0.73	49.8	Pass	Pass	Pass

10.2 System Verification

System verification checks were conducted each day during the SAR assessment. The results are normalized to 1W. Appendix D includes DASY plots for each day during the SAR assessment. The Table below summarizes the daily system check results used for the SAR assessment.

Table 13

Probe Serial #	Tissue Type	Dipole Kit / Serial #	Ref SAR @ 1W (W/kg)	System Check Results Measured (W/kg)	System Check Test Results when normalized to 1W (W/kg)	Tested Date
				3.99	3.99	06/28/2020
				3.90	3.90	06/30/2020
				3.91	3.91	07/01/2020
				3.90	3.90	07/02/2020
7533	IEEE/IEC Head	SPEAG CLA150 /	3.64 +/- 10%	3.84	3.84	07/07/2020#
	IEEE/IEC Head	4016	3.04 +/- 10%	3.77	3.77	07/19/2020#
				3.76	3.76	07/20/2020#
				3.96	3.96	07/23/2020
				4.00	4.00	07/31/2020
7511				3.78	3.78	08/04/2020

Note: '#' indicates that the system verification check covers the next day of testing (within 24 hours)

10.3 Equivalent Tissue Test Results

Simulated tissue prepared for SAR measurements is measured daily and within 24 hours prior to actual SAR testing to verify that the tissue is within +/- 5% of target parameters at the center of the transmit band. This measurement is done using the applicable equipment indicated in section 9.0. The Table below summarizes the measured tissue parameters used for the SAR assessment.

Table 14

Frequency (MHz)	Tissue Type	Conductivity Target (S/m)	Dielectric Constant Target	Conductivity Meas. (S/m)	Dielectric Constant Meas.	Tested Date	
138		0.75	52.9	0.77	52.6	07/02/2020	
138		(0.71-0.79)	(50.2-55.5)	0.77	53.5	07/19/2020#	
143		0.76 (0.72-0.79)	52.6 (50-55.3)	0.78	52.2	07/20/2020	
147		0.76	52.4	0.78	52.2	07/02/2020	
147		(0.72-0.8)	(49.8-55.1)	0.78	52.1	07/20/2020#	
]			0.72	51.0	06/28/2020	
				0.74	51.3	06/30/2020	
			0.73	50.7	07/01/2020		
				0.78	52.1	07/02/2020	
150		0.76	52.3	0.73	51.4	07/07/2020	
150			(0.72-0.8)	(49.7-54.9)	0.78	52.9	07/19/2020#
				0.78	52	07/20/2020#	
	IEEE/			0.74	50.7	07/23/2020	
	IEC Head	IEC Head			0.78	49.8	07/31/2020
					0.78	51.6	08/04/2020
155		0.76 (0.73-0.8)	52.1 (49.5-54.7)	0.74	51.2	07/07/2020#	
				0.73	50.6	06/28/2020	
				0.75	50.9	06/30/2020	
160		0.77	51.8	0.73	50.2	07/01/2020	
100		(0.73-0.81)	(49.2-54.4)	0.79	51.7	07/20/2020#	
				0.75	50.2	07/23/2020	
	j			0.78	49.3	07/31/2020	
166		0.77 (0.73-0.81)	51.6 (49-54.1)	0.79	50.9	08/04/2020	
173		0.78 (0.74-0.82)	51.2 (48.7-53.8)	0.79	50.6	00/04/2020	

Note: '#' indicates that the Tissue test results cover the next day of testing (within 24 hours)

11.0 Environmental Test Conditions

The EME Laboratory's ambient environment is well controlled resulting in very stable simulated tissue temperature and therefore stable dielectric properties. Simulated tissue temperature is measured prior to each scan to insure it is within \pm 2°C of the temperature at which the dielectric properties were determined. The liquid depth within the phantom used for measurements was at least 15cm. Additional precautions are routinely taken to ensure the stability of the simulated tissue such as covering the phantoms when scans are not actively in process in order to minimize evaporation. The lab environment is continuously monitored. The Table below presents the range and average environmental conditions during the SAR tests reported herein:

Table 15

	Target	Measured
Ambient Temperature	18 – 25 °C	Range: 20.8 – 23.9°C Avg. 21.9°C
Ambient Temperature	19. 25 °C	Range: 19.9 – 21.6°C
Tissue Temperature	18 – 25 °C	Avg. 20.8 °C

Relative humidity target range is a recommended target

The EME Lab RF environment uses a Spectrum Analyzer to monitor for extraneous large signal RF contaminants that could possibly affect the test results. If such unwanted signals are discovered the SAR scans are repeated.

12.0 DUT Test Setup and Methodology

12.1 Measurements

SAR measurements were performed using the DASY system described in section 8.0 using zoom scans .Oval flat phantoms filled with applicable simulated tissue were used for body and face testing.

The Table below includes the step sizes and resolution of area and zoom scans per KDB 865664 requirements.

Table 16

Descr	iption	≤3 GHz	> 3 GHz		
Maximum distance from close (geometric center of probe ser	<u>*</u>	5 ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$		
Maximum probe angle from p normal at the measurement loo		30° ± 1°	20° ± 1°		
		≤ 2 GHz: ≤ 15 mm	$3-4$ GHz: ≤ 12 mm		
		$2-3$ GHz: ≤ 12 mm	$4-6 \text{ GHz:} \leq 10 \text{ mm}$		
		When the x or y dimension of the test device, in			
Maximum area scan spatial	resolution: Av Area Av Area	the measurement plane orientation, is smaller			
Waximum area scan spatiar	resolution. AxArea, AyArea	than the above, the measurement resolution must			
		be \leq the corresponding x	or y dimension of the		
		test device with at least of	one measurement point		
		on the test device.			
Maximum zoom scan spatial r	resolution: ΔxZoom, ΔyZoom	\leq 2 GHz: \leq 8 mm	$3-4$ GHz: ≤ 5 mm*		
		$2-3 \text{ GHz: } \leq 5 \text{ mm*}$	$4-6$ GHz: ≤ 4 mm*		
Maximum zoom scan spatial	uniform grid: ΔzZoom(n)		$3-4$ GHz: ≤ 4 mm		
resolution, normal to		≤ 5 mm	$4-5 \text{ GHz:} \leq 3 \text{ mm}$		
phantom surface			$5-6 \text{ GHz: } \leq 2 \text{ mm}$		

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

12.2 **DUT Configuration(s)**

The DUT is a portable device operational at the body and face as described in section 6.0 while using the applicable accessories listed in section 7.0. All accessories listed in section 7.0 of this report were considered when implementing the guidelines specified in KDB 643646.

12.3 DUT Positioning Procedures

The positioning of the device for each body location is described below and illustrated in Appendix G.

12.3.1 Body

The DUT was positioned in normal use configuration against the phantom with the offered body worn accessory as well as with the offered audio accessories as applicable.

12.3.2 Head

Not applicable.

12.3.3 Face

The DUT was positioned with its' front side separated 2.5cm from the phantom.

^{*} When zoom scan is required and the reported SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is \leq 1.4 W/kg, \leq 8 mm, \leq 7 mm and \leq 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

12.4 DUT Test Channels

The number of test channels was determined by using the following IEEE 1528 equation. The use of this equation produces the same or more test channels compared to the FCC KDB 447498 number of test channels formula.

$$N_c = 2 * roundup[10 * (f_{high} - f_{low}) / f_c] + 1$$

Where

 N_c = Number of channels

 $F_{high} = Upper channel$

 $F_{low} = Lower channel$

 F_c = Center channel

12.5 SAR Result Scaling Methodology

The calculated 1-gram and 10-gram averaged SAR results indicated as "Max Calc. 1g-SAR" in the data Tables is determined by scaling the measured SAR to account for power leveling variations and drift. Appendix F includes a shortened scan to justify SAR scaling for drift. For this device the "Max Calc. 1g-SAR" are scaled using the following formula:

$$Max_Calc = SAR_meas \cdot 10^{\frac{-Drift}{10}} \cdot \frac{P_max}{P_int} \cdot DC$$

 $P_{max} = Maximum Power (W)$

P int = Initial Power (W)

Drift = DASY drift results (dB)

SAR_meas = Measured 1-g or 10-g Avg. SAR (W/kg)

DC = Transmission mode duty cycle in % where applicable

50% duty cycle is applied for PTT operation

Note: for conservative results, the following are applied:

If $P_{int} > P_{max}$, then $P_{max}/P_{int} = 1$.

Drift = 1 for positive drift

Additional SAR scaling was applied using the methodologies outlined in FCC KDB 865664 using tissue sensitivity values. SAR was scaled for conditions where the tissue permittivity was measured above the nominal target and for tissue conductivity that was measured below the nominal target. Negative or reduced SAR scaling is not permitted.

12.6 DUT Test Plan

The guidelines and requirements outlined in section 4.0 were used to assess compliance of this device. All modes of operation identified in section 6.0 were considered during the development of the test plan. All tests were performed in CW mode and 50% duty cycle was applied to PTT configurations in the final results.

FCC ID: AZ489FT3848 / IC: 109U-89FT3848 Report ID: P21594-EME-00004

13.0 DUT Test Data

13.1 LMR assessments at the Body for 150.8-173.4 MHz band

Battery NNTN8386A was selected as the default battery for assessments at the Body because it is the only offered battery (refer to Exhibit 7B for battery illustration). The default battery was used during conducted power measurements for all test channels within FCC allocated frequency range (150.8-173.4 MHz) which are listed in Table 17. The channel with the highest conducted power will be identified as the default channel per KDB 643646 (SAR Test for PTT Radios).

Table 17

Test Freq (MHz)	Power (W)
150.8000	5.84
155.4000	5.90
160.0000	6.00
166.3000	5.90
173.4000	5.92

Assessments at the Body with Body worn PMLN6086A

DUT assessment with offered antennas, default battery, default body worn accessory and default audio per KDB 643646. SAR plots of the highest results per Table (bolded) are presented in Appendix E.

Table 18

				ubic 10					
Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Pwr		Meas. 1g-SAR (W/kg)	Max Calc. 1g-SAR (W/kg)	Run#
				150.8000					
PMAD4068C				155.4000					
				160.0000	6.00	-0.65	0.49	0.28	ZZ-AB-200628-07
				160.0000	6.00	-0.61	3.59	2.07	ZR(AR)-AB-200723-10
PMAD4069C	NINITNIO207A	DMI NCOOCA	DMM MN4050A	166.3000					
	NNTN8386A	PMLN6086A	PMMN4050A	173.4000					
				150.8000					
DM A D 4000D				160.0000	6.00	-0.36	1.52	0.83	ZZ-AB-200630-03
PMAD4088B				166.3000					
				173.4000					

Assessments at the Body with Body worn PMLN6097A

DUT assessment with offered antennas, default battery and above mentioned body worn accessory per KDB 643646. Refer to Table 17 for highest output power channel. SAR plots of the highest results per Table (bolded) are presented in Appendix E.

Table 19

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	Drift	Meas. 1g-SAR (W/kg)	Max Calc. 1g-SAR (W/kg)	Run#
				150.8000					
PMAD4068C				155.4000					
				160.0000	6.00	-0.61	0.25	0.15	ZZ-AB-200630-05
				160.0000	6.00	-0.83	1.18	0.71	AM(AR)-AB-200721-08#
PMAD4069C	NINITNI0206 A	DMI N6007A	PMMN4050A	166.3000					
	NNTN8386A PMLN6097A	PMLN009/A	/A PMIMIN4030A	173.4000					
				150.8000					
DM 4 D 4000D				160.0000	6.00	-0.10	0.67	0.34	AM(AR)-AB-200721-10#
PMAD4088B				166.3000					
				173.4000					

Assessments at the Body with Body worn PMLN6099A

DUT assessment with offered antennas, default battery and above mentioned body worn accessory per KDB 643646. Refer to Table 17 for highest output power channel. SAR plots of the highest results per Table (bolded) are presented in Appendix E.

Table 20

				abic 20					
Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (W/kg)	Max Calc. 1g-SAR (W/kg)	Run#
				150.8000					
PMAD4068C				155.4000					
				160.0000	6.00	-0.36	0.20	0.11	AM(AR)-AB-200721-11#
				160.0000	6.00	-0.96	1.05	0.65	AM(AR)-AB-200721-12#
PMAD4069C	NNTN8386A	PMLN6099A	DMM ANIAOSO A	166.3000					
	NN1N8380A	PMLN0099A	PMMN4050A	173.4000					
				150.8000					
DM 4 D 4000D				160.0000	6.00	-0.95	0.86	0.54	AM(AR)-AB-200721-13#
PMAD4088B				166.3000		•		•	
				173.4000					

Assessment at the Body with other audio accessories

Assessment per "KDB 643646 Body SAR Test Consideration for Audio Accessories without Built-in Antenna; Sec 1, A. when overall ≤ 4.0 W/kg, SAR tested for that audio accessory is not necessary." This was applicable to all remaining accessories.

13.2 LMR assessment at the Face for 150.8-173.4 MHz band

Battery NNTN8386A was selected as the default battery for assessments at the Face because it is the only offered battery (refer to Exhibit 7B for battery illustration). The default battery was used during conducted power measurements for all test channels within FCC allocated frequency range (150.8-173.4 MHz) which are listed in Table 21. The channel with the highest conducted power will be identified as the default channel per KDB 643646 (SAR Test for PTT Radios).

Table 21

Test Freq (MHz)	Power (W)
150.8000	5.84
155.4000	5.90
160.0000	6.00
166.3000	5.90
173.4000	5.92

DUT assessment with offered antennas, default battery with front of DUT positioned 2.5cm facing phantom per KDB 643646. Refer to Table 21 for highest output power channel. SAR plots of the highest results per Table (bolded) are presented in Appendix E.

Table 22

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)		Meas. 1g-SAR (W/kg)	Max Calc. 1g-SAR (W/kg)	Run#	
				150.8000						
PMAD4068C				155.4000						
				160.0000	6.00	-0.51	1.48	0.83	BL(AR)-FACE-200701-15	
					160.0000	6.00	-0.44	1.08	0.60	BL(AR)-FACE-200701-16
PMAD4069C	NNTN8386A	None	NT	166.3000						
	ININ I INOSOOA	None	None	173.4000						
				150.8000						
DM A D 4000D	(AD4000D			160.0000	6.00	-0.49	0.83	0.47	BL(AR)-FACE-200701-17	
PMAD4088B				166.3000						
				173.4000						

13.3 Assessment for ISED, Canada

FCC ID: AZ489FT3848 / IC: 109U-89FT3848

Based on the assessment results for body and face per KDB643646, additional tests were required for Outside FCC frequency range (138-150.8 MHz). The overall highest test configuration from 150.8-173.4 MHz band was chosen to test with frequencies 138, 142.5, and 147MHz for applicable offered antennas. The SAR results are in Table below.

Table 23

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g- SAR (W/kg)	Max Calc. 1g- SAR (W/kg)	Run#
Body									
				138.0000	5.79	-0.41	2.62	1.49	ZR(AR)-AB-200720-07#
PMAD4067C			PMLN4050A	142.5000	5.83	-0.68	1.99	1.20	ZR(AR)-AB-200720-10
	NNTN8386A	PMLN6086A		147.0000	5.76	-0.42	0.40	0.23	AM(AR)-AB-200721-14#
PMAD4068C	MINIMOSOUA	TWILINGOOA		147.0000	5.90	-0.07	3.87	2.00	ZZ-AB-200720-12
PMAD4088B				138.0000	5.87	-0.75	2.74	1.66	ZZ-AB-200720-13
FWIAD4086B				147.0000	5.93	-0.64	1.01	0.59	ZZ-AB-200720-14
				Face					
				138.0000	5.95	-0.57	1.91	1.10	ZZ-FACE-200702-12
PMAD4067C				142.5000	5.96	-0.68	1.57	0.92	ZZ-FACE-200721-01#
	NNTN8386A	None	None	147.0000	5.85	-0.57	0.86	0.51	ZZ-FACE-200702-13
PMAD4068C	MOSONITATAL	None	None	147.0000	5.85	-0.40	1.77	1.00	ZZ-FACE-200702-14
PMAD4088B				138.0000	5.95	-0.52	1.03	0.59	BL(AR)-FACE-200702-15
PMAD4088B				147.0000	5.85	-0.63	0.65	0.39	BL(AR)-FACE-200702-16

As per ISED Notice 2016-DRS001, additional tests were required for the low, mid and high frequency channels for the configuration with the highest SAR value. SAR plots of the highest results per Table (bolded) are presented in Appendix E.

Table 24

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (W/kg)	Max Calc. 1g-SAR (W/kg)	Run#		
Body											
			160.000	6.00	-0.61	3.59	2.07	ZR(AR)-AB-200723-10			
PMAD4069C	NNTN8386A	PMLN6086A	PMLN6086A	6A PMLN4050A	PMLN4050A	166.300	6.00	-0.69	1.45	0.85	KKL-AB-200804-02
				173.400	6.00	-0.61	0.70	0.40	KKL-AB-200804-03		
				Face							
	PMAD4067C NNTN8386A		None	138.0000	5.95	-0.57	1.91	1.10	ZZ-FACE-200702-12		
PMAD4067C		None		142.5000	5.96	-0.68	1.57	0.92	ZZ-FACE-200721-01#		
				147.0000	5.85	-0.57	0.86	0.51	ZZ-FACE-200702-13		

13.4 Shortened Scan Assessment

FCC ID: AZ489FT3848 / IC: 109U-89FT3848

A "shortened" scan using the highest SAR configuration overall from above was performed to validate the SAR drift of the full DASY5TM coarse and zoom scans. Note that the shortened scan represents the zoom scan performance result; this is obtained by first running a coarse scan to find the peak area and then, using a newly charged battery, a zoom scan only was performed. The results of the shortened cube scan presented in Appendix D demonstrate that the scaling methodology used to determine the calculated SAR results presented herein are valid. The SAR result from the Table below is provided in Appendix F.

Table 25

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Pwr	Drift	Meas. 1g-SAR (W/kg)	-	Run#
PMAD4069C	NNTN8386A	PMLN6086A	PMMN4050A	160.000	6.00	-0.78	3.69	2.21	KKL-AB-200731-02

14.0 Results Summary

Based on the test guidelines from section 4.0 and satisfying frequencies within FCC bands and ISED Canada Frequency bands, the highest Operational Maximum Calculated 1-gram average SAR values found for this filing:

Table 26

Frequency band	Max Calc at Body (W/kg)	Max Calc at Face (W/kg)						
(MHz)	1g-SAR	1g-SAR						
FCC								
150.8-173.4	2.21	0.83						
	ISED							
138-174	2.21	1.10						
	Overall							
136-174	2.21	1.10						

All results are scaled to the maximum output power

The test results clearly demonstrate compliance with FCC Occupational/Controlled RF Exposure limits of 8 W/kg averaged over 1 gram per the requirements of FCC 47 CFR § 2.1093.

15.0 Variability Assessment

Per the guidelines in KDB 865664 SAR variability assessment is not required because SAR results are below 4.0W/kg (Occupational)

FCC ID: AZ489FT3848 / IC: 109U-89FT3848 Report ID: P21594-EME-00004

16.0 System Uncertainty

A system uncertainty analysis is not required for this report per KDB 865664 because the highest report SAR value for Occupational exposure is less than 7.5W/kg.

Per the guidelines of ISO 17025 a reported system uncertainty is required and therefore measurement uncertainty budget is included in Appendix A.

FCC ID: AZ489FT3848 / IC: 109U-89FT3848 Report ID: P21594-EME-00004

Appendix A Measurement Uncertainty Budget

Uncertainty Budget for Device Under Test, for 150 MHz

а	b	с	d	e = f(d,k)	f	g	h = c x f / e	$i = c \times g / e$	k
Uncertainty Component	IEEE 1528 section	Tol. (± %)	Prob Dist	Div.	c_i (1 g)	c_i (10 g)	1 g <i>u_i</i> (±%)	10 g u _i (±%)	v_i
Measurement System									
Probe Calibration	E.2.1	6.7	N	1.00	1	1	6.7	6.7	∞
Axial Isotropy	E.2.2	4.7	R	1.73	0.707	0.707	1.9	1.9	∞
Hemispherical Isotropy	E.2.2	9.6	R	1.73	0.707	0.707	3.9	3.9	∞
Boundary Effect	E.2.3	1.0	R	1.73	1	1	0.6	0.6	∞
Linearity	E.2.4	4.7	R	1.73	1	1	2.7	2.7	8
System Detection Limits	E.2.5	1.0	R	1.73	1	1	0.6	0.6	8
Readout Electronics	E.2.6	0.3	N	1.00	1	1	0.3	0.3	8
Response Time	E.2.7	1.1	R	1.73	1	1	0.6	0.6	∞
Integration Time	E.2.8	1.1	R	1.73	1	1	0.6	0.6	∞
RF Ambient Conditions - Noise	E.6.1	3.0	R	1.73	1	1	1.7	1.7	8
RF Ambient Conditions -									
Reflections	E.6.1	0.0	R	1.73	1	1	0.0	0.0	∞
Probe Positioner Mech. Tolerance	E.6.2	0.4	R	1.73	1	1	0.2	0.2	∞
Probe Positioning w.r.t Phantom	E.6.3	1.4	R	1.73	1	1	0.8	0.8	∞
Max. SAR Evaluation (ext., int.,									
avg.)	E.5	3.4	R	1.73	1	1	2.0	2.0	∞
Test sample Related									
Test Sample Positioning	E.4.2	3.2	N	1.00	1	1	3.2	3.2	29
Device Holder Uncertainty	E.4.1	4.0	N	1.00	1	1	4.0	4.0	8
SAR drift	6.6.2	5.0	R	1.73	1	1	2.9	2.9	∞
Phantom and Tissue Parameters									
Phantom Uncertainty	E.3.1	4.0	R	1.73	1	1	2.3	2.3	∞
Liquid Conductivity (target)	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	∞
Liquid Conductivity									
(measurement)	E.3.3	3.3	N	1.00	0.64	0.43	2.1	1.4	∞
Liquid Permittivity (target)	E.3.2	5.0	R	1.73	0.6	0.49	1.7	1.4	∞
Liquid Permittivity (measurement)	E.3.3	1.9	N	1.00	0.6	0.49	1.1	0.9	∞
Combined Standard Uncertainty			RSS				11	11	477
Expanded Uncertainty (95% CONFIDENCE LEVEL)			k=2				23	22	

Notes for uncertainty budget Tables:

- a) Column headings *a-k* are given for reference.
- b) Tol. Tolerance in influence quantity.
- c) Prob. Dist. Probability distribution
- d) N, R normal, rectangular probability distributions
- e) Div. divisor used to translate tolerance into normally distributed standard uncertainty
- f) *ci* sensitivity coefficient that should be applied to convert the variability of the uncertainty component into a variability of SAR.
- g) ui SAR uncertainty
- h) vi degrees of freedom for standard uncertainty and effective degrees of freedom for the expanded uncertainty

Uncertainty Budget for System Validation (dipole & flat phantom) for 150 MHz

							h =	i =	
a	b	c	d	e = f(d,k)	f	g	cxf /e	$\begin{array}{c c} c x \\ g/e \end{array}$	k
Uncertainty Component	IEEE 1528 section	Tol. (± %)	Prob Dist	Div.	c _i (1 g)	c _i (10 g)	1 g U _i (±%)	10 g U _i (±%)	v _i
Measurement System									
Probe Calibration	E.2.1	6.7	N	1.00	1	1	6.7	6.7	8
Axial Isotropy	E.2.2	4.7	R	1.73	1	1	2.7	2.7	8
Spherical Isotropy	E.2.2	9.6	R	1.73	0	0	0.0	0.0	8
Boundary Effect	E.2.3	1.0	R	1.73	1	1	0.6	0.6	8
Linearity	E.2.4	4.7	R	1.73	1	1	2.7	2.7	8
System Detection Limits	E.2.5	1.0	R	1.73	1	1	0.6	0.6	8
Readout Electronics	E.2.6	0.3	N	1.00	1	1	0.3	0.3	8
Response Time	E.2.7	1.1	R	1.73	1	1	0.6	0.6	8
Integration Time	E.2.8	0.0	R	1.73	1	1	0.0	0.0	8
RF Ambient Conditions - Noise	E.6.1	3.0	R	1.73	1	1	1.7	1.7	8
RF Ambient Conditions - Reflections	E.6.1	0.0	R	1.73	1	1	0.0	0.0	8
Probe Positioner Mechanical Tolerance	E.6.2	0.4	R	1.73	1	1	0.2	0.2	8
Probe Positioning w.r.t. Phantom	E.6.3	1.4	R	1.73	1	1	0.8	0.8	8
Max. SAR Evaluation (ext., int., avg.)	E.5	3.4	R	1.73	1	1	2.0	2.0	∞
Dipole									
Dipole Axis to Liquid Distance	8, E.4.2	2.0	R	1.73	1	1	1.2	1.2	∞
Input Power and SAR Drift Measurement	8, 6.6.2	5.0	R	1.73	1	1	2.9	2.9	8
Phantom and Tissue Parameters									
Phantom Uncertainty	E.3.1	4.0	R	1.73	1	1	2.3	2.3	8
Liquid Conductivity (target)	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	8
Liquid Conductivity (measurement)	E.3.3	3.3	R	1.73	0.64	0.43	1.2	0.8	∞
Liquid Permittivity (target)	E.3.2	5.0	R	1.73	0.6	0.49	1.7	1.4	8
Liquid Permittivity (measurement)	E.3.3	1.9	R	1.73	0.6	0.49	0.6	0.5	∞
Combined Standard Uncertainty			RSS				10	9	99999
Expanded Uncertainty (95% CONFIDENCE LEVEL)			k=2				19	18	

Notes for uncertainty budget Tables:

- a) Column headings *a-k* are given for reference.
- b) Tol. Tolerance in influence quantity.
- c) Prob. Dist. Probability distribution
- d) N, R normal, rectangular probability distributions
- e) Div. divisor used to translate tolerance into normally distributed standard uncertainty
- f) *ci* sensitivity coefficient that should be applied to convert the variability of the uncertainty component into a variability of SAR.
- g) ui SAR uncertainty
- h) vi degrees of freedom for standard uncertainty and effective degrees of freedom for the expanded uncertainty

FCC ID: AZ489FT3848 / IC: 109U-89FT3848 Report ID: P21594-EME-00004

Appendix B Probe Calibration Certificates

Calibration Laboratory of Schmid & Partner Engineering AG Zoughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

Motorola Solutions MY

Certificate No: EX3-7533_Nov19

CALIBRATION CERTIFICATE

Object

EX3DV4 - SN:7533

Calibration procedure(s)

QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v5, QA CAL-23.v5,

QA CAL-25.v7

Calibration procedure for dosimetric E-field probes

Calibration date:

November 6, 2019

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).

The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%,

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	03-Apr-19 (No. 217-02892/02893)	Apr-20
Power sensor NRP-Z91	SN: 103244	03-Apr-19 (No. 217-02892)	Apr-20
Power sensor NRP-Z91	SN: 103245	03-Apr-19 (No. 217-02893)	Apr-20
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-19 (No. 217-02894)	Apr-20
DAE4	SN: 660	07-Oct-19 (No. DAE4-660_Oct19)	Oct-20
Reference Probe ES3DV2	SN: 3013	31-Dec-18 (No. ES3-3013_Dec18)	Dec-19
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E44198	SN: GB41293874	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-18)	In house check: Jun-20
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-19)	In house check: Oct-20

Calibrated by:

Jeton Kastati

Name

Function Laboratory Technician Signature

Approved by:

Katja Pokovic

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Technical Manager

Issued: November 8, 2019

Certificate No: EX3-7533_Nov19

Page 1 of 12

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL NORMx,y,z ConvF tissue simulating liquid sensitivity in free space sensitivity in TSL / NORMx,y,z diode compression point

DCP CF

crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters

A, B, C, D Polarization φ

φ rotation around probe axis

Polarization 9

9 rotation around an axis that is in the plane normal to probe axis (at measurement center).

i.e., 9 = 0 is normal to probe axis

Connector Angle

information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- EC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010.
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 8 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,yz * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: EX3-7533_Nov19

Page 2 of 12

November 6, 2019

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7533

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (µV/(V/m) ²) ^A	0.42	0.47	0.41	± 10.1 %
DCP (mV) ⁸	96.5	99.1	103.6	

Calibration Results for Modulation Response

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Max dev.	Unc ^E (k=2)
0	CW	X 0.0	0.0	1.0	0.00	145.2	±3.8 %	±4.7 %	
		Y	0.0	0.0	1.0		159.8		
		Z	0.0	0.0	1.0		148.5		

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of Norm X,Y,Z do not affect the E^T-field uncertainty inside TSL (see Pages 5 and 6).

Numerical linearization parameter, uncertainty not required.

Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

EX3DV4-SN:7533 November 6, 2019

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7533

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	88.9
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

November 6, 2019

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7533

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^c	Relative Permittivity	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ⁶	Depth ^G (mm)	Unc (k=2)
150	52.3	0.76	13.81	13.81	13.81	0.00	1.00	± 13.3 %
300	45.3	0.87	12.94	12.94	12.94	0.08	1.20	± 13.3 %
450	43.5	0.87	11.84	11.84	11.84	0.12	1.30	± 13.3 %
750	41.9	0.89	10.71	10.71	10.71	0.38	0.93	± 12.0 %
835	41.5	0.90	10.47	10.47	10.47	0.46	0.86	± 12.0 %
900	41.5	0.97	10.25	10.25	10.25	0.31	1.01	± 12.0 %
2450	39.2	1.80	7.67	7.67	7.67	0.32	0.92	± 12.0 %
5250	35.9	4.71	5.35	5.35	5.35	0.40	1.80	± 13.1 %
5500	35.6	4.96	4.89	4.89	4.89	0.40	1.80	± 13.1 %
5600	35.5	5.07	4.74	4.74	4.74	0.40	1.80	± 13.1 %
5750	35.4	5.22	4.90	4.90	4.90	0.40	1.80	± 13.1 %

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the CornYF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for CornYF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of CornYF assessed at 6 MHz is 4-9 MHz, and CornYF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.

Full frequencies below 3 GHz, the validity of tissue parameters (a and c) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (s and c) is restricted to ± 5%. The uncertainty is the RSS of the CornYF uncertainty for indicated target tissue parameters.

Apha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: EX3-7533_Nov19

Page 5 of 12

diameter from the boundary.

November 6, 2019

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7533

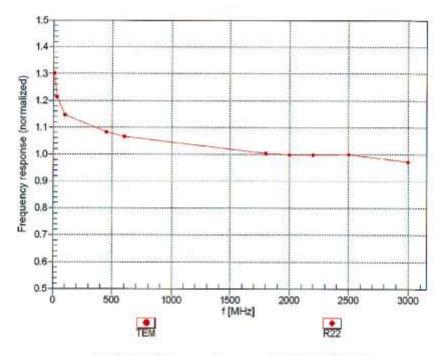
Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^C	Relative Permittivity	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
150	61.9	0.80	13.50	13.50	13.50	0.00	1.00	± 13.3 %
300	58.2	0.92	12.69	12.69	12.69	0.03	1.20	± 13.3 %
450	56.7	0.94	12.06	12.06	12.06	0.06	1.30	± 13.3 %
750	55.5	0.96	10.58	10.58	10.58	0.44	0.86	± 12.0 %
835	55.2	0.97	10.23	10.23	10.23	0.45	0.80	± 12.0 %
900	55.0	1.05	9.95	9.95	9.95	0.50	0.80	± 12.0 %
2450	52.7	1.95	7.79	7.79	7.79	0.35	0.92	± 12.0 %
5250	48.9	5.36	4.80	4.80	4.80	0.50	1.90	± 13.1 %
5500	48.6	5.65	4.22	4.22	4.22	0.50	1.90	± 13.1 %
5600	48.5	5.77	4.10	4.10	4.10	0.50	1.90	± 13.1 %
5750	48.3	5.94	4.23	4.23	4.23	0.50	1.90	± 13.1 %

⁶ Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the Corn/F uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for Corn/F assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of Corn/F assessed at 6 MHz is 4-9 MHz, and Corn/F assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.

⁵ At frequencies below 3 GHz, the validity of tissue parameters (s and σ) can be relaxed to ± 10% if liquid componisation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (s and σ) is restricted to ± 5%. The uncertainty is the RSS of the Corn/F uncertainty for indicated target tissue parameters.

⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

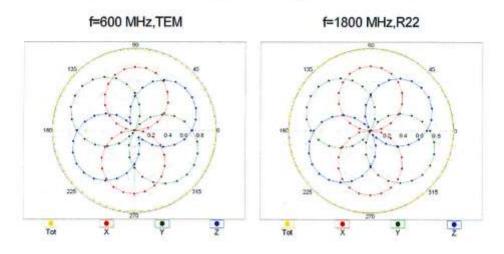

diameter from the boundary.

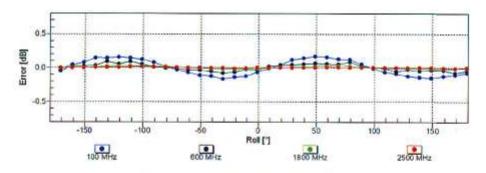
Certificate No: EX3-7533_Nov19

Page 6 of 12

November 6, 2019

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

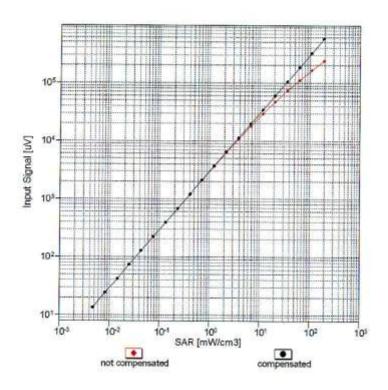

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

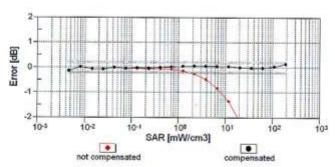

Certificate No: EX3-7533_Nov19

Page 7 of 12

EX3DV4~ SN:7533 November 6, 2019

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$


Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


Certificate No: EX3-7533_Nov19

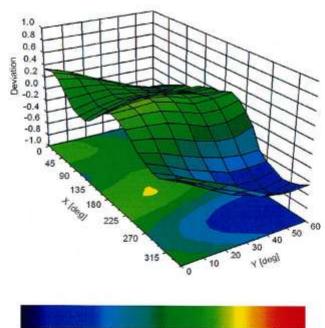
Page 8 of 12

November 6, 2019

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)


Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: EX3-7533_Nov19


Page 9 of 12

November 6, 2019

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (\$\phi\$, \$\text{8}\$), f = 900 MHz

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: EX3-7533_Nov19

Page 10 of 12

EX3DV4- SN:7533 November 6, 2019

Appendix: Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Max dev.	Unc ^E (k=2)
0	CW	X	0.0	0.0	1.0	0.00	145.2	±3.8 %	± 4.7 %
		Y	0.0	0.0	1.0		159.8		
		Z	0.0	0.0	1.0		148.5		
10117- CAC	IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)	×	9.83	67.8	20.7	8.07	135.6	±3.0 %	±4.7 %
		Y	9.76	68.0	20.8		149.2		
		Z	9.86	68.3	21.0		139.0		
10196- CAC	IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK)	Х	9.44	67.6	20.6	8.10	129.3	±2.7 %	±4.7 %
	(V-0.00 - (V-0.00)	Y	9.40	67.9	20.8		141.8		
Version -	NAME AND ADDRESS OF TAXABLE PARTY.	Z	9.49	68.2	21.0		132.6		
10415- AAA	(DSSS, 1 Mbps, 99pc duty cycle)	X	2.53	65.8	16.9	1.54	136.9	±0.5 %	±4.7 %
		Y	2.47	66.8	17.8		149.8		
		Z	3.39	72.8	20.7		140.5	2007000	-25/5-50
10417- AAB	(OFDM, 6 Mbps, 99pc duty cycle)	Х	9.51	67.6	20.7	8.23	127.8	±2.5 %	± 4.7 %
		Y	9.49	67.9	20.9		141.8		
		Z	9.56	68.1	21.0		131.6		
10525- AAB	IEEE 802.11ac WiFi (20MHz, MCS0, 99pc duty cycle)	×	9.74	67.8	20.9	8.36	130.1	±2.7 %	±4.7 %
		Y	9.69	68.1	21.1		143.5		
		Z	9.78	68.3	21.2		133.9		
	IEEE 802.11ac WiFi (40MHz, MCS0, 99pc duty cycle)	Х	10,28	68.3	21.1	8.45	137.0	±3.0 %	±4.7%
		Y	9.85	67.6	20.7		124.3		
		Z	10.31	68.7	21.4	591	140.8		
	IEEE 802.11ac WiFi (80MHz, MCS0, 99pc duty cycle)	Х	10.60	68.5	21.1	8.47	142.9	±3.3 %	±4.7 %
	E - N N N N N N N	Y	10.09	67,7	20.7		128.7		
		Z	10.63	69.0	21.4		147.0		- mantha
	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 90pc duty cycle)	X	2.60	65.8	17.0	1.99	132.6	±0.7 %	±4.7 %
		Y	2.58	67.1	18.2		144.9		
40500	IEEE SOO AA II MUSEUS SUU	Z	3.64	73.7	21.4		136.4		
	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 90pc duty cycle)	х	9.64	67.7	21.0	8.59	125.3	±2.5 %	±4.7%
		Y	9.55	67.8	21.1		136.8		
40504	IEEE OOD AAN GIE LENN A GOLDING	Z	9.65	68.1	21.3		128.7		
	IEEE 802.11n (HT Mixed, 20MHz, MCS0, 90pc duty cycle)	Х	9,75	67.7	21.0	8.63	126.7	±2.7 %	± 4.7 %
		Y	9.69	67.9	21.2		139.7		
40500	IEEE AND AL - ILITATE - LANCE	Z	9.82	68.3	21.4		131.0		
	IEEE 802.11n (HT Mixed, 40MHz, MCS0, 90pc duty cycle)	X	10.38	68.3	21.4	8.79	134.2	±3.3 %	± 4.7 %
		Y	10.24	68.4	21.4		146.7		
		Z	10.37	68.6	21.6		137.3		

Certificate No: EX3-7533_Nov19

November 6, 2019

10607- AAB	IEEE 802.11ac WiFi (20MHz, MCS0, 90pc duty cycle)	X	9.78	67.8	21.1	8.64	126.9	±3.3 %	± 4.7 %
-		Y	9.69	67.9	21.2		138.6		
	A CONTRACTOR OF THE PARTY OF TH	Z	9.83	68.3	21.4		131.1	12	
10616- AAB	IEEE 802.11ac WiFi (40MHz, MCS0, 90pc duty cycle)	x	10.41	68.3	21.4	8.82	134,4	±3.3 %	±4.7%
		Y	10.26	68.4	21.4	r.	146.8		
****		Z	10.43	68.8	21.6	James	138.7	January St.	
10626- AAB	IEEE 802.11ac WiFi (80MHz, MCS0, 90pc duty cycle)	X	10.71	68.5	21.4	8.83	138.9	±3.5 %	±4.7 %
		Y	10.17	67.6	20.8		125.5	0 8	
		Z	10.74	69.0	21.6		143.7		

^{II} Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No: EX3-7533_Nov19

Page 12 of 12

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

Motorola Solutions MY

Certificate No: EX3-7511_Oct19

CALIBRATION CERTIFICATE

Object

EX3DV4 - SN:7511

Calibration procedure(s)

QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v5, QA CAL-23.v5,

QA CAL-25.v7

Calibration procedure for dosimetric E-field probes

Calibration date:

October 24, 2019

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	03-Apr-19 (No. 217-02892/02893)	Apr-20
Power sensor NRP-Z91	SN: 103244	03-Apr-19 (No. 217-02892)	Apr-20
Power sensor NRP-Z91	SN: 103245	03-Apr-19 (No. 217-02893)	Apr-20
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-19 (No. 217-02894)	Apr-20
DAE4	SN: 660	07-Oct-19 (No. DAE4-660, Oct19)	Oct-20
Reference Probe ES3DV2	SN: 3013	31-Dec-18 (No. ES3-3013_Dec18)	Dec-19
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E44198	SN: G841293874	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-18)	In house check: Jun-20
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-18)	In house check: Oct-19

Calibrated by:

Jeton Kastrati

Function Laboratory Technician

Sec.

Approved by:

Katja Pokovic

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Technical Manager

Issued: October 24, 2019

Certificate No: EX3-7511_Oct19

Page 1 of 13

Calibration Laboratory of Schmid & Partner

Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service sulsse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL NORMx,y,z ConvF tissue simulating liquid sensitivity in free space sensitivity in TSL / NORMx,y,z diode compression point

CF A, B, C, D

DCP

crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters

Polarization φ

o rotation around probe axis

Polarization 9

3 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Connector Angle

information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: EX3-7511_Oct19

Page 2 of 13

October 24, 2019

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7511

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (µV/(V/m) ²) ^A	0.46	0.37	0.44	± 10.1 %
DCP (mV) ⁸	99.0	96.6	99.9	

Calibration Results for Modulation Response

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Max dev.	Unc [®] (k=2)
0	CW	X	0.0	0.0	1.0	0.00	118.4	±3.8 %	±4.7%
		Y	0.0	0.0	1.0		133.1		
		Z	0.0	0.0	1.0		117.4		

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: EX3-7511_Oct19

The uncertainties of Norm X,Y,Z do not affect the E⁰-field uncertainty inside TSL (see Pages 5 and 6).
 Numerical linearization parameter; uncertainty not required.
 Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the

October 24, 2019

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7511

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	0.8
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Certificate No: EX3-7511_Oct19

Page 4 of 13

October 24, 2019

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7511

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity	Conductivity (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
150	52.3	0.76	12.15	12.15	12.15	0.00	1.00	± 13.3 %
300	45.3	0.87	10.87	10.87	10.87	0.08	1.20	± 13.3 9
450	43.5	0.87	10.30	10.30	10.30	0.10	1.30	± 13.3 9
750	41.9	0.89	9.57	9.57	9.57	0.46	0.80	± 12.0 9
835	41.5	0.90	9.28	9.28	9.28	0.33	1.01	± 12.0 9
900	41.5	0.97	9.06	9.06	9.06	0.49	0.81	± 12.0 9
1450	40.5	1.20	8.17	8.17	8.17	0.10	0.80	± 12.0 9
1810	40.0	1.40	7.94	7.94	7.94	0.28	0.80	± 12.0 9
1900	40.0	1.40	7.69	7.69	7.69	0.34	0.80	± 12.0 9
2100	39.8	1.49	7.73	7.73	7.73	0.33	0.80	± 12.0 9
2300	39.5	1.67	7.35	7.35	7.35	0.36	0.90	± 12.0 9
2450	39.2	1.80	7.06	7.06	7.06	0.33	0.90	± 12.0 9
2600	39.0	1.96	6.81	6.81	6.81	0.39	0.90	± 12.0 9
3500	37.9	2.91	6.66	6.66	6.66	0.35	1.30	± 13.1 9
3700	37.7	3.12	6.56	6.56	6.56	0.35	1.30	± 13.1 %

Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the CorwF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for CorwF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of CorwF assessed at 6 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.

All frequencies below 3 GHz, the validity of tissue parameters (s and of) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (s and of) is restricted to ± 5%. The uncertainty is the RSS of the CorvF uncertainty for indicated target tissue parameters.

Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

diameter from the boundary.

Certificate No: EX3-7511_Oct19

Page 5 of 13

October 24, 2019

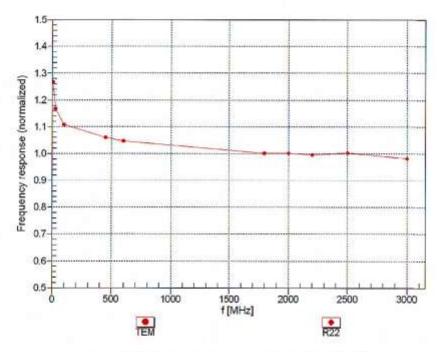
DASY/EASY - Parameters of Probe: EX3DV4 - SN:7511

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^C	Relative Permittivity F	Conductivity (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ⁶	Depth ^G (mm)	Unc (k=2)
150	61.9	0.80	11.72	11.72	11.72	0.00	1.00	± 13.3 9
300	58.2	0.92	11.12	11.12	11.12	0.04	1.20	± 13.3 %
450	56.7	0.94	10.59	10.59	10.59	0.08	1.30	± 13.3 9
750	55.5	0.96	9.52	9.52	9.52	0.49	0.80	± 12.0 9
835	55.2	0.97	9.26	9.26	9.26	0.40	0.80	± 12.0 9
900	55.0	1.05	9,14	9.14	9.14	0.42	0.84	± 12.0 9
1450	54.0	1.30	7.97	7.97	7.97	0.30	0.80	± 12.0 9
1810	53.3	1,52	7.64	7.64	7.64	0.34	0.80	± 12.0 9
1900	53.3	1.52	7.37	7.37	7.37	0.44	0.80	± 12.0 9
2100	53.2	1.62	7,46	7.46	7.46	0.31	0.86	± 12.0 9
2300	52.9	1.81	7.21	7.21	7.21	0.35	0.90	± 12.0 9
2450	52.7	1.95	6.97	6.97	6.97	0.36	0.90	± 12.0 %
2600	52.5	2.16	6.88	6.88	6.88	0.32	0.90	± 12.0 %
3500	51.3	3.31	6.11	6.11	6.11	0.40	1.35	± 13.1 %
3700	51.0	3.55	6.02	6.02	6.02	0.40	1.35	± 13.1 %

⁶ Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.

Fat frequencies below 3 GHz, the validity of tissue parameters (c and o) can be reliaved to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (c and o) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

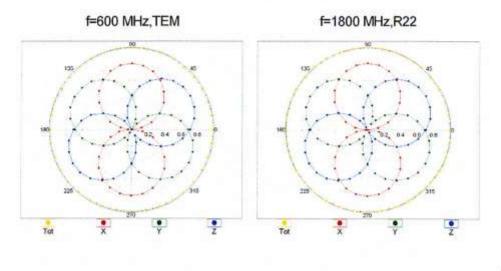

ApharDepth are determined during calibration. SPEAC warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

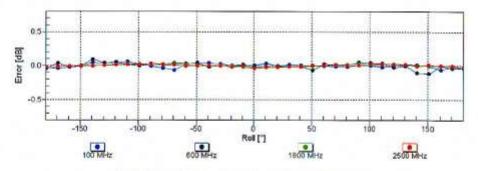
Certificate No: EX3-7511_Oct19

diameter from the boundary.

October 24, 2019

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

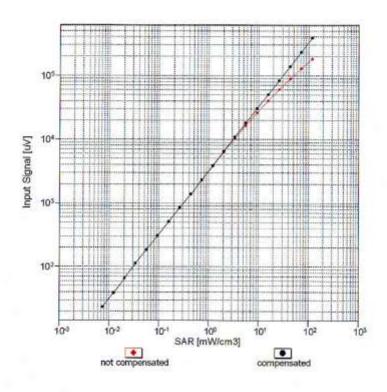

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

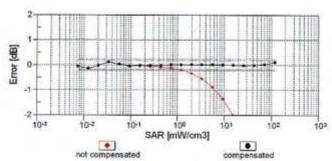

Certificate No: EX3-7511_Oct19

Page 7 of 13

EX3DV4- SN:7511 October 24, 2019

Receiving Pattern (ϕ), $\theta = 0^{\circ}$

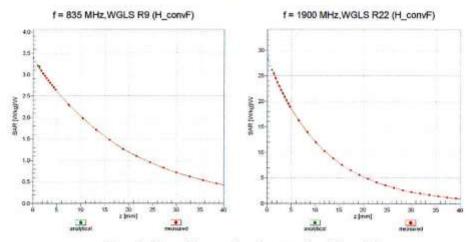

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


Certificate No: EX3-7511_Oct19

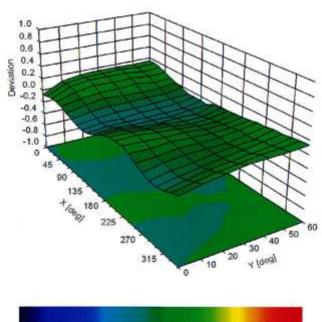
Page 8 of 13

EX3DV4—SN:7511 October 24, 2019

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)


Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: EX3-7511_Oct19


Page 9 of 13

EX3DV4-SN:7511 October 24, 2019

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (ø, 8), f = 900 MHz

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: EX3-7511_Oct19

Page 10 of 13

October 24, 2019

Appendix: Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Max dev.	Unc ^E (k=2)
0	CW	X	0.0	0.0	1.0	0.00	118.4	±3.8 %	± 4.7 %
		Y	0.0	0.0	1.0		133.1		
	1	Z	0.0	0.0	1.0		117.4		
10100- CAE	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	X	6.43	67.6	19.8	5.67	141.8	±1.4 %	±4.7 %
		Y	6.81	70.2	22.1		112.8		
E005 -		Z	6.38	67.4	19.7		140.0		
10108- CAG	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	х	6.29	67.3	19.8	5.80	138.5	±2.2 %	±4.7 %
	2	Y	7.56	73.7	24.5		110.1		
Harrison .		Z	6.28	67.3	19.8	2000	136.5	1	
10110- CAG	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	X	5.97	67.0	19.8	5.75	134.4	±2.5 %	±4.7 %
		Y	6.87	72.6	24.2		149.0		
		Z	5.93	66.8	19.6		132.2		
10154- CAG	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	×	5.97	67.0	19.8	5.75	134.3	±2.5 %	±4,7 %
		Y	6.95	73.0	24.5		149.0		
		Z	5.95	66.9	19.6		132.6		
10156- CAG	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	×	5.77	67.1	19.8	5.79	129.9	±2.5 %	±4.7 %
V		Y	6.92	74.0	25.2		144.8		
12000	U - Taranta and the same of th	Z	5.72	66.8	19.7		128.0		
10160- CAE	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	X	6.41	67.5	20.0	5.82	140.2	±2.5 %	±4.7 %
		Y	8.27	76.0	25.8		111.2		
		Z	6.37	67.4	19.9		137.5		
10169- CAE	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	X	4.81	67.0	20.0	5.73	116.5	±2.7 %	±4.7 %
		Y	7.29	81.0	29.2		129.3		
		Z	4.77	66.7	19.8		114.7	- 11 - 2000 CA 100 E	Langue Coro
10175- CAG	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	х	4.80	66.9	20.0	5.72	116.1	±2.5 %	±4.7 %
		Y	6.87	79.0	28.1		129.3		
		Z	4.80	66.9	19.9		114.1		
10177- CAI	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	X	4.82	67.1	20.1	5.73	115.5	±2.5 %	±4.7 %
		Y	6.68	78.1	27.6		129.4		
		Z	4.78	66.8	19.9		113.9		
10181- CAE	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	Х	4.88	67.4	20.3	5.72	116.3	±2.5 %	±4.7%
		Y	6.81	78.7	27.9		129.1		
40000		Z	4.80	66.8	19.9		114.1		Coopu
10297- AAD	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	х	6.37	67.7	20.2	5.81	138.2	±2.5 %	±4.7%
		Y	7.95	75.1	25.4		110,4		
		Z	6.32	67.5	20.0		136.2		ALTONO ON THE
10311- AAD	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	×	6.90	68.1	20.4	6.06	144.1	±2.5 %	±4.7 %
		Y	8.57	75.6	25.7		113.8		
	The state of the s	Z	6.90	68.0	20.4		140.7		

Certificate No: EX3-7511_Oct19

Page 11 of 13

EX3DV4- SN:7511

October 24, 2019

10415- AAA	IEEE 802.11b WiFi 2.4 GHz	Х	3.27	71.5	20.0	1.54	130.5	±3.0 %	±4,7 %
7000	(DSSS, 1 Mbps, 99pc duty cycle)	Y	744	400.0	20.4		146.5	2002200	100000
		Z	7.44	100.0	36.1		128.2		
10435- AAF	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	3.30 5.67	71.7	20.1	7.82	134.0	±2.2 %	±4.79
	Guoriaire-2,5,4,7,0,87	Y	6.40	76.6	28.9		142.3		-
		Z	5.66	69.8	23.0		132.2	-	-
10467-	LTE-TDD (SC-FDMA, 1 RB, 5	X	5.67	70.0	23.2	7.82	133.7	±1.4 %	
AAF	MHz, QPSK, UL Subframe=2,3,4,7,8,9)		5.07	70.0	23.2	7.02	133.7	21.4 %	±4.79
		Y	5.81	72.6	26.0		142.6		
		Z	5.65	69.7	22.9		131.7	18 1	
10470- AAF	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	Х	5.64	69.8	23.0	7.82	133.5	±1.4 %	±4.79
	12-55 (1100) 20-21 4120 (100) (1	Y	5.73	71.9	25.4		142.7		
	A CONTRACTOR OF THE PARTY OF TH	Z	5.69	69.9	23.0		131.9		
10473- AAE	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	Х	5.67	70.1	23.2	7.82	133.5	±1.2 %	± 4.7 %
	The state of the s	Y	5.65	71.4	25.1		142.7		
TANK DEL	Local and the Control of Williams and States	Z	5.67	69.8	23.0		131.5		
10485- AAF	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	×	6.02	67.8	21.6	7.59	110.4	±1.2 %	±4.7 %
		Y	6.00	69.0	23.2		121.1		
II.ASSANSA	Alexandra (Alexandra Alexandra Alexa	Z	6.30	68.9	22.1		149.7		9
10488- AAF	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	×	6.35	67.6	21.5	7.70	114.9	±1.2 %	±4.7 %
		Y	6.26	68.5	22.9		124.7		
		Z	6.37	67.6	21.4		113.3		
10491- AAE	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	6.74	68.0	21.6	7.74	119.3	±1,2 %	±4.7 %
		Y	6.58	68.6	22.9		129.0		
	CONTRACTOR CONTRACTOR CONTRACTOR	Z	6.73	67.8	21.5		117.8		
10494- AAF	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	×	6.75	68.1	21.7	7.74	119.1	±1.2 %	±4.7 %
	THE CONTRACT OF THE CONTRACT OF	Y	6.56	68.6	23.0		128.9		
		Z	6.74	67.9	21.6		117.6		
10503- AAF	LTE-TDD (SC-FDMA, 100% R8, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	6.37	67.7	21.5	7.72	114.8	±1.4 %	±4.7 %
	. 151.00.21.10.22.10.00.10.00.00.00	Y	6.34	68.9	23.2		124.8		
		Z	6.36	67.4	21.3		113.4		
10506- AAF	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	6.72	68.0	21.7	7.74	118.9	±1.4 %	±4.7 %
	tenesses greater than a transit	Y	6.56	68.6	23.0		128.6		
	CANADA DE MATERIA DE MATERIA DE LA COMPANSIONA DEL COMPANSIONA DE LA COMPANSIONA DE LA COMPANSIONA DE LA COMPANSIONA DE LA COMPANSIONA DEL COMPANSIONA DE LA	Z	6.73	67.9	21.6		117.8		
10509- AAE	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	Х	7.35	68.6	22.0	7.99	124.0	±1.4 %	±4.7 %
	, reanal also assets blanks	Y	7.06	68.7	23.0		133.6		
		Z	7.37	68.5	22.0		122.9		

Certificate No: EX3-7511_Oct19

Page 12 of 13

October 24, 2019

10512- AAF	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	х	7.09	68.6	21.9	7.74	122.9	±1.4 %	±4.7%
		Y	6.83	69.0	23.0		131.8		
		Z	7.10	68.5	21.8		121.3		/-
10571- AAA	(DSSS, 1 Mbps, 90pc duty cycle)	X	3.42	71.9	20.4	1.99	127.1	±1.9 %	± 4.7 %
		Y	9.13	99.3	33.8		140.7		
	T	Z	3.61	72.9	21.0		124.4		

⁶ Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.


Certificate No: EX3-7511_Oct19

Page 13 of 13

FCC ID: AZ489FT3848 / IC: 109U-89FT3848 Report ID: P21594-EME-00004

Appendix C Dipole Calibration Certificates

Calibration Laboratory of Schmid & Partner Engineering AG

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Motorola Solutions MY Certificate No: CLA150-4016 Oct18

CALIBRATION	ERTIFICAT		
Object	CLA150 - SN: 40	016	
Calibration procedure(s)	QA CAL-15.v8 Calibration proce	edure for system validation source	es below 700 MHz
Calibration date:	October 10, 201	8	
The measurements and the uncer	tainties with confidence p	ional standards, which realize the physical un probability are given on the following pages are ny facility: environment temperature (22 \pm 3)*1	nd are part of the certificate.
Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
ower sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: 5277 (20x)	04-Apr-18 (No. 217-02682)	Apr-19
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
Reference Probe EX3DV4	SN: 3877	30-Dec-17 (No. EX3-3877_Dec17)	Dec-18
DAE4	SN: 654	05-Jul-18 (No. DAE4-654_Jul18)	Jul-19
UNC4			
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Secondary Standards Power meter E4419B	SN: GB41293874	Check Date (in house) 12-Jun-18 (No. 217-02285/02284)	Scheduled Check In house check; Jun-20
Secondary Standards Power meter E4419B Power sensor E4412A	SN: GB41293874 SN: MY41498087		
Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A	SN: GB41293874 SN: MY41498087 SN: 000110210	12-Jun-18 (No. 217-02285) 12-Jun-18 (No. 217-02285) 12-Jun-18 (No. 217-02284)	In house check; Jun-20
Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A RF generator HP 8648C	SN: GB41293674 SN: MY41498087 SN: 000110210 SN: US3642U01700	12-Jun-18 (No. 217-02285/02284) 12-Jun-18 (No. 217-02285) 12-Jun-18 (No. 217-02284) 04-Aug-99 (in house check Jun-18)	In house check; Jun-20 In house check; Jun-20 In house check; Jun-20 In house check; Jun-20
Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A RF generator HP 8648C	SN: GB41293874 SN: MY41498087 SN: 000110210	12-Jun-18 (No. 217-02285) 12-Jun-18 (No. 217-02285) 12-Jun-18 (No. 217-02284)	In house check: Jun-20 In house check: Jun-20 In house check: Jun-20
Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A RF generator HP 8848C Network Analyzer Aglient E8358A	SN: GB41293674 SN: MY41498087 SN: 000110210 SN: US3642U01700 SN: US41080477	12-Jun-18 (No. 217-02285/02284) 12-Jun-18 (No. 217-02285) 12-Jun-18 (No. 217-02284) 04-Aug-99 (in house check Jun-18)	In house check; Jun-20 In house check; Jun-20 In house check; Jun-20 In house check; Jun-20
Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A RF generator HP 8848C	SN: GB41290674 SN: MY41496087 SN: 000110210 SN: US3642U01700 SN: US41080477	12-Jun-18 (No. 217-02285/02284) 12-Jun-18 (No. 217-02285) 12-Jun-18 (No. 217-02284) 04-Aug-99 (in house check Jun-18) 31-Mar-14 (in house check Oct-18)	In house check; Jun-20 In house check; Jun-20 In house check; Jun-20 In house check; Jun-20 In house check; Oct-19
Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A RF generator HP 8848C Network Analyzer Aglient E8358A	SN: GB41293674 SN: MY41498087 SN: 000110210 SN: US3642U01700 SN: US41080477	12-Jun-18 (No. 217-02285/02284) 12-Jun-18 (No. 217-02285) 12-Jun-18 (No. 217-02284) 04-Aug-99 (in house check Jun-18) 31-Mar-14 (in house check Oct-18)	In house check; Jun-20 In house check; Jun-20 In house check: Jun-20 In house check: Jun-20 In house check: Oct-19 Signature

Certificate No: CLA150-4016_Oct18

Page 1 of 8

Calibration Laboratory of Schmid & Partner

Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

 b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016

 IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010

d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: CLA150-4016_Oct18

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.2	
Extrapolation	Advanced Extrapolation		
Phantom	ELi4 Flat Phantom	Shell thickness: 2 ± 0.2 mm	
EUT Positioning	Touch Position		
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)	
Frequency	150 MHz ± 1 MHz		

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	52.3	0.76 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	50.3 ± 6 %	0.76 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	****	

SAR result with Head TSL

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	1 W input power	3.67 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	3.64 W/kg ± 18.4 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	1 W input power	2.45 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	2.43 W/kg ± 18.0 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	61.9	0.80 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	63.3 ± 6 %	0.82 mha/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	1 W input power	4.01 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	3.95 W/kg ± 18.4 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	1 W input power	2.65 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	2.61 W/kg ± 18.0 % (k=2)

Certificate No: CLA150-4016_Oct18

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	47.0 Ω - 4.4 jΩ			
Return Loss	- 25.2 dB			

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.9 Ω - 1.7 jΩ	
Return Loss	- 35.5 dB	

Additional EUT Data

Manufactured by	SPEAG			
Manufactured on	August 28, 2014			

Certificate No: CLA150-4016_Oct18

DASY5 Validation Report for Head TSL

Date: 10.10.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: CLA150; Type: CLA150; Serial: CLA150 - SN: 4016

Communication System: UID 0 - CW; Frequency: 150 MHz

Medium parameters used: f = 150 MHz; $\sigma = 0.76 \text{ S/m}$; $\varepsilon_r = 50.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

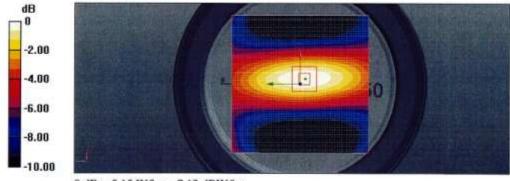
- Probe: EX3DV4 SN3877; ConvF(12.12, 12.12, 12.12) @ 150 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn654; Calibrated: 05.07.2018
- Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:1003
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

CLA Calibration for HSL-LF Tissue/CLA150, touch configuration, Pin=1W/Area Scan

(81x81x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 5.21 W/kg

CLA Calibration for HSL-LF Tissue/CLA150, touch configuration, Pin=1W/Zoom Scan,

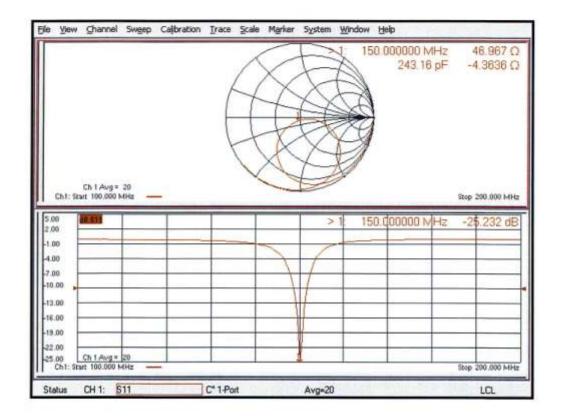

dist=1.4mm (8x10x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 80.01 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 7.05 W/kg

SAR(1 g) = 3.67 W/kg; SAR(10 g) = 2.45 W/kg

Maximum value of SAR (measured) = 5.15 W/kg



0 dB = 5.15 W/kg = 7.12 dBW/kg

Certificate No: CLA150-4016_Oct18

Page 5 of 8

Impedance Measurement Plot for Head TSL

Certificate No: CLA150-4016_Oct18

DASY5 Validation Report for Body TSL

Date: 10.10.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: CLA150; Type: CLA150; Serial: CLA150 - SN: 4016

Communication System: UID 0 - CW; Frequency: 150 MHz

Medium parameters used: f = 150 MHz; $\sigma = 0.82$ S/m; $\epsilon_r = 63.3$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN3877; ConvF(11.57, 11.57, 11.57) @ 150 MHz; Calibrated: 30.12.2017

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn654; Calibrated: 05.07.2018

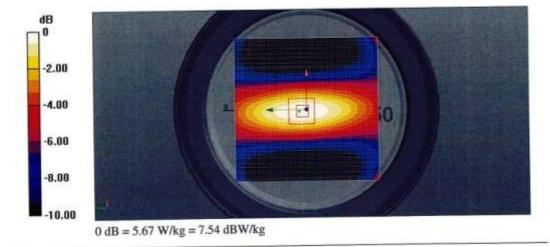
Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:1003

DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

CLA Calibration for MSL-LF Tissue/CLA150, touch configuration, Pin=1W/Area Scan

(81x81x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 5.75 W/kg

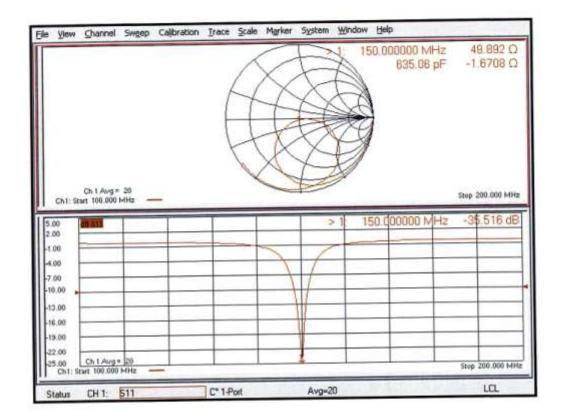
CLA Calibration for MSL-LF Tissue/CLA150, touch configuration, Pin=1W/Zoom Scan,


dist=1.4mm (8x10x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 82.91 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 7.87 W/kg

SAR(1 g) = 4.01 W/kg; SAR(10 g) = 2.65 W/kg


Maximum value of SAR (measured) = 5.67 W/kg

Certificate No: CLA150-4016_Oct18

Page 7 of 8

Impedance Measurement Plot for Body TSL

Dipole Data

The table below includes dipole impedance and return loss measurement data measured by Motorola Solutions' EME lab. The results meet the requirements stated in KDB 865664.

CLA150 - 4016		Hea	Head Body		y	
CLA150 - 4010	Impo	edance	Return Loss	Impedance		Return Loss
Date Measured	real Ω	imag jΩ	dB	real Ω	imag jΩ	dB
12/18/2018	44.51	6.18	-21.21	44.94	5.98	-21.59
11/09/2019	42.03	9.19	-21.64	45.01	6.36	-21.45