

Approval Date: 7/24/2019

Part 1 of 2

1.0	Introduction	4
2.0	FCC SAR Summary	4
3.0	Abbreviations / Definitions	4
4.0	Referenced Standards and Guidelines	5
5.0	SAR Limits	6
6.0	Description of Device Under Test (DUT)	6
7.0	Optional Accessories and Test Criteria	7
	7.1 Antennas	7
	7.2 Battery	7
	7.3 Body worn accessory	7
	7.4 Audio Accessories	7
8.0	Description of Test System	8
	8.1 Descriptions of Robotics/Probes/Readout Electronics	8
	8.2 Description of Phantom(s)	9
	8.3 Description of Simulated Tissue	9
9.0	Additional Test Equipment1	0
10.0	SAR Measurement System Validation and Verification1	0
	10.1 System Validation1	0
	10.2 System Verification	. 1
	10.3 Equivalent Tissue Test Results1	. 1
11.0	Environmental Test Conditions 1	2
12.0	DUT Test Setup and Methodology1	2
	12.3 Measurements 1	2
	12.4 DUT Configuration(s) 1	3
	12.5 DUT Positioning Procedures	.3
	12.5.1 Body1	
	12.5.2 Head1	
	12.5.3 Face	
	12.6 DUT Test Channels	
	12.7 SAR Result Scaling Methodology	
12.0	12.8 DUT Test Plan	
13.0	DUT Test Data	
	13.1 LMR assessments at the Body for 150.800 – 173.400 MHz band	
	13.2 LMR assessment at the Body with other audio accessories	
	13.3 LMR assessments at the Face for 150.800 – 173.400 MHz band	
	13.4 Assessment outside FCC range	
140	13.5 Shortened Scan Assessment	
	Results Summary	
	Variability Assessment	
16.0	System Uncertainty	8

APPENDICES

А	Measurement Uncertainty Budget	20
В	Probe Calibration Certificates.	23
С	Dipole Calibration Certificates	42

Part 2 of 2

APPENDICES

D	System Verification Check Scans	2
E	DUT Scans	7
F	Shorten Scan of Highest SAR Configuration	. 10
	DUT Test Position Photos	
Н	DUT, Body worn and audio accessories Photos	. 13

Report Revision History

Date	Revision	Comments
07/12/2019	А	Initial release

1.0 Introduction

This report details the utilization, test setup, test equipment, and test results of the Specific Absorption Rate (SAR) measurements performed at the Motorola Solutions Inc. EME Test Laboratory for handheld portable model number VX-80-D0-5 (AZ089N102). This device is classified as Occupational/Controlled.

2.0 FCC SAR Summary

	Table 1							
Equipment Class	Frequency band	Max Calc at Body (W/kg)	Max Calc at Face (W/kg)					
	(MHz)	1g-SAR	1g-SAR					
TNF	150.800- 173.400MHz	0.23	0.85					

3.0 Abbreviations / Definitions

CNR: Calibration Not Required CW: Continuous Wave DUT: Device Under Test EME: Electromagnetic Energy FM: Frequency Modulation LMR: Land Mobile Radio NA: Not Applicable PTT: Push to Talk RSM: Remote Speaker Microphone SAR: Specific Absorption Rate

Audio accessories: These accessories allow communication while the DUT is worn on the body.

Body worn accessories: These accessories allow the DUT to be worn on the body of the user.

Maximum Power: Defined as the upper limit of the production line final test station.

4.0 Referenced Standards and Guidelines

This product is designed to comply with the following applicable national and international standards and guidelines.

- IEC62209-1 (2005) Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)
- Federal Communications Commission, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields", OET Bulletin 65, FCC, Washington, D.C.: 1997.
- IEEE 1528 (2013), Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques
- American National Standards Institute (ANSI) / Institute of Electrical and Electronics Engineers (IEEE) C95. 1-1992
- Institute of Electrical and Electronics Engineers (IEEE) C95.1-2005
- International Commission on Non-Ionizing Radiation Protection (ICNIRP) 1998
- Ministry of Health (Canada) Safety Code 6 (2015), Limits of Human Exposure to Radio frequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz
- RSS-102 (Issue 5) Radio Frequency (RF) Exposure Compliance of Radio communication Apparatus (All Frequency Bands)
- Australian Communications Authority Radio communications (Electromagnetic Radiation -Human Exposure) Standard (2014)
- ANATEL, Brazil Regulatory Authority, Resolution No. 303 of July 2, 2002 "Regulation of the limitation of exposure to electrical, magnetic, and electromagnetic fields in the radio frequency range between 9 kHz and 300 GHz." and "Attachment to resolution # 303 from July 2, 2002"
- IEC62209-2 Edition 1.0 2010-03, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Human models, instrumentation, and procedures Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz).
- FCC KDB 643646 D01 SAR Test for PTT Radios v01r03
- FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04
- FCC KDB 865664 D02 RF Exposure Reporting v01r02
- FCC KDB 447498 D01 General RF Exposure Guidance v06

5.0 SAR Limits

	SAR (W/kg)			
EXPOSURE LIMITS	(General Population / Uncontrolled Exposure Environment)	(Occupational / Controlled Exposure Environment)		
Spatial Average - ANSI -				
(averaged over the whole body)	0.08	0.4		
Spatial Peak - ANSI -				
(averaged over any 1-g of tissue)	1.6	8.0		
Spatial Peak – ICNIRP/ANSI -				
(hands/wrists/feet/ankles averaged over 10-g)	4.0	20.0		
Spatial Peak - ICNIRP -				
(Head and Trunk 10-g)	2.0	10.0		

Table 2

6.0 Description of Device Under Test (DUT)

This portable device operates in the LMR bands using frequency modulation (FM) signals incorporating traditional simplex two-way radio transmission protocol.

The LMR bands in this device operate in a half duplex system. A half duplex system only allows the user to transmit or receive. This device cannot transmit and receive simultaneously. The user must stop transmitting in order to receive a signal or listen for a response, regardless of PTT button or use of voice activated audio accessories. This type of operation, along with the RF safety booklet, which instructs the user to transmit no more than 50% of the time, justifies the use of 50% duty factor for this device.

The intended operating positions are "at the face" with the DUT at least 1 inch (2.5cm) from the mouth, and "at the body" by means of the offered body worn accessories. Body worn audio and PTT operation is accomplished by means of optional remote accessories that are connected to the radio.

7.0 Optional Accessories and Test Criteria

This device is offered with optional accessories. All accessories were individually evaluated during the test plan creation to determine if testing was required per the guidelines outlined in "SAR Test Reduction Considerations for Occupational PTT Radios" FCC KDB 643646 to assess compliance of this device. The following sections identify the test criteria and details for each accessory category. Refer to Exhibit 7B for antenna separation distances.

7.1 Antennas

There are optional removable antennas offered for this product. The Table below lists their descriptions.

	Table 3							
Antenna No.	Antenna Models	Description	Selected for test	Tested				
1	CZ089AN005	VX Series VHF Antenna 136-150MHz, ¹ / ₄ wave, 2.00 dBi	Yes	*Yes				
2	CZ089AN006	VX Series VHF Antenna 150-174MHz, ¹ / ₄ wave, 2.00 dBi	Yes	Yes				

Note - * Antenna not applicable for FCC as frequency range outside FCC authorized spectrum.

7.2 Battery

There is only one battery offered for this product. The Table below lists its descriptions.

Table 4						
Battery No.	Selected for test	Tested				
1	CZ089B002	FNB-Z165 Li-Ion 1600 mAh	Yes	Yes		

7.3 Body worn accessory

There is only one body worn offered for this product. The Table below lists its descriptions.

Table 5							
Body worn No.	Body worn Models	Description	Selected for test	Tested			
1	CZ072CL61	VZ Series Belt clip	Yes	Yes			

7.4 Audio Accessories

All audio accessories were considered. The Table below lists the offered audio accessories and their descriptions. Exhibit 7B illustrates photos of the tested audio accessories.

Table 6							
Audio No.	Audio Acc. Models	Description	Selected for test	Tested	Comments		
1	CZ084AUA01	Remote Speaker Microphone	Yes	Yes	Default Audio		
2	CZ084AUA02	Inline PTT Earbud	Yes	*No			
3	CZ084AUA03	G-Hook Earbud	Yes	*No			

Note: *No – SAR ≤4.0W/kg, test no required as per KDB 643646 D01

8.0 Description of Test System

8.1 Descriptions of Robotics/Probes/Readout Electronics

Table 7

Dosimetric System type	System version	DAE type	Probe Type
Schmid & Partner Engineering AG SPEAG DASY 5	52.10.2.1495	DAE4	EX3DV4 (E-Field)

The DASY5TM system is operated per the instructions in the DASY5TM Users Manual. The complete manual is available directly from SPEAGTM. All measurement equipment used to assess SAR compliance was calibrated according to ISO/IEC 17025 A2LA guidelines. Section 9.0 presents additional test equipment information. Appendices B and C present the applicable calibration certificates. The E-field probe first scans a coarse grid over a large area inside the phantom in order to locate the interpolated maximum SAR distribution. After the coarse scan measurement, the probe is automatically moved to a position at the interpolated maximum. The subsequent scan can directly use this position as reference for the cube evaluations.

8.2 **Description of Phantom(s)**

Table 8						
Phantom Type	Phantom (s) Used	Material Parameters	Phantom Dimensions LxWxD (mm)	Material Thickness (mm)	Support Structure Material	Loss Tangent (wood)
Triple Flat	NA	200MHz - 6GHz; Er = 3-5, Loss Tangent = ≤ 0.05	280x175x175			
SAM	NA	300MHz - 6GHz; Er = < 5, Loss Tangent = ≤ 0.05	Human Model	2mm +/- 0.2mm	Wood	< 0.05
Oval Flat	\checkmark	300MHz - 6GHz; Er = 4+/- 1, Loss Tangent = ≤ 0.05	600x400x190			

8.3 Description of Simulated Tissue

The sugar based simulate tissue is produced by placing the correct measured amount of De-ionized water into a large container. Each of the dried ingredients are weighed and added to the water carefully to avoid clumping. If the solution has a high sugar concentration the water is pre-heated to aid in dissolving the ingredients.

The simulated tissue mixture was mixed based on the Simulated Tissue Composition indicated in Table 9. During the daily testing of this product, the applicable mixture was used to measure the Di-electric parameters at each of the tested frequencies to verify that the Di-electric parameters were within the tolerance of the tissue specifications.

Table 9						
Ingredients	1501	MHz				
ingreatents	Head	Body				
Sugar	55.40	49.70				
De ionized -Water	38.35	46.20				
Salt	5.15	3.0				
HEC	1.0	1.0				
Bact.	0.1	0.1				

Simulated Tissue Composition (percent by mass)

9.0 Additional Test Equipment

The table below lists additional test equipment used during the SAR assessment.

Table 10						
Equipment Type	Model Number	Serial Number	Calibration Date	Calibration Due Date		
SPEAG PROBE	EX3DV4	7519	10/19/2018	10/19/2019		
SPEAG DAE	DAE4	1294	10/16/2018	10/16/2019		
AMPLIFIER	50W 1000A	14715	CNR	CNR		
POWER METER	E4418B	MY45100911	07/14/2017	07/14/2019		
POWER METER	E4418B	MY45100532	11/07/2018	11/07/2019		
POWER SENSOR	E9301B	MY41495733	04/19/2019	04/19/2020		
POWER SENSOR	8481B	SG41090248	12/20/2018	12/20/2019		
VECTOR SIGNAL GENERATOR	E4438C	MY44270302	03/09/2019	03/09/2020		
BI-DIRECTIONAL COUPLER	3020A	40295	09/04/2018	09/04/2019		
POWER METER	E4419B	MY40330364	09/16/2017	09/16/2019		
POWER SENSOR	E9301B	MY41495594	08/15/2018	08/15/2019		
THERMOMETER	HH806AU	080307	12/05/2018	12/05/2019		
TEMPERATURE PROBE	80PK-22	06032017	12/05/2018	12/05/2019		
TEMPERATURE & HUMINIDITY LOGGER	TM320	12253047	10/30/2018	10/30/2019		
NETWORK ANALYZER	E5071B	MY42403218	09/06/2018	09/06/2019		
DIELECTRIC ASSESSMENT KIT	DAK-12	1069	01/08/2019	01/08/2020		
SPEAG DIPOLE	CLA150	4005	02/09/2018	02/09/2020		

10.0 SAR Measurement System Validation and Verification

DASY output files of the probe/dipole calibration certificates and system verification test results are included in appendices B, C & D respectively.

10.1 System Validation

The SAR measurement system was validated according to procedures in KDB 865664. The validation status summary Table is below.

Dates	Probe Ca Poi		Probe SN		red Tissue ameters		Validation	
	POL	ш	SIN	σ	€r	Sensitivity	Linearity	Isotropy
	CW							
11/21/2018	Body	150	7510	0.80	59.40	Pass	Pass	Pass
11/20/2018	Head	150	7519	0.75	51.90	Pass	Pass	Pass

Та	bl	Δ	1	1
Id	D	e		

10.2 System Verification

System verification checks were conducted each day during the SAR assessment. The results are normalized to 1W. Appendix D includes DASY plots for each day during the SAR assessment. The Table below summarizes the daily system check results used for the SAR assessment.

Probe Serial #	Tissue Type	Dipole Kit / Serial #	Ref SAR @ 1W (W/kg)	System Check Results Measured (W/kg)	System Check Test Results when normalized to 1W (W/kg)	Tested Date
	FCC Body	SPEAG	3.84 +/- 10%	4.13 4.03	4.13 4.03	07/08/2019# 07/09/2019
7519	IEEE/IEC Head	CLA150 / 4005	3.77 +/- 10%	3.88 3.93		07/09/2019# 07/11/2019

Table 12

Note: # System Performance Check date covered for next test day (Within 24 hours)

10.3 Equivalent Tissue Test Results

Simulated tissue prepared for SAR measurements is measured daily and within 24 hours prior to actual SAR testing to verify that the tissue is within +/-5% of target parameters at the center of the transmit band. This measurement is done using the applicable equipment indicated in section 9.0. The Table below summarizes the measured tissue parameters used for the SAR assessment.

Table 12

Table 13							
Frequency (MHz)	Tissue Type	Conductivity Target (S/m)	Dielectric Constant Target	Conductivity Meas. (S/m)	Dielectric Constant Meas.	Tested Date	
138	FCC Body	0.79 (0.75-0.83)	62.2 (59.1-65.3)	0.77	59.3	07/09/2019#	
158	IEEE/ IEC Head	0.75 (0.71-0.79)	52.9 (50.2-55.5)	0.73	51.8		
144	FCC Body	0.80 (0.76-0.84)	62.1 (58.9-65.2)	0.78	59.1	07/09/2019	
144	IEEE/ IEC Head	0.76 (0.72-0.79)	52.6 (49.9-55.2)	0.74	51.6		
	ECC De der	0.80	61.9	0.78	59.8	07/08/2019#	
150	FCC Body	(0.76-0.84)	(58.8-65.0)	0.78	59.0	07/09/2019#	
150	IEEE/	0.76	52.3	0.74	51.4	07/09/2019#	
	IEC Head	(0.72-0.80)	(49.7-54.9)	0.77	49.9	07/11/2019	
151	IEEE/ IEC Head	0.76 (0.72-0.80)	52.3 (49.6-54.9)	0.74	51.3	07/09/2019#	
158	IEEE/ IEC Head	0.77 (0.73-0.80)	51.9 (49.3-54.5)	0.75	51.1	07/09/2019#	
	FCC Body	0.82 (0.78-0.86)	61.3 (58.3-64.4)	0.79	59.3	07/08/2019#	
173	IEEE/	0.78	51.2	0.76	50.5	07/09/2019#	
	IEC Head	(0.74-0.82)	(48.7-53.8)	0.78	48.9	07/11/2019	

Note: # Tissue date covered for next test day (Within 24 hours)

11.0 Environmental Test Conditions

The EME Laboratory's ambient environment is well controlled resulting in very stable simulated tissue temperature and therefore stable dielectric properties. Simulated tissue temperature is measured prior to each scan to insure it is within $+/-2^{\circ}C$ of the temperature at which the dielectric properties were determined. The liquid depth within the phantom used for measurements was at least 15cm. Additional precautions are routinely taken to ensure the stability of the simulated tissue such as covering the phantoms when scans are not actively in process in order to minimize evaporation. The lab environment is continuously monitored. The Table below presents the range and average environmental conditions during the SAR tests reported herein:

Tuble 11					
	Target	Measured			
Ambient Temperature	18 – 25 °C	Range: 21.70 – 23.7°C Avg. 22.70 °C			
Tissue Temperature	18 – 25 °C	Range: 20.3 – 21.8°C Avg. 21.05°C			

Table	14
-------	----

Relative humidity target range is a recommended target

The EME Lab RF environment uses a Spectrum Analyzer to monitor for extraneous large signal RF contaminants that could possibly affect the test results. If such unwanted signals are discovered the SAR scans are repeated.

12.0 DUT Test Setup and Methodology

12.3 Measurements

SAR measurements were performed using the DASY system described in section 8.0 using zoom scans. Oval flat phantoms filled with applicable simulated tissue were used for body and face testing.

The Table below includes the step sizes and resolution of area and zoom scans per KDB 865664 requirements.

Table 15							
Description	≤3 GHz	> 3 GHz					
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	$5\pm1 \text{ mm}$	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$					
Maximum probe angle from probe axis to phantom surface normal at the measurement location	$30^{\circ} \pm 1^{\circ}$	$20^{\circ} \pm 1^{\circ}$					
Maximum area scan spatial resolution: ΔxArea, ΔyArea	\leq 2 GHz: \leq 15 mm 2 - 3 GHz: \leq 12 mm When the x or y dimensitive the measurement plane than the above, the measurement plane than the above, the measurement plane that the corresponding to test device with at least on the test device.	orientation, is smaller urement resolution must x or y dimension of the					
Maximum zoom scan spatial resolution: Δx Zoom, Δy Zoom	$\leq 2 \text{ GHz:} \leq 8 \text{ mm}$ $2 - 3 \text{ GHz:} \leq 5 \text{ mm}^*$	$\begin{array}{l} 3-4 \text{ GHz:} \leq 5 \text{ mm}^* \\ 4-6 \text{ GHz:} \leq 4 \text{ mm}^* \end{array}$					
Maximum zoom scan spatial resolution, normal to phantom surfaceuniform grid: $\Delta z Zoom(n)$ Note: S is the persentation donth of a plane wave at normal	≤ 5 mm	$3-4 \text{ GHz:} \le 4 \text{ mm}$ $4-5 \text{ GHz:} \le 3 \text{ mm}$ $5-6 \text{ GHz:} \le 2 \text{ mm}$					

Table 15

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

* When zoom scan is required and the reported SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is \leq 1.4 W/kg, \leq 8 mm, \leq 7 mm and \leq 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

12.4 DUT Configuration(s)

The DUT is a portable device operational at the body and face as described in section 6.0 while using the applicable accessories listed in section 7.0. All accessories listed in section 7.0 of this report were considered when implementing the guidelines specified in KDB 643646.

12.5 DUT Positioning Procedures

The positioning of the device for each body location is described below and illustrated in Appendix G.

12.5.1 Body

The DUT was positioned in normal use configuration against the phantom with the offered body worn accessory as well as with the offered audio accessories as applicable.

12.5.2 Head

Not applicable.

12.5.3 Face

The DUT was positioned with its' front side separated 2.5cm from the phantom.

12.6 DUT Test Channels

The number of test channels was determined by using the following IEEE 1528 equation. The use of this equation produces the same or more test channels compared to the FCC KDB 447498 number of test channels formula.

 $N_c = 2 * roundup[10 * (f_{high} - f_{low}) / f_c] + 1$

Where

 N_c = Number of channels F_{high} = Upper channel F_{low} = Lower channel F_c = Center channel

12.7 SAR Result Scaling Methodology

The calculated 1-gram SAR results indicated as "Max Calc. 1g-SAR" in the data Tables is determined by scaling the measured SAR to account for power leveling variations and drift. Appendix F includes a shortened scan to justify SAR scaling for drift. For this device the "Max Calc. 1g-SAR" is scaled using the following formula:

$$Max_Calc = SAR_meas \cdot 10^{\frac{-Drift}{10}} \cdot \frac{P_max}{P_int} \cdot DC$$

P_max = Maximum Power (W) P_int = Initial Power (W) Drift = DASY drift results (dB) SAR_meas = Measured 1-g or 10-g Avg. SAR (W/kg) DC = Transmission mode duty cycle in % where applicable 50% duty cycle is applied for PTT operation

```
Note: for conservative results, the following are applied:
If P_int > P_max, then P_max/P_int = 1.
Drift = 1 for positive drift
```

Additional SAR scaling was applied using the methodologies outlined in FCC KDB 865664 using tissue sensitivity values. SAR was scaled for conditions where the tissue permittivity was measured above the nominal target and for tissue conductivity that was measured below the nominal target. Negative or reduced SAR scaling is not permitted.

12.8 DUT Test Plan

The guidelines and requirements outlined in section 4.0 were used to assess compliance of this device. All modes of operation identified in section 6.0 were considered during the development of the test plan. All tests were performed in CW and 50% duty cycle was applied to PTT configurations in the final results.

13.0 DUT Test Data

13.1 LMR assessments at the Body for 150.800 – 173.400 MHz band

Battery CZ089B002 was selected as the default battery for assessments at the Body since it is the only offered battery (refer to Exhibit 7B for battery illustration). The default battery was used during conducted power measurements for all test channels within FCC allocated frequency range (150.800 - 173.400 MHz) which are listed in Table 16. The channel with the highest conducted power will be identified as the default channel per KDB 643646 (SAR Test for PTT Radios).

Table 16					
Test Freq (MHz)	Power (W)				
150.8000	5.880				
158.3000	5.830				
165.9000	5.900				
173.4000	6.000				

Assessments at the Body with Body Worn CZ072CL61

Assessment of DUT with offered antennas, default battery, body worn accessory and default audio accessory per KDB 643646. Refer to Table 16 for highest output power channel. SAR plots of the highest results per Table (bolded) are presented in Appendix E.

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (W/kg)	Max Calc. 1g-SAR (W/kg)	Run#								
				150.8000													
			CZ084AUA01	CZ084AUA01	CZ084AUA01	CZ084AUA01	CZ084AUA01	CZ084AUA01	CZ084AUA01			158.3000					
CZ089AN006	CZ089B002	CZ072CL61								165.9000							
				173.4000	6.00	-0.47	0.41	0.23	BL-AB-190709- 02#								

Table 17

13.2 LMR assessment at the Body with other audio accessories

Assessment per "KDB 643646 Body SAR Test Consideration for Audio Accessories without Built-in Antenna; Sec 1, A. when overall ≤ 4.0 W/kg, SAR tested for that audio accessory is not necessary." This was applicable to all remaining accessories.

13.3 LMR assessments at the Face for 150.800 – 173.400 MHz band

Battery CZ089B002 was selected as the default battery for assessments at the Face since it is the only offered battery (refer to Exhibit 7B for battery illustration). The default battery was used during conducted power measurements for all test channels within FCC allocated frequency range (150.800 - 173.400 MHz) which are listed in Table 18. The channel with the highest conducted power will be identified as the default channel per KDB 643646 (SAR Test for PTT Radios).

Test Freq (MHz)	Power (W)					
150.8000	5.880					
158.3000	5.830					
165.9000	5.900					
173.4000	6.000					

Table 18

DUT assessment with offered antennas and default battery with front of DUT positioned 2.5 cm from the phantom per KDB 643646. Refer to Table 18 for highest output power channel. SAR plots of the highest results per Table (bolded) are presented in Appendix E.

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (W/kg)	Max Calc. 1g-SAR (W/kg)	Run#
				150.8000					
		None, Radio		158.3000					
CZ089AN006	CZ089B002	Front 2.5cm	None	165.9000					
				173.4000	6.00	-0.28	1.34	0.71	FAZ-FACE- 190709-06

Table 19

13.4 Assessment outside FCC range

Based on the assessment results for body and face per KDB643646, additional tests were required for Outside FCC frequency range (136-150 MHz). The overall highest test configuration from 150.8-174 MHz band was repeated with test frequency 138, 144 and 149.9 MHz for body and face configurations. The SAR result from the Table below is provided in Appendix E.

			140						
Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (W/kg)	Max Calc. 1g-SAR (W/kg)	Run#
Body									
				138.000	5.96	-0.66	1.89	1.11	BL-AB-190709- 11
CZ089AN005	CZ089B002	CZ072CL61	72CL61 CZ084AUA01	144.000	6.00	0.01	1.55	0.78	BL-AB-190709- 12
				149.900	5.90	-0.62	1.15	0.67	BL-AB-190710- 01#
			Fa	nce					
				138.000	5.98	-0.16	0.38	0.20	FAZ-FACE- 190709-07
CZ089AN005	CZ089B002	None, Radio Front 2.5cm	None	144.000	5.98	0.06	0.83	0.41	BL-FACE- 190709-08
	Front 2.5cm		149.900	5.93	0.00	0.69	0.35	BL-FACE- 190709-09	

Table 20

13.5 Shortened Scan Assessment

A "shortened" scan using the highest SAR configuration overall from above was performed to validate the SAR drift of the full DASY5TM coarse and zoom scans. Note that the shortened scan represents the zoom scan performance result; this is obtained by first running a coarse scan to find the peak area and then, using a newly charged battery, a zoom scan only was performed. The results of the shortened cube scan presented in Appendix F demonstrate that the scaling methodology used to determine the calculated SAR results presented herein are valid. The SAR result from the Table below is provided in Appendix F.

			- **						
					Init	SAR	Meas.	Max Calc.	
		Carry	Cable	Test Freq	Pwr	Drift	1g-SAR	1g-SAR	
Antenna	Battery	Accessory	Accessory	(MHz)	(W)	(dB)	(W/kg)	(W/kg)	Run#
CZ089AN006	CZ089B002	None, Radio	None	173.4000	6.00	-0.57	1.49	0.85	BL-FACE-
CLUOJANOOO	C2007D002	Front 2.5cm	None	175.4000	0.00	-0.57	1.47	0.05	190711-05

Table 21

14.0 Results Summary

Based on the test guidelines from section 4.0 and satisfying frequencies within FCC frequency bands, the highest Operational Maximum Calculated 1-gram average SAR values found for this filing:

		Table 22						
Designato r	Frequency band (MHz)	Max Calc at Body (W/kg)	Max Calc at Face (W/kg)					
		1g-SAR	1g-SAR					
	FCC	US						
LMR	150.800 - 173.400	0.23	0.85					
	Overall							
LMR	136.000 - 174.000	1.11	0.85					
	Results are scaled to the ma	aximum output power.						

15.0 Variability Assessment

Per the guidelines in KDB 865664 SAR variability assessment is not required because SAR results are below 4.0 W/kg (Occupational).

16.0 System Uncertainty

A system uncertainty analysis is not required for this report per KDB 865664 because the highest report SAR value for Occupational exposure is less than 7.5W/kg.

Per the guidelines of ISO 17025 a reported system uncertainty is required and therefore measurement uncertainty budget is included in Appendix A.

Appendix A Measurement Uncertainty Budget

Uncertainty Budget for Device Under Test, for 100 MHz to 800 MHz

enaer	1050,1			0 000 1				
b	с	d	<i>e</i> =	f	g	h =	<i>i</i> =	k
U	Ū		f(d,k)	5	ð		cxg/e	
IEEE								
1528	Tol.	Prob	Div	<i>c</i> _i	<i>c</i> _i	1 g	10 g	
section	(± %)	Dist	DIV.	(1 g)	(10 g)	\boldsymbol{u}_i	\boldsymbol{u}_i	<i>v</i> _i
						(±%)	(±%)	
E.2.1	6.7	Ν	1.00	1	1	6.7	6.7	8
E.2.2	4.7	R	1.73	0.707	0.707	1.9	1.9	8
E.2.2	9.6	R	1.73	0.707	0.707	3.9	3.9	8
E.2.3	1.0	R	1.73	1	1	0.6	0.6	8
E.2.4	4.7	R	1.73	1	1	2.7	2.7	8
E.2.5	1.0	R	1.73	1	1	0.6	0.6	8
E.2.6	0.3	Ν	1.00	1	1	0.3	0.3	8
E.2.7	1.1	R	1.73	1	1	0.6	0.6	8
E.2.8	1.1	R	1.73	1	1	0.6	0.6	8
E.6.1	3.0	R	1.73	1	1	1.7	1.7	8
E.6.1	0.0	R	1.73	1	1	0.0	0.0	8
E.6.2	0.4	R	1.73	1	1	0.2	0.2	8
E.6.3	1.4	R	1.73	1	1	0.8	0.8	8
E.5	3.4	R	1.73	1	1	2.0	2.0	8
E.4.2	3.2	N	1.00	1	1	3.2	3.2	29
E.4.1	4.0	N	1.00	1	1	4.0	4.0	8
6.6.2	5.0	R	1.73	1	1	2.9	2.9	8
E.3.1	4.0	R	1.73	1	1	2.3	2.3	8
E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	8
E.3.3	3.3	N	1.00	0.64	0.43	2.1	1.4	8
E.3.2	5.0	R	1.73	0.6	0.49	1.7	1.4	8
E.3.3	1.9	Ν	1.00	0.6	0.49	1.1	0.9	8
		RSS				11	11	477
		k_2				22	22	
		κ=2				25	22	
	b IEEE 1528 section E.2.1 E.2.2 E.2.3 E.2.4 E.2.5 E.2.6 E.2.7 E.2.8 E.2.6 E.2.7 E.2.8 E.6.1 E.6.2 E.6.3 E.5 E.4.2 E.4.1 6.6.2 E.3.1 E.3.2 E.3.3 E.3.2	b c IEEE Tol. 1528 Tol. section (± %) E.2.1 6.7 E.2.2 4.7 E.2.2 9.6 E.2.3 1.0 E.2.4 4.7 E.2.5 1.0 E.2.6 0.3 E.2.7 1.1 E.2.8 1.1 E.6.1 3.0 E.6.2 0.4 E.6.3 1.4 E.5 3.4 E.4.2 3.2 E.4.1 4.0 6.6.2 5.0 E.3.1 4.0 E.3.2 5.0	bcdIEEE 1528 sectionTol. $(\pm %)$ ProbDistDist $(\pm %)$ DistE.2.16.7NE.2.24.7RE.2.29.6RE.2.31.0RE.2.44.7RE.2.51.0RE.2.60.3NE.2.71.1RE.2.81.1RE.6.13.0RE.6.20.4RE.6.31.4RE.53.4RE.4.23.2NE.4.14.0N6.6.25.0RE.3.14.0RE.3.25.0RE.3.33.3NE.3.31.9N	b c d $e = f(d,k)$ IEEE Tol. Prob Div. 1528 Tol. Prob Div. section (± %) Dist Div. E.2.1 6.7 N 1.00 E.2.2 4.7 R 1.73 E.2.2 9.6 R 1.73 E.2.3 1.0 R 1.73 E.2.4 4.7 R 1.73 E.2.5 1.0 R 1.73 E.2.6 0.3 N 1.00 E.2.7 1.1 R 1.73 E.2.8 1.1 R 1.73 E.2.8 1.1 R 1.73 E.6.1 3.0 R 1.73 E.6.2 0.4 R 1.73 E.6.3 1.4 R 1.73 E.6.3 1.4 R 1.73 E.4.2 3.2 N 1.00 E.4.1 4.0 N 1.00 E.4.1 4.0 R 1.73	b c d $e = f(d,k)$ f IFEEE IS28 ci IS28 ci Section Prob Div. ci IS28 ci Ci Section Ci Ci IS28 Ci Ci Section Ci IS28 Ci Section IS28 Section IS28 C E.2.2 9.6 R IS28 I.10 R IS2.1 IS2.1 IS2.1 IS2.1 IS2.1 IS2.1 IS2.1 IS2.1 IS2.1 IS2.1 IS2.1 IS2.1 IS2.1 IS2.1 IS2.1 <td< td=""><td>b c d $f(d,k)$ f g IS28 Tol. Prob Div. C_i C_i C_i 100 IS28 $\pm \%$ Dist Div. C_i C_i C_i 100 IS28 $\pm \%$ Dist Div. C_i C_i C_i IS28 $\pm \%$ Dist Div. C_i C_i $(10 g)$ E.2.1 6.7 N 1.00 1 1 E.2.2 9.6 R 1.73 0.707 0.707 E.2.2 9.6 R 1.73 0.707 0.707 E.2.2 9.6 R 1.73 11 1 E.2.2 9.6 R 1.73 11 1 E.2.3 1.0 R 1.73 11 1 E.2.4 4.7 R 1.73 11 1 E.2.5 1.0 R</td><td>b c d $e = f(d,k)$ f g $h = c \times f(d,k)$ IEEE Tol. Prob Div. c_i $(1 g)$ $(10 g)$ u_i $(\pm \%)$ Dist Div. c_i c_i $1 g$ u_i E.2.1 6.7 N 1.00 1 1 6.7 E.2.2 4.7 R 1.73 0.707 0.707 1.9 E.2.2 9.6 R 1.73 0.707 0.707 3.9 E.2.3 1.0 R 1.73 11 10.6 E.2.4 4.7 R 1.73 11 10.6 E.2.5 1.0 R 1.73 11 10.6 E.2.5 1.0 R 1.73 11 10.6 E.2.6 0.3 N 1.00 11 1.6 0.6 E.2.5 1.0 R 1.73 11 1.0 $0.$</td><td>b c d $e=$ f(d,k) f g <math>h= cxf i= <math>cxg/e IEEE1528section Tol.(± %) ProbDist Div.Div. C_i (1 g) C_i (1 g) h= cxi</math> i= cxg/e</math> IEEE 1528 section Tol. (± %) Prob Dist Div. Div. C_i (1 g) 1 g 10 g II.00 II.01 II.00 II.1 6.7 6.7 E.2.1 6.7 N 1.00 II 1 6.7 6.7 E.2.2 9.6 R 1.73 0.707 0.707 1.9 1.9 E.2.2 9.6 R 1.73 0.707 0.707 3.9 3.9 E.2.2 9.6 R 1.73 1 1 0.6 0.6 E.2.3 1.0 R 1.73 1 1 0.6 0.6 E.2.4 4.7 R 1.73 1 1 0.6 0.6 E.2.5 1.0 R 1.73 1 </td></td<>	b c d $f(d,k)$ f g IS28 Tol. Prob Div. C_i C_i C_i 100 IS28 $\pm \%$ Dist Div. C_i C_i C_i 100 IS28 $\pm \%$ Dist Div. C_i C_i C_i IS28 $\pm \%$ Dist Div. C_i C_i $(10 g)$ E.2.1 6.7 N 1.00 1 1 E.2.2 9.6 R 1.73 0.707 0.707 E.2.2 9.6 R 1.73 0.707 0.707 E.2.2 9.6 R 1.73 11 1 E.2.2 9.6 R 1.73 11 1 E.2.3 1.0 R 1.73 11 1 E.2.4 4.7 R 1.73 11 1 E.2.5 1.0 R	b c d $e = f(d,k)$ f g $h = c \times f(d,k)$ IEEE Tol. Prob Div. c_i $(1 g)$ $(10 g)$ u_i $(\pm \%)$ Dist Div. c_i c_i $1 g$ u_i E.2.1 6.7 N 1.00 1 1 6.7 E.2.2 4.7 R 1.73 0.707 0.707 1.9 E.2.2 9.6 R 1.73 0.707 0.707 3.9 E.2.3 1.0 R 1.73 11 10.6 E.2.4 4.7 R 1.73 11 10.6 E.2.5 1.0 R 1.73 11 10.6 E.2.5 1.0 R 1.73 11 10.6 E.2.6 0.3 N 1.00 11 1.6 0.6 E.2.5 1.0 R 1.73 11 1.0 $0.$	b c d $e=$ f(d,k) f g $h=cxf i=cxg/e IEEE1528section Tol.(± %) ProbDist Div.Div. C_i(1 g) C_i(1 g) h=cxi i=cxg/e$ IEEE 1528 section Tol. (± %) Prob Dist Div. Div. C_i (1 g) 1 g 10 g II.00 II.01 II.00 II.1 6.7 6.7 E.2.1 6.7 N 1.00 II 1 6.7 6.7 E.2.2 9.6 R 1.73 0.707 0.707 1.9 1.9 E.2.2 9.6 R 1.73 0.707 0.707 3.9 3.9 E.2.2 9.6 R 1.73 1 1 0.6 0.6 E.2.3 1.0 R 1.73 1 1 0.6 0.6 E.2.4 4.7 R 1.73 1 1 0.6 0.6 E.2.5 1.0 R 1.73 1

Notes for uncertainty budget Tables:

a) Column headings *a*-*k* are given for reference.

b) Tol. - Tolerance in influence quantity.

c) Prob. Dist. – Probability distribution

d) N, R - normal, rectangular probability distributions

e) Div. - divisor used to translate tolerance into normally distributed standard uncertainty

f) *ci* - sensitivity coefficient that should be applied to convert the variability of the uncertainty component into a variability of SAR.

g) ui - SAR uncertainty

h) vi - degrees of freedom for standard uncertainty and effective degrees of freedom for the expanded uncertainty

Uncertainty Budget for System Validation (dipole & flat phantom) for 100 MHz to 800 MHz

Oncertainty Duuget for System val	naano	in (unpoi		• phane	5m) 10	1 100 1		000 111	
а	b	с	đ	e = f(d,k)	f	g	h = c x f / e	<i>i</i> = <i>c x g</i> / <i>e</i>	k
Uncertainty Component	IEEE 1528 section	Tol. (± %)	Prob. Dist.	Div.	<i>c_i</i> (1 g)	c _i (10 g)	1 g <i>u_i</i> (±%)	10 g <i>u_i</i> (±%)	v _i
Measurement System									
Probe Calibration	E.2.1	6.7	N	1.00	1	1	6.7	6.7	×
Axial Isotropy	E.2.2	4.7	R	1.73	1	1	2.7	2.7	œ
Spherical Isotropy	E.2.2	9.6	R	1.73	0	0	0.0	0.0	x
Boundary Effect	E.2.3	1.0	R	1.73	1	1	0.6	0.6	×
Linearity	E.2.4	4.7	R	1.73	1	1	2.7	2.7	×
System Detection Limits	E.2.5	1.0	R	1.73	1	1	0.6	0.6	×
Readout Electronics	E.2.6	0.3	N	1.00	1	1	0.3	0.3	×
Response Time	E.2.7	1.1	R	1.73	1	1	0.6	0.6	×
Integration Time	E.2.8	0.0	R	1.73	1	1	0.0	0.0	×
RF Ambient Conditions - Noise	E.6.1	3.0	R	1.73	1	1	1.7	1.7	×
RF Ambient Conditions - Reflections	E.6.1	0.0	R	1.73	1	1	0.0	0.0	×
Probe Positioner Mechanical Tolerance	E.6.2	0.4	R	1.73	1	1	0.2	0.2	×
Probe Positioning w.r.t. Phantom	E.6.3	1.4	R	1.73	1	1	0.8	0.8	∞
Max. SAR Evaluation (ext., int., avg.)	E.5	3.4	R	1.73	1	1	2.0	2.0	×
Dipole									
Dipole Axis to Liquid Distance	8, E.4.2	2.0	R	1.73	1	1	1.2	1.2	×
Input Power and SAR Drift Measurement	8, 6.6.2	5.0	R	1.73	1	1	2.9	2.9	x
Phantom and Tissue Parameters									
Phantom Uncertainty	E.3.1	4.0	R	1.73	1	1	2.3	2.3	×
Liquid Conductivity (target)	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	×
Liquid Conductivity (measurement)	E.3.3	3.3	R	1.73	0.64	0.43	1.2	0.8	×
Liquid Permittivity (target)	E.3.2	5.0	R	1.73	0.6	0.49	1.7	1.4	×
Liquid Permittivity (measurement)	E.3.3	1.9	R	1.73	0.6	0.49	0.6	0.5	×
Combined Standard Uncertainty			RSS				10	9	99999
Expanded Uncertainty (95% CONFIDENCE LEVEL)			<i>k</i> =2				19	18	

Notes for uncertainty budget Tables:

a) Column headings *a*-*k* are given for reference.

b) Tol. - Tolerance in influence quantity.

c) Prob. Dist. – Probability distribution

d) N, R - normal, rectangular probability distributions

e) Div. - divisor used to translate tolerance into normally distributed standard uncertainty

f) *ci* - sensitivity coefficient that should be applied to convert the variability of the uncertainty component into a variability of SAR.

g) *ui* – SAR uncertainty

h) vi - degrees of freedom for standard uncertainty and effective degrees of freedom for the expanded uncertainty

Appendix B Probe Calibration Certificates

Client

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

R& US

Issued: October 23, 2018

Certificate No: EX3-7519_Oct18

s

С

S

CALIBRATION CERTIFICATE

Motorola Solutions MY

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Reference Probe ES3DV2	ID SN: 104778 SN: 103244 SN: 103245 SN: 55277 (20x) SN: 55277 (20x)	Cal Date (Certificate No.) 04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 30-Dec-17 (No. ES3-3013_Dec17)	Scheduled Calibration Apr-19 Apr-19 Apr-19 Apr-19 Dec-18					
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91	SN: 104778 SN: 103244 SN: 103245	04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673)	Apr-19 Apr-19 Apr-19					
Power meter NRP Power sensor NRP-Z91	SN: 104778 SN: 103244	04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672)	Apr-19 Apr-19					
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19					
Primary Standards	ID							
The measurements and the un	certainties with confidence pro lucted in the closed laboratory	bability are given on the following pages and facility: environment temperature (22 ± 3)°C a	are part of the certificate.					
This calibration certificate docu	ments the traceability to nation	nal standards, which realize the physical units	of measurements (SI).					
Calibration date:	October 19, 2018	1	and the second					
Calibration procedure(s)	QA CAL-25.v6	A CAL-12.v9, QA CAL-14.v4, QA lure for dosimetric E-field probes						
Object EX3DV4 - SN:7519								

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Katja Pokovic

Certificate No: EX3-7519_Oct18

Approved by:

Page 1 of 18

Technical Manager

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

S Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization ϕ	φ rotation around probe axis
Polarization 9	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-
- held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices
- used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below *ConvF*).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z; A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom
 exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: EX3-7519_Oct18

Page 2 of 18

October 19, 2018

Probe EX3DV4

SN:7519

Manufactured: Calibrated:

February 26, 2018 October 19, 2018

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: EX3-7519_Oct18

Page 3 of 18

Motorola Solutions Inc. EME Form-SAR-Rpt-Rev. 13.22

October 19, 2018

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7519

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.57	0.40	0.47	± 10.1 %
DCP (mV) ^B	99.8	100.3	99.6	10.170

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	c	D dB	VR mV	Unc ^E (k=2)
0	CW	X	0.0	0.0	1.0	0.00	150.2	±2.7 %
		Y	0.0	0.0	1.0		159.5	
		Z	0.0	0.0	1.0		137.7	

Note: For details on UID parameters see Appendix.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

 ^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).
 ^B Numerical linearization parameter: uncertainty not required.
 ^E Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the section of the sect field value.

Certificate No: EX3-7519_Oct18

Page 4 of 18

October 19, 2018

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7519

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
150	52.3	0.76	13.03	13.03	13.03	0.00	1.00	± 13.3 %
300	45.3	0.87	11.73	11.73	11.73	0.08	1.30	± 13.3 %
450	43.5	0.87	10.99	10.99	10.99	0.13	1.30	± 13.3 %
750	41.9	0.89	9.97	9.97	9.97	0.47	0.84	± 12.0 %
835	41.5	0.90	9.85	9.85	9.85	0.45	0.80	± 12.0 %
900	41.5	0.97	9.71	9.71	9.71	0.26	1.13	± 12.0 %
1450	40.5	1.20	8.68	8.68	8.68	0.39	0.80	± 12.0 %
1810	40.0	1.40	8.34	8.34	8.34	0.36	0.88	± 12.0 %
1900	40.0	1.40	8.24	8.24	8.24	0.36	0.88	± 12.0 %
2100	39.8	1.49	8.17	8.17	8.17	0.28	0.90	± 12.0 %
2300	39.5	1.67	7.81	7.81	7.81	0.28	0.90	± 12.0 %
2450	39.2	1.80	7.46	7.46	7.46	0.33	0.90	± 12.0 %
2600	39.0	1.96	7.33	7.33	7.33	0.36	0.90	± 12.0 %
3500	37.9	2.91	7.18	7.18	7.18	0.28	1.20	± 13.1 %
3700	37.7	3.12	6.89	6.89	6.89	0.30	1.25	± 13.1 %

Calibration Paramete	r Determined in Head	Tissue Simulating Media
----------------------	----------------------	--------------------------------

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity validity can be extended to ± 110 MHz.
^F At frequencies below 3 GHz, the validity of tissue parameters (c and c) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (c and c) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.
^C Apha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

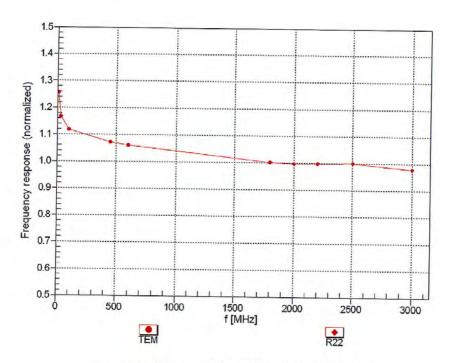
Certificate No: EX3-7519_Oct18

Page 5 of 18

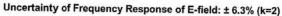
October 19, 2018

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7519

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
150	61.9	0.80	12.42	12.42	12.42	0.00	1.00	± 13.3 %
300	58.2	0.92	11.52	11.52	11.52	0.05	1.20	± 13.3 %
450	56.7	0.94	11.27	11.27	11.27	0.08	1.20	± 13.3 %
750	55.5	0.96	10.23	10.23	10.23	0.43	0.85	± 12.0 %
835	55.2	0.97	9.90	9.90	9.90	0.46	0.80	± 12.0 %
900	55.0	1.05	9.78	9.78	9.78	0.48	0.80	± 12.0 %
1450	54.0	1.30	8.45	8.45	8.45	0.28	0.80	± 12.0 %
1810	53.3	1.52	8.03	8.03	8.03	0.36	0.85	± 12.0 %
1900	53.3	1.52	7.78	7.78	7.78	0.31	0.96	± 12.0 %
2100	53.2	1.62	7.93	7.93	7.93	0.38	0.90	± 12.0 %
2300	52.9	1.81	7.85	7.85	7.85	0.37	0.90	± 12.0 %
2450	52.7	1.95	7.55	7.55	7.55	0.31	0.90	± 12.0 %
2600	52.5	2.16	7.49	7.49	7.49	0.21	1.20	± 12.0 %
3500	51.3	3.31	7.08	7.08	7.08	0.30	1.20	± 13.1 %
3700	51.0	3.55	6.70	6.70	6.70	0.28	1.25	± 13.1 %

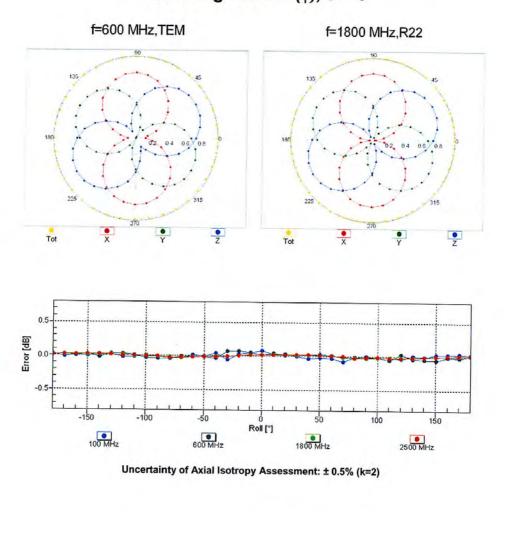

Calibration Parameter Determined in Body	Tissue Simulating Media
--	--------------------------------

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity validity can be extended to ± 110 MHz.
^F At frequencies below 3 GHz, the validity of tissue parameters (c and c) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters.
^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


Certificate No: EX3-7519_Oct18

Page 6 of 18

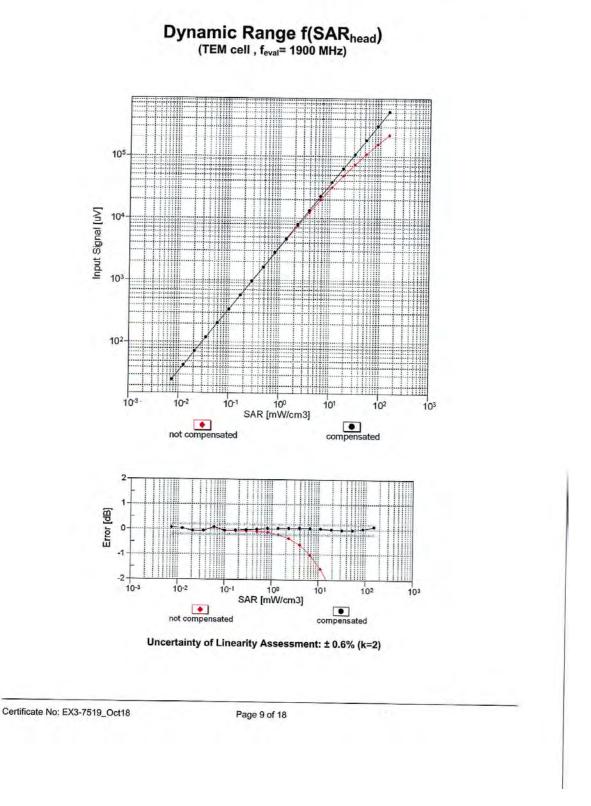
October 19, 2018


Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

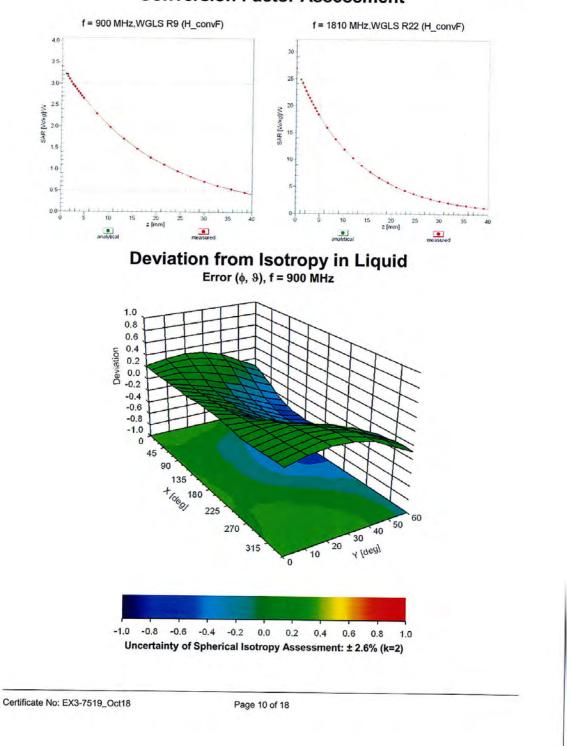
Certificate No: EX3-7519_Oct18

Page 7 of 18

October 19, 2018



Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$


Certificate No: EX3-7519_Oct18

Page 8 of 18

October 19, 2018

October 19, 2018

Conversion Factor Assessment

October 19, 2018

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7519

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-9.8
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Certificate No: EX3-7519_Oct18

Page 11 of 18

October 19, 2018

Appendix: Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Unc ^E (k=2)
0	CW	X	0.0	0.0	1.0	0.00	150.2	±2.7 %
		Y	0.0	0.0	1.0		159.5	/
1.00	Contraction of the second s	Z	0.0	0.0	1.0		137.7	-
10011- CAB	UMTS-FDD (WCDMA)	x	3.40	67.9	19.2	2.91	138.3	±0.5 %
_		Y	3.01	65.6	17.8		145.6	
1. S. C.		Z	3.52	68.3	19.2		149.3	
10097- CAB	UMTS-FDD (HSDPA)	x	4.67	67.4	19.1	3.98	147.9	±0.9 %
		Y	4.18	65.3	17.8	1.000	130.4	
		Z	4.60	66.9	18.7		134.3	
10098- CAB	UMTS-FDD (HSUPA, Subtest 2)	x	4.65	67.3	19.0	3.98	147.8	±0.7 %
1000		Y	4.18	65.3	17.8		130.7	-
10100		Z	4.58	66.8	18.7		134.5	
10100- CAE	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	x	6.27	67.1	19.7	5.67	131.2	±1.4 %
		Y	5.84	65.5	18.7		135.8	
10101		Z	6.36	67.3	19.7		141.5	(
10101- CAE	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	x	7.44	67.9	20.5	6.42	140.5	±1.7 %
-		Y	6.90	66.1	19.2		144.5	
10108-	I TE EDD (SC EDMA 400% DD 45	Z	7.19	66.9	19.8		126.7	
CAG	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	x	6.20	67.1	19.9	5.80	128.9	±1.4 %
		Y	5.76	65.3	18.7	-	132.6	
10109-	LTE-FDD (SC-FDMA, 100% RB, 10	Z	6.25	67.1	19.8		138.5	
CAG	MHz, 16-QAM)	X	7.17	67.6	20.4	6.43	136.1	±1.7 %
		Y	6.68	65.9	19.2	5	139.7	
10110-	ITE EDD (SO FDMA 4000) DD FINI	Z	7.17	67.5	20.2	1.1.1	146.3	1.5.5
CAG	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	x	6.12	67.7	20.4	5.75	148.4	±1.4 %
		Y	5.50	65.1	18.6	-	129.2	· · · · · · · · · · · · · · · · · · ·
10111-	I TE-EDD (SC EDMA 4000) DD ETT	Z	5.92	66.7	19.6	-	134.2	
CAG	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	x	6.92	67.7	20.5	6.44	130.7	±1.4 %
_		Y	6.45	66.0	19.2		135.3	
10117-	IEEE 802.11n (HT Mixed, 13.5 Mbps,	Z	6.90	67.4	20.2	_	140.4	
CAC	BPSK)	X	10.17	69.1	21.7	8.07	143.7	±2.2 %
-		Y	9.56	67.6	20.6		144.5	
10140-	LTE-FDD (SC-FDMA, 100% RB, 15	Z	9.83	68.1	21.0		128.1	
DAE	MHz, 16-QAM)	X	7.62	68.1	20.6	6.49	142.4	±1.7 %
		Y	7.09	66.4	19.4		145.7	
0142-	LTE-FDD (SC-FDMA, 100% RB, 3 MHz.	Z	7.33	67.0	19.8		127.7	
CAE	QPSK)	x	5.90	67.5	20.3	5.73	144.6	±1.4 %
		Y	5.46	65.6	18.9		149.4	1
0143-	LTE-FDD (SC-FDMA, 100% RB, 3 MHz,	Z	5.72	66.5	19.5	0.0-	131.4	
CAE	16-QAM)	X	6.62	67.6	20.5	6.35	126.6	±1.4 %
		Y	6.15	65.9	19.1		130.3	
		Z	6.65	67.5	20.2		136.4	

Certificate No: EX3-7519_Oct18

Page 12 of 18

October 19, 2018

10145- CAF	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	x	5.74	68.0	20.6	5.76	139.3	±1.2 %
		Y	5.23	65.7	18.9		143.1	
	the second of the second s	Z	5.70	67.6	20.1	1000	149.8	1.000
10146- CAF	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	X	6.60	69.0	21.2	6.41	142.9	±1.4 %
		Y	6.06	66.9	19.7		147.0	
		Z	6.38	67.9	20.5		129.6	
10149- CAE	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	x	7.12	67.5	20.4	6.42	135.2	±1.7 %
		Y	6.67	66.0	19.2		139.5	1
10151		Z	7.19	67.6	20.2		145.7	
10154- CAG	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	x	6.09	67.6	20.3	5.75	147.4	±1.2 %
		Y	5.49	65.1	18.6		128.9	-
10155-	ITE-EDD (SC EDMA SON DD 40 MT	Z	5.91	66.6	19.6	1.2.1.7.7	134.3	
CAG	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	X	6.89	67.6	20.5	6.43	130.6	±1.4 %
-		Y	6.46	66.0	19.2		135.1	
10156-	LTE-FDD (SC-FDMA, 50% RB, 5 MHz,	Z	6.93	67.6	20.3		140.6	1
CAG	QPSK)	X	5.88	67.6	20.4	5.79	143.0	±1.4 %
		Y	5.43	65.7	19.0		147.5	
10157-	LTE-FDD (SC-FDMA, 50% RB, 5 MHz,	Z	5.72	66.7	19.7	0.10	130.1	
CAG	16-QAM)	X	6.88	68.7	21.1	6.49	148.3	±1.4 %
		z	6.19 6.68	66.1	19.4		128.4	
10160- CAE	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	X	6.38	67.7 67.5	20.4 20.2	5.82	134.2	±1.4 %
		Y	5.86	65.4	18.7		133.9	
1.1	the second second second second	z	6.36	67.2	19.8	-	139.6	
10161- CAE	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	x	7.20	67.8	20.5	6.43	135.5	±1.7 %
		Y	6.75	66.3	19.4		140.1	
		Z	7.22	67.7	20.3		146.5	-
10166- CAF	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	x	5.21	68.1	20.6	5.46	133.8	±0.9 %
_		Y	4.68	65.5	18.8		137.5	
0167		Z	5.15	67.5	20.0		143.5	
10167- CAF	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	x	6.05	69.1	21.3	6.21	134.8	±1.2 %
		Y	5.48	66.7	19.6		138.6	
0169-	LTE-FDD (SC-FDMA, 1 RB, 20 MHz,	Z	6.02	68.7	20.9		144.5	215
CAE	QPSK)	X	5.05	68.1	20.9	5.73	127.4	±0.9 %
		Y	4.56	65.6	19.0		132.6	
0170- CAE	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	Z X	5.00 5.93	67.6 69.8	20.3 22.1	6.52	137.1 148.5	±1.4 %
		Y	5.13	66.2	19.7		130.2	-
		z	5.67	68.4			134.8	
0175- AG	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	x	5.27	69.2	21.1 21.5	5.72	134.8	±1.2 %
1000		Y	4.51	65.3	18.9		132.4	
		Z	5.01	67.6	20.4		136.6	
0176- AG	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	x	5.95	69.9	22.1	6.52	148.2	±1.4 %
		Y	5.13	66.2	19.7		130.4	
		Z	5.68	68.5	21.1		134.6	

Certificate No: EX3-7519_Oct18

Page 13 of 18

October 19, 2018

10177- CAI	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	×	5.23	68.9	21.3	5.73	149.5	±0.9 %
		Y	4.53	65.4	19.0		132.6	
	and the state of the state of the	Z	5.03	67.7	20.4		136.6	-
10178- CAG	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16- QAM)	X	5.94	69.8	22.1	6.52	148.1	±1.4 9
		Y	5.11	66.1	19.6		129.7	
		Z	5.65	68.3	21.1		134.7	
10181- CAE	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	x	5.25	69.0	21.4	5.72	149.5	±1.2 %
		Y	4.56	65.6	19.1		132.1	
10182-	LTE-FDD (SC-FDMA, 1 RB, 15 MHz,	Z	5.01	67.6	20.4	12.00	137.0	
CAE	16-QAM)	X	5.92	69.7	22.0	6.52	148.1	±1.4 %
		Y	5.11	66.1	19.6	-	129.8	
10184-	LTE-FDD (SC-FDMA, 1 RB, 3 MHz,	Z	5.67	68.4	21.1		134.6	
CAE	QPSK)	X	5.05	68.1	20.9	5.73	127.4	±0.9 %
		YZ	4.57	65.6	19.1	-	132.9	
10185-	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16-		5.03	67.7	20.4	6.54	136.9	
CAE	QAM)	X	5.94	69.9	22.1	6.51	148.3	±1.4 %
		Y	5.08	65.9	19.4		130.3	
1016-		Z	5.69	68.5	21.2		134.7	11.000
10187- CAF	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	x	5.22	68.9	21.3	5.73	149.7	±1.2 %
-		Y	4.52	65.3	18.9		132.2	
10188-	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz,	Z	5.03	67.7	20.4		136.7	
CAF	16-QAM)	X	6.00	70.1	22.3	6.52	148.3	±1.7 %
		Y	5.10	66.0	19.6		129.7	
10196-	IEEE 802.11n (HT Mixed, 6.5 Mbps,	Z	5.68	68.5	21.1		134.7	
CAC	BPSK)	x	9.74	68.9	21.7	8.10	135.1	±2.5 %
-		YZ	9.19	67.4	20.6		138.0	
10225- CAB	UMTS-FDD (HSPA+)	X	9.81 7.00	69.0 68.0	21.6 20.4	5.97	146.4 136.0	±1.2 %
		Y	6.54	66.4	19.1		141.6	
		Z	6.98	67.7	20.0		141.0	-
10274- CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10)	x	5.94	67.5	19.5	4.87	133.4	±0.9 %
1		Y	5.47	66.0	18.4		137.2	
		Z	5.93	67.4	19.3		143.2	
10275- CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)	x	4.69	68.4	20.0	3.96	143.4	±0.7 %
		Y	4.09	65.6	18.1		148.3	
0207		Z	4.47	67.2	19.1		129.0	
10297- AD	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	x	6.51	68.6	21.1	5.81	127.5	±0.9 %
		Y	5.79	65.4	18.8		132.3	
0298-	I TE EDD (SC EDMA FOR DE ALC	Z	6.37	67.7	20.3		136.6	
0298- AD	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	x	5.90	68.6	21.0	5.72	141.0	±1.2 %
-		Y	5.30	65.8	19.0		145.4	
0299-	LTE-EDD (SC EDMA 50% DD 2MM	Z	5.63	67.1	19.9		128.6	
0299- AD	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	x	6.73	69.1	21.3	6.39	144.8	±1.2 %
		Y	6.17	66.9	19.7		148.5	
		Z	6.53	68.1	20.6	1.00	131.4	

Certificate No: EX3-7519_Oct18

Page 14 of 18

October 19, 2018

10311- AAD	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	X	6.81	67.8	20.4	6.06	133.0	±1.4 %
		Y	6.26	65.8	19.0		136.3	
11		Z	6.83	67.7	20.2		143.4	1.00
10415- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc duty cycle)	x	4.91	81.0	24.8	1.54	142.0	±1.2 %
		Y	2.53	67.7	18.5	1000	149.7	
		Z	4.06	76.1	22.3		129.5	
10416- AAA	IEEE 802.11g WiFi 2.4 GHz (ERP- OFDM, 6 Mbps, 99pc duty cycle)	X	9.85	69.0	21.9	8.23	135.9	±2.7 %
- · · · ·		Y	9.30	67.5	20.7	1	137.8	1.0
10418-		Z	9.89	69.0	21.7	1	146.0	100.00
AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps, 99pc duty cycle, Long preambule)	x	9.70	68.8	21.7	8.14	134.7	±2.5 %
		Y	9.18	67.5	20.7		137.4	
		Z	9.75	68.9	21.6	L	145.1	
10435- AAF	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	x	5.93	70.8	23.7	7.82	149.2	±1.9 %
-		Y	5.15	67.1	21.2		147.2	
10155		Z	5.71	69.5	22.7		136.1	
10457- AAA	UMTS-FDD (DC-HSDPA)	x	8.19	67.3	20.2	6.62	131.4	±1.9 %
_		Y	7.82	66.3	19.3		136.3	
10460-		Z	8.24	67.4	20.1	1.1.1.1	142.0	
AAA	UMTS-FDD (WCDMA, AMR)	x	3.97	75.2	22.9	2.39	136.1	±0.9 %
		Y	2.77	67.5	18.7		143.1	
10461-		Z	3.67	73.0	21.5	1	145.5	
AAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	5.96	71.0	23.8	7.82	148.9	±2.2 %
		Y	5.13	66.9	21.1		147.1	
10462-	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz,	Z	5.70	69.4	22.6	0.00	136.2	
AAA	16-QAM, UL Subframe=2,3,4,7,8,9)	X	6.43	71.8	24.3	8.30	146.4	±2.2 %
		Y	5.49	67.6	21.5		143.7	
10464-	LTE-TDD (SC-FDMA, 1 RB, 3 MHz.	Z	6.13	70.2	23.2	7.00	133.4	
AAB	QPSK, UL Subframe=2,3,4,7,8,9)	X	5.90	70.6	23.5	7.82	148.7	±1.9 %
		YZ	5.14	67.0	21.1		147.5	
10465-	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-		5.67	69.3	22.6	0.00	135.6	
AAB	QAM, UL Subframe=2,3,4,7,8,9)	X Y	6.41	71.6	24.2	8.32	146.4	±2.2 %
		Z	5.56	67.9	21.7		144.2	
10467-	LTE-TDD (SC-FDMA, 1 RB, 5 MHz,	X	6.14	70.1	23.2	7.00	133.2	
AAE	QPSK, UL Subframe=2,3,4,7,8,9)	X Y	5.91	70.6	23.5	7.82	148.3	±2.2 %
		Z	5.14	67.0	21.0		148.1	-
10468-	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-	X	5.68	69.3	22.6	0.00	135.8	
AE	QAM, UL Subframe=2,3,4,7,8,9)		6.45	71.8	24.3	8.32	146.6	±1.9 %
		Y	5.54	67.8	21.6		144.0	
0470-	LTE-TDD (SC-FDMA, 1 RB, 10 MHz,	Z	6.14	70.1	23.2		133.2	
AE	QPSK, UL Subframe=2,3,4,7,8,9)	X	5.94	70.8	23.7	7.82	148.2	±2.2 %
		Y	5.15	67.1	21.1	10000	148.0	
		Z	5.67	69.2	22.5		135.7	

Certificate No: EX3-7519_Oct18

Page 15 of 18

October 19, 2018

10471- AAE	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16- QAM, UL Subframe=2,3,4,7,8,9)	x	6.43	71.7	24.3	8.32	146.8	±1.9 9
		Y	5.55	67.8	21.7		144.0	
1		Z	6.13	70.1	23.1		133.4	
10473- AAE	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	x	5.95	70.9	23.7	7.82	148.6	±2.2 %
		Y	5.12	66.9	21.0		147.4	
	1	Z	5.67	69.2	22.5	1	135.4	
10474- AAE	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16- QAM, UL Subframe=2,3,4,7,8,9)	x	6.41	71.6	24.3	8.32	146.3	±1.9 %
And the second		Y	5.51	67.5	21.5		144.1	
10177		Z	6.12	70.0	23.1	1.0.0	133.3	1-
10477- AAF	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16- QAM, UL Subframe=2,3,4,7,8,9)	x	6.46	71.8	24.4	8.32	146.3	±2.2 %
		Y	5.55	67.8	21.6	-	144.6	1.0
10479-		Z	6.15	70.2	23.3		133.2	100
AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	x	5.98	69.3	22.7	7.74	132.7	±1.4 %
_		Y	5.25	65.9	20.3		134.1	
10480-	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz,	Z	5.91	68.8	22.1		141.4	
AAA	16-QAM, UL Subframe=2,3,4,7,8,9)	X	6.60	70.3	23.2	8.18	134.7	±1.7 %
-		Y	5.78	66.9	20.9		134.1	
10482-	LTE-TDD (SC-FDMA, 50% RB, 3 MHz,	Z	6.56	69.9	22.8		143.3	1.1.1.1
AAB	QPSK, UL Subframe=2,3,4,7,8,9)	X	6.33	69.0	22.5	7.71	140.1	±1.7 %
		Y Z	5.56	65.7	20.1		140.5	-
10483-	LTE-TDD (SC-FDMA, 50% RB, 3 MHz,		6.28	68.5	21.9	0.00	149.4	1.2.1
AAB	16-QAM, UL Subframe=2,3,4,7,8,9)	X Y	7.30 6.48	70.1	23.2	8.39	144.8	±1.7 %
		Z	7.09	67.0	21.0		143.2	
10485-	LTE-TDD (SC-FDMA, 50% RB, 5 MHz,	X		69.0	22.3	7.50	132.3	
AAE	QPSK, UL Subframe=2,3,4,7,8,9)	Y	6.34 5.57	69.0 65.6	22.4	7.59	142.4 142.8	±1.7 %
		Z	6.10	67.6	20.0 21.4		142.8	
10486- AAE	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	7.45	70.0	21.4	8.38	149.3	±1.9 %
		Y	6.63	66.8	20.9		147.0	
C		Z	7.22	68.8	22.2		136.1	
10488- AAE	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	x	6.69	68.8	22.3	7.70	148.3	±1.9 %
		Y	5.91	65.7	20.1		147.5	
0.400		Z	6.49	67.7	21.5		135.1	1.1.1
10489- AAE	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	x	7.48	68.7	22.4	8.31	133.7	±1.9 %
		Y	6.71	65.9	20.3		134.0	
10491-	I TE TOD (SC EDMA SON DD AS IN	Z	7.48	68.6	22.1		143.1	1.1.1.1.1
AAE	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	x	6.91	68.4	22.0	7.74	131.7	±1.7 %
		Y	6.11	65.4	19.9		131.9	
0492-	LTE-TDD (SC-FDMA, 50% RB, 15 MHz,	Z	6.91	68.2	21.7		140.9	
0492- VAE	16-QAM, UL Subframe=2,3,4,7,8,9)	x	7.94	69.0	22.5	8.41	140.0	±2.2 %
		Y	7.14	66.3	20.6		139.4	_
0494-	LTE-TDD (SC-FDMA, 50% RB, 20 MHz,	Z	7.96	68.9	22.3	1.1.1.1	149.8	
0494- AF	QPSK, UL Subframe=2,3,4,7,8,9)	x	6.92	68.6	22.1	7.74	132.0	±1.7 %
		Y	6.10	65.5	20.0		132.3	
		Z	6.88	68.2	21.6		140.3	

Certificate No: EX3-7519_Oct18

Page 16 of 18

October 19, 2018

10495- AAF	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	x	7.88	68.9	22.4	8.37	139.9	±2.2 9
		Y	7.06	66.1	20.5	-	139.1	
		Z	7.88	68.7	22.1		149.6	
10497- AAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	х	6.25	69.2	22.5	7.67	139.2	±1.7 9
		Y	5.53	66.1	20.3	1.	139.6	
1		Z	6.20	68.6	21.9		148.7	
10498- AAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	x	7.26	70.5	23.4	8.40	142.7	±1.9 %
		Y	6.38	67.1	21.0		140.8	
1	the second state of the se	Z	6.99	69.1	22.4		129.9	-
10500- AAB	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	x	6.50	68.9	22.4	7.67	144.6	±1.7 %
		Y	5.71	65.5	20.0		144.4	
10551		Z	6.29	67.8	21.5		131.8	
10501- AAB	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	x	7.39	69.0	22.6	8.44	128.7	±2.2 %
		Y	6.76	66.7	20.9		149.6	
10500		Z	7.38	68.7	22.2	· · · · · ·	138.1	-
10503- AAE	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	x	6.74	69.0	22.4	7.72	148.5	±1.9 %
		Y	5.93	65.7	20.2		147.8	S
10504		Z	6.51	67.8	21.5	1	134.8	2.22
10504- AAE	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	x	7.44	68.6	22.3	8.31	133.0	±1.9 %
		Y	6.71	65.9	20.3		133.9	
10506-	ITE TOD (SC FDMA 4000) DD 40	Z	7.47	68.5	22.0	Transie and	143.0	
AAE	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	x	6.89	68.4	22.0	7.74	131.3	±1.7 %
-		Y	6.07	65.4	19.9		131.8	
10507-	LTE-TDD (SC-FDMA, 100% RB, 10	Z	6.88	68.2	21.6		140.4	1
AAE	MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	x	7.86	68.9	22.4	8.36	139.6	±2.2 %
		Y	7.02	66.0	20.4	-	138.9	
	the second s	Z	7.88	68.7	22.1		149.5	
10509- AAE	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	x	7.54	69.0	22.3	7.99	137.8	±1.9 %
_		Y	6.60	65.7	20.1		137.0	
10510		Z	7.52	68.8	22.0		147.2	
10510- AAE	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	x	8.41	69.3	22.6	8.49	146.6	±2.5 %
-		Y	7.47	66.3	20.6		143.6	
0515		Z	8.18	68.3	21.9		133.2	
10512- AAF	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	x	7.29	69.2	22.3	7.74	136.5	±1.7 %
		Y	6.31	65.6	19.9	-	135.1	
0513-	LITE TOD (CO FDM/ STORY DE ST	Z	7.25	68.8	21.8		145.4	
0513- VAF	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	x	8.26	69.1	22.5	8.42	145.0	±2.2 %
_		Y	7.33	66.1	20.4		142.5	
		Z	8.07	68.3	21.9		132.2	
0515- AA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc duty cycle)	x	4.23	78.0	23.6	1.58	141.7	±0.9 %
_		Y	2.50	67.6	18.4		147.5	
		Z	4.36	77.7	23.0		129.8	

Certificate No: EX3-7519_Oct18

Page 17 of 18

October 19, 2018

10564- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 9 Mbps, 99pc duty cycle)	X	9.83	68.9	21.8	8.25	134.9	±2.7 %
		Y	9.33	67.7	20.8		138.1	
		Z	9.94	69.1	21.8		146.6	
10571- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 90pc duty cycle)	x	4.68	79.4	24.3	1.99	138.8	±0.9 %
		Y	2.52	67.1	18.3		144.4	
		Z	3.77	74.3	21.8		149.2	
10572- IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 AAA Mbps, 90pc duty cycle)	x	5.40	82.6	25.6	1.99	138.3	±1.2 %	
1.1		Y	2.66	68.3	19.0		143.1	
		Z	3.89	75.2	22.2		148.7	
10575- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps, 90pc duty cycle)	x	9.93	68.9	22.1	8.59	132.5	±3.0 %
		Y	9.41	67.6	21.0		134.5	
		Z	10.02	69.1	22.0		143.6	
10576- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 9 Mbps, 90pc duty cycle)	X	9.92	68.9	22.1	8.60	132.3	±3.0 %
_		Y	9.37	67.5	20.9	1	134.5	
10501		Z	10.02	69.1	22.0	-	143.2	
10591- AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS0, 90pc duty cycle)	х	10.05	69.0	22.1	8.63	134.2	±3.0 %
-		Y	9.50	67.6	21.0		136.2	
10500		Z	10.13	69.1	22.0		144.9	
10592- AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS1, 90pc duty cycle)	х	10.20	69.1	22.2	8.79	134.2	±3.0 %
		Y	9.65	67.7	21.1		136.0	
0500		Z	10.30	69.3	22.2		145.4	
10599- AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS0, 90pc duty cycle)	x	10.67	69.5	22.3	8.79	142.0	±2.5 %
		Y	10.02	67.9	21.2		143.2	
0000		Z	10.36	68.6	21.7		126.9	
0600- AB	IEEE 802.11n (HT Mixed, 40MHz, MCS1, 90pc duty cycle)	x	10.78	69.7	22.5	8.88	142.2	±2.7 %
5.0		Y	10.09	68.0	21.3		143.2	
		Z	10.44	68.6	21.8		127.4	-

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No: EX3-7519_Oct18

Page 18 of 18

Appendix C Dipole Calibration Certificates

credited by the Swiss Accredita e Swiss Accreditation Service	e is one of the signatories	to the EA	Swiss Calibration Service
ultilateral Agreement for the re-	deres and the second		: CLA150-4005_Feb18
CALIBRATION C	ERTIFICATE		
Dbject	CLA150 - SN: 400	05	
Calibration procedure(s)	QA CAL-15.v8 Calibration procee	dure for system validation source	es below 700 MHz
Calibration date:	February 09, 201	8	
	ertainties with confidence pr	realize the physical dimension of the following pages an y facility: environment temperature (22 ± 3)°C	d are part of the certificate.
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter NRP	ertainties with confidence pr	obability are given on the following pages an	d are part of the certificate.
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator	ertainties with confidence pr cted in the closed laborator TE critical for calibration) ID # SN: 104778	Cal Date (Certificate No.) 04-Apr-17 (No. 217-02521/02522)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-18
The measurements and the unce All calibrations have been condu	ertainties with confidence pr cted in the closed laborator TE critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 5277 (20x)	Cal Date (Certificate No.) 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02522)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-18 Apr-18 Apr-18 Apr-18 Apr-18
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A	ertainties with confidence pr cted in the closed laborator TE critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 5277 (20x) SN: 5047.2 / 06327 SN: 3877	Cal Date (Certificate No.) 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 30-Dec-17 (No. EX3-3877_Dec17)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Dec-18
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A RF generator HP 8648C	ertainties with confidence pr cted in the closed laborator TE critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 5277 (20x) SN: 5047.2 / 06327 SN: 3877 SN: 654 ID # SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700	Cal Date (Certificate No.) 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 30-Dec-17 (No. 217-02529) 30-Dec-17 (No. EX3-3877_Dec17) 24-Jul-17 (No. 217-02284) 06-Apr-16 (No. 217-02285/02284) 06-Apr-16 (No. 217-02284) 06-Apr-16 (No.	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Dec-18 Jul-18 Scheduled Check In house check: Jun-18 In house check: Jun-18
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A RF generator HP 8648C Network Analyzer HP 8753E	ID # SN: 104778 SN: 103244 SN: 103245 SN: 5277 (20x) SN: 5047.2 / 06327 SN: 654 ID # SN: 654 SN: 00110210 SN: US3642U01700 SN: US37390585	Cal Date (Certificate No.) 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 30-Dec-17 (No. 217-02284) 06-Apr-16 (No. 217-02285/02284) 06-Apr-16 (No. 217-02285/02284) 06-Apr-16 (No. 217-02284 04-Aug-99 (in house check Jun-16) 18-Oct-01 (in house check Oct-17)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Dec-18 Jul-18 Scheduled Check In house check: Jun-18 In house check: Jun-18

Calibration Laboratory of Schmid & Partner Engineering AG

s

Schweizerischer Kalibrierdienst S

- Service suisse d'étalonnage С Servizio svizzero di taratura
 - Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the . center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled . phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: CLA150-4005_Feb18

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	and the second second
Phantom	ELI4 Flat Phantom	Shell thickness: 2 ± 0.2 mm
EUT Positioning	Touch Position	
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	150 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	52.3	0.76 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	50.3 ± 6 %	0.76 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	1 W input power	3.80 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	3.77 W/kg ± 18.4 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 1 W input power	2.52 W/kg

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	61.9	0.80 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	62.1 ± 6 %	0.81 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	1 W input power	3.87 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	3.84 W/kg ± 18.4 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured	condition 1 W input power	2.57 W/kg

Certificate No: CLA150-4005_Feb18

Page 3 of 8

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	41.9 Ω + 2.0 jΩ	
Return Loss	- 20.8 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	42.9 Ω + 0.8 jΩ		
Return Loss	- 22.3 dB		

Additional EUT Data

Manufactured by	SPEAG		
Manufactured on	August 23, 2013		

Certificate No: CLA150-4005_Feb18

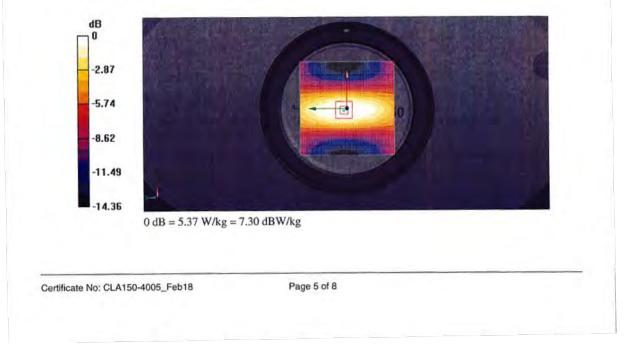
Page 4 of 8

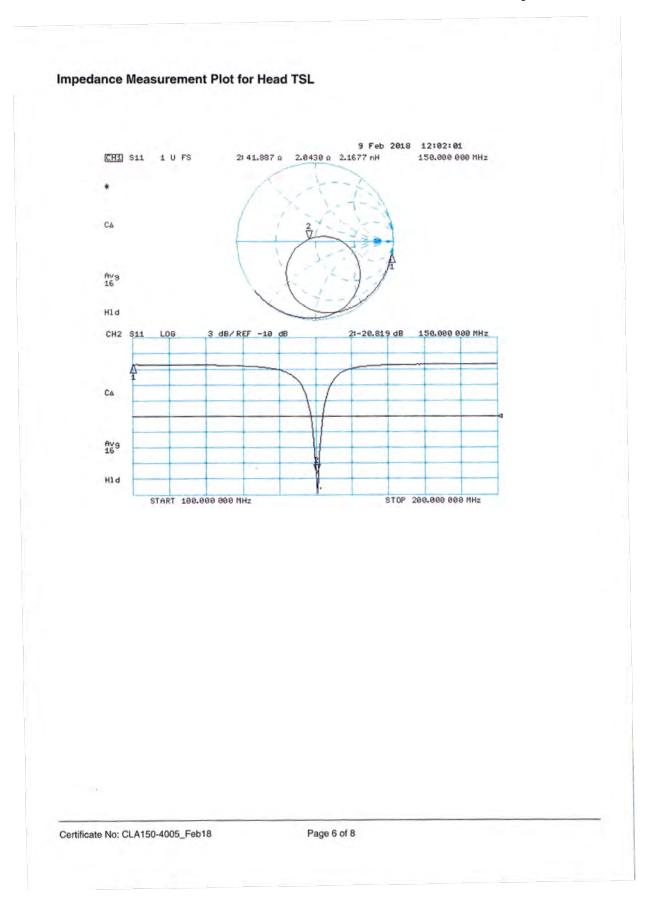
DASY5 Validation Report for Head TSL

Date: 09.02.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: CLA150; Type: CLA150; Serial: CLA150 - SN: 4005


Communication System: UID 0 - CW; Frequency: 150 MHz Medium parameters used: f = 150 MHz; σ = 0.76 S/m; ε_r = 50.3; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)


DASY52 Configuration:

- Probe: EX3DV4 SN3877; ConvF(12.12, 12.12, 12.12); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- · Electronics: DAE4 Sn654; Calibrated: 24.07.2017
- Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:1003
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

CLA Calibration for HSL-LF Tissue/CLA150, touch configuration, Pin=1W/Area Scan (81x81x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 5.37 W/kg

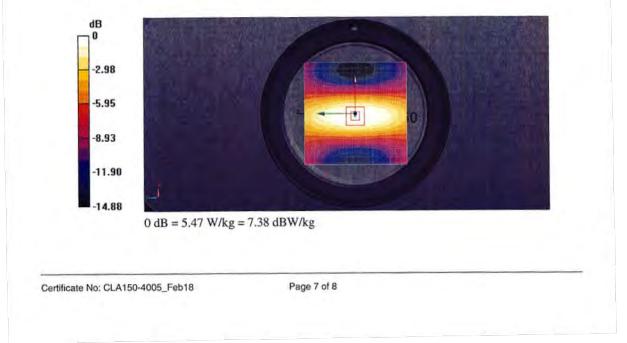
CLA Calibration for HSL-LF Tissue/CLA150, touch configuration, Pin=1W/Zoom Scan, dist=1.4mm (8x10x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 83.36 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 7.14 W/kg SAR(1 g) = 3.8 W/kg; SAR(10 g) = 2.52 W/kg Maximum value of SAR (measured) = 5.33 W/kg

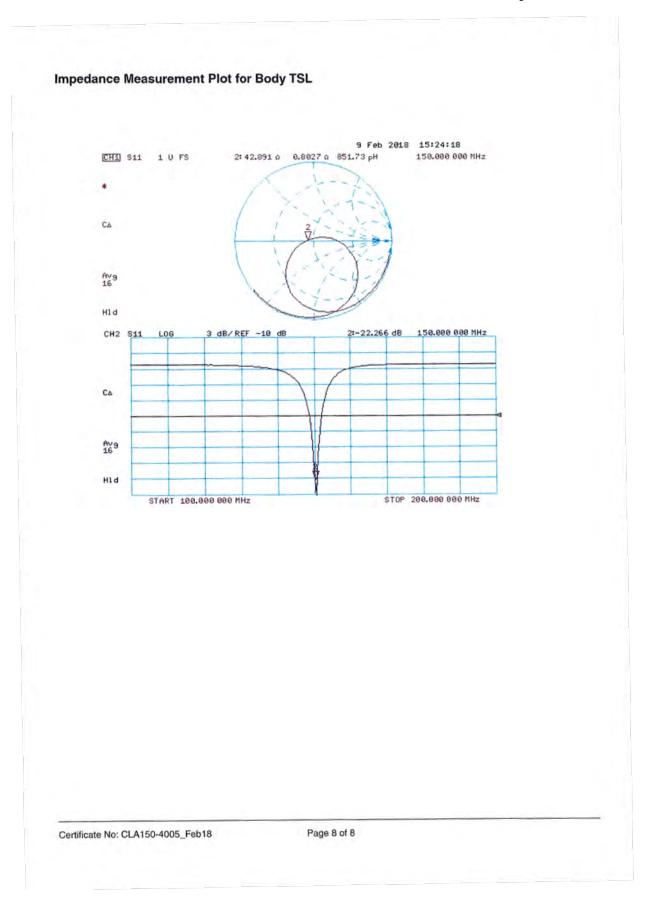
DASY5 Validation Report for Body TSL

Date: 09.02.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: CLA150; Type: CLA150; Serial: CLA150 - SN: 4005


Communication System: UID 0 - CW; Frequency: 150 MHz Medium parameters used: f = 150 MHz; $\sigma = 0.81$ S/m; $\epsilon_r = 62.1$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)


DASY52 Configuration:

- Probe: EX3DV4 SN3877; ConvF(11.57, 11.57, 11.57); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn654; Calibrated: 24.07.2017
- · Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:1003
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

CLA Calibration for MSL-LF Tissue/CLA150, touch configuration, Pin=1W/Area Scan (81x81x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 5.47 W/kg

CLA Calibration for MSL-LF Tissue/CLA150, touch configuration, Pin=1W/Zoom Scan, dist=1.4mm (8x10x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 81.25 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 7.26 W/kg SAR(1 g) = 3.87 W/kg; SAR(10 g) = 2.57 W/kg Maximum value of SAR (measured) = 5.37 W/kg

Dipole Data

As stated in KDB 865664, only dipoles exceed annual calibration interval required to provide supporting information and measurement to qualify for extended calibration interval.

The table below includes dipole impedance and return loss measurement data measured by Motorola Solutions' EME lab. The results meet the requirements stated in KDB 865664.

CLA150-4005	Head			Body		
CLA150-4005	Impedance Return Loss		Impedance		Return Loss	
Date Measured	real Ω	imag jΩ	dB	real Ω	imag jΩ	dB
02/26/2018	43.11	4.56	-21.01	46.25	-0.63	-28.16
02/09/2019	43.62	5.59	-20.87	46.18	-2.20	-26.77