

# AN ENGINEERING DOCUMENT

**FOR** 

**TIMECODE SYSTEMS Ltd** 

ON

**TIMECODE MASTER** 

**DOCUMENT NO. TRA-008673-02-W-US-02** 



TRaC Wireless Test Report : TRA-008673-02-W-US-02

Applicant : TIMECODE SYSTEMS Ltd

Apparatus : TIMECODE MASTER

Specification(s) : CFR47 Part 15.249 July 2010

Purpose of Test : Certification

FCCID : AYV-TCB01

Authorised by

: Radio Product Manager

John Charters

Issue Date :18<sup>th</sup> April 2012

**Authorised Copy Number** : PDF

# Contents

| Section 1:<br>1.1<br>1.2<br>1.3<br>1.4<br>1.6<br>1.7 | Introduction General Tests Requested By Manufacturer Apparatus Assessed Notes relating to the assessment Deviations from Test Standards                     | 4<br>4<br>5<br>5<br>5<br>7<br>7  |
|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| Section 2:<br>2.1                                    | Measurement Uncertainty Measurement Uncertainty Values                                                                                                      | 8<br>8                           |
| Section 3:<br>3.1                                    | Modifications Modifications Performed During Assessment                                                                                                     | 10<br>10                         |
| Appendix A:<br>A1<br>A2<br>A3                        | Formal Emission Test Results Transmitter Intentional Emission Radiated Radiated Electric Field Emissions Unintentional Radiated Emissions                   | 11<br>12<br>14<br>17             |
| Appendix B:                                          | Supporting Graphical Data                                                                                                                                   | 21                               |
| Appendix C:<br>C1<br>C2<br>C3<br>C4<br>C5            | Additional Test and Sample Details Test samples EUT operating mode during testing EUT Configuration Information List of EUT Ports Details of Equipment Used | 30<br>31<br>32<br>33<br>34<br>35 |
| Appendix D:                                          | Additional Information                                                                                                                                      | 36                               |
| Appendix E:                                          | Calculation of the duty cycle correction factor                                                                                                             | 37                               |
| Appendix F:                                          | Photographs and Figures                                                                                                                                     | 38                               |
| Appendix G:                                          | MPE Calculation                                                                                                                                             | 43                               |

Section 1: Introduction

#### 1.1 General

This report contains an assessment of an apparatus against Electromagnetic Compatibility Standards based upon tests carried out on samples submitted to the Laboratory.

Test performed by: TRaC Global [ ]

Unit E

South Orbital Trading Park

Hedon Road Hull, HU9 1NJ. United Kingdom.

Telephone: +44 (0) 1482 801801 Fax: +44 (0) 1482 801806

TRaC Global [X]

Unit 1

Pendle Place Skelmersdale

West Lancashire, WN8 9PN

United Kingdom

Telephone: +44 (0) 1695 556666 Fax: +44 (0) 1695 577077

Email: <a href="mailto:test@tracglobal.com">test@tracglobal.com</a>
Web site: <a href="mailto:http://www.tracglobal.com">http://www.tracglobal.com</a>

Tests performed by: S Hodgkinson

Report author: S Hodgkinson

This report must not be reproduced except in full without prior written permission from TRaC Global Ltd.

## 1.2 Tests Requested By

This testing in this report was requested by:

Timecode Systems Ltd Seba House 97 High Street Stourbridge West Midlands DY8 1FA

#### 1.3 Manufacturer

Timecode Systems Ltd Seba House 97 High Street Stourbridge West Midlands DY8 1FA

## 1.4 Apparatus Assessed

The following apparatus was assessed between: 27<sup>th</sup> February – 28<sup>th</sup> March 2012

**Timecode Master** 

The Timecode buddy: system is used to sync SMPTE timecode data in Audio and Video recording, on a professional TV/Film set.

It comprises of two products: Timecode Buddy: master and Timecode Buddy: tx.

Various syncing options can be selected via the internal menu system.

- 1) A radio link using the band 915.05MHz 918.65MHz which makes use of 14 radio channels spaced at 100KHz using GFSK modulation, 10kHz deviation.
- 2) Wi-Fi using a pre-approved WiFi module, FCC ID W707G2100-7G21.
- 3) BNC connections for timecode input/outputs and TV Sync output.

## 1.5 Test Result Summary

Full details of test results are contained within Appendix A. The following table summarises the results of the assessment.

The statements relating to compliance with the standards below apply ONLY as qualified in the notes and deviations stated in sections 1.6 to 1.7 of this test report.

Full details of test results are contained within Appendix A. The following table summarises the results of the assessment.

| Test Type                                    | Regulation                                           | Measurement<br>standard | Result |
|----------------------------------------------|------------------------------------------------------|-------------------------|--------|
| Spurious Emissions<br>Radiated <1000MHz      | Title 47 of the CFR:<br>Part 15 Subpart (c) 15.209   | ANSI C63.10             | Pass   |
| Spurious Emissions<br>Radiated >1000MHz      | Title 47 of the CFR:<br>Part 15 Subpart (c) 15.249   | ANSI C63.10             | Pass   |
| AC Power conducted emissions                 | Title 47 of the CFR:<br>Part 15 Subpart (c) 15.207   | ANSI C63.10             | N/A    |
| Intentional<br>Emission Frequency            | Title 47 of the CFR:<br>Part 15 Subpart (c) 15.249   | ANSI C63.10             | Pass   |
| Intentional Emission<br>Field Strength       | Title 47 of the CFR:<br>Part 15 Subpart (c) 15.249   | ANSI C63.10             | Pass   |
| Intentional Emission<br>Band Occupancy       | Title 47 of the CFR:<br>Part 15 Subpart (c) 15.249   | ANSI C63.10             | Pass   |
| Unintentional Radiated<br>Spurious Emissions | Title 47 of the CFR:<br>Part 15 Subpart (b) 15.109   | ANSI C63.10             | Pass   |
| Antenna Arrangements<br>Integral:            | Title 47 of the CFR:<br>Part 15 Subpart (c) 15.203   | -                       | Pass   |
| Antenna Arrangements<br>External Connector   | Title 47 of the CFR:<br>Part 15 Subpart (c) 15.204   | -                       | N/A    |
| Restricted<br>Bands                          | Title 47 of the CFR:<br>Part 15 Subpart (c) 15.205   | -                       | N/A    |
| Maximum Frequency of Search                  | Title 47 of the CFR:<br>Part 15 Subpart (c) 15.33    | -                       | Pass   |
| Extrapolation<br>Factor                      | Title 47 of the CFR:<br>Part 15 Subpart (c) 15.31(f) | -                       | N/A    |

Abbreviations used in the above table:

CFR : Code of Federal Regulations ANSI : American National Standards Institution REFE : Radiated Electric Field Emissions PLCE : Power Line Conducted Emissions

#### 1.6 Notes relating to the assessment

With regard to this assessment, the following points should be noted:

The results contained in this report relate only to the items tested and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

The apparatus was set up and exercised using the configurations, modes of operation and arrangements defined in this report only.

Particular operating modes, apparatus monitoring methods and performance criteria required by the standards tested to have been performed except where identified in Section 1.7 of this test report (Deviations from Test Standards).

For emissions testing, throughout this test report, "Pass" indicates that the results for the sample as tested were below the specified limit (refer also to Section 2, Measurement Uncertainty).

Where relevant, the apparatus was only assessed using the monitoring methods and susceptibility criteria defined in this report.

All testing with the exception of testing at the Open Area Test Site was performed under the following environmental conditions:

Temperature : 20 to 22 °C Humidity : 45 to 75 %

All dates used in this report are in the format dd/mm/yy.

This assessment has been performed in accordance with the requirements of ISO/IEC 17025.

#### 1.7 Deviations from Test Standards

There were no deviations from the standards tested to.

#### Section 2:

## **Measurement Uncertainty**

#### 2.1 Measurement Uncertainty Values

For the test data recorded in accordance with note (iii) of Section 2.1 the following measurement uncertainty was calculated:

#### Radio Testing - General Uncertainty Schedule

All statements of uncertainty are expanded standard uncertainty using a coverage factor of 1.96 to give a 95% confidence where no required test level exists.

#### [1] Adjacent Channel Power

Uncertainty in test result = 1.86dB

#### [2] Carrier Power

Uncertainty in test result (Power Meter) = **1.08dB**Uncertainty in test result (Spectrum Analyser) = **2.48dB** 

#### [3] Effective Radiated Power

Uncertainty in test result = 4.71dB

#### [4] Spurious Emissions

Uncertainty in test result = 4.75dB

#### [5] Maximum frequency error

Uncertainty in test result (Power Meter) = **0.113ppm**Uncertainty in test result (Spectrum Analyser) = **0.265ppm** 

#### [6] Radiated Emissions, field strength OATS 14kHz-18GHz Electric Field

Uncertainty in test result (14kHz - 30MHz) = 4.8dB, Uncertainty in test result (30MHz - 1GHz) = 4.6dB, Uncertainty in test result (1GHz - 18GHz) = 4.7dB

#### [7] Frequency deviation

Uncertainty in test result = 3.2%

#### [8] Magnetic Field Emissions

Uncertainty in test result = 2.3dB

#### [9] Conducted Spurious

Uncertainty in test result – Up to 8.1GHz = **3.31dB**Uncertainty in test result – 8.1GHz – 15.3GHz = **4.43dB**Uncertainty in test result – 15.3GHz – 21GHz = **5.34dB**Uncertainty in test result – Up to 26GHz = **3.14dB** 

## [10] Channel Bandwidth

Uncertainty in test result = 15.5%

#### [11] Amplitude and Time Measurement - Oscilloscope

Uncertainty in overall test level = 2.1dB, Uncertainty in time measurement = 0.59%, Uncertainty in Amplitude measurement = 0.82%

#### [12] Power Line Conduction

Uncertainty in test result = 3.4dB

#### [13] Spectrum Mask Measurements

Uncertainty in test result = 2.59% (frequency)
Uncertainty in test result = 1.32dB (amplitude)

#### [14] Adjacent Sub Band Selectivity

Uncertainty in test result = 1.24dB

#### [15] Receiver Blocking - Listen Mode, Radiated

Uncertainty in test result = 3.42dB

#### [16] Receiver Blocking - Talk Mode, Radiated

Uncertainty in test result = 3.36dB

#### [17] Receiver Blocking - Talk Mode, Conducted

Uncertainty in test result = 1.24dB

#### [18] Receiver Threshold

Uncertainty in test result = 3.23dB

#### [19] Transmission Time Measurement

Uncertainty in test result = 7.98%

Section 3: Modifications

# 3.1 Modifications Performed During Assessment

No modifications were performed during the assessment

# Appendix A:

## **Formal Emission Test Results**

## Abbreviations used in the tables in this appendix:

Spec : Specification ALSR : Absorber Lined Screened Room

Mod : Modification OATS : Open Area Test Site
ATS : Alternative Test Site

EUT : Equipment Under Test
SE : Support Equipment Ref : Reference
Freq : Frequency

L : Live Power Line
N : Neutral Power Line
MD : Measurement Distance

E : Earth Power Line SD : Spec Distance

Pk: Peak DetectorPol: PolarisationQP: Quasi-Peak DetectorH: Horizontal PolarisationAv: Average DetectorV: Vertical Polarisation

CDN : Coupling & decoupling network

# A1 Transmitter Intentional Emission Radiated

| Test Details: Master Tx  |                                                    |  |  |
|--------------------------|----------------------------------------------------|--|--|
| Regulation               | Title 47 of the CFR: Part15 Subpart (c) 15.249 (a) |  |  |
| Measurement standard     | ANSI C63.10:2003                                   |  |  |
| EUT sample number        | S13                                                |  |  |
| Modification state       | 0                                                  |  |  |
| SE in test environment   | S08                                                |  |  |
| SE isolated from EUT     | N                                                  |  |  |
| EUT set up               | Refer to Appendix C                                |  |  |
| Temperature              | 22                                                 |  |  |
| Photographs (Appendix F) |                                                    |  |  |

| FREQ.<br>(MHz)                      | MEASUREMENT<br>Rx. READING<br>(dBμV) | CABLE<br>LOSS<br>(dB)      | ANT<br>FACTOR<br>(dB/m) | PRE<br>AMP<br>(dB)     | FIELD<br>STRENGTH<br>(dBµV/m) | FIELD<br>STRENGTH<br>(mV/m) |  |
|-------------------------------------|--------------------------------------|----------------------------|-------------------------|------------------------|-------------------------------|-----------------------------|--|
| 915.05                              | 64.5                                 | 34.5 2.1 23.5 N/A          |                         | 88.8                   | 26.91                         |                             |  |
|                                     | Limit value @ fc                     |                            |                         | 50mV/m = 94.0dBμV/m@3m |                               |                             |  |
|                                     |                                      |                            |                         | f lower f hig          |                               |                             |  |
| Band occupancy @ -20 dBc = 36.69kHz |                                      | 915.042147MHz 915.078846Ml |                         |                        | 8846MHz                       |                             |  |
|                                     |                                      |                            |                         | 902MH                  | z – 928MHz                    |                             |  |

| FREQ.<br>(MHz)                      | MEASUREMENT CABLE Rx. READING LOSS (dBμV) (dB) |                            | ANT<br>FACTOR<br>(dB/m) | PRE<br>AMP<br>(dB)     | FIELD<br>STRENGTH<br>(dBµV/m) | FIELD<br>STRENGTH<br>(mV/m) |  |
|-------------------------------------|------------------------------------------------|----------------------------|-------------------------|------------------------|-------------------------------|-----------------------------|--|
| 918.65                              | 65.5 2.1                                       |                            | 23.5                    | N/A                    | 89.8                          | 30.90                       |  |
|                                     | Limit value @ fc                               |                            |                         | 50mV/m = 94.0dBμV/m@3m |                               |                             |  |
|                                     |                                                |                            |                         | f lower f higher       |                               |                             |  |
| Band occupancy @ -20 dBc = 36.37kHz |                                                | 918.642147MHz 918.678525MH |                         |                        | 8525MHz                       |                             |  |
|                                     |                                                |                            |                         | 902MH                  | z – 928MHz                    |                             |  |

Notes:

- 1 Results quoted are extrapolated as indicated
- 2 Receiver detector @ fc = Quasi Peak / 120kHz bandwidth
- 3 When battery powered the EUT was powered with new batteries

Test Method:

- 1 As per Radio Noise Emissions, ANSI C63.10
- 2 Measuring distances 3m
- 3 EUT 0.8 metre above ground plane
- 4 Emissions maximised by rotation of EUT, on an automatic turntable. Raising and lowering the receiver antenna between 1m & 4m. Horizontal and vertical polarisations, of the receive antenna. EUT orientation in three orthagonal planes.

Maximum results recorded

#### A2 Radiated Electric Field Emissions

Preliminary scans were performed using a peak detector with the RBW = 100 kHz. The radiated electric field emission test applies to all spurious emissions and harmonics emissions. The maximum permitted field strength is listed in Section 15.249. The EUT was set to transmit as required.

| The following test site was used for fir | nal measurements  | s as specified by the stan | dard tested to: |
|------------------------------------------|-------------------|----------------------------|-----------------|
| 3m open area test site :                 |                   | 3m alternative test site : | X               |
| The effect of the EUT set-up on the m    | ieasurements is s | ummarised in note (c) be   | low.            |

| Test Details             |                                                            |  |  |
|--------------------------|------------------------------------------------------------|--|--|
| Regulation               | Title 47 of the CFR, Part 15 Subpart (c) Clause 15.209 (a) |  |  |
| Measurement standard     | ANSI C63.10:2003                                           |  |  |
| Frequency range          | 30MHz-10GHz                                                |  |  |
| EUT sample number        | S13                                                        |  |  |
| Modification state       | 0                                                          |  |  |
| SE in test environment   | S08                                                        |  |  |
| SE isolated from EUT     | No                                                         |  |  |
| EUT set up               | Refer to Appendix C                                        |  |  |
| Temperature              | 22°C                                                       |  |  |
| Photographs (Appendix F) |                                                            |  |  |

The worst case radiated harmonics are listed below:

The Master unit was connected to a Canon camera via BNC connections, the Master unit providing the timecode and Tv sync to the camera, to exercise to ports.

# Bottom channel and top channel transmitter harmonics

| Ref No. | FREQ.<br>(MHz) | MEAS<br>Rx<br>(dBµV) | CABLE<br>LOSS<br>(dB) | ANT<br>FACT.<br>(dB/m) | PRE<br>AMP<br>(dB) | HP<br>Filter<br>(dB) | Duty<br>Cycle<br>correction<br>(dB) | Field<br>ST'GH<br>(dBµV/m) | FIELD<br>ST'GH<br>(μV/m) | LIMIT<br>(μV/m) |
|---------|----------------|----------------------|-----------------------|------------------------|--------------------|----------------------|-------------------------------------|----------------------------|--------------------------|-----------------|
| 1b.     | 1830.0         | 53.26                | 1.9                   | 27.2                   | 35.9               | N/A                  | N/A                                 | 46.46pk                    | 210.37pk                 | 5011pk          |
| 1b.     | 1830.0         | 47.07                | 1.9                   | 27.2                   | 35.9               | N/A                  | -21.93                              | 18.34Av                    | 8.26Av                   | 500Av           |
| 2t.     | 1837.3         | 52.63                | 2.0                   | 27.3                   | 35.9               | N/A                  | N/A                                 | 46.03pk                    | 200.21pk                 | 5011pk          |
| 2t.     | 1837.3         | 46.46                | 2.0                   | 27.3                   | 35.9               | N/A                  | -21.93                              | 17.93Av                    | 7.88Av                   | 500Av           |
| 3b.     | 2745.1         | 50.82                | 2.2                   | 29.1                   | 35.5               | 0.8                  | N/A                                 | 47.42pk                    | 234.96pk                 | 5011pk          |
| 3b.     | 2745.1         | 41.00                | 2.2                   | 29.1                   | 35.5               | 0.8                  | -21.93                              | 15.67Av                    | 6.07Av                   | 500Av           |
| 4t.     | 2755.5         | 50.59                | 2.2                   | 29.1                   | 35.5               | 0.7                  | N/A                                 | 47.09pk                    | 226.20pk                 | 5011pk          |
| 4t.     | 2755.5         | 41.25                | 2.2                   | 29.1                   | 35.5               | 0.7                  | -21.93                              | 15.82Av                    | 6.18Av                   | 500Av           |
| 5b.     | 3655.2         | 52.61                | 2.9                   | 31.7                   | 35.6               | 0.5                  | N/A                                 | 52.01pk                    | 398.56pk                 | 5011pk          |
| 5b.     | 3655.2         | 47.13                | 2.9                   | 31.7                   | 35.6               | 0.5                  | -21.93                              | 24.60Av                    | 16.98Av                  | 500Av           |
| 6t.     | 3674.5         | 52.53                | 2.8                   | 31.8                   | 35.6               | 0.5                  | N/A                                 | 52.03pk                    | 399.48pk                 | 5011pk          |
| 6t.     | 3674.5         | 46.69                | 2.8                   | 31.8                   | 35.6               | 0.5                  | -21.93                              | 24.26Av                    | 16.33Av                  | 500Av           |
| 7b.     | 4575.2         | 52.38                | 2.9                   | 32.2                   | 35.7               | 0.5                  | N/A                                 | 52.28pk                    | 411.15pk                 | 5011pk          |
| 7b.     | 4575.2         | 46.51                | 2.9                   | 32.2                   | 35.7               | 0.5                  | -21.93                              | 24.48Av                    | 16.74Av                  | 500Av           |
| 8t.     | 4593.2         | 53.14                | 2.9                   | 32.2                   | 35.7               | 0.6                  | N/A                                 | 53.14pk                    | 453.94pk                 | 5011pk          |
| 8t.     | 4593.2         | 46.88                | 2.9                   | 32.2                   | 35.7               | 0.6                  | -21.93                              | 24.78Av                    | 17.33Av                  | 500Av           |
| 9b.     | 5490.2         | 50.82                | 3.7                   | 33.8                   | 35.8               | 0.6                  | N/A                                 | 53.12pk                    | 452.89pk                 | 5011pk          |
| 9b.     | 5490.2         | 42.96                | 3.7                   | 33.8                   | 35.8               | 0.6                  | -21.93                              | 23.33Av                    | 14.67Av                  | 500Av           |
| 10t.    | 5511.8         | 51.11                | 3.8                   | 33.8                   | 35.8               | 0.6                  | N/A                                 | 53.51pk                    | 473.69pk                 | 5011pk          |
| 10t.    | 5511.8         | 43.91                | 3.8                   | 33.8                   | 35.8               | 0.6                  | -21.93                              | 24.38Av                    | 16.55Av                  | 500Av           |

Note: (b) = bottom channel (t) = top channel

#### Notes:

- Any testing performed below 30 MHz was performed using a magnetic loop antenna in accordance with ANSI C63.10: section 4.5, Table 1. For emissions below 30MHz the cable losses are assumed to be negligible.
- In accordance with 15.35(b), above 1 GHz, emissions measured using a peak detector shall not exceed a level 20 dB above the average limit.
- Testing was performed with the EUT orientated in three orthogonal planes and the maximum emissions level recorded. In addition, the EUT antenna was varied within its range of motion in order to maximise emissions.
- For Frequencies below 1 GHz, RBW= 120 kHz, testing was performed with CISPR16 compliant test receiver with QP detector. Above 1 GHz tests were performed using a spectrum analyser using the following settings:

Peak RBW=VBW= 1MHz Average RBW=VBW= 1MHz

The upper and lower frequency of the measurement range was decided according to 47 CFR Part 15:2010 Clause 15.33(a) and 15.33(a)(1).

Radiated emission limits 47 CFR part 15- Clause 15.209 for all emissions:

| Frequency of emission (MHz) | Field strength (μV/m) | Measurement Distance (m) | Field strength (dBμV/m) |
|-----------------------------|-----------------------|--------------------------|-------------------------|
| 0.009-0.490                 | 2400/F(kHz)           | 300                      | 67.6/F (kHz)            |
| 0.490-1.705                 | 24000/F(kHz)          | 30                       | 87.6/F (kHz)            |
| 1.705-30                    | 30                    | 30                       | 29.5                    |
| 30-88                       | 100                   | 3                        | 40.0                    |
| 88-216                      | 150                   | 3                        | 43.5                    |
| 216-960                     | 200                   | 3                        | 46.0                    |
| Above 960                   | 500                   | 3                        | 54.0                    |

(a) Where results have been measured at one distance, and a signal level displayed at another, the results have been extrapolated using the following formula:

Extrapolation (dB) = 
$$20 \log_{10} \left( \frac{\text{measurement distance}}{\text{specification distance}} \right)$$

- (b) The levels may have been rounded for display purposes.
- (c) The following table summarises the effect of the EUT operating mode, internal configuration and arrangement of cables / samples on the measured emission levels:

|                                                               | See (i) | See (ii) | See (iii) | See (iv) |
|---------------------------------------------------------------|---------|----------|-----------|----------|
| Effect of EUT operating mode on emission levels               | ✓       |          |           |          |
| Effect of EUT internal configuration on emission levels       | ✓       |          |           |          |
| Effect of Position of EUT cables & samples on emission levels | ✓       |          |           |          |

- (i) Parameter defined by standard and / or single possible, refer to Appendix D
- (ii) Parameter defined by client and / or single possible, refer to Appendix D
- (iii) Parameter had a negligible effect on emission levels, refer to Appendix D
- (iv) Worst case determined by initial measurement, refer to Appendix D

#### A3 Unintentional Radiated Emissions

Preliminary scans were performed using a peak detector with the RBW = 100 kHz. The radiated electric field emission test applies to all spurious emissions on directly related to the transmitter. The maximum permitted field strength is listed in Section 15.109. The EUT was set to operate in transmit standby / receive mode.

| The following test site was used for fin | al measurements  | s as specified by the stan | dard tested to: |
|------------------------------------------|------------------|----------------------------|-----------------|
| 3m open area test site :                 |                  | 3m alternative test site : | X               |
| The effect of the EUT set-up on the mo   | easurements is s | ummarised in note (c) be   | low.            |

|                          | Test Details                                           |
|--------------------------|--------------------------------------------------------|
| Regulation               | Title 47 of the CFR, Part 15 Subpart (c) Clause 15.109 |
| Measurement standard     | ANSI C63.10:2003                                       |
| Frequency range          | 30MHz – 10GHz                                          |
| EUT sample number        | S15                                                    |
| Modification state       | 0                                                      |
| SE in test environment   | S08 S13                                                |
| SE isolated from EUT     | No                                                     |
| EUT set up               | Refer to Appendix C                                    |
| Temperature              | 22°C                                                   |
| Photographs (Appendix F) |                                                        |

The worst case radiated emission measurements for spurious emissions are listed below:

The Master unit was connected to a Canon camera via BNC connections, the Master unit providing the timecode and Tv Sync to the camera, to exercise to ports.

| Ref No. | FREQ.<br>(MHz) | MEAS<br>Rx<br>(dΒμV) | CABLE<br>LOSS<br>(dB) | ANT FACT.<br>(dB/m) | Field<br>ST'GH<br>(dBμV/m) | FIELD ST'GH<br>(μV/m) | LIMIT<br>(μV/m) |
|---------|----------------|----------------------|-----------------------|---------------------|----------------------------|-----------------------|-----------------|
| 1.      | 118.55         | 17.00                | 0.7                   | 11.5                | 29.2                       | 28.84                 | 150             |
| 2.      | 218.20         | 17.30                | 1.0                   | 8.4                 | 26.7                       | 21.62                 | 200             |
| 3.      | 218.90         | 20.50                | 1.0                   | 8.5                 | 30.0                       | 31.62                 | 200             |
| 4.      | 230.40         | 16.20                | 1.0                   | 9.8                 | 27.0                       | 22.38                 | 200             |
| 5.      | 371.25         | 14.60                | 1.3                   | 14.8                | 30.7                       | 34.27                 | 200             |
| 6.      | 405.20         | 14.60                | 1.3                   | 16.2                | 32.1                       | 40.27                 | 200             |
| 7.      | 432.00         | 18.10                | 1.4                   | 16.3                | 35.8                       | 61.66                 | 200             |
| 8.      | 445.50         | 12.70                | 1.4                   | 16.4                | 30.5                       | 33.49                 | 200             |
| 9.      | 499.20         | 11.60                | 1.5                   | 17.2                | 30.3                       | 32.73                 | 200             |
| 10.     | 504.00         | 10.60                | 1.5                   | 17.3                | 29.4                       | 29.51                 | 200             |
| 11.     | 519.75         | 16.40                | 1.5                   | 17.5                | 35.4                       | 58.88                 | 200             |
| 12.     | 540.00         | 14.70                | 1.5                   | 18.4                | 34.6                       | 53.70                 | 200             |
| 13.     | 556.90         | 11.30                | 1.5                   | 18.6                | 31.4                       | 37.15                 | 200             |
| 14.     | 576.00         | 16.20                | 1.6                   | 18.7                | 36.5                       | 66.83                 | 200             |
| 15.     | 668.25         | 16.10                | 1.7                   | 19.0                | 36.8                       | 69.18                 | 200             |
| 16.     | 720.00         | 16.50                | 1.8                   | 19.5                | 37.8                       | 77.62                 | 200             |
| 17.     | 742.50         | 16.70                | 1.8                   | 19.9                | 38.4                       | 83.17                 | 200             |
| 18.     | 816.75         | 19.70                | 1.9                   | 20.6                | 42.2                       | 128.82                | 200             |
| 19.     | 864.00         | 15.80                | 2.0                   | 20.5                | 38.3                       | 82.22                 | 200             |
| 20.     | 936.00         | 16.50                | 2.1                   | 20.8                | 39.4                       | 93.32                 | 200             |
| 21.     | 965.25         | 17.40                | 2.1                   | 21.2                | 40.7                       | 108.39                | 500             |

| Ref No. | FREQ.<br>(MHz) | MEAS<br>Rx<br>(dBµV) | CABLE<br>LOSS<br>(dB) | ANT<br>FACT.<br>(dB/m) | PRE<br>AMP<br>(dB) | HP<br>Filter<br>(dB) | Duty<br>Cycle<br>correction<br>(dB) | Field<br>ST'GH<br>(dBµV/m) | FIELD<br>ST'GH<br>(μV/m) | LIMIT<br>(μV/m) |
|---------|----------------|----------------------|-----------------------|------------------------|--------------------|----------------------|-------------------------------------|----------------------------|--------------------------|-----------------|
| 1.      | 1009.6         | 55.88                | 1.4                   | 24.5                   | 37.6               | N/A                  | N/A                                 | 44.18pk                    | 161.80pk                 | 5011pk          |
| 1.      | 1009.6         | 48.19                | 1.4                   | 24.5                   | 37.6               | N/A                  | N/A                                 | 36.49Av                    | 66.75Av                  | 500Av           |
| 2.      | 1080.3         | 59.05                | 1.6                   | 24.9                   | 37.4               | N/A                  | N/A                                 | 48.15pk                    | 255.56pk                 | 5011pk          |
| 2.      | 1080.3         | 46.77                | 1.6                   | 24.9                   | 37.4               | N/A                  | N/A                                 | 35.87Av                    | 62.15Av                  | 500Av           |
| 3.      | 1151.8         | 59.15                | 1.5                   | 25                     | 37.3               | N/A                  | N/A                                 | 48.35pk                    | 261.51pk                 | 5011pk          |
| 3.      | 1151.8         | 47.60                | 1.5                   | 25                     | 37.3               | N/A                  | N/A                                 | 36.80Av                    | 69.18Av                  | 500Av           |
| 4.      | 1262.2         | 56.47                | 1.6                   | 25.2                   | 37.1               | N/A                  | N/A                                 | 46.17pk                    | 203.47pk                 | 5011pk          |
| 4.      | 1262.2         | 50.31                | 1.6                   | 25.2                   | 37.1               | N/A                  | N/A                                 | 40.01Av                    | 100.11Av                 | 500Av           |
| 5.      | 1700.8         | 53.62                | 2                     | 26.6                   | 36.2               | N/A                  | N/A                                 | 46.02pk                    | 199.98pk                 | 5011pk          |
| 5.      | 1700.8         | 42.36                | 2                     | 26.6                   | 36.2               | N/A                  | N/A                                 | 34.76Av                    | 54.70Av                  | 500Av           |
| 6.      | 1736.6         | 53.16                | 2                     | 26.8                   | 36.1               | N/A                  | N/A                                 | 45.86pk                    | 196.33pk                 | 5011pk          |
| 6.      | 1736.6         | 43.97                | 2                     | 26.8                   | 36.1               | N/A                  | N/A                                 | 36.67Av                    | 68.15Av                  | 500Av           |
| 7.      | 1772.1         | 51.45                | 2                     | 26.9                   | 36.1               | N/A                  | N/A                                 | 44.25pk                    | 163.11pk                 | 5011pk          |
| 7.      | 1772.1         | 42.66                | 2                     | 26.9                   | 36.1               | N/A                  | N/A                                 | 35.46Av                    | 59.29Av                  | 500Av           |
| 8.      | 2301.7         | 52.86                | 1.9                   | 28.2                   | 35.6               | N/A                  | N/A                                 | 47.36pk                    | 233.34pk                 | 5011pk          |
| 8.      | 2301.7         | 45.32                | 1.9                   | 28.2                   | 35.6               | N/A                  | N/A                                 | 39.82Av                    | 97.94Av                  | 500Av           |

#### Notes:

- Any testing performed below 30 MHz was performed using a magnetic loop antenna in accordance with ANSI C63.10: section 4.5, Table 1. For emissions below 30MHz the cable losses are assumed to be negligible.
- In accordance with 15.35(b), above 1 GHz, emissions measured using a peak detector shall not exceed a level 20 dB above the average limit.
- Testing was performed with the EUT orientated in three orthogonal planes and the maximum emissions level recorded. In addition, the EUT antenna was varied within its range of motion in order to maximise emissions.
- For Frequencies below 1 GHz, RBW = 120 kHz, testing was performed with CISPR16 compliant test receiver with QP detector. Above 1 GHz tests were performed using a spectrum analyser using the following settings:

Peak RBW=VBW= 1MHz Average RBW=VBW= 1MHz

The upper and lower frequency of the measurement range was decided according to 47 CFR Part 15:2010 Clause 15.33(a) and 15.33(a)(1).

Radiated emission limits 47 CFR Part 15: Clause 15.109 for all emissions:

| Frequency of emission (MHz) | Field strength (μV/m) | Measurement Distance (m) | Field strength (dBμV/m) |
|-----------------------------|-----------------------|--------------------------|-------------------------|
| 0.009-0.490                 | 2400/F(kHz)           | 300                      | 67.6/F (kHz)            |
| 0.490-1.705                 | 24000/F(kHz)          | 30                       | 87.6/F (kHz)            |
| 1.705-30                    | 30                    | 30                       | 29.5                    |
| 30-88                       | 100                   | 3                        | 40.0                    |
| 88-216                      | 150                   | 3                        | 43.5                    |
| 216-960                     | 200                   | 3                        | 46.0                    |
| Above 960                   | 500                   | 3                        | 54.0                    |

(a) Where results have been measured at one distance, and a signal level displayed at another, the results have been extrapolated using the following formula:

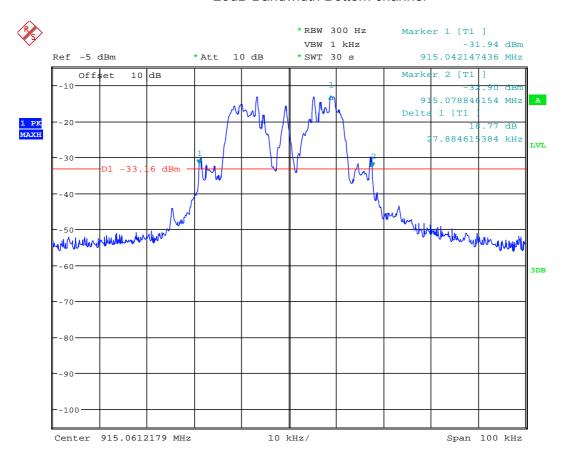
Extrapolation (dB) = 
$$20 \log_{10} \left( \frac{\text{measurement distance}}{\text{specification distance}} \right)$$

- (b) The levels may have been rounded for display purposes.
- (c) The following table summarises the effect of the EUT operating mode, internal configuration and arrangement of cables / samples on the measured emission levels :

|                                                               | See (i) | See (ii) | See (iii) | See (iv) |
|---------------------------------------------------------------|---------|----------|-----------|----------|
| Effect of EUT operating mode on emission levels               | ✓       |          |           |          |
| Effect of EUT internal configuration on emission levels       | ✓       |          |           |          |
| Effect of Position of EUT cables & samples on emission levels | ✓       |          |           |          |

- (i) Parameter defined by standard and / or single possible, refer to Appendix D
- (ii) Parameter defined by client and / or single possible, refer to Appendix D
- (iii) Parameter had a negligible effect on emission levels, refer to Appendix D
- (iv) Worst case determined by initial measurement, refer to Appendix D

#### Appendix B:

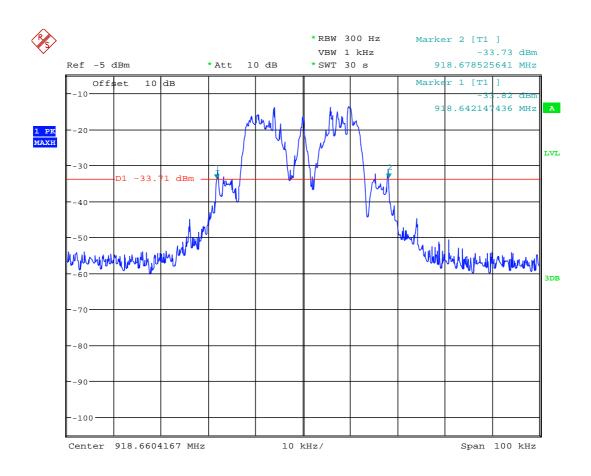

## **Supporting Graphical Data**

This appendix contains graphical data obtained during testing.

#### Notes:

- (a) The radiated electric field emissions and conducted emissions graphical data in this appendix is preview data. For details of formal results, refer to Appendix A and Appendix B.
- (b) The time and date on the plots do not necessarily equate to the time of the test.
- (c) Where relevant, on power line conducted emission plots, the limit displayed is the average limit, which is stricter than the quasi peak limit.
- (d) Appendix C details the numbering system used to identify the sample and its modification state.
- (e) The plots presented in this appendix may not be a complete record of the measurements performed, but are a representative sample, relative to the final assessment.

#### 20dB Bandwidth Bottom channel

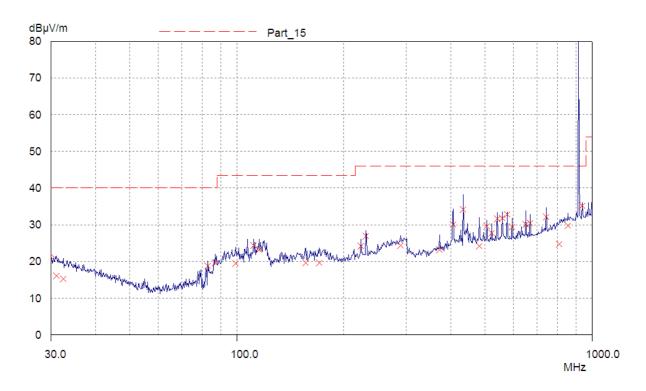



Date: 16.MAR.2012 12:23:22

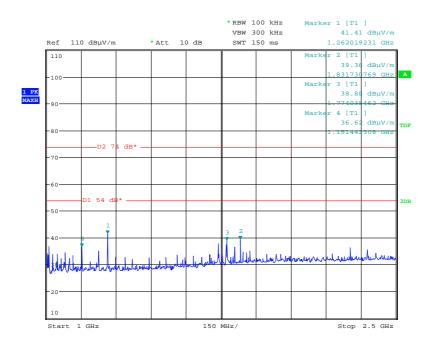
FI = 915.042147MHz FH = 915.078846MHz

20dB bandwidth = 36.69kHz

## 20dB Bandwidth top channel

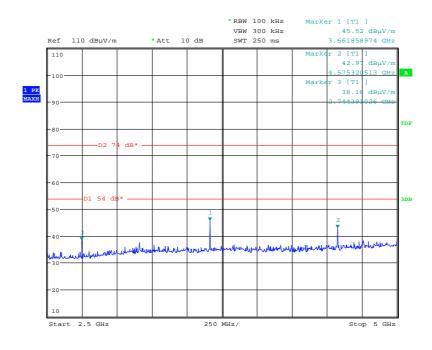



Date: 16.MAR.2012 12:32:49


FI = 918.642147MHz FH = 918.678525MHz

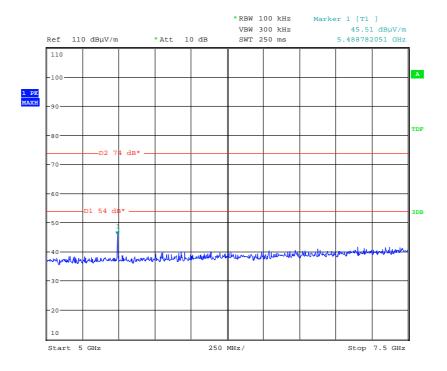
20dB bandwidth = 36.37kHz

## Bottom channel Radiated spurious emissions 30MHz to 1GHz



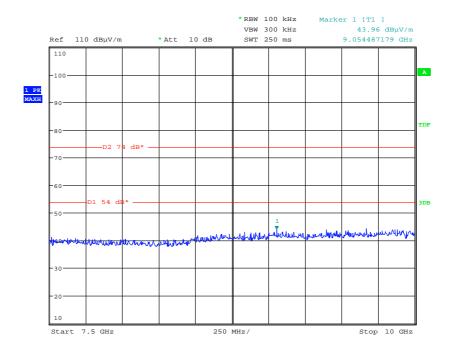

## 1GHz to 2.5GHz




Date: 20.MAR.2012 09:20:18

#### 2.5GHz to 5GHz



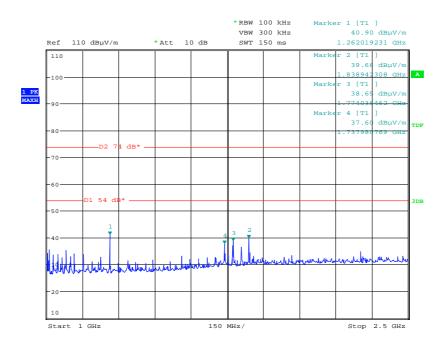

Date: 20.MAR.2012 09:21:24

## 5GHz to 7.5GHz



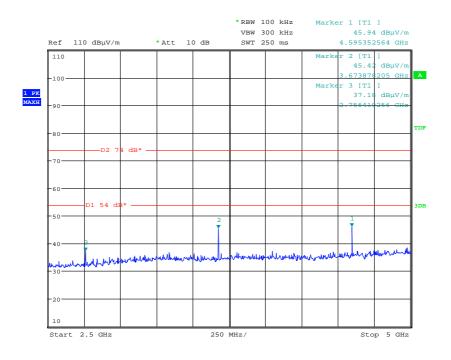
Date: 20.MAR.2012 09:22:00

#### 7.5GHz to 10GHz



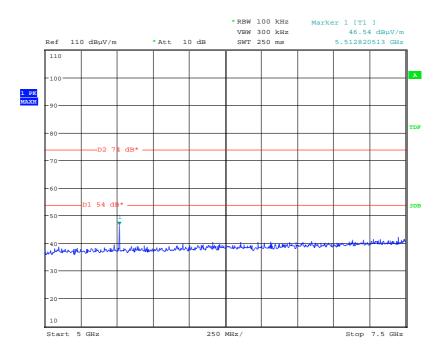

Date: 20.MAR.2012 09:22:24

Top channel Radiated spurious emissions 30MHz to 1GHz



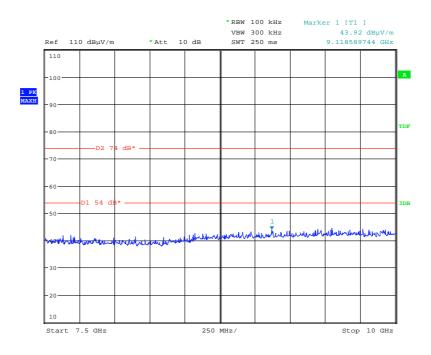

1 GHz to 2.5GHz




Date: 20.MAR.2012 09:32:29

#### 2.5GHz to 5GHz




Date: 20.MAR.2012 09:33:27

## 5GHz to 7.5GHz



Date: 20.MAR.2012 09:34:21

#### 7.5GHz to 10GHz



Date: 20.MAR.2012 09:34:53

## **Appendix C:**

## **Additional Test and Sample Details**

This appendix contains details of:

- 1. The samples submitted for testing.
- 2. Details of EUT operating mode(s)
- 3. Details of EUT configuration(s) (see below).
- 4. EUT arrangement (see below).

Throughout testing, the following numbering system is used to identify the sample and it's modification state:

Sample No: Sxx Mod w

where:

xx = sample number eg. S01 w = modification number eg. Mod 2

The following terminology is used throughout the test report:

**Support Equipment (SE)** is any additional equipment required to exercise the EUT in the applicable operating mode. Where relevant SE is divided into two categories:

SE in test environment: The SE is positioned in the test environment and is not isolated from the EUT (e.g. on the table top during REFE testing).

SE isolated from the EUT: The SE is isolated via filtering from the EUT. (e.g. equipment placed externally to the ALSR during REFE testing).

**EUT configuration** refers to the internal set-up of the EUT. It may include for example:

Positioning of cards in a chassis. Setting of any internal switches. Circuit board jumper settings. Alternative internal power supplies.

Where no change in EUT configuration is **possible**, the configuration is described as "single possible configuration".

**EUT arrangement** refers to the termination of EUT ports / connection of support equipment, and where relevant, the relative positioning of samples (EUT and SE) in the test environment.

For further details of the test procedures and general test set ups used during testing please refer to the related document "EMC Test Methods - An Overview", which can be supplied by TRaC Global upon request.

# C1 Test samples

The following samples of the apparatus were submitted by the client for testing:

| Sample No. | Description | Identification |
|------------|-------------|----------------|
| S13        | Master Tx   | N/A            |

The following samples of apparatus were submitted by the client as host, support or drive equipment (auxiliary equipment):

| Sample No. | Description  | Identification |
|------------|--------------|----------------|
| S00        | Canon Camera | N/A            |

# C2 EUT operating mode during testing

During testing, the EUT was exercised as described in the following tables:

| Test                              | Description of Operating Mode                                                                                                                                                                                                                |  |  |
|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| All tests detailed in this report | Transmitting on bottom and bottom channels with and without modulation enabled. The Master unit was connected to a Canon camera via BNC connections, the Master unit providing the timecode and Tv sync to the camera, to exercise to ports. |  |  |

| Test                                                     | Description of Operating Mode:                                                                                                                                |
|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Receiver conducted and radiated (ERP) spurious emissions | Using the Master Tx menu, RF mode was selected so that the receiver channel could be selected. The receiver channels used were Bottom channel and Top channel |

# **C3 EUT Configuration Information**

The EUT was submitted for testing in one single possible configuration.

## C4 List of EUT Ports

The tables below describe the termination of EUT ports:

Sample : Tests :

Tests : Radiated Emissions

| Port Description of Cable Attached |                | Cable length | Equipment Connected |
|------------------------------------|----------------|--------------|---------------------|
| BNC Timecode out                   | 50Ω Coax cable | 30cms        | Cannon Camera       |
| BNC Tv Sync                        | 50Ω Coax cable | 30cms        | Cannon Camera       |

# C5 Details of Equipment Used

| TRAC Ref | Туре     | Description                | Manufacturer    | Date Calibrated. |
|----------|----------|----------------------------|-----------------|------------------|
| TRLUH281 | FSU46    | Spectrum Analyser          | Rhode & Schwarz | 09/02/2012       |
| TRL138   | 3115     | 1-18GHz Horn Antenna       | EMCO            | 08/11/2011       |
| TRL139   | 3115     | 1-18GHz Horn Antenna       | EMCO            | 14/09/2011       |
| TRL572   | 8499B    | 1 – 26.5 GHz Pre Amplifier | Agilent         | 24/11/2010       |
| TRLUH004 | ESVS10   | Receiver                   | Rhode & Schwarz | 12/01/2012       |
| TRLUH191 | CBL611/A | BiLog Periodic Antenna     | York            | 08/11/2010       |

Appendix D:

**Additional Information** 

# Timecode Systems Ltd.

Seba House, 97 High St, Stourbridge, West Midlands, DY8 1FA

#### Declaration Statement - FCC Transmitter Duty Cycle

Timecode Buddy: master (FCC ID: AYV-TCB/01)

Timecode Buddy: tx (FCC ID: AYV-TCB/02)

I can confirm that when either units are in normal transmit mode, the TX ON time in any 100ms period is a maximum of 8ms.

29/03/2012

Paul Scurrell

Company Director

www.timecodebuddy.com

paulscurrell@timecodebuddy.com

Timecode Buddy system &

## Appendix E:

## Calculation of the duty cycle correction factor

Using a spectrum analyser in zero span mode, centred on the fundamental carrier frequency with a RBW of 1MHz and a video Bandwidth of 1MHz the sweep time was set accordingly to capture the pulse train. The transmit pulsewidths and period was measured. A plots of the pulse train is contained in Appendix B of this test report.

If the pulse train was less than 100 ms, including blanking intervals, the duty cycle was calculated by averaging the sum of the pulsewidths over one complete pulse train. However if the pulse train exceeds 100ms then the duty cycle was calculated by averaging the sum of the pulsewidths over the 100ms width with the highest average value. (The duty cycle is the value of the sum of the pulse widths in one period (or 100ms), divided by the length of the period (or 100ms). The duty cycle correction factor was then expressed in dB and the peak emissions adjusted accordingly to give an average value of the emission.

Correction factor dB =  $20 \times (Log_{10} \text{ Calculated Duty Cycle})$ 

Therefore the calculated duty cycle was determined:

The pulse train period was greater than >100ms and in as shown from the plots in contained in appendix B of this test report.

Duty cycle = the sum of the highest average value pulsewidths over 100ms

e.g

$$=\frac{7.459ms}{100ms}=0.07459$$

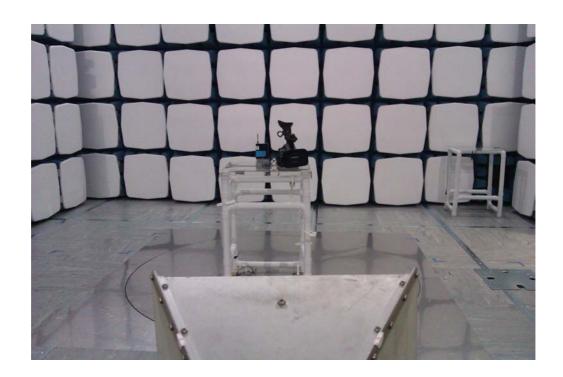
0.07459 or 7.459%

Correction factor (dB) =  $20 \times (Log_{10} \ 0.07459) = -22.54dB$ 

Timecode: Duty cycle correction factor to be used for the radiated spurious emissions.

Txon period 8mS in 1000mS Worse case 8mS in 100mS

Therefore  $20\log (8 \div 100) = -21.93dB$ .


# Appendix F:

# **Photographs and Figures**

The following photographs were taken of the test samples:

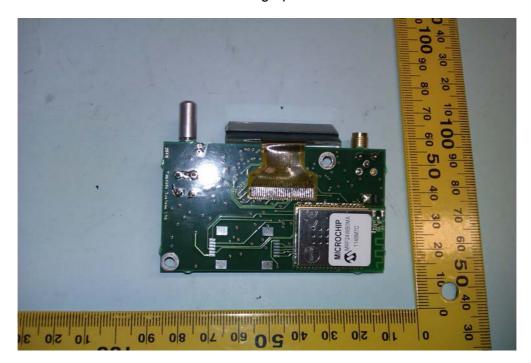
- 1. Test setup.
- Overview/battery compartment removed 2.
- Top View case removed/PCB removed from chassis Underside view removed from chassis 3.
- 4.

Photograph 1



Photograph 2






Photograph 3





# Photograph 4



Appendix G: MPE Calculation

OET Bulletin No. 65, Supplement C 01-01

## 47 CFR §§1.1307 and 2.1091

2.1091 Radio frequency radiation exposure evaluation: mobile devices.

For purposes of these requirements mobile devices are defined by the FCC as transmitters designed to be used in other than fixed locations and to generally be used in such a way that a separation distance of at least 20 centimetres is normally maintained between radiating structures and the body of the user or nearby persons. These devices are normally evaluated for exposure potential with relation to the MPE limits. As the 20cm separation specified under FCC rules may not be achievable under normal operation of the EUT, an RF exposure calculation is needed to show the minimum distance required to be less than 1mW/cm² power density limit, as required under FCC rules.

#### Prediction of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

$$S = \frac{EIRP}{4 \pi R^2}$$
 re - arranged  $R = \sqrt{\frac{EIRP}{S 4 \pi}}$ 

where:

S = power density R = distance to the centre of radiation of the antenna EIRP = EUT Maximum power

## Result

| Prediction<br>Frequency<br>(MHz) | Maximum EIRP | Power density limit<br>(S) (mW/cm <sup>2</sup> ) | Distance (R) cm required to be less than 0.612mW/cm <sup>2</sup> |
|----------------------------------|--------------|--------------------------------------------------|------------------------------------------------------------------|
| 918.65                           | 0.28mW       | 0.612                                            | 0.191                                                            |



