

E&E

Eurofins York Castleford Unit 5, Speedwell Road Castleford, WF10 5PY United Kingdom +44 (0) 1977 731173 enquiryyork@eurofins.com eurofins.co.uk/york

Test Report for the EMC Testing of

AirGlu2

for Time Code Systems

Test Report number 14473TR2

Project number B5200_1

Author: Mr C W Greenfield BEng(Hons)

Checked:	
Mr. Martin Nicholson, BEng (Hons)	

Issue	Description						Issue by	Date
2	Copy 1		Copy 2		PDF	X	MJN	12/04/2022

This report shall not be reproduced, except in full without the prior written approval of Eurofins York Ltd. The results contained in this report are only applicable to the apparatus tested.

Registered Address: Eurofins York i54 Business Park, Valiant Way Wolverhampton, WV9 5GB, UK

Registered in England and Wales Company Reg. No. 6048589 VAT Reg. No. GB 887 1276 83

CONTENTS

Test Re	est Report Change History		
Section 1.1			
Section	2 0	Customer Information	6
Section 3.1 3.2 3.3	Equipme EUT Ph	ent Under Test (EUT) otos ration of EUT	7
Section 4.1 4.1.1 4.2	Knowleo Rad	est Specifications dge Database References iated Emissions (1GHz to 40GHz) nce Statement	11 11
Section		Radiated Emission Results	
5.1		ecification	
5.2		re and Test Software Version	
5.3		d Emissions (30MHz to 1GHz)	
5.3.1 5.3.2		ts at 3m eiver Settings	
5.3.2		ssions measurements	
5.3.4		e of Test	
5.3.5		Area	
5.3.6		ed by	
5.3.7		Setup	
5.3.8		tric field emissions, 30MHz to 1GHz	
5.3.9		si Peak correction factors	
5.3.1		ple Data	
5.4		d Emissions (1GHz to 18GHz)	
5.4.1		ts	
5.4.2		eiver Settings	
5.4.3		ssions measurements	
5.4.4		e of Test	
5.4.5		Area	
5.4.6 5.4.7		ed by Setup	
5.4.7		oratory Radiated Emission Maximization	
5.4.9		tric field emissions, 1GHz to 18GHz	
5.4.1		age correction factors	
5.4.1		ple Data	
••		Test Photos	
Append	ix B Tes	t Equipment List	27

List of Figures

Figure 1: Diagram of EUT	9
Figure 2: Test Setup for E-Field Measurements from 30MHz to 1GHz	. 14
Figure 3: Electric field emissions Plot, 30MHz to 1GHz	. 15
Figure 4: Test Setup for Final E-Field Measurements from 1GHz to 18GHz	. 18
Figure 5: Electric field emissions Plot, 14GHz to 18GHz investigative Pre-scan with reduced BW to prove emissions from the EUT were present in the range of 14GHz and 18GHz	
Figure 6: Electric field emissions Plot, 1GHz to 18GHz	. 20

List of Tables

Table 1: Electric Field Emissions Peaks, 30MHz to 1GHz	15
Table 2: Frequencies identified during Exploratory Radiated Emission maximization	19
Table 3: Electric Field Emissions Peaks, 1GHz to 18GHz	21

Issue	Date	Modification Details
1	14/01/2022	Original issue of test report
2	12/04/2022	FCC ID added to product information
3		
4		
5		
6		
7		
8		
9		
10		

Test Report Change History

Section 1Test Location

All testing was performed at;

Eurofins York Ltd	Unit 5
	Speedwell Road
	Castleford
	WF10 5PY
Tel:	01977 731173
Website	https://www.yorkemc.com
UKAS Testing No.	1574

1.1 UKAS Accreditation

Tests marked "Not UKAS Accredited" in this report are not included in the UKAS Accreditation Schedule for our laboratory.

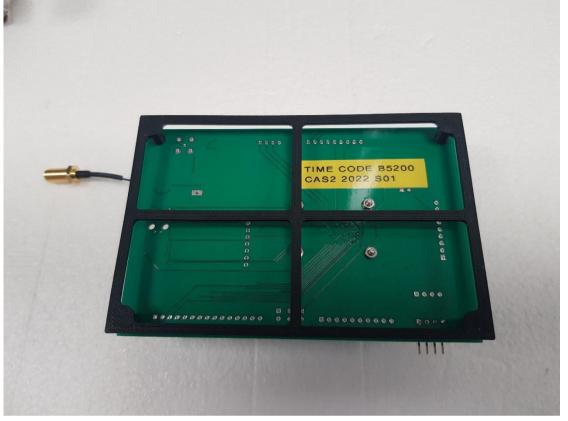
Opinions and interpretations expressed herein are outside the scope of UKAS Accreditation.

Eurofins York, Castleford latest accreditation schedule can be found at:

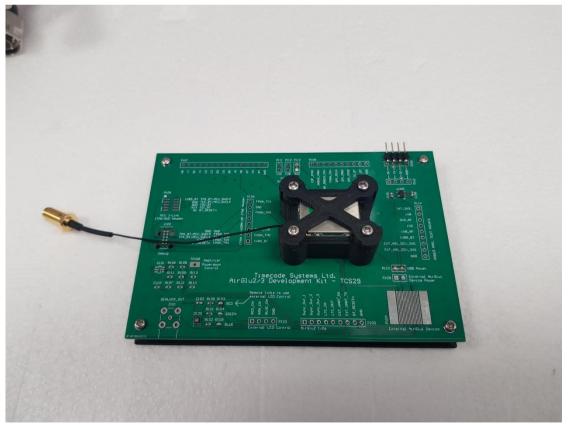
http://www.ukas.org/testing/lab_detail.asp?lab_id=989&location_id=&vMenuOption=3

Eurofins York Castleford Laboratory, is an Accredited facility recognised by the Federal Communications Commission (FCC) for certification testing. The appropriate FCC Designation Number is UK2013, dated 1_{st} March 2021.

Section 2 Customer Information


Company name	Time Code Systems
Address	Unit 6
	Elgar Business Centre
	Mosely Road
	Hallow
	Worcester
	WR2 6NJ
Tel:	07497 150 722
Contact	Paul Scurrell
Email	Paul.scurrell@atomos.com
Customer Representative(s) present during testing	No

Section 3Equipment Details


3.1 Equipment Under Test (EUT)

Date received:	17 th N	17 th November 2021					
EUT name:	AirGl	AirGlu2					
Type/Part no:	CAS	2 202	22 S	601			
Serial no/s:	CAS	2 202	22 S	601			
FCC ID:	AYV-	AGL	.U02	2			
EUT description:	EUT	is a l	batt	ery p	ower	ed radio module with WI	FI and Bluetooth
No of units tested:	One	One					
EUT power:							
	5 V Battery operation (Powered via USB to simulate battery supply)						
Highest internal frequency:	2400	MHz					
Cables: USB Power Only	Cable	e 1		3	m	Unscreened	Terminated
Tested as	Table	e top					
Mode/s of operation	Powered by 5V simulated battery supply running internal software.						
Client modification statement:	None						
Modifications incorporated during testing:	None	None					

3.2 EUT Photos

Bottom of PCB

Top of PCB and module

3.3 Configuration of EUT

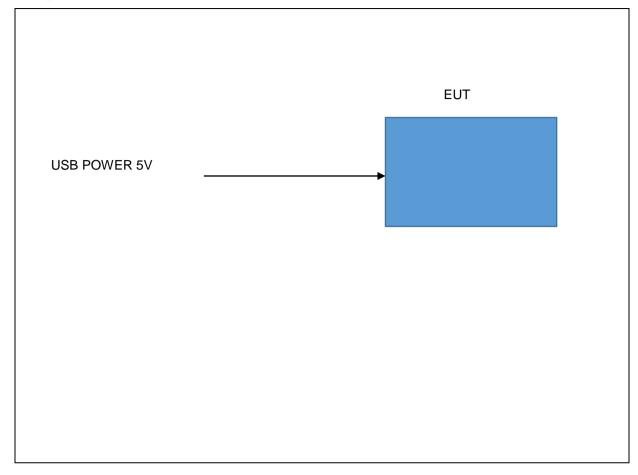


Figure 1: Diagram of EUT

Section 4Test Specifications

The tests were performed in accordance with Eurofins York Ltd Quotation B5200-1.

47CFR Part 15, Sub Part B Unintentional Radiators

Which references the following specification: -

ANSI C63-4: 2014 Methods of Measurements of Radio Noise Emissions from Low Voltage Electrical and Electronic Equipment in the Range 9kHz to 40GHz.

Test	Method	Levels	Result
Conducted Emissions (0.15 – 30MHz)	ANSI C63.4: 2014 Section 7	Part 15 Clause 15.107 Class B	N/A
Radiated Emissions Magnetic Field Measurements (9kHz to 30MHz)	ANSI C63.4: 2014 Section 8	Part 15 Clause 15.109(e) Part 15 Clause 15.209	N/A
Radiated Emissions Electric Field Measurements (30 – 18000MHz)	ANSI C63.4: 2014 Section 8	Part 15 Clause 15.109 Class B	Pass

Note 1 : Applies to carrier current systems see reference 47CFR Part 15Clause 15.109(e).

The Decision Rule is applied on the basis of the following:

As the decision is generally inherent in the standard for Commercial EMC a simple acceptance rule can be applied. The following statement will be added to EMC quotes and reports.

"The Decision Rule is applied on the basis of CISPR16-4-2 and/or EN61000-4-x (TR61000-1-6)

These standards provide guidance on how to calculate and apply measurement uncertainty whilst providing maximum uncertainties allowance. Due consideration will also be given to JCGM 106:2012, ILAC-G8:09/2019 and LAB 48.

This laboratory has demonstrated by calibrating its equipment and facilities, and calculating its own uncertainties, that it complies with the above requirements and therefore no allowance of uncertainties has been given to the tolerances."

Where a result is considered marginal in respect of its proximity to the limit line, for example, the customer would be made aware of situation so that they can make an informed decision on how to proceed.

4.1 Knowledge Database References

The following KDBs were referenced during the testing of the AirGlu2:

The latest knowledge database references are available via the FCC KDB website at:

https://apps.fcc.gov/kdb

4.1.1 Radiated Emissions (1GHz to 40GHz)

Publication Number	Keyword	Publication Date
714737	15B, Average Detector for Unintentional Radiator	30/11/2010
704992	Test Site Validation Requirements above 1 GHz.	12/06/2015
149045	Comparison Noise Emitter (CNE), reference noise source, .pdf	05/04/2007

4.2 Compliance Statement

The AirGlu2, as tested, was shown to meet requirements of the standards listed in Section 4 of this report.

Section 5 Radiated Emission Results

5.1 Test Specification

Standard	ANSI C63.4:2014
Measurement Uncertainty	The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95% is
	+/- 6.23dB for the frequency range 30MHz to 1GHz
	+/- 5.04dB for the frequency range from 1GHz to 6GHz +/- 5.35dB for the frequency range from 6GHz to 18GHz
	+/- 5.550B for the nequency range from 6GHZ to 16GHZ

5.2 Procedure and Test Software Version

Eurofins York test procedure (30MHz to 1GHz)	CEP23 Issue 7
Eurofins York test procedure (1GHz to 40GHz)	CEP64 Issue 8
Test software	RadiMation Version 2016.2.8

5.3 Radiated Emissions (30MHz to 1GHz)

5.3.1 Limits at 3m

Frequency (MHz)	Class A (dBµV/m)	Class B (dBµV/m)
	Quasi Peak	Quasi Peak
30 - 88	49.5	40.0
88 -216	53.5	43.5
216 - 960	56.4	46.0
960- 1000	59.5	54.0

Note: FCC 47 CFR Part 15 Section 15.109 specifies test limits at 10m for Class A and 3m for Class B.

Please note that for Class A, limits have adjusted by 10dB to correct for the measurement distance of 3m.

5.3.2 Receiver Settings

Receiver Parameters	Setting
Detector Function	Quasi Peak
Start Frequency	30MHz
Stop Frequency	1000MHz
Resolution Bandwidth	120kHz
Video Bandwidth	Auto

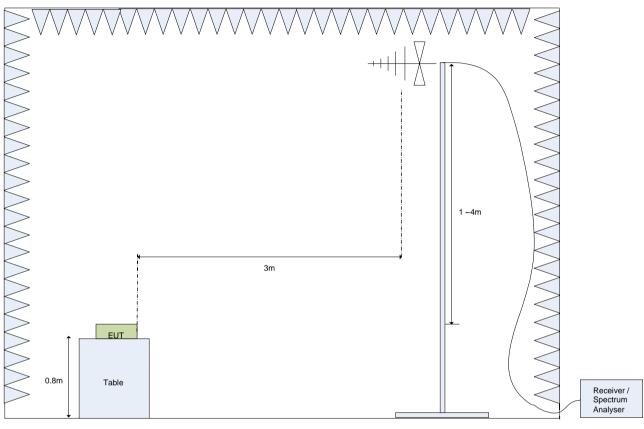
5.3.3 Emissions measurements

5.3.4 Date of Test

8th December 2021

5.3.5 Test Area

LAB 1 (SAC)


5.3.6 Tested by

Colin Greenfield

5.3.7 Test Setup

The EUT was configured in the SAC on an 80cm high table.

The measurement was performed with an antenna to EUT separation distance of 3m. The Quasi peak limits are therefore increased by 10dB (from the 10m values), to allow for the reduction in the measurement distance. The results were maximised in orientation 0-360 degrees and height 1-4m.

Reference Ground Plane

Figure 2: Test Setup for E-Field Measurements from 30MHz to 1GHz

- Note 1: With the EUT de-energized the ambient radio noise and signals met the 6dB peak detection requirement of ANSI C63.4-2014 Clause 5.1.3.
- Note 2 : There were no significant environmental temperature changes during the test duration and hence it was not considered necessary to consider any variation in cable loss.

FCC Class B RBW: 120 kHz, Horizontal Max Peak - RBW: 120 kHz, Vertical Max Peak 60 50-Electrical Field (dBµV/m) .05 .06 4 Anapa with my □1 10 79 10-0 30 M 50 M 100 M 200 M 300 M 500 M 1Ġ Frequency (Hz)

5.3.8 Electric field emissions, 30MHz to 1GHz

No	Frequency	Quasi-Peak	Quasi-Peak Limit	Quasi-Peak Difference	Status	Angle	Height	Polarization
1	549.294 MHz	23.8 dBµV/m	46 dBμV/m	-22.2 dB	Pass	125 degrees	3.9 m	Horizontal
2	577.8 MHz	20.4 dBµV/m	46 dBμV/m	-25.6 dB	Pass	135 degrees	1.6 m	Horizontal
3	799.56 MHz	21.3 dBµV/m	46 dBμV/m	-24.7 dB	Pass	110 degrees	2.6 m	Horizontal
4	548.916 MHz	27.2 dBµV/m	46 dBμV/m	-18.8 dB	Pass	265 degrees	1.9 m	Horizontal
5	59.958 MHz	36.9 dBµV/m	40 dBμV/m	-3.1 dB	Pass	310 degrees	1.4 m	Vertical
6	797.262 MHz	20.7 dBµV/m	46 dBμV/m	-25.3 dB	Pass	245 degrees	2.3 m	Vertical
7	72.216 MHz	33.3 dBµV/m	40 dBμV/m	-6.7 dB	Pass	50 degrees	1 m	Vertical
8	47.958 MHz	33.2 dBµV/m	40 dBμV/m	-6.8 dB	Pass	30 degrees	1.1 m	Vertical
9	802.704 MHz	18.4 dBµV/m	46 dBμV/m	-27.6 dB	Pass	360 degrees	1.5 m	Vertical
10	821.922 MHz	20.7 dBµV/m	46 dBμV/m	-25.3 dB	Pass	345 degrees	1.4 m	Vertical

Table 1: Electric Field Emissions Peaks, 30MHz to 1GHz

5.3.9 Quasi Peak correction factors

The quasi peak correction is shown in the above table. This correction figure consists of Antenna factor (AF); and Cable loss (CL).

Field strength (FS) is calculated as follows:

FS (dBµV/m) = Indicated Signal Level (dBµV) + AF (dB) + CL (dB)

5.3.10 Sample Data

The Quasi-Peak level at 72.216MHz

FS $(dB\mu V/m) = 33.3dB = 19.7dB\mu V + 12.7dB + 0.9dB$

5.4 Radiated Emissions (1GHz to 18GHz)

5.4.1 Limits

Frequency (GHz)	Class A (dBµV/m)	Class B (dBµV/m)
	Average	Average
1-18	59.5	54.0

5.4.2 Receiver Settings

Receiver Parameters	Setting
Detector Function	Average
Start Frequency	1GHz
Stop Frequency	18GHz
Resolution Bandwidth	1MHz
Video Bandwidth	Auto

5.4.3 Emissions measurements

5.4.4 Date of Test

8th December 2021

5.4.5 Test Area

LAB 1 (SAC)

5.4.6 Tested by

Colin Greenfield

5.4.7 Test Setup

The EUT was configured in the SAC on an 80cm high table.

Exploratory measurements on the EUT were carried out to identify suspect frequencies and worst case orientations, see Section 5.4.8.

The measurement was then performed with an antenna to EUT separation distance of 3m.

The antenna was kept in the "cone of radiation" from the EUT and pointed at the area both in azimuth and elevation using the tilt mechanism on the antenna mast.

The results were maximised in orientation 0-360 degrees and height 1-4m.

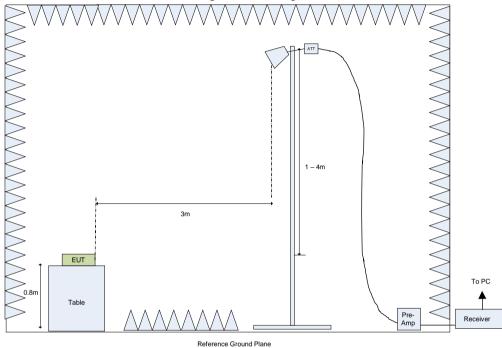
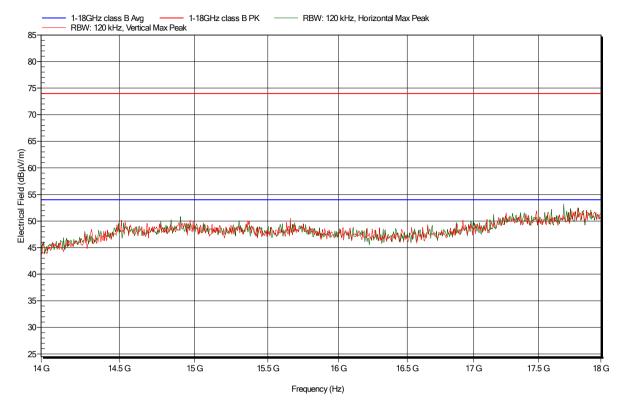


Figure 4: Test Setup for Final E-Field Measurements from 1GHz to 18GHz

- Note 1: With the EUT de-energized the ambient radio noise and signals met the 6dB peak detection requirement of ANSI C63.4-2014 Clause 5.1.3.
- Note 2 : There were no significant environmental temperature changes during the test duration and hence it was not considered necessary to consider any variation in cable loss.


5.4.8 Exploratory Radiated Emission Maximization

During exploratory testing, suspect emissions from the EUT were identified both in terms of the frequency and directionality. This was achieved by manually positioning the antenna close to the EUT and also by scanning it over all sides of the EUT whilst observing a spectral display. The typical distance between the surface of the EUT and the scanning antenna was circa 30cm.

Frequency (GHz)	Mode of operation	EUT face *	Emissions Angle (w.r.t. turntable)	Height	Polarization
1.012*	1	Front	90	1m	н
1.209	1	Front	90	1m	н
1.604	1	Front	90	1m	н
4.998	1	Front	90	1m	н
6.007	1	Front	90	1m	Н

Table 2: Frequencies identified during Exploratory Radiated Emission maximization

- Note 1 : The front face of the EUT is deemed to be 0° , which is then turned in a clockwise direction through 360° .
- Note 2 : The method for the exploratory radiated emission maximisation is as detailed in Annex E of ANSI C63.4-2014.
- Note 3: 1.012GHz identified as worst case point in exploratory testing.

5.4.9 Electric field emissions, 1GHz to 18GHz

Figure 5: Electric field emissions Plot, 14GHz to 18GHz investigative Pre-scan with reduced BW to prove no emissions from the EUT were present in the range of 14GHz and 18GHz

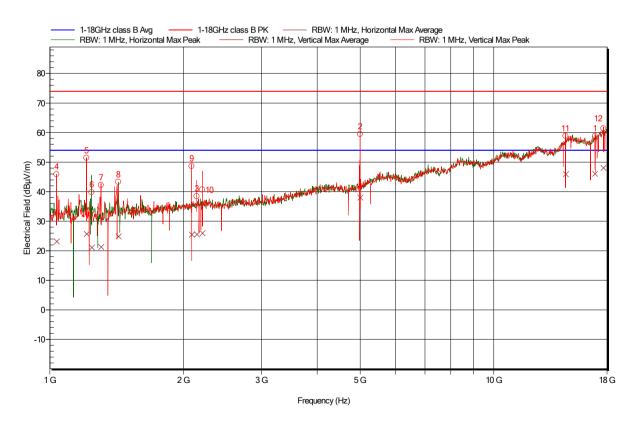


Figure 6: Electric field emissions Plot, 1GHz to 18GHz

Commercial in Confidence

No	Frequency	Peak	Peak Limit	Peak Difference	Average	Average Limit	Average Difference	Status	Angle	Height	Polarization
1	16.911 GHz	58.82 dBµV/m	74 dBµV/m	-15.18 dB	46.02 dBµV/m	54 dBµV/m	-7.98 dB	Pass	125 degrees	2.8 m	Vertical
2	4.999 GHz	59.49 dBµV/m	74 dBµV/m	-14.51 dB	38.08 dBµV/m	54 dBµV/m	-15.92 dB	Pass	5 degrees	2.9 m	Vertical
3	2.143 GHz	38.46 dBµV/m	74 dBµV/m	-35.54 dB	25.59 dBµV/m	54 dBµV/m	-28.41 dB	Pass	205 degrees	2.9 m	Vertical
4	1.035 GHz	45.86 dBµV/m	74 dBµV/m	-28.14 dB	23.2 dBµV/m	54 dBµV/m	-30.8 dB	Pass	10 degrees	2.2 m	Vertical
5	1.21 GHz	51.45 dBµV/m	74 dBµV/m	-22.55 dB	25.78 dBµV/m	54 dBµV/m	-28.22 dB	Pass	5 degrees	3.5 m	Vertical
6	1.242 GHz	39.78 dBµV/m	74 dBµV/m	-34.22 dB	21.18 dBµV/m	54 dBµV/m	-32.82 dB	Pass	150 degrees	1.7 m	Horizontal
7	1.304 GHz	42.19 dBµV/m	74 dBµV/m	-31.81 dB	21.35 dBµV/m	54 dBµV/m	-32.65 dB	Pass	185 degrees	2.6 m	Vertical
8	1.427 GHz	43.29 dBµV/m	74 dBµV/m	-30.71 dB	24.97 dBµV/m	54 dBµV/m	-29.03 dB	Pass	60 degrees	1.7 m	Horizontal
9	2.087 GHz	48.65 dBµV/m	74 dBµV/m	-25.35 dB	25.52 dBµV/m	54 dBµV/m	-28.48 dB	Pass	240 degrees	3 m	Vertical
10	2.206 GHz	40.68 dBµV/m	74 dBµV/m	-33.32 dB	26.03 dBµV/m	54 dBµV/m	-27.97 dB	Pass	210 degrees	3.3 m	Vertical
11	14.511 GHz	58.88 dBµV/m	74 dBµV/m	-15.12 dB	45.99 dBµV/m	54 dBµV/m	-8.01 dB	Pass	285 degrees	2.9 m	Vertical
12	17.671 GHz	61.39 dBµV/m	74 dBµV/m	-12.61 dB	48.05 dBµV/m	54 dBµV/m	-5.95 dB	Pass	290 degrees	1.4 m	Vertical

5.4.10 Average correction factors

The total average corrections are shown in the above table. This correction figure consists of Preamplifier gain (PG), Antenna factor (AF); Attenuator loss (AL) and Cable loss (CL).

Field strength (FS) is calculated as follows:

FS (dB μ V/m) = Indicated Signal Level (dB μ V) - PG (dB) + AF (dB) + CL (dB)

5.4.11 Sample Data

The Average level at 1.304GHz

FS (dBµV/m) = 21.4dBµV/m = 44.0dBµV - 50.23dB + 23.9dB + 3.7dB

Appendix A EUT Test Photos

Radiated Emissions

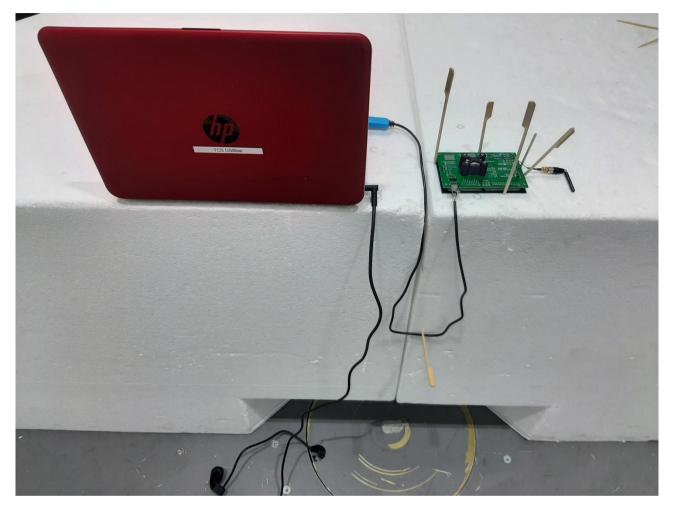


Photo 1: Radiated Emissions, close-up shot

The cable/wire placement on the test site was setup to produce the highest radiated emissions. The above photograph(s) illustrates the setup tested.

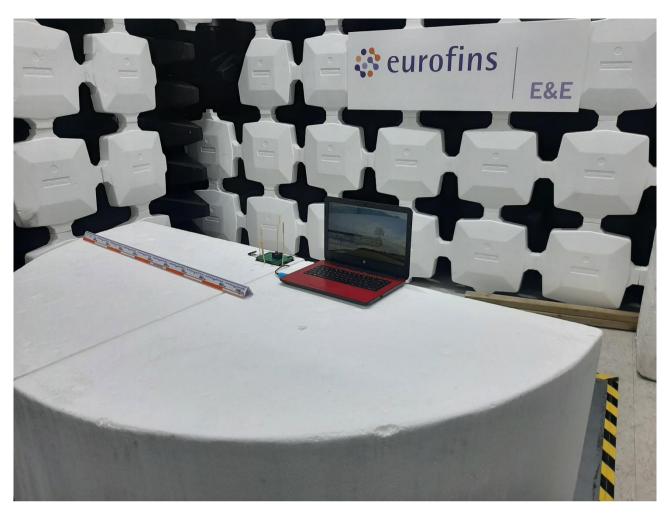


Photo 2: Radiated Emissions, 30MHz to 1GHz

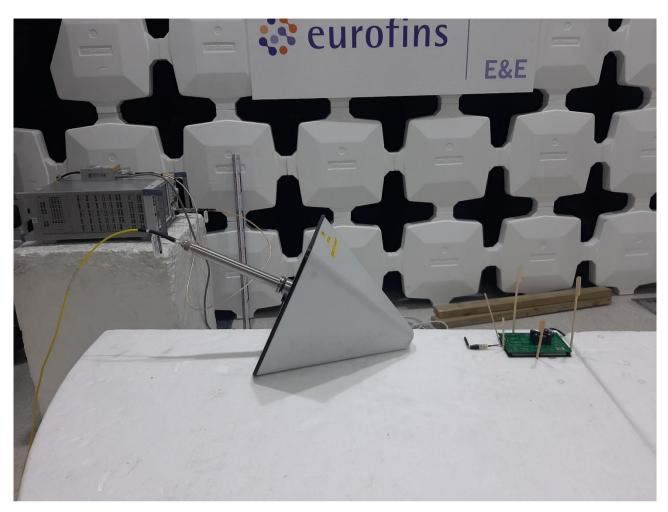


Photo 3: Exploratory Radiated Emissions Maximization, 1GHz to 18GHz

Photo 4: Radiated Emissions, 1GHz to 18GHz

Appendix B Test Equipment List

Radiated Emissions Equipment

Item	Serial No.	Last Calibration Date	Calibration Interval
Laboratory 1 Semi-Anechoic Chamber	Lab 1	04/11/2019 (NSA) 28/01/2020 (Svswr)	36 Months
ETS Lindgren 2017B Mast (1 – 4m) with tilting mechanism		N/A	N/A
EMCO Loop antenna 6512	00148043	02/06/20	24 Months
Rohde & Schwarz ESR 26	101464	10/11/20	18 Months
Teseq CBL6112D Bilog Antenna	49040	15/07/2021	24 Months
6dB Attenuator (For use with Bilog Antenna)	C0506B	15/08/2018	36 Months
HF 26 Cable	19148_06_13_001	5/01/2021	12 Months
HF 27 Cable	19149.03.13.004	5/01/2021	12 Months
HF17 Cable	167002-001	5/01/2021	12 Months
Schwarzbeck STLP9148 Stacked log periodic Antenna	179	17/11/20	12 Months
BONN BLMA 0118-5A Preamplifier	149759	09/03/2021	12 Months
ETS Lindgren 3116C-PA Horn Antenna with Integral Pre-amplifier	00209121	17/10/2019	36 Months
HF29 Cable (For use from 18GHz to 40GHz)	HF29	4/01/2021	12 Months