

APPENDIX B: ADT SAR MEASUREMENT SYSTEM

APPENDIX C: PHOTOGRAPHS OF SYSTEM VALIDATION

APPENDIX D: SYSTEM CERTIFICATE & CALIBRATION

D1: SAM PHANTOM

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland, Phone +41 1 245 97 00, Fax +41 1 245 97 79

Certificate of conformity / First Article Inspection

Item .	SAM Twin Phantom V4.0		
Type No	QD 000 P40 CA		<u> </u>
Series No	TP-1150 and higher		
Manufacturer / Origin -	Untersee Composites		
	Hauptstr. 69	•	
	CH-8559 Fruthwilen		
	Switzerland		

Tests

The series production process used allows the limitation to test of first articles. Complete tests were made on the pre-series Type No. QD 000 P40 AA, Serial No. TP-1001 and on the series first article Type No. QD 000 P40 BA, Serial No. TP-1006. Certain parameters have been retested using further series units (called samples).

Test	Requirement	Details	Units tested
Shape	Compliance with the geometry according to the CAD model.	IT'IS CAD File (*)	First article, Samples
Material thickness	Compliant with the requirements according to the standards	2mm +/- 0.2mm in specific areas	First article, Samples
Material parameters	Dielectric parameters for required frequencies	200 MHz - 3 GHz Relative permittivity < 5 Loss tangent < 0.05.	Material sample TP 104-5
Material resistivity	The material has been tested to be compatible with the liquids defined in the standards	Liquid type HSL 1800 and others according to the standard.	Pre-series, First article

Standards

- [1] CENELEC EN 50361
- [2] IEEE P1528-200x draft 6.5
- [3] IEC PT 62209 draft 0.9
- (*) The IT'IS CAD file is derived from [2] and is also within the tolerance requirements of the shapes of [1] and [3].

Conformity

Based on the sample tests above, we certify that this item is in compliance with the uncertainty requirements of SAR measurements specified in standard [1] and draft standards [2] and [3].

Date

28.02.2002

Signature / Stamp

Engineering AG

Zeughausstrasse 43, CH-8004 Zurlch
Tel. +41 1 245 97 00, Fex +41 1 245 97 79

Schmid & Partner

Page

1 (1)

F. Bumbult

	ADT CORP.
D2: DOSIMETRIC E-FIELD PROBE	

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

IMPORTANT NOTICE

USAGE OF PROBES IN ORGANIC SOLVENTS

Diethylene Gycol Monobuthy Ether (the basis for liquids above 1 GHz), as many other organic solvents, is a very effective softener for synthetic materials. These solvents can cause irreparable damage to certain SPEAG products, except those which are explicitly declared as compliant with organic solvents.

Compatible Probes:

- ET3DV6
- ET3DV6R
- ES3DV2
- ER3DV6
- H3DV6

Important Note for ET3DV6 Probes:

The ET3DV6 probes shall not be exposed to solvents longer than necessary for the measurements and shall be cleaned daily after use with warm water and stored dry.

s p e a g

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.ccm

Schmid & Partner Engineering AG

Calibration Laboratory of

Schmid & Partner

Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

Client

ADT (Auden)

CALIE			

Object(s)

ET3DV6 - SN:1687

Calibration procedure(s)

QA CAL-01.v2

Calibration procedure for dosimetric E-field probes

Calibration date:

November 24, 2003

Condition of the calibrated item

In Tolerance (according to the specific calibration document)

This calibration statement documents traceability of M&TE used in the calibration procedures and conformity of the procedures with the ISO/IEC 17025 international standard.

All calibrations have been conducted in the closed laboratory facility: environment temperature 22 +/- 2 degrees Celsius and humidity < 75%.

Calibration Equipment used (M&TE critical for calibration)

Model Type	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power meter EPM E4419B	GB41293874	2-Apr-03 (METAS, No 252-0250)	Apr-04
Power sensor E4412A	MY41495277	2-Apr-03 (METAS, No 252-0250)	Apr-04
Reference 20 dB Attenuator	SN: 5086 (20b)	3-Apr-03 (METAS No. 251-0340	Apr-04
Fluke Process Calibrator Type 702	SN: 6295803	8-Sep-03 (Sintrel SCS No. E-030020)	Sep-04
Power sensor HP 8481A	MY41092180	18-Sep-02 (SPEAG, in house check Oct-03)	In house check: Oct 05
RF generator HP 8684C	US3642U01700	4-Aug-99 (SPEAG, in house check Aug-02)	In house check: Aug-05
Network Analyzer HP 8753E	US37390585	18-Oct-01 (SPEAG, in house check Oct-03)	In house check: Oct 05

Calibrated by:

Name Function Signature
Nico Vetterii Technician

Nico Vetterii Technician

Approved by:

Katja Pokovic Laboratory Director

Date issued: November 24, 2003

This calibration certificate is issued as an intermediate solution until the accreditation process (based on ISO/IEC 17025 International Standard) for Calibration Laboratory of Schmid & Partner Engineering AG is completed.

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

Probe ET3DV6

SN:1687

Manufactured:

May 28, 2002

Last calibration:

June 5, 2002

Recalibrated:

November 24, 2003

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

ET3DV6 SN:1687 November 24, 2003

DASY - Parameters of Probe: ET3DV6 SN:1687

Sensitivity in Free Spac	е	Diode Compression					
NormX	1.79 μV/(V/m) ²	DCP X	95 mV				
NormY	1.79 μV/(V/m) ²	DCP Y	95 mV				
NormZ	1.59 μV/(V/m) ²	DCP Z	95 mV				
Sensitivity in Tissue Simu	lating Liquid						
Head 900 MHz	ϵ_r = 41.5 ± 5%	σ = 0.97 ± 5% mhc	o/m				
Valid for f=800-1000 MHz with Head	Tissue Simulating Liquid according	g to EN 50361, P1528-200X					
ConvF X	6.7 ± 9.5% (k=2)	Boundary effect:					
ConvF Y	6.7 ± 9.5% (k=2)	Alpha	0.39				
ConvF Z	6.7 ± 9.5% (k=2)	Depth	2.46				
Head 1800 MHz	ε_r = 40.0 ± 5%	σ= 1.40 ± 5% mhd	o/m				
Valid for f=1710-1910 MHz with Head Tissue Simulating Liquid according to EN 50361, P1528-200X							
ConvF X	$5.3 \pm 9.5\% \text{ (k=2)}$	Boundary effect:					
ConvF Y	$5.3 \pm 9.5\% \text{ (k=2)}$	Alpha	0.46				
ConvF Z	5.3 ± 9.5% (k=2)	Depth	2.69				
Boundary Effect							

Head	900	MHz	Typical SAR gradient: 5 % per mm		
F	Probe Tip to B SAR _{be} [%] SAR _{be} [%]	CONTRACTOR S	ection Algorithm on Algorithm	1 mm 9.9 0.3	2 mm 5.6 0.5
Head	1800	MHz	Typical SAR gradient: 10 % per mm		
	Probe Tip to B SAR _{be} [%] SAR _{be} [%]	101 G	ection Algorithm on Algorithm	1 mm 13.0 0.2	2 mm 8.9 0.1

Sensor Offset

Probe Tip to Sensor Center	2.7	mm
Optical Surface Detection	1.5 ± 0.2	mm

Receiving Pattern (ϕ), $\theta = 0^{\circ}$

