

849 NW State Road 45
Newberry, FL 32669 USA
Phone: 352.472.5500
Fax: 352.472.2030
Email: info@timcoengr.com
Website: www.timcoengr.com

TEST REPORT
FCC PART 15
for
FCC ID: AXI11464620

Applicant	VERTEX STANDARD USA, INC.	
Address	8000 WEST SUNRISE BLVD. FT. LAUDERDALE FL 33322 USA	
Model Number	EVX-S24-G6-3	
Product Description	UHF 2 WAY PORTABLE TRANSCEIVER	
Date Sample Received	6/29/2016	
Date Tested	7/26/2016	
Tested By	Cory Leverett	
Approved By	Sid Sanders	
Test Results	<input checked="" type="checkbox"/> PASS	<input type="checkbox"/> FAIL

Report Number	Version Number	Description	Issue Date
1233BUT16TestReport	Rev1	Initial Issue	7/27/2016

**THE ATTACHED REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL
WITHOUT THE WRITTEN APPROVAL OF TIMCO ENGINEERING, INC.**

TABLE OF CONTENTS

GENERAL REMARKS.....	3
GENERAL INFORMATION.....	4
EUT CABLES USED FOR TESTING.....	4
TEST INFORMATION.....	5
RESULTS SUMMARY	5
RADIATED SPURIOUS EMISSIONS.....	6
30-200 MHZ PEAK PLOT.....	7
200-1000 MHZ PEAK PLOT.....	8
1000-5000 MHz PEAK PLOT	9
POWER LINE CONDUCTED INTERFERENCE.....	10
POWERLINE 1 PEAK PLOT	11
POWERLINE 1 QUASI PEAK & AVERAGE PLOT	12
POWERLINE 2 PEAK PLOT	13
POWERLINE 2 QUASI PEAK & AVERAGE PLOT	14
TEST EQUIPMENT LIST	15
UNCERTAINTY TABLE.....	16

GENERAL REMARKS

The attached report shall not be reproduced except in full without the written permission of Timco Engineering Inc.

Summary

The device under test does:

- Fulfill the general approval requirements as identified in this test report and was selected by the customer.
- Not fulfill the general approval requirements as identified in this test report

Attestations

This equipment has been tested in accordance with the standards identified in this test report. To the best of my knowledge and belief, these tests were performed using the measurement procedures described in this report.

All instrumentation and accessories used to test products for compliance to the indicated standards are calibrated regularly in accordance with ISO 17025 requirements.

I attest that the necessary measurements were made at:

Timco Engineering Inc.
849 NW State Road 45
Newberry, FL 32669

Tested by: _____

Name and Title: Project Manager/Testing Technician

Date: 7/27/2016

Reviewed and approved by: _____ Name and Title: Engineer

Date: 7/27/2016

GENERAL INFORMATION

The test results relate only to the items tested.	
EUT Description	UHF 2 WAY PORTABLE TRANSCEIVER
FCC ID	AXI11464620
Model Number	EVX-S24-G6-3
Highest Tuned Frequency	480 MHz
I/O Port Type	USB Micro
EUT Power Source	<input type="checkbox"/> 110–120Vac/ 50– 60Hz
	<input type="checkbox"/> 12.6 VDC Nominal
	<input checked="" type="checkbox"/> Battery Operated Exclusively
Test Item	<input type="checkbox"/> Prototype
	<input type="checkbox"/> Pre-Production
	<input type="checkbox"/> Production
Environmental Condition in the laboratory	Temperature: 24-26°C Relative humidity: 50-65% Barometric Pressure: 1012.8mb

EUT CABLES USED FOR TESTING

Description	Type	Connector	Length
USB Data Cable	Shielded	USB-A to USB Micro	Less than 3 m

TEST INFORMATION

Regulatory Standard	CFR Title 47 FCC Rule part 15B § 15.109, 15.107
Test Procedures	FCC Part 15.31, 15.33, 15.35 ANSI C63.4 – 2014
Operational Modes	Configured as a computer peripheral through a PC running provided software with a continuous firmware update loop.
Setup	The EUT was configured as a computer peripheral through a supplied USB cable, the setup used was a tabletop arrangement for IT equipment as specified in the standard
Modifications required for Testing	None
Deviation from the standard/ procedure	No deviation
Host PC Model	Microsoft Surface Pro 3 with Microsoft model 1625 ITE supply

RESULTS SUMMARY

Requirement				RESULTS	
15.109 Radiated Emissions	Frequency MHz	Level (dB_uV/ m)		Pass/ Fail	
	30 – 88	40.0		Pass	
	80 – 216	43.0			
	216 – 960	46.0			
	Above 960	54.0			
15.107 AC Powerline Conducted	Frequency MHz	Quasi Peak Limits (dB_uV)	Average Limits (dB_uV)		
	0.15 – 0.5	66 – 56	56 – 46 *	Pass	
	0.5 – 5.0	56	46		
	5.0 – 30	60	50		
	Decrease with logarithm of frequency				

RADIATED SPURIOUS EMISSIONS

Rule Part No.: FCC Part 15 Subpart B

Requirements: FCC Part 15.109(a) Radiated Emission Limit

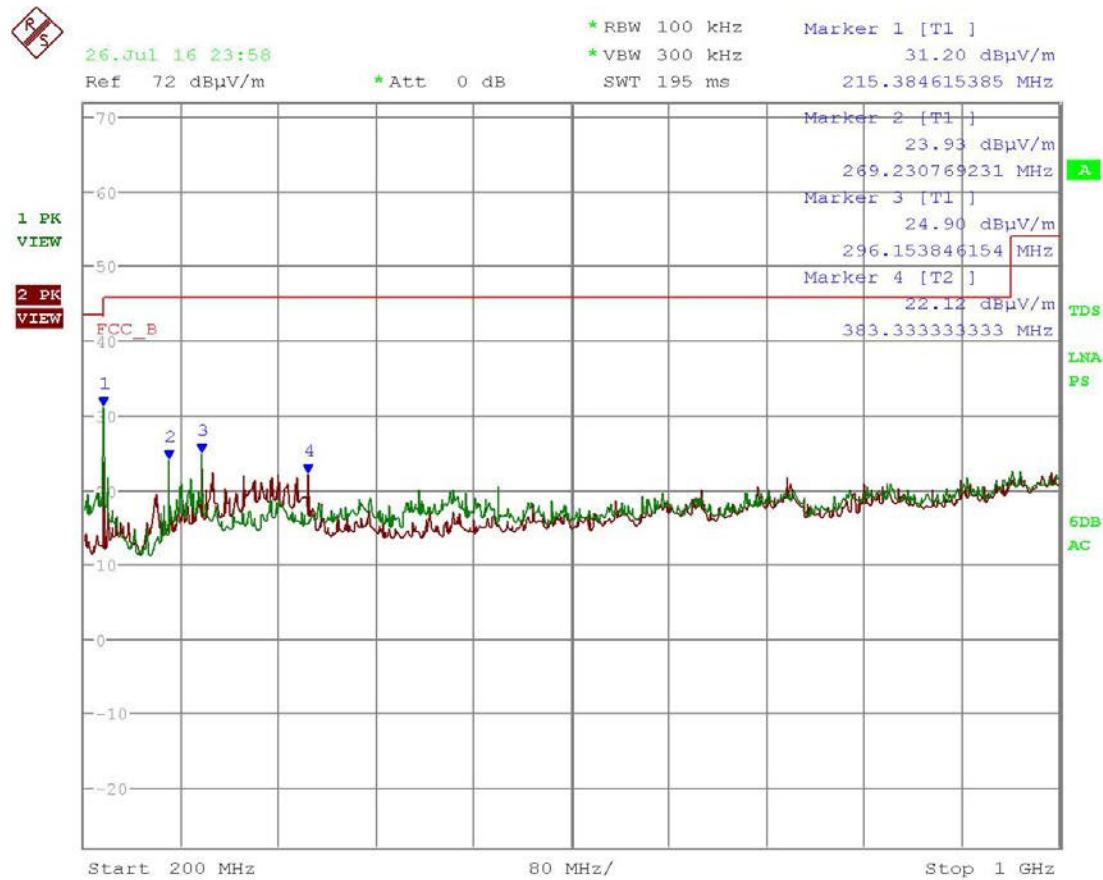
Class B Field Strength Limits @ 3 Meters	
Frequency (MHz)	Level (dB _u V/ m)
30 – 88	40.0
80 – 216	43.5
216 – 960	46.0
Above 960	54.0

Procedure: FCC Part 15.33(b)(1) Frequency range of radiated measurements

FCC Part 15.35(a) Measurement detector functions and bandwidths

ANSI C63.4 Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment 9 kHz to 40 GHz

- § 11.2 Operating conditions
- § 11.3 Peripherals / Accessories
- § 11.5 Tabletop equipment arrangement
- § 11.9 Radiated emission measurements


Configuration: The EUT is configured as a computer peripheral through a USB cable connected to a partially configured host PC. A firmware update to the EUT was used to transfer data between the EUT and the host PC.

RADIATED SPURIOUS EMISSIONS
30-200 MHZ PEAK PLOT

Date: 26.JUL.2016 23:54:36

Results - Meets Requirements

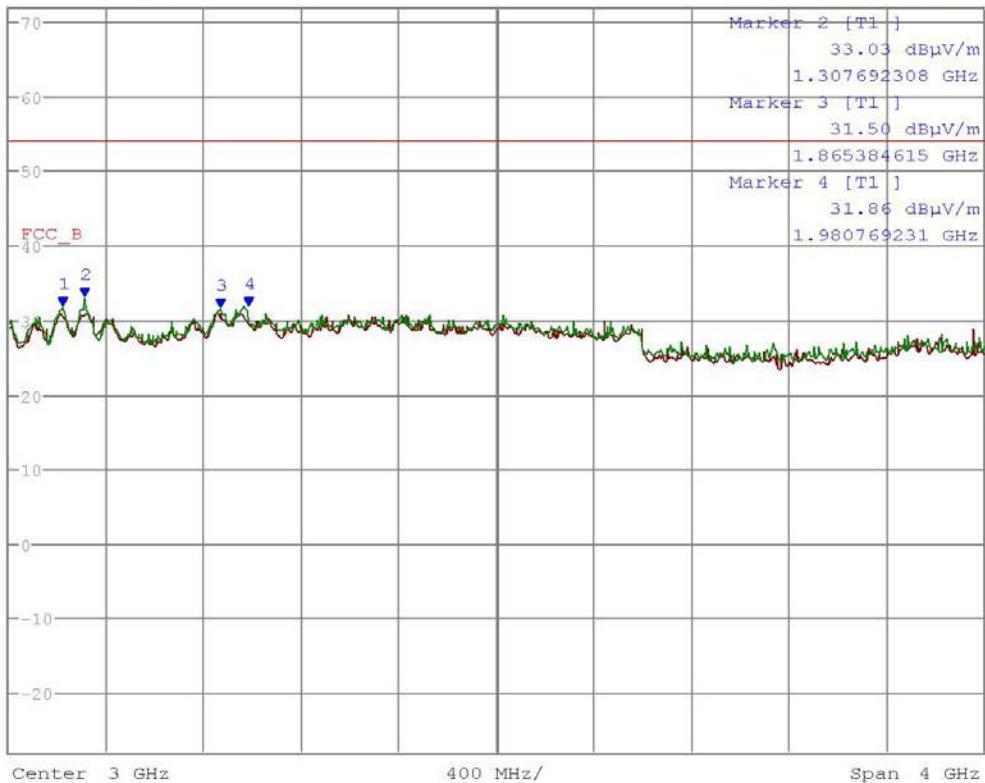
Ant Polarity: T1 (Green) = Vertical, T2 (Red) = Horizontal

RADIATED SPURIOUS EMISSIONS
200-1000 MHZ PEAK PLOT

Date: 26.JUL.2016 23:58:16

Results - Meets Requirements

Ant Polarity: T1 (Green) = Vertical, T2 (Red) = Horizontal


RADIATED SPURIOUS EMISSIONS
1000-5000 MHZ PEAK PLOT

 26.Jul.16 22:49
 Ref 72 dB μ V/m

* Att 10 dB

 * RBW 1 MHz
 * VBW 3 MHz
 SWT 25 ms

 Marker 1 [T1]
 31.70 dB μ V/m
 1.217948718 GHz

1 PK
VIEW
2 PK
VIEW

Date: 26.JUL.2016 22:49:36

Results - Meets Requirements

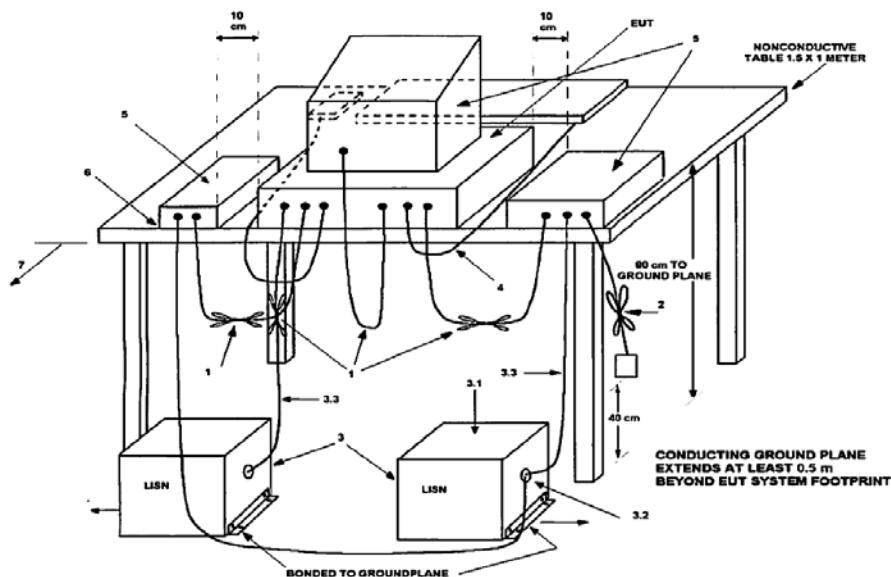
Ant Polarity: T1 (Green) = Vertical, T2 (Red) = Horizontal

POWER LINE CONDUCTED INTERFERENCE

Rules Part No.: FCC Subpart B

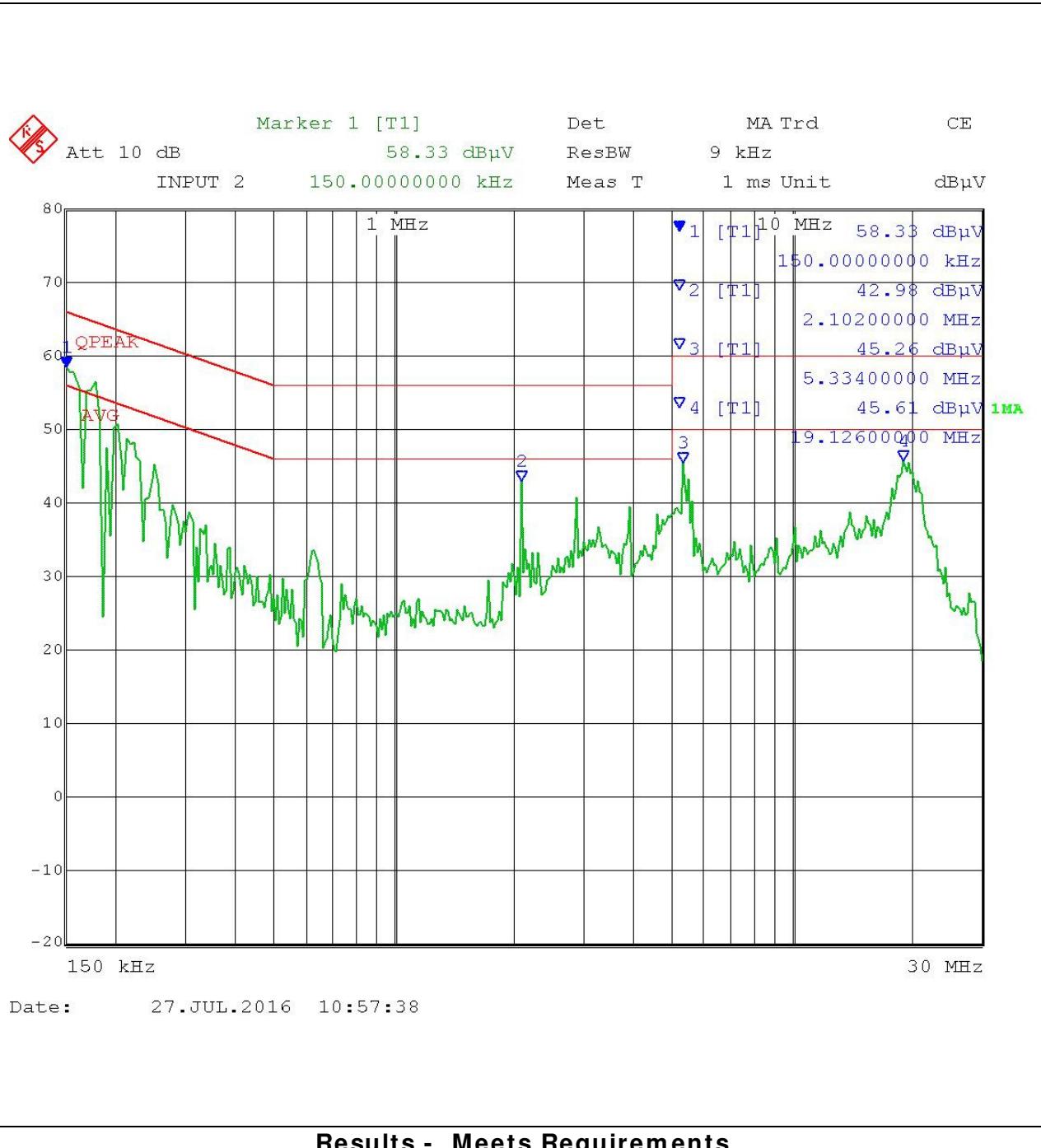
Requirements: FCC 15.107 (a) Conducted Limits

Frequency (MHz)	Quasi Peak Limits (dB μ V)	Average Limits (dB μ V)
0.15 – 0.5	66 – 56 *	56 – 46 *
0.5 – 5.0	56	46
5.0 – 30	60	50


* Decrease with logarithm of frequency

Procedure: ANSI C63.4 Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment 9 kHz to 40 GHz

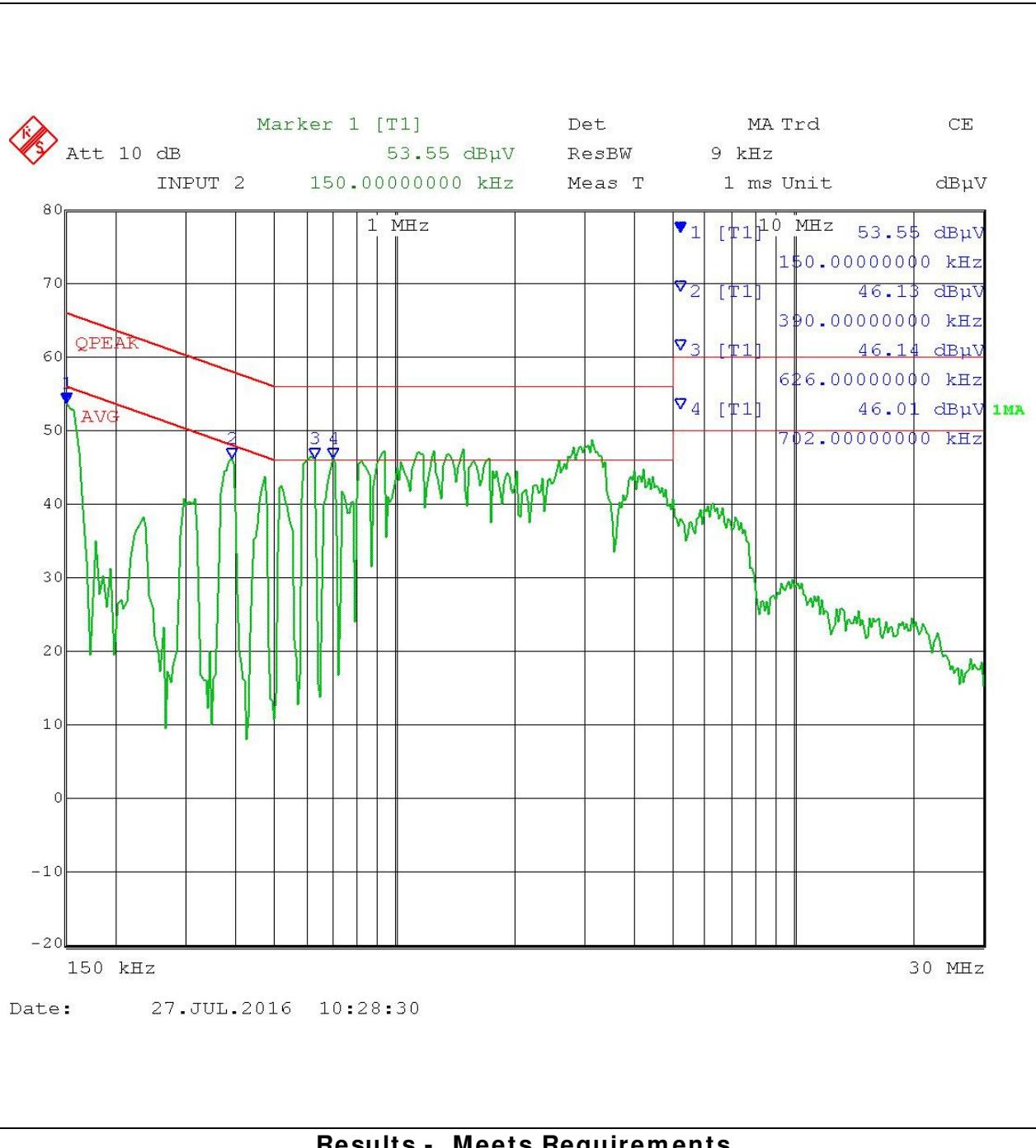
- § 11.2 Operating conditions
- § 11.3 Peripherals / Accessories
- § 11.5 Tabletop equipment arrangement
- § 11.8 AC power-line conducted emission measurements


Configuration: The EUT is configured as a computer peripheral through a USB cable connected to a partially configured host PC. A firmware update to the EUT was used to transfer data between the EUT and the host PC

Setup:

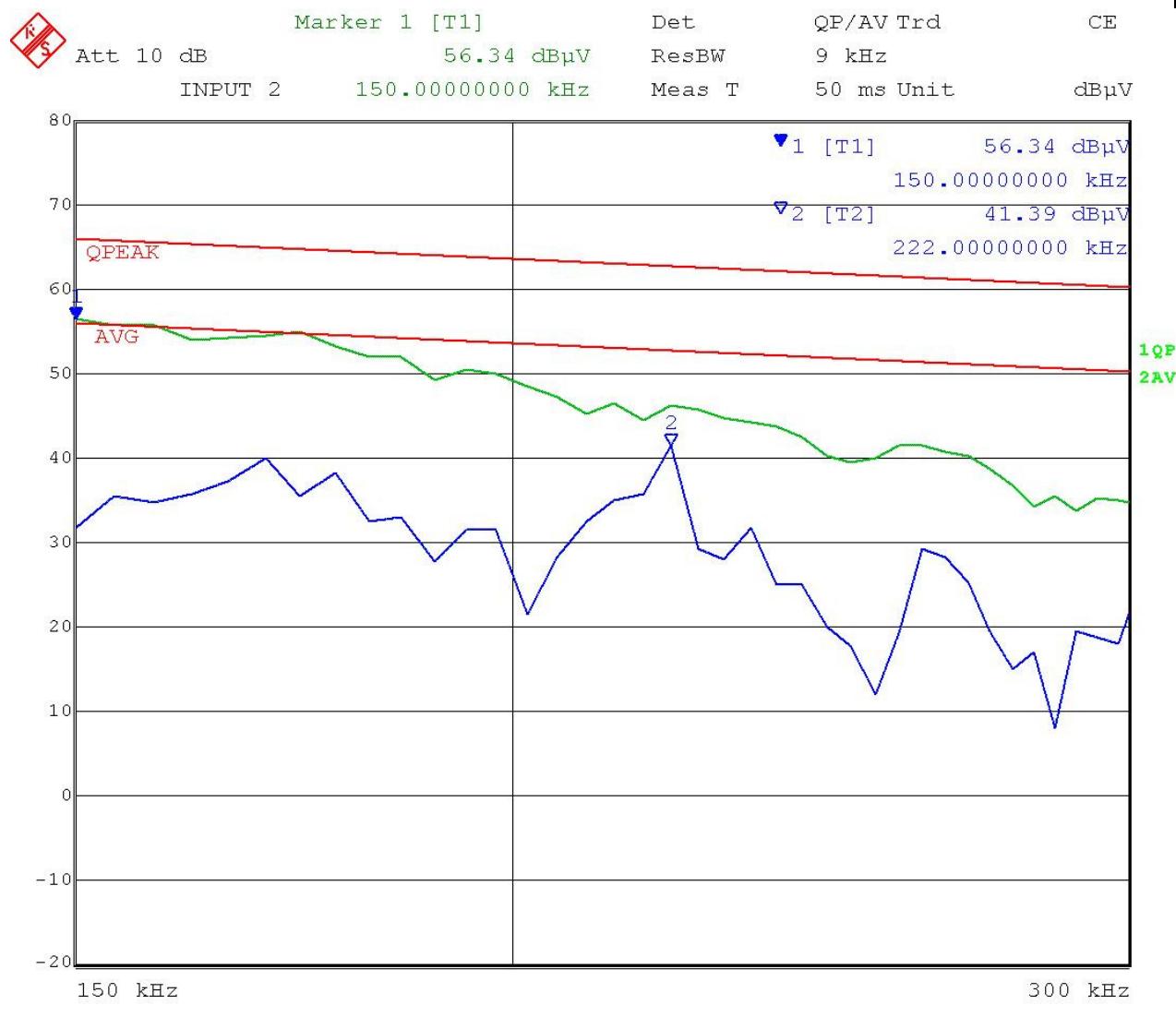
POWER LINE CONDUCTED INTERFERENCE

POWERLINE 1 PEAK PLOT



POWER LINE CONDUCTED INTERFERENCE
POWERLINE 1 QUASI PEAK & AVERAGE PLOT

Results - Meets Requirements


POWER LINE CONDUCTED INTERFERENCE

POWERLINE 2 PEAK PLOT

POWER LINE CONDUCTED INTERFERENCE

POWERLINE 2 QUASI PEAK & AVERAGE PLOT

Results - Meets Requirements

TEST EQUIPMENT LIST

Device	Manufacturer	Model	Serial Number	Cal/Char Date	Due Date
Antenna: Biconical 1096 Chamber	Eaton	94455-1	1096	07/14/15	07/14/17
Antenna: Log-Periodic 1122	Electro-Metrics	LPA-25	1122	07/14/15	07/14/17
LISN (Primary)	Electro-Metrics	ANS-25/2	2604	07/13/15	07/13/17
LISN (Secondary)	Electro-Metrics	EM-7820	2682	05/08/15	05/08/17
CHAMBER	Panashield	3M	N/A	12/31/16	12/31/17
Antenna: Double-Ridged Horn/ ETS Horn 2	ETS-Lindgren Chamber	3117	00041534	02/25/15	02/25/17
EMI Test Receiver R & S ESIB 40 Screen Room	Rohde & Schwarz	ESIB 40	100274	08/12/14	08/12/16
Software: Field Strength Program	Timco	N/A	Version 4.0 NO	NA	NA
EMI Test Receiver R & S ESU 40 Chamber	Rohde & Schwarz	ESU 40	100320	04/01/16	04/01/18
Coaxial Cable - BMBM-1000-00 Silver	Semflex	LISN Cable	BMBM-1000-00	01/05/16	01/04/17
Coaxial Cable - Chamber 3 cable set (Primary)	Micro-Coax	Chamber 3 cable set (Primary)	KMKG-0244-00; KMKG-0670-00; KFKF-0198-00	12/05/15	12/05/17
Bore-sight Antenna Positioning Tower	Sunol Sciences	TLT2	N/A	NA	NA
Pre-amp	RF-LAMBDA	RLNA00M45GA	NA	01/04/16	01/04/18

*** EMI RECEIVER SOFTWARE VERSION**

The receiver firmware used was version 4.43 Service Pack 3

UNCERTAINTY TABLE

State of the measurement uncertainty

The data and results referenced in this document are true and accurate. The measurement uncertainty was calculated for all measurements listed in this test report according to CISPR 16 – 4 or ENTR 100-028 Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: “Uncertainty in EMC Measurements” and is documented in the Timco Engineering, Inc. quality system according to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device. Hereafter the best measurement capability for Timco Engineering, Inc. is reported:

Test Items	Measurement Uncertainty	Notes
Radiated Emissions to 6.0GHz	± 4.4dB	(1)
Power line conducted emissions	± 3.9dB	(1)

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of $k=1.96$.

END OF REPORT