

MOTOROLA SOLUTIONS

CERTIFICATE 2518.05

DECLARATION OF COMPLIANCE SAR ASSESSMENT Part 1 of 2**Motorola Solutions Inc.****EME Test Laboratory**

Motorola Solutions Malaysia Sdn Bhd (Innoplex)
 Plot 2A, Medan Bayan Lepas,
 Mukim 12 SWD 11900 Bayan Lepas Penang, Malaysia.

Date of Report: 08/12/2016**Report Revision:** A**Responsible Engineer:**

Chang Chi Chern (EME Engineer)

Report Author:

Chang Chi Chern (EME Engineer)

Date/s Tested:

8/3/2016 – 8/12/2016

Manufacturer:

Vertex Standard LMR, Inc.

DUT Description:

Handheld Portable – EVX-261-D0-5 136-174 MHz 5W

Test TX mode(s):

CW (PTT)

Max. Power output:

5.5W

Nominal Power:

5.0W

Tx Frequency Bands:

LMR 136-174 MHz

Signaling type:

FM and TDMA

Model(s) Tested:

EVX-261-D0-5

Model(s) Certified:

EVX-261-D0-5

Serial Number(s):

2A61030011 and 2A61030009

Classification:

Occupational/Controlled

FCC ID:

AXI11373020 ; LMR 150.8-173.4 MHz

This report contains results that are immaterial for FCC equipment approval, which are clearly identified.

IC:

10239A-11373020; This report contains results that are immaterial for IC equipment approval, which are clearly identified.

The test results clearly demonstrate compliance with FCC Occupational/Controlled RF Exposure limits of 8 W/kg averaged over 1 gram per the requirements of OET Bulletin 65. The 10 grams result is not applicable to FCC filing. The test results clearly demonstrate compliance with ICNIRP (1998) Guidelines for limiting exposure in time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz), Health Physics 74, 494-522 RF Exposure limits of 10 W/kg averaged over 10grams of contiguous tissue.

Based on the information and the testing results provided herein, the undersigned certifies that when used as stated in the operating instructions supplied, said product complies with the national and international reference standards and guidelines listed in section 4.0 of this report. This report shall not be reproduced without written approval from an officially designated representative of the Motorola Solutions Inc EME Laboratory.

I attest to the accuracy of the data and assume full responsibility for the completeness of these measurements. This reporting format is consistent with the suggested guidelines of the TIA TSB-150 December 2004. The results and statements contained in this report pertain only to the device(s) evaluated.

Tiong Nguk Ing
Deputy Technical Manager
Approval Date: 8/17/2016

Certification Date: 8/17/2016**Certification No.:** L1160802

Part 1 of 2

1.0	Introduction.....	4
2.0	FCC SAR Summary.....	4
3.0	Abbreviations / Definitions.....	4
4.0	Referenced Standards and Guidelines	5
5.0	SAR Limits	6
6.0	Description of Device Under Test (DUT)	6
7.0	Optional Accessories and Test Criteria.....	7
7.1	Antennas	7
7.2	Batteries	7
7.3	Body worn Accessories.....	8
7.4	Audio Accessories	8
8.0	Description of Test System.....	9
8.1	Descriptions of Robotics/Probes/Readout Electronics	9
8.2	Description of Phantom(s).....	10
8.3	Description of Simulated Tissue.....	10
9.0	Additional Test Equipment.....	11
10.0	SAR Measurement System Validation and Verification	11
10.1	System Validation.....	11
10.2	System Verification	12
10.3	Equivalent Tissue Test Results	12
11.0	Environmental Test Conditions	13
12.0	DUT Test Setup and Methodology	14
12.1	Measurements	14
12.2	DUT Configuration(s).....	14
12.3	DUT Positioning Procedures	14
12.3.1	Body.....	15
12.3.2	Head	15
12.3.3	Face	15
12.4	DUT Test Channels	15
12.5	SAR Result Scaling Methodology.....	15
12.6	DUT Test Plan	16
13.0	DUT Test Data.....	16
13.1	LMR assessments at the Body for 150.8-173.4MHz band	16
13.2	LMR assessments at the Face for 150.8 – 173.4 MHz band.....	19
13.3	Assessment for Industry Canada.....	20
13.4	Assessment at outside FCC Part 90	21
13.5	Assessment at the Bluetooth band	21
13.6	Shortened Scan Assessment.....	22
14.0	Simultaneous Transmission Exclusion for BT	22
15.0	Results Summary	22
16.0	Variability Assessment	23
17.0	System Uncertainty	23

APPENDICES

A	Measurement Uncertainty Budget	24
B	Probe Calibration Certificates.....	27
C	Dipole Calibration Certificates	40

Part 2 of 2**APPENDICES**

D	System Verification Check Scans.....	2
E	DUT Scans	10
F	Shorten Scan of Highest SAR Configuration	21
G	DUT Test Position Photos	23
H	DUT, Body worn and audio accessories Photos	24

Report Revision History

Date	Revision	Comments
08/12/2016	A	Initial release

1.0 Introduction

This report details the utilization, test setup, test equipment, and test results of the Specific Absorption Rate (SAR) measurements performed at the Motorola Solutions Inc. EME Test Laboratory for handheld portable model number EVX-261-D0-5. This device is classified as Occupational/Controlled.

2.0 FCC SAR Summary

Table 1

Equipment Class	Frequency band (MHz)	Max Calc at Body (W/kg)		Max Calc at Face (W/kg)	
		1g-SAR	10g-SAR	1g-SAR	10g-SAR
TNF	150.8 – 173.4 MHz	2.48	1.73	1.39	1.06
Simultaneous Results		NA	NA	NA	NA

3.0 Abbreviations / Definitions

CNR: Calibration Not Required

CW: Continuous Wave

DSP: Digital Signal Processor

DUT: Device Under Test

EME: Electromagnetic Energy

FM: Frequency Modulation

LMR: Land Mobile Radio

NA: Not Applicable

NiMH: Nickel Metal Hydride

PTT: Push to Talk

RF: Radio Frequency

RSM: Remote Speaker Microphone

SAR: Specific Absorption Rate

TDMA: Time Division Multiple Access

TNF: Licensed Non-Broadcast Transmitter Held to Face

4FSK: 4 Level Frequency Shift Keying

Audio accessories: These accessories allow communication while the DUT is worn on the body.

Body worn accessories: These accessories allow the DUT to be worn on the body of the user.

Maximum Power: Defined as the upper limit of the production line final test station.

4.0 Referenced Standards and Guidelines

This product is designed to comply with the following applicable national and international standards and guidelines.

- IEC62209-1 (2005) Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)
- Federal Communications Commission, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields", OET Bulletin 65, FCC, Washington, D.C.: 1997.
- IEEE 1528 (2013), Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques
- American National Standards Institute (ANSI) / Institute of Electrical and Electronics Engineers (IEEE) C95. 1-1992
- Institute of Electrical and Electronics Engineers (IEEE) C95.1-2005
- International Commission on Non-Ionizing Radiation Protection (ICNIRP) 1998
- Ministry of Health (Canada) Safety Code 6 (2015), Limits of Human Exposure to Radio frequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz
- RSS-102 (Issue 5) – Radio Frequency (RF) Exposure Compliance of Radio communication Apparatus (All Frequency Bands)
- Australian Communications Authority Radio communications (Electromagnetic Radiation - Human Exposure) Standard (2014)
- ANATEL, Brazil Regulatory Authority, Resolution No. 303 of July 2, 2002 "Regulation of the limitation of exposure to electrical, magnetic, and electromagnetic fields in the radio frequency range between 9 kHz and 300 GHz." and "Attachment to resolution # 303 from July 2, 2002"
- IEC62209-2 Edition 1.0 2010-03, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Human models, instrumentation, and procedures – Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz).
- FCC KDB – 643646 D01 SAR Test for PTT Radios v01r03
- FCC KDB – 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04
- FCC KDB – 865664 D02 RF Exposure Reporting v01r02
- FCC KDB – 447498 D01 General RF Exposure Guidance v06

5.0 SAR Limits

Table 2

EXPOSURE LIMITS	SAR (W/kg)	
	(General Population / Uncontrolled Exposure Environment)	(Occupational / Controlled Exposure Environment)
Spatial Average - ANSI - (averaged over the whole body)	0.08	0.4
Spatial Peak - ANSI - (averaged over any 1-g of tissue)	1.6	8.0
Spatial Peak – ICNIRP/ANSI - (hands/wrists/feet/ankles averaged over 10-g)	4.0	20.0
Spatial Peak - ICNIRP - (Head and Trunk 10-g)	2.0	10.0

6.0 Description of Device Under Test (DUT)

This device operates using analog frequency modulation (FM) signaling incorporating traditional simplex two-way radio transmission protocol.

This radio contains transmit and receive circuitry for digital two way radio communications. The modulation scheme used for digital two-way radio communications is 4 Level Frequency Shift Keying (4FSK) and Time Division Multiple Access (TDMA).

4FSK is a modulation technique that transmits information by altering the frequency of the carrier frequency (RF) signal. Data is converted into complex symbols, which alter the RF signal and transmit the information. When the signal is received, the change in frequency is converted back into symbols and then into the original data. The system can accommodate 2-voice channels in a standard 12.5 kHz channel as used in two-way radio.

TDMA is used to allocate portions of the RF signal by dividing time into two slots. Time allocation enables independent units to transmit voice information without interference from each other. Transmission from a radio or base station is accommodated in time-slot lengths of 30 milliseconds and frame lengths of 60 milliseconds.

The 4FSK TDMA modulation technique requires sophisticated algorithms and a digital signal processor (DSP) to perform voice compressions/decompressions and RF modulation/demodulation. This device is intended to be used with a maximum duty cycle of 50%

Table 3 below summarizes the technologies, bands, maximum duty cycles and maximum output powers. Maximum output powers are defined as upper limit of the production line final test station.

Table 3

Technology	Band (MHz)	Transmission	Duty Cycle (%)	Max Power (W)
LMR	136-174	FM / TDMA	*50 / *25	5.50

Note - * includes 50% PTT operation

The intended operating positions are “at the face” with the DUT at least 2.5cm from the mouth, and “at the body” by means of the offered body worn accessories. Body worn audio and PTT operation is accomplished by means of optional remote accessories that are connected to the radio.

7.0 Optional Accessories and Test Criteria

This device is offered with optional accessories. All accessories were individually evaluated during the test plan creation to determine if testing was required per the guidelines outlined in “SAR Test Reduction Considerations for Occupational PTT Radios” FCC KDB 643646 to assess compliance of this device. The following sections identify the test criteria and details for each accessory category. Refer to Exhibit 7B for antenna separation distances.

7.1 Antennas

There are optional removable antennas offered for this product. The table below lists its description.

Table 4

Antenna Models	Description	Selected for test	Tested
ATV-6XL	Whip Antenna (Untuned), 135-174 MHz, -4.3 dBd	Yes	Yes
ATV-8A	Whip Antenna, 134-151 MHz, -4.3 dBd	Yes	Yes
ATV-8B	Whip Antenna, 150-163 MHz, -4.3 dBd	Yes	Yes
ATV-8C	Whip Antenna, 161-174 MHz, -4.3 dBd	Yes	Yes

7.2 Batteries

There are three batteries offered for this product. The Table below lists their descriptions.

Table 5

Battery Models	Description	Selected for test	Tested	Comments
FNB-V133LI-UNI	Standard 1380mAh	Yes	Yes	Default battery for body testing
FNB-V134LI-UNI	High Capacity 2300mAh	Yes	Yes	Default battery for face testing
FNB-V136-UNI	Ni-MH 1200mAh	Yes	Yes	

7.3 Body worn Accessories

All body worn accessories were considered. The Table below lists the body worn accessories, and body worn accessory descriptions.

Table 6

Body worn Models	Description	Selected for test	Tested	Comments
Clip-20	Belt Clip	Yes	Yes	
LCC-261	Leather Case, Belt Loop	Yes	Yes	Compatible with battery FNB-V133LI-UNI only
LCC-261H	Leather Case, Belt Loop	Yes	Yes	Compatible with batteries FNB-V134LI-UNI and FNB-V136-UNI only
LCC-261S	Leather Case, Swivel belt loop	Yes	Yes	Compatible with battery FNB-V133LI-UNI only
LCC-261SH	Leather Case, Swivel belt loop	Yes	Yes	Compatible with batteries FNB-V134LI-UNI and FNB-V136-UNI only

7.4 Audio Accessories

All audio accessories were considered. The Table below lists the offered audio accessories and their descriptions. Exhibit 7B illustrates photos of the tested audio accessories.

Table 7

Audio Acc. Models	Description	Selected for test	Tested	Comments
MH-360S	Compact speaker microphone	Yes	Yes	Default Audio
MH-100	Earpiece for RSM	Yes	*No	Tested with MH-66A4B
MH-66A4B	Noise cancelling speaker microphone	Yes	*No	Tested with MH-100
MH-101A4B	Single Wire Surveillance Kit	Yes	*No	
MH-102A4B	2-Wire Surveillance Kit	Yes	*No	
MH-103A4B	3-Wire Surveillance Kit	Yes	*No	
MH-201A4B	Heavy duty headset	Yes	*No	
MH-37A4B-1	Earpiece microphone	Yes	*No	
VH-150B	Vox over the headset	Yes	*No	
MH-450S	Speaker microphone	No	No	By similarity to MH-360S
VH-150A	Vox over the headset	No	No	By similarity to VH-150B

Note: * SAR \leq 4.0 W/kg, test not required as per KDB 643646 D01.

8.0 Description of Test System

8.1 Descriptions of Robotics/Probes/Readout Electronics

Table 8

Dosimetric System type	System version	DAE type	Probe Type
Schmid & Partner Engineering AG SPEAG DASY 5	52.8.2.969	DAE4	EX3DV4 (E-Field)

The DASY5™ system is operated per the instructions in the DASY5™ Users Manual. The complete manual is available directly from SPEAG™. All measurement equipment used to assess SAR compliance was calibrated according to ISO/IEC 17025 A2LA guidelines. Section 9.0 presents additional test equipment information. Appendices B and C present the applicable calibration certificates. The E-field probe first scans a coarse grid over a large area inside the phantom in order to locate the interpolated maximum SAR distribution. After the coarse scan measurement, the probe is automatically moved to a position at the interpolated maximum. The subsequent scan can directly use this position as reference for the cube evaluations.

8.2 Description of Phantom(s)

Table 9

Phantom Type	Phantom(s) Used	Material Parameters	Phantom Dimensions LxWxD (mm)	Material Thickness (mm)	Support Structure Material	Loss Tangent (wood)
Triple Flat	NA	200MHz -6GHz; Er = 3-5, Loss Tangent = ≤ 0.05	280x175x175	2mm +/- 0.2mm	Wood	< 0.05
SAM	NA	300MHz -6GHz; Er = < 5, Loss Tangent = ≤ 0.05	Human Model			
Oval Flat	√	300MHz -6GHz; Er = 4+/- 1, Loss Tangent = ≤ 0.05	600x400x190			

8.3 Description of Simulated Tissue

The sugar based simulate tissue is produced by placing the correct measured amount of De-ionized water into a large container. Each of the dried ingredients are weighed and added to the water carefully to avoid clumping. If the solution has a high sugar concentration the water is pre-heated to aid in dissolving the ingredients. For Diacetin and similar type simulates, sugar and HEC ingredients are not needed. The solution is mixed thoroughly, covered, and allowed to sit overnight prior to use.

The simulated tissue mixture was mixed based on the Simulated Tissue Composition indicated in Table 10. During the daily testing of this product, the applicable mixture was used to measure the Di-electric parameters at each of the tested frequencies to verify that the Di-electric parameters were within the tolerance of the tissue specifications.

Simulated Tissue Composition (percent by mass)

Table 10

Ingredients	150MHz	
	Head	Body
Sugar	55.4	49.7
Diacetin	0	0
De ionized – Water	38.35	46.20
Salt	5.15	3.00
HEC	1.00	1.00
Bact.	0.10	0.10

9.0 Additional Test Equipment

The Table below lists additional test equipment used during the SAR assessment.

Table 11

Equipment Type	Model Number	Serial Number	Calibration Date	Calibration Due Date
Speag Probe	EX3DV4	3612	7/11/2016	7/11/2017
Speag DAE	DAE4	684	4/29/2016	4/29/2017
Signal Generator (Vector ESG 250KHz-6GHz)	E4438C	MY47272101	8/12/2014	8/12/2016
Amplifier	10WD1000	28782	NCR	NCR
Power Meter	E4418B	MY45101014	11/4/2015	11/4/2017
Power Meter	E4419B	MY40330364	5/29/2015	5/29/2017
Power Meter	E4418B	MY45100911	5/29/2015	5/29/2017
Power Sensor (With 30dB Pad)	8482B	MY41090719	6/15/2016	6/15/2017
Power Sensor (With 30dB Pad)	8482B	2703A04641	6/15/2016	6/15/2017
Power Sensor (With 30dB Pad)	8481B	MY41091170	11/11/2015	11/11/2016
Bi-directional Coupler	3020A	41931	7/15/2016	7/15/2017
Thermometer	HH806AU	080307	4/8/2016	4/8/2017
Temperature Probe	80PK-22	8766	8/21/2015	8/21/2016
Dickson Temperature Recorder	TM320	12253047	11/19/2015	11/19/2016
Dielectric Assessment Kit	DAK-12	1051	3/8/2016	3/8/2017
Network Analyzer	E5071B	MY42403147	11/6/2015	11/6/2016
Speag Dipole	CLA150	4016	12/3/2014	12/3/2016

10.0 SAR Measurement System Validation and Verification

DASY output files of the probe/dipole calibration certificates and system verification test results are included in appendices B, C & D respectively.

10.1 System Validation

The SAR measurement system was validated according to procedures in KDB 865664. The validation status summary Table is below.

Table 12

Dates	Probe Calibration Point	Probe SN	Measured Tissue Parameters		Validation		
			σ	ϵ_r	Sensitivity	Linearity	Isotropy
CW							
7/20/2016	Body	150	3612	0.81	58.9	Pass	Pass
7/20/2016	Head	150		0.78	51.6	Pass	Pass

10.2 System Verification

System verification checks were conducted each day during the SAR assessment. The results are normalized to 1W. Appendix D includes DASY plots for each day during the SAR assessment. The Table below summarizes the daily system check results used for the SAR assessment.

Table 13

Probe Serial #	Tissue Type	Dipole Kit / Serial #	Ref SAR @ 1W (W/kg)	System Check Results Measured (W/kg)	System Check Test Results when normalized to 1W (W/kg)	Tested Date	
3612	FCC Body	SPEAG CLA150 / 4016	3.83 +/- 10%	4.00	4.00	8/3/2016	
				4.08	4.08	8/4/2016	
				4.21	4.21	8/5/2016	
				4.10	4.10	8/8/2016	
				4.06	4.06	8/12/2016	
	IEEE/IEC Head		3.76 +/- 10%	3.81	3.81	8/5/2016	
				3.85	3.85	8/12/2016	

10.3 Equivalent Tissue Test Results

Simulated tissue prepared for SAR measurements is measured daily and within 24 hours prior to actual SAR testing to verify that the tissue is within +/- 5% of target parameters at the center of the transmit band. This measurement is done using the applicable equipment indicated in section 9.0. The Table below summarizes the measured tissue parameters used for the SAR assessment.

Table 14

Frequency (MHz)	Tissue Type	Conductivity Target (S/m)	Dielectric Constant Target	Conductivity Meas. (S/m)	Dielectric Constant Meas.	Tested Date
136	FCC Body	0.79 (0.75-0.83)	62.3 (59.1-65.4)	0.79	59.6	8/8/2016
				0.80	59.7	8/12/2016
	IEEE/IEC Head	0.75 (0.71-0.79)	53.0 (50.3-55.6)	0.77	51.5	8/12/2016
	FCC Body	0.79 (0.75-0.83)	62.2 (59.0-65.3)	0.79	59.6	8/8/2016
140				0.80	59.5	8/12/2016
IEEE/IEC Head	0.75 (0.72-0.79)	52.8 (50.1-55.4)	0.78	51.3	8/12/2016	
144	FCC Body	0.80 (0.76-0.84)	62.1 (58.9-65.2)	0.79	59.4	8/8/2016
				0.81	59.5	8/12/2016
	IEEE/IEC Head	0.76 (0.72-0.79)	52.6 (49.9-55.2)	0.78	51.1	8/12/2016
147	FCC Body	0.80 (0.76-0.84)	62.0 (58.9-65.1)	0.79	59.4	8/8/2016
				0.81	59.4	8/12/2016
	IEEE/IEC Head	0.76 (0.72-0.80)	52.4 (49.8-55.1)	0.78	51.0	8/12/2016

Table 14 (Continued)

Frequency (MHz)	Tissue Type	Conductivity Target (S/m)	Dielectric Constant Target	Conductivity Meas. (S/m)	Dielectric Constant Meas.	Tested Date
150	FCC Body	0.80 (0.76-0.84)	61.9 (58.8-65.0)	0.82	59.3	8/3/2016
				0.80	59.2	8/4/2016
				0.77	58.9	8/5/2016
				0.80	59.4	8/8/2016
				0.81	59.3	8/12/2016
	IEEE/ IEC Head	0.76 (0.72-0.80)	52.3 (49.6-54.9)	0.78	51.1	8/5/2016
				0.78	50.9	8/12/2016
	FCC Body	0.80 (0.76-0.84)	61.9 (58.8-65.0)	0.82	59.3	8/3/2016
				0.80	59.2	8/4/2016
151	IEEE/ IEC Head	0.76 (0.72-0.80)	52.3 (49.6-54.9)	0.78	51.0	8/5/2016
158	IEEE/ IEC Head	0.77 (0.73-0.80)	51.9 (49.3-54.5)	0.79	50.8	8/5/2016
163	FCC Body	0.81 (0.77-0.85)	61.6 (58.5-64.7)	0.82	59.0	8/3/2016
				0.80	58.9	8/4/2016
				0.78	58.6	8/5/2016
173	FCC Body	0.82 (0.78-0.86)	61.3 (58.3-64.4)	0.83	58.8	8/3/2016
				0.81	58.7	8/4/2016
				0.79	58.3	8/5/2016
	IEEE/ IEC Head	0.78 (0.74-0.82)	51.2 (48.7-53.8)	0.80	50.2	8/5/2016

11.0 Environmental Test Conditions

The EME Laboratory's ambient environment is well controlled resulting in very stable simulated tissue temperature and therefore stable dielectric properties. Simulated tissue temperature is measured prior to each scan to insure it is within +/- 2°C of the temperature at which the dielectric properties were determined. The liquid depth within the phantom used for measurements was at least 15cm. Additional precautions are routinely taken to ensure the stability of the simulated tissue such as covering the phantoms when scans are not actively in process in order to minimize evaporation. The lab environment is continuously monitored. The Table below presents the range and average environmental conditions during the SAR tests reported herein:

Table 15

Ambient Temperature	Target	Measured
	18 – 25 °C	Range: 18.9 – 24.3 °C Avg. 21.7 °C
Tissue Temperature	NA	Range: 20.0-22.0°C Avg. 20.6°C

Relative humidity target range is a recommended target

The EME Lab RF environment uses a Spectrum Analyzer to monitor for extraneous large signal RF contaminants that could possibly affect the test results. If such unwanted signals are discovered the SAR scans are repeated.

12.0 DUT Test Setup and Methodology

12.1 Measurements

SAR measurements were performed using the DASY system described in section 8.0 using zoom scans. Oval flat phantoms filled with applicable simulated tissue were used for body and face testing.

The Table below includes the step sizes and resolution of area and zoom scans per KDB 865664 requirements.

Table 16

Description	≤ 3 GHz	> 3 GHz
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	5 ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5$ mm
Maximum probe angle from probe axis to phantom surface normal at the measurement location	$30^\circ \pm 1^\circ$	$20^\circ \pm 1^\circ$
Maximum area scan spatial resolution: $\Delta x_{\text{Area}}, \Delta y_{\text{Area}}$	≤ 2 GHz: ≤ 15 mm $2 - 3$ GHz: ≤ 12 mm	$3 - 4$ GHz: ≤ 12 mm $4 - 6$ GHz: ≤ 10 mm
Maximum zoom scan spatial resolution: $\Delta x_{\text{Zoom}}, \Delta y_{\text{Zoom}}$	≤ 2 GHz: ≤ 8 mm $2 - 3$ GHz: ≤ 5 mm*	$3 - 4$ GHz: ≤ 5 mm* $4 - 6$ GHz: ≤ 4 mm*
Maximum zoom scan spatial resolution, normal to phantom surface	uniform grid: $\Delta z_{\text{Zoom}}(n)$ ≤ 5 mm	$3 - 4$ GHz: ≤ 4 mm $4 - 5$ GHz: ≤ 3 mm $5 - 6$ GHz: ≤ 2 mm
Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.		
* When zoom scan is required and the reported SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.		

12.2 DUT Configuration(s)

The DUT is a portable device operational at the body and face as described in section 6.0 while using the applicable accessories listed in section 7.0. All accessories listed in section 7.0 of this report were considered when implementing the guidelines specified in KDB 643646.

12.3 DUT Positioning Procedures

The positioning of the device for each body location is described below and illustrated in Appendix G.

12.3.1 Body

The DUT was positioned in normal use configuration against the phantom with the offered body worn accessory.

12.3.2 Head

Not applicable.

12.3.3 Face

The DUT was positioned with its' front sides separated 2.5cm from the phantom.

12.4 DUT Test Channels

The number of test channels was determined by using the following IEEE 1528 equation. The use of this equation produces the same or more test channels compared to the FCC KDB 447498 number of test channels formula.

$$N_c = 2 * \text{roundup}[10 * (f_{high} - f_{low}) / f_c] + 1$$

Where

N_c = Number of channels

F_{high} = Upper channel

F_{low} = Lower channel

F_c = Center channel

12.5 SAR Result Scaling Methodology

The calculated 1-gram and 10-gram averaged SAR results indicated as “Max Calc. 1g-SAR” and “Max Calc.10g-SAR” in the data Tables is determined by scaling the measured SAR to account for power leveling variations and drift. Appendix F includes a shortened scan to justify SAR scaling for drift. For this device the “Max Calc. 1g-SAR” and “Max Calc.10g-SAR” are scaled using the following formula:

$$\text{Max_Calc} = \text{SAR_meas} \cdot 10^{\frac{-\text{Drift}}{10}} \cdot \frac{P_{\text{max}}}{P_{\text{int}}} \cdot DC$$

P_{max} = Maximum Power (W)

P_{int} = Initial Power (W)

Drift = DASY drift results (dB)

SAR_{meas} = Measured 1-g or 10-g Avg. SAR (W/kg)

DC = Transmission mode duty cycle in % where applicable

50% duty cycle is applied for PTT operation

Note: for conservative results, the following are applied:

If $P_{\text{int}} > P_{\text{max}}$, then $P_{\text{max}}/P_{\text{int}} = 1$.

Drift = 1 for positive drift

Additional SAR scaling was applied using the methodologies outlined in FCC KDB 865664 using tissue sensitivity values. SAR was scaled for conditions where the tissue permittivity was measured above the nominal target and for tissue conductivity that was measured below the nominal target. Negative or reduced SAR scaling is not permitted.

12.6 DUT Test Plan

The guidelines and requirements outlined in section 4.0 were used to assess compliance of this device. All modes of operation identified in section 6.0 were considered during the development of the test plan. All tests were performed in CW mode and 50% duty cycle was applied to PTT configurations in the final results.

13.0 DUT Test Data

13.1 LMR assessments at the Body for 150.8-173.4MHz band

Battery FNB-V133LI-UNI was selected as the default battery for assessments at the Body because it is the thinnest battery (refer to Exhibit 7B for battery illustration). The default battery was used during conducted power measurements for all test channels within FCC allocated frequency range (150.8-173.4 MHz) which are listed in Table 17. The channel with the highest conducted power will be identified as the default channel per KDB 643646 (SAR Test for PTT Radios). SAR plots of the highest results per Table (bolded) are presented in Appendix E.

Table 17

Test Freq (MHz)	Power (W)
150.800	5.45
158.300	5.47
161.000	5.46
163.000	5.48
165.900	5.45
173.400	5.49

Assessments at the Body with Body worn Clip-20

DUT assessment with offered antennas, default battery and, default body worn accessory per KDB 643646. Optional batteries were tested per the requirements of KDB 643646. Refer to Table 17 for highest output power channel. SAR plots of the highest results per Table (bolded) are presented in Appendix E.

Table 18

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (W/kg)	Meas. 10g-SAR (W/kg)	Max Calc. 1g-SAR (W/kg)	Max Calc. 10g-SAR (W/kg)	Run#
ATV-8A	FNB-V133LI-UNI	CLIP-20	MH-360S	150.800	5.49	-0.46	2.910	1.950	1.62	1.09	FIE-AB-160803-02
ATV-8B	FNB-V133LI-UNI	CLIP-20	MH-360S	150.800							
				158.300							
				163.000	5.50	-0.43	4.490	3.130	2.48	1.73	AZ-AB-160803-07
ATV-8C	FNB-V133LI-UNI	CLIP-20	MH-360S	161.000							
				165.900							
				173.400	5.49	-0.60	2.780	1.990	1.60	1.14	AZ-AB-160803-05
ATV-6XL	FNB-V133LI-UNI	CLIP-20	MH-360S	150.800							
				158.300							
				165.900							
				173.400	5.50	-1.05	2.240	1.610	1.43	1.03	AZ-AB-160803-06
Assessment of Additional Batteries											
ATV-8B	FNB-V134LI-UNI	CLIP-20	MH-360S	163.000	5.48	-0.32	3.740	2.600	2.02	1.40	AZ-AB-160803-08
ATV-8B	FNB-V136-UNI	CLIP-20	MH-360S	163.000	5.50	-0.47	3.770	2.480	2.10	1.38	AZ-AB-160803-09

Assessments at the Body with Body worn LCC-261

DUT assessment with offered antennas, default battery and, optional body worn accessory per KDB 643646. Refer to Table 17 for highest output power channel. SAR plots of the highest results per Table (bolded) are presented in Appendix E.

Table 19

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (W/kg)	Meas. 10g-SAR (W/kg)	Max Calc. 1g-SAR (W/kg)	Max Calc. 10g-SAR (W/kg)	Run#
ATV-8A	FNB-V133LI-UNI	LCC-261	MH-360S	150.800	5.48	-0.51	2.390	0.771	1.35	0.44	AZ-AB-160803-10
ATV-8B	FNB-V133LI-UNI	LCC-261	MH-360S	150.800							
				158.300							
				163.000	5.45	-0.38	1.880	1.320	1.04	0.73	AZ-AB-160803-11
ATV-8C	FNB-V133LI-UNI	LCC-261	MH-360S	161.000							
				165.900							
				173.400	5.50	-0.99	1.530	1.100	0.96	0.69	AZ-AB-160803-12
ATV-6XL	FNB-V133LI-UNI	LCC-261	MH-360S	150.800							
				158.300							
				165.900							
				173.400	5.50	-0.69	3.040	2.230	1.78	1.31	AZ-AB-160803-13

Assessments at the Body with Body worn LCC-261H

DUT assessment with offered antennas, default battery and, default body worn accessory per KDB 643646. Only 1 optional battery was tested per the requirements of KDB 643646. Refer to Table 17 for highest output power channel. SAR plots of the highest results per Table (bolded) are presented in Appendix E.

Table 20

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (W/kg)	Meas. 10g-SAR (W/kg)	Max Calc. 1g-SAR (W/kg)	Max Calc. 10g-SAR (W/kg)	Run#
ATV-8A	FNB-V134LI-UNI	LCC-261H	MH-360S	150.800	5.47	-0.57	1.840	1.230	1.05	0.71	AZ-AB-160803-14
ATV-8B	FNB-V134LI-UNI	LCC-261H	MH-360S	150.800							
				158.300							
				163.000	5.30	-0.36	1.500	1.060	0.85	0.60	FIE-AB-160804-02
ATV-8C	FNB-V134LI-UNI	LCC-261H	MH-360S	161.000							
				165.900							
				173.400	5.47	-0.56	1.260	0.910	0.72	0.52	FIE-AB-160804-03
ATV-6XL	FNB-V134LI-UNI	LCC-261H	MH-360S	150.800							
				158.300							
				165.900							
				173.400	5.49	-0.92	2.530	1.860	1.57	1.15	FIE-AB-160804-04
Assessment of Additional Batteries											
ATV-6XL	FNB-V136-UNI	LCC-261H	MH-360S	173.400	5.44	-0.66	2.430	1.810	1.43	1.07	FIE(ARF)-AB-160804-05

Assessments at the Body with Body worn LCC-261S

DUT assessment with offered antennas, default battery and, default body worn accessory per KDB 643646. Refer to Table 17 for highest output power channel. SAR plots of the highest results per Table (bolded) are presented in Appendix E.

Table 21

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (W/kg)	Meas. 10g-SAR (W/kg)	Max Calc. 1g-SAR (W/kg)	Max Calc. 10g-SAR (W/kg)	Run#
ATV-8A	FNB-V133LI-UNI	LCC-261S	MH-360S	150.800	5.50	-0.60	1.420	0.577	0.82	0.33	AZ-AB-160804-06
ATV-8B	FNB-V133LI-UNI	LCC-261S	MH-360S	150.800							
				158.300							
				163.000	5.49	-0.55	1.210	0.558	0.69	0.32	AZ-AB-160804-07
ATV-8C	FNB-V133LI-UNI	LCC-261S	MH-360S	161.000							
				165.900							
				173.400	5.50	-0.35	1.080	0.539	0.59	0.29	AZ-AB-160804-08
ATV-6XL	FNB-V133LI-UNI	LCC-261S	MH-360S	150.800							
				158.300							
				165.900							
				173.400	5.50	-0.95	0.509	0.251	0.32	0.16	AZ-AB-160804-09

Assessments at the Body with Body worn LCC-261SH

DUT assessment with offered antennas, default battery and, default body worn accessory per KDB 643646. Only 1 optional battery was tested per the requirements of KDB 643646. Refer to Table 17 for highest output power channel. SAR plots of the highest results per Table (bolded) are presented in Appendix E.

Table 22

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (W/kg)	Meas. 10g-SAR (W/kg)	Max Calc. 1g-SAR (W/kg)	Max Calc. 10g-SAR (W/kg)	Run#
ATV-8A	FNB-V134LI-UNI	LCC-261SH	MH-360S	150.800	5.50	-0.67	0.780	0.615	0.46	0.36	AZ-AB-160804-10
ATV-8B	FNB-V134LI-UNI	LCC-261SH	MH-360S	150.800							
				158.300							
				163.000	5.48	-0.43	1.030	0.811	0.571	0.449	AZ-AB-160804-11
				161.000							
ATV-8C	FNB-V134LI-UNI	LCC-261SH	MH-360S	165.900							
				173.400	5.50	-0.25	1.070	0.842	0.567	0.446	AZ-AB-160804-12
				150.800							
ATV-6XL	FNB-V134LI-UNI	LCC-261SH	MH-360S	158.300							
				165.900							
				173.400	5.50	-0.93	0.432	0.341	0.27	0.21	FIE-AB-160805-02
Assessment of Additional Batteries											
ATV-8B	FNB-V136-UNI	LCC-261SH	MH-360S	163.000	5.49	-0.51	0.944	0.744	0.53	0.42	FIE-AB-160805-03

Assessment at the Body with other audio accessories

Assessment per “KDB 643646 Body SAR Test Consideration for Audio Accessories without Built-in Antenna; Sec 1, A. when overall ≤ 4.0 W/kg, SAR plots of the highest results per Table (bolded) are presented in Appendix E.

13.2 LMR assessments at the Face for 150.8 – 173.4 MHz band

Battery FNB-V134LI-UNI was selected as the default battery for assessments at the Face because it has the highest capacity (refer to Exhibit 7B for battery illustration). The default battery was used during conducted power measurements for all test channels within FCC allocated frequency range (150.8-173.4 MHz) which are listed in Table 23. The channel with the highest conducted power will be identified as the default channel per KDB 643646 (SAR Test for PTT Radios). SAR plots of the highest results per Table (bolded) are presented in Appendix E.

Table 23

Test Freq (MHz)	Power (W)
150.800	5.44
158.300	5.45
161.000	5.47
163.000	5.45
165.900	5.48
173.400	5.50

DUT assessment with offered antennas, default battery with front of DUT positioned 2.5cm facing phantom per KDB 643646. Optional batteries were tested per the requirements of KDB 643646. Refer to Table 23 for highest output power channel. SAR plots of the highest results per Table (bolded) are presented in Appendix E.

Table 24

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (W/kg)	Meas. 10g-SAR (W/kg)	Max Calc. 1g-SAR (W/kg)	Max Calc. 10g-SAR (W/kg)	Run#
ATV-8A	FNB-V134LI-UNI	None	None	150.800	5.48	-0.43	1.290	0.987	0.71	0.55	FIE(ARF)-FACE-160805-06
ATV-8B	FNB-V134LI-UNI	None	None	150.800							
				158.300	5.47	-0.60	1.070	0.820	0.62	0.47	FIE(ARF)-FACE-160805-07
				163.000							
ATV-8C	FNB-V134LI-UNI	None	None	161.000							
				165.900							
				173.400	5.50	-0.23	2.600	1.980	1.37	1.04	AZ-FACE-160805-10
ATV-6XL	FNB-V134LI-UNI	None	None	150.800							
				158.300							
				165.900							
				173.400	5.50	-0.88	0.803	0.614	0.49	0.38	AZ-FACE-160805-09
Assessment of Additional Batteries											
ATV-8C	FNB-V136-UNI	None	None	173.400	5.50	-0.34	2.350	1.800	1.27	0.97	AZ-FACE-160805-11
ATV-8C	FNB-V133LI-UNI	None	None	173.400	5.48	-0.40	2.520	1.930	1.39	1.06	AZ-FACE-160805-12

13.3 Assessment for Industry Canada

Based on the assessment results for body and face per KDB 643646, additional tests were required for Industry Canada frequency range (138-174 MHz). The overall highest test configuration from 150.8-173.4 MHz band was repeated with test frequencies 139.8 MHz, 143.5 MHz, and 147.3 MHz. SAR plots of the highest results per Table (bolded) are presented in Appendix E.

Table 25

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (W/kg)	Meas. 10g-SAR (W/kg)	Max Calc. 1g-SAR (W/kg)	Max Calc. 10g-SAR (W/kg)	Run#
Body											
ATV-8A	FNB-V133LI-UNI	CLIP-20	MH-360S	139.800	5.42	-0.38	0.200	0.119	0.11	0.07	FIE-AB-160808-03
				143.500	5.48	-0.39	1.070	0.641	0.59	0.35	FIE-AB-160808-04
				147.300	5.48	-0.36	3.420	2.200	1.86	1.20	FIE-AB-160808-05
ATV-6XL	FNB-V133LI-UNI	CLIP-20	MH-360S	139.800	5.45	-0.22	0.50	0.30	0.27	0.16	AZ-AB-160812-14
				143.500	5.40	-0.31	1.99	1.25	1.09	0.68	AZ-AB-160812-15
				147.300	5.44	-0.52	1.91	1.26	1.09	0.72	AZ-AB-160812-16

Table 25 (Continued)

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (W/kg)	Meas. 10g-SAR (W/kg)	Max Calc. 1g-SAR (W/kg)	Max Calc. 10g-SAR (W/kg)	Run#
Face											
ATV-8A	FNB-V133LI-UNI	None	None	139.800	5.39	-0.28	1.060	0.814	0.58	0.44	FIE-FACE-160812-06
				143.500	5.32	-0.25	1.210	0.932	0.66	0.51	FIE-FACE-160812-07
				147.300	5.40	-0.44	1.720	1.330	0.97	0.75	FIE-FACE-160812-08
ATV-6XL	FNB-V133LI-UNI	None	None	139.800	5.43	-0.37	1.020	0.798	0.56	0.44	AZ-FACE-160812-10
				143.500	5.42	-0.44	1.100	0.851	0.62	0.48	AZ-FACE-160812-11
				147.300	5.40	-0.46	0.777	0.603	0.44	0.34	AZ-FACE-160812-12

13.4 Assessment at outside FCC Part 90

Assessment of outside FCC Part 90 frequencies using the highest SAR configuration for each band from above. SAR plots of the highest results per Table (bolded) are presented in Appendix E.

Table 26

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (W/kg)	Meas. 10g-SAR (W/kg)	Max Calc. 1g-SAR (W/kg)	Max Calc. 10g-SAR (W/kg)	Run#
Body											
ATV-8A	FNB-V133LI-UNI	CLIP-20	MH-360S	136.000	5.37	-0.45	0.883	0.656	0.50	0.37	FIE-AB-160808-02
ATV-6XL	FNB-V133LI-UNI	CLIP-20	MH-360S	136.000	5.43	-0.79	0.344	0.257	0.21	0.16	AZ-AB-160812-13
Face											
ATV-8A	FNB-V133LI-UNI	None	None	136.000	5.42	-0.39	0.261	0.202	0.14	0.11	FIE-FACE-160812-05
ATV-6XL	FNB-V133LI-UNI	None	None	136.000	5.30	-0.51	0.402	0.314	0.23	0.18	AZ-FACE-160812-09

13.5 Assessment at the Bluetooth band

Not applicable.

13.6 Shortened Scan Assessment

A “shortened” scan using the highest SAR configuration overall from above was performed to validate the SAR drift of the full DASY5™ coarse and zoom scans. Note that the shortened scan represents the zoom scan performance result; this is obtained by first running a coarse scan to find the peak area and then, using a newly charged battery, a zoom scan only was performed. The results of the shortened cube scan presented in Appendix D demonstrate that the scaling methodology used to determine the calculated SAR results presented herein are valid. The SAR result from the Table below is provided in Appendix F.

Table 27

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (W/kg)	Meas. 10g-SAR (W/kg)	Max Calc. 1g-SAR (W/kg)	Max Calc. 10g-SAR (W/kg)	Run#
ATV-8B	FNB-V133LI-UNI	CLIP-20	MH-360S	163.000	5.42	-0.30	4.310	3.040	2.34	1.65	AZ-AB-160805-17

14.0 Simultaneous Transmission Exclusion for BT

Not applicable.

15.0 Results Summary

Based on the test guidelines from section 4.0 and satisfying frequencies within FCC bands and Industry Canada Frequency bands, the highest Operational Maximum Calculated 1-gram and 10-gram average SAR values found for this filing:

Table 28

Designator	Frequency band (MHz)	Max Calc at Body (W/kg)		Max Calc at Face (W/kg)	
		1g-SAR	10g-SAR	1g-SAR	10g-SAR
FCC					
LMR	150.8-173.4	2.48	1.73	1.39	1.06
Industry Canada					
LMR	138 -174	2.48	1.73	1.39	1.06
Overall					
LMR	136-174	2.48	1.73	1.39	1.06

All results are scaled to the maximum output power.

The test results clearly demonstrate compliance with FCC Occupational/Controlled RF Exposure limits of 8 W/kg averaged over 1 gram per the requirements of OET Bulletin 65. The 10 grams result is not applicable to FCC filing.

16.0 Variability Assessment

Per the guidelines in KDB 865664 SAR variability assessment is not required because SAR results are below 4.0W/kg (Occupational).

17.0 System Uncertainty

A system uncertainty analysis is not required for this report per KDB 865664 because the highest report SAR value Occupational exposure is less than 7.5W/kg.

Per the guidelines of ISO 17025 a reported system uncertainty is required and therefore measurement uncertainty budget is included in Appendix A.

Appendix A

Measurement Uncertainty Budget

Table A.1: Uncertainty Budget for Device Under Test for 150 MHz

<i>a</i>	<i>b</i>	<i>c</i>	<i>d</i>	<i>e</i> = <i>f(d,k)</i>	<i>f</i>	<i>g</i>	<i>h</i> = <i>c x f / e</i>	<i>i</i> = <i>c x g / e</i>	<i>k</i>
Uncertainty Component	IEEE 1528 section	Tol. (\pm %)	Prob Dist	Div.	ci (1 g)	ci (10 g)	1 g u_i (\pm %)	10 g u_i (\pm %)	v_i
Measurement System									
Probe Calibration	E.2.1	6.7	N	1.00	1	1	6.7	6.7	∞
Axial Isotropy	E.2.2	4.7	R	1.73	0.707	0.707	1.9	1.9	∞
Hemispherical Isotropy	E.2.2	9.6	R	1.73	0.707	0.707	3.9	3.9	∞
Boundary Effect	E.2.3	1.0	R	1.73	1	1	0.6	0.6	∞
Linearity	E.2.4	4.7	R	1.73	1	1	2.7	2.7	∞
System Detection Limits	E.2.5	1.0	R	1.73	1	1	0.6	0.6	∞
Readout Electronics	E.2.6	0.3	N	1.00	1	1	0.3	0.3	∞
Response Time	E.2.7	1.1	R	1.73	1	1	0.6	0.6	∞
Integration Time	E.2.8	1.1	R	1.73	1	1	0.6	0.6	∞
RF Ambient Conditions - Noise	E.6.1	3.0	R	1.73	1	1	1.7	1.7	∞
RF Ambient Conditions - Reflections	E.6.1	0.0	R	1.73	1	1	0.0	0.0	∞
Probe Positioner Mech. Tolerance	E.6.2	0.4	R	1.73	1	1	0.2	0.2	∞
Probe Positioning w.r.t Phantom	E.6.3	1.4	R	1.73	1	1	0.8	0.8	∞
Max. SAR Evaluation (ext., int., avg.)	E.5	3.4	R	1.73	1	1	2.0	2.0	∞
Test sample Related									
Test Sample Positioning	E.4.2	3.2	N	1.00	1	1	3.2	3.2	29
Device Holder Uncertainty	E.4.1	4.0	N	1.00	1	1	4.0	4.0	8
SAR drift	6.6.2	5.0	R	1.73	1	1	2.9	2.9	∞
Phantom and Tissue Parameters									
Phantom Uncertainty	E.3.1	4.0	R	1.73	1	1	2.3	2.3	∞
Liquid Conductivity (target)	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	∞
Liquid Conductivity (measurement)	E.3.3	3.3	N	1.00	0.64	0.43	2.1	1.4	∞
Liquid Permittivity (target)	E.3.2	5.0	R	1.73	0.6	0.49	1.7	1.4	∞
Liquid Permittivity (measurement)	E.3.3	1.9	N	1.00	0.6	0.49	1.1	0.9	∞
Combined Standard Uncertainty									
Expanded Uncertainty (95% CONFIDENCE LEVEL)									
				RSS			11	11	477
				$k=2$			23	22	

Notes for uncertainty budget Tables:

- Column headings *a-k* are given for reference.
- Tol. - tolerance in influence quantity.
- Prob. Dist. – Probability distribution
- N, R - normal, rectangular probability distributions
- Div. - divisor used to translate tolerance into normally distributed standard uncertainty
- ci* - sensitivity coefficient that should be applied to convert the variability of the uncertainty component into a variability of SAR.
- u_i – SAR uncertainty
- v_i - degrees of freedom for standard uncertainty and effective degrees of freedom for the expanded uncertainty

Table A.2: Uncertainty Budget for System Validation (dipole & flat phantom) for 150 MHz

<i>a</i>	<i>b</i>	<i>c</i>	<i>d</i>	<i>e = f(d,k)</i>	<i>f</i>	<i>g</i>	<i>h = c x f / e</i>	<i>i = c x g / e</i>	<i>k</i>	
Uncertainty Component	IEEE 1528 section	Tol. (± %)	Prob Dist	Div.	<i>c_i</i> (1 g)	<i>c_i</i> (10 g)	1 g U_i (±%)	10 g U_i (±%)	<i>v_i</i>	
Measurement System										
Probe Calibration	E.2.1	6.7	N	1.00	1	1	6.7	6.7	∞	
Axial Isotropy	E.2.2	4.7	R	1.73	1	1	2.7	2.7	∞	
Spherical Isotropy	E.2.2	9.6	R	1.73	0	0	0.0	0.0	∞	
Boundary Effect	E.2.3	1.0	R	1.73	1	1	0.6	0.6	∞	
Linearity	E.2.4	4.7	R	1.73	1	1	2.7	2.7	∞	
System Detection Limits	E.2.5	1.0	R	1.73	1	1	0.6	0.6	∞	
Readout Electronics	E.2.6	0.3	N	1.00	1	1	0.3	0.3	∞	
Response Time	E.2.7	1.1	R	1.73	1	1	0.6	0.6	∞	
Integration Time	E.2.8	0.0	R	1.73	1	1	0.0	0.0	∞	
RF Ambient Conditions - Noise	E.6.1	3.0	R	1.73	1	1	1.7	1.7	∞	
RF Ambient Conditions - Reflections	E.6.1	0.0	R	1.73	1	1	0.0	0.0	∞	
Probe Positioner Mechanical Tolerance	E.6.2	0.4	R	1.73	1	1	0.2	0.2	∞	
Probe Positioning w.r.t. Phantom	E.6.3	1.4	R	1.73	1	1	0.8	0.8	∞	
Max. SAR Evaluation (ext., int., avg.)	E.5	3.4	R	1.73	1	1	2.0	2.0	∞	
Dipole										
Dipole Axis to Liquid Distance	8, E.4.2	2.0	R	1.73	1	1	1.2	1.2	∞	
Input Power and SAR Drift Measurement	8, 6.6.2	5.0	R	1.73	1	1	2.9	2.9	∞	
Phantom and Tissue Parameters										
Phantom Uncertainty	E.3.1	4.0	R	1.73	1	1	2.3	2.3	∞	
Liquid Conductivity (target)	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	∞	
Liquid Conductivity (measurement)	E.3.3	3.3	R	1.73	0.64	0.43	1.2	0.8	∞	
Liquid Permittivity (target)	E.3.2	5.0	R	1.73	0.6	0.49	1.7	1.4	∞	
Liquid Permittivity (measurement)	E.3.3	1.9	R	1.73	0.6	0.49	0.6	0.5	∞	
Combined Standard Uncertainty										
Expanded Uncertainty (95% CONFIDENCE LEVEL)										
				RSS				10	9	99999
				<i>k</i> =2				19	18	

Notes for uncertainty budget Tables:

- Column headings *a-k* are given for reference.
- Tol. - tolerance in influence quantity.
- Prob. Dist. – Probability distribution
- N, R - normal, rectangular probability distributions
- Div. - divisor used to translate tolerance into normally distributed standard uncertainty
- c_i* - sensitivity coefficient that should be applied to convert the variability of the uncertainty component into a variability of SAR.
- ui* – SAR uncertainty
- vi* - degrees of freedom for standard uncertainty and effective degrees of freedom for the expanded uncertainty

Appendix B

Probe Calibration Certificates

Calibration Laboratory of
Schmid & Partner
Engineering AG
 Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
 Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
 The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client **Motorola Solutions MY**Certificate No: **EX3-3612_Jul16**

CALIBRATION CERTIFICATE

Object **EX3DV4 - SN:3612**

Calibration procedure(s) **QA CAL-01.v9, QA CAL-12.v9, QA CAL-23.v5, QA CAL-25.v6**
 Calibration procedure for dosimetric E-field probes

Calibration date: **July 11, 2016**

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
 The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3 °C) and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	08-Apr-16 (No. 217-02288/02289)	Apr-17
Power sensor NRP-Z91	SN: 103244	08-Apr-16 (No. 217-02288)	Apr-17
Power sensor NRP-Z91	SN: 103245	08-Apr-16 (No. 217-02289)	Apr-17
Reference 20 dB Attenuator	SN: S5277 (20x)	05-Apr-16 (No. 217-02293)	Apr-17
Reference Probe ES3DV2	SN: 3013	31-Dec-15 (No. ES3-3013_Dec15)	Dec-16
DAE4	SN: 660	23-Dec-15 (No. DAE4-660_Dec15)	Dec-16
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	08-Apr-16 (in house check Jun-16)	In house check: Jun-18
Power sensor E4412A	SN: MY41498087	08-Apr-16 (in house check Jun-16)	In house check: Jun-18
Power sensor E4412A	SN: 000110210	08-Apr-16 (in house check Jun-16)	In house check: Jun-18
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-16)	In house check: Jun-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-15)	In house check: Oct-16

Calibrated by:	Name Jeton Kastrati	Function Laboratory Technician	Signature
Approved by:	Katja Pokovic	Technical Manager	

Issued: July 12, 2016

Calibration Laboratory of
 Schmid & Partner
 Engineering AG
 Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
 C Service suisse d'étalonnage
 S Servizio svizzero di taratura
 Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
 The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Glossary:

TSL	tissue simulating liquid
NORM _{x,y,z}	sensitivity in free space
ConvF	sensitivity in TSL / NORM _{x,y,z}
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization ϕ	ϕ rotation around probe axis
Polarization θ	θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\theta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- KDB 865684, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORM_{x,y,z}:** Assessed for E-field polarization $\theta = 0$ ($f \leq 900$ MHz in TEM-cell; $f > 1800$ MHz: R22 waveguide). NORM_{x,y,z} are only intermediate values, i.e., the uncertainties of NORM_{x,y,z} does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORM_{x,y,z} * frequency_response** (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCP_{x,y,z}:** DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR:** PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- A_{x,y,z}; B_{x,y,z}; C_{x,y,z}; D_{x,y,z}; VR_{x,y,z}:** A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters:** Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \leq 800$ MHz) and inside waveguide using analytical field distributions based on power measurements for $f > 800$ MHz. The same setups are used for assessment of the parameters applied for boundary compensation (α , depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to $NORM_{x,y,z} * ConvF$ whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy):** in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset:** The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle:** The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

EX3DV4 – SN:3612

July 11, 2016

Probe EX3DV4

SN:3612

Manufactured: March 23, 2007

Calibrated: July 11, 2016

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

EX3DV4- SN:3612

July 11, 2016

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3612

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm ($\mu\text{V}/(\text{V}/\text{m})^2$) ^A	0.45	0.49	0.40	$\pm 10.1\%$
DCP (mV) ^B	96.5	95.7	96.5	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB $\sqrt{\mu\text{V}}$	C	D dB	VR mV	Unc ^E (k=2)
0	CW	X	0.0	0.0	1.0	0.00	149.7	$\pm 3.0\%$
		Y	0.0	0.0	1.0		144.3	
		Z	0.0	0.0	1.0		159.8	
10117-CAB	IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)	X	10.56	69.2	21.5	8.07	146.5	$\pm 2.7\%$
		Y	10.34	68.5	20.9		133.7	
		Z	10.33	68.6	21.1		131.0	
10196-CAB	IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK)	X	10.17	68.9	21.5	8.10	139.2	$\pm 2.7\%$
		Y	10.00	68.2	20.9		130.8	
		Z	9.92	68.3	21.1		126.6	
10415-AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc duty cycle)	X	3.08	70.7	20.1	1.54	137.8	$\pm 0.7\%$
		Y	2.73	68.1	18.6		131.8	
		Z	3.09	70.5	19.7		129.6	
10418-AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc duty cycle, Long preamble)	X	10.07	68.7	21.4	8.14	135.7	$\pm 2.7\%$
		Y	9.91	68.1	20.9		124.7	
		Z	9.85	68.2	21.1		124.4	
10515-AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc duty cycle)	X	3.12	71.1	20.3	1.58	138.3	$\pm 0.7\%$
		Y	2.83	68.8	18.9		130.6	
		Z	3.11	70.9	20.0		128.7	
10564-AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 99pc duty cycle)	X	10.36	69.2	21.7	8.25	141.0	$\pm 3.0\%$
		Y	10.10	68.3	21.0		126.4	
		Z	10.04	68.4	21.2		125.4	
10571-AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 90pc duty cycle)	X	3.19	70.7	20.3	1.99	134.6	$\pm 0.7\%$
		Y	2.91	68.4	18.9		149.9	
		Z	3.16	70.4	19.9		148.5	
10572-AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 90pc duty cycle)	X	3.26	71.3	20.5	1.99	131.4	$\pm 0.7\%$
		Y	2.98	69.1	19.3		146.3	
		Z	3.24	71.0	20.2		147.6	
10575-AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 90pc duty cycle)	X	10.33	68.9	21.8	8.59	132.2	$\pm 2.7\%$
		Y	10.54	69.1	21.7		149.8	
		Z	10.15	68.4	21.5		123.3	
10576-AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 90pc duty cycle)	X	10.39	69.0	21.8	8.60	133.0	$\pm 2.5\%$
		Y	10.26	68.4	21.3		125.0	
		Z	10.21	68.6	21.6		124.4	

EX3DV4- SN:3612

July 11, 2016

10591- AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS0, 90pc duty cycle)	X	10.49	69.0	21.8	8.63	134.7	$\pm 2.7\%$
		Y	10.39	68.5	21.4		128.0	
		Z	10.37	68.7	21.6		127.8	
10592- AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS1, 90pc duty cycle)	X	10.67	69.2	22.0	8.79	135.2	$\pm 3.0\%$
		Y	10.60	68.7	21.6		129.3	
		Z	10.53	68.8	21.8		127.8	
10599- AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS0, 90pc duty cycle)	X	11.20	69.7	22.2	8.79	143.3	$\pm 2.7\%$
		Y	10.97	69.0	21.6		134.0	
		Z	11.06	69.4	22.0		135.4	
10600- AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS1, 90pc duty cycle)	X	11.35	70.0	22.4	8.88	147.4	$\pm 2.7\%$
		Y	11.05	69.1	21.7		134.7	
		Z	11.14	69.5	22.1		135.7	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $k=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^a The uncertainties of Norm X,Y,Z do not affect the E^2 -field uncertainty inside TSL (see Pages 6 and 7).

^b Numerical linearization parameter: uncertainty not required.

^c Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3612

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
150	52.3	0.76	9.90	9.90	9.90	0.00	1.00	± 13.3 %
300	45.3	0.87	9.33	9.33	9.33	0.10	1.20	± 13.3 %
450	43.5	0.87	9.05	9.05	9.05	0.17	1.20	± 13.3 %
750	41.9	0.89	8.47	8.47	8.47	0.39	0.97	± 12.0 %
900	41.5	0.97	8.05	8.05	8.05	0.50	0.80	± 12.0 %
2450	39.2	1.80	6.30	6.30	6.30	0.33	0.80	± 12.0 %

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

EX3DV4- SN:3612

July 11, 2016

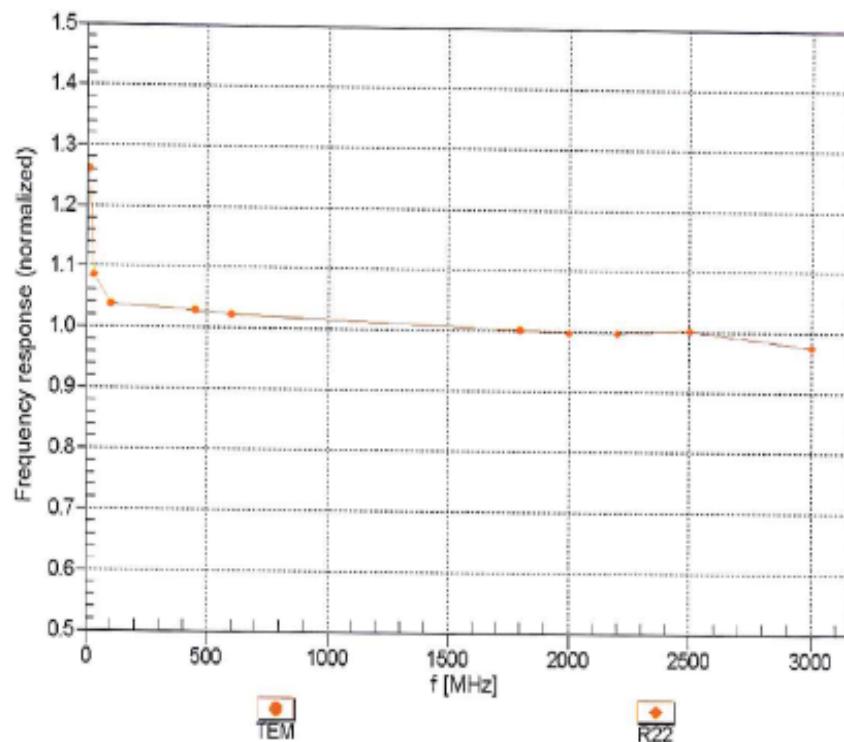
DASY/EASY - Parameters of Probe: EX3DV4 - SN:3612

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
150	61.9	0.80	9.42	9.42	9.42	0.00	1.00	± 13.3 %
300	58.2	0.92	9.35	9.35	9.35	0.08	1.25	± 13.3 %
450	56.7	0.94	9.07	9.07	9.07	0.10	1.25	± 13.3 %
750	55.5	0.96	8.12	8.12	8.12	0.47	0.80	± 12.0 %
900	55.0	1.05	8.21	8.21	8.21	0.47	0.80	± 12.0 %
2450	52.7	1.95	6.43	6.43	6.43	0.37	0.80	± 12.0 %

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

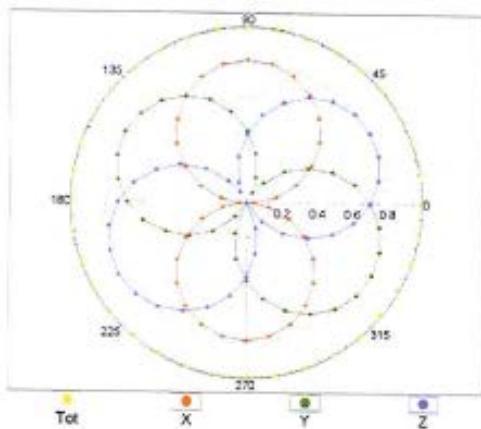

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

EX3DV4- SN:3612

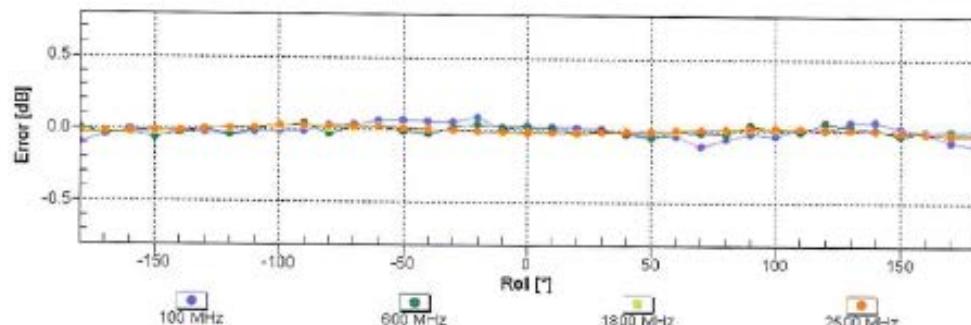
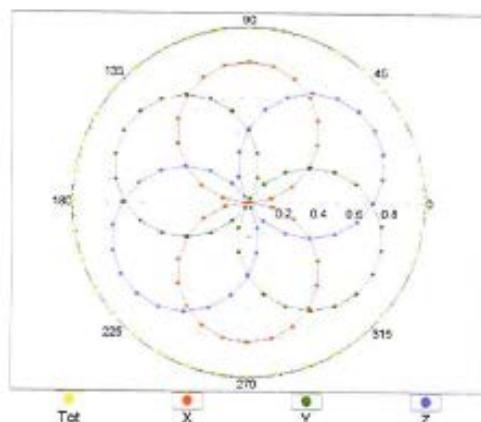
July 11, 2016

Frequency Response of E-Field

(TEM-Cell:ifi110 EXX, Waveguide: R22)

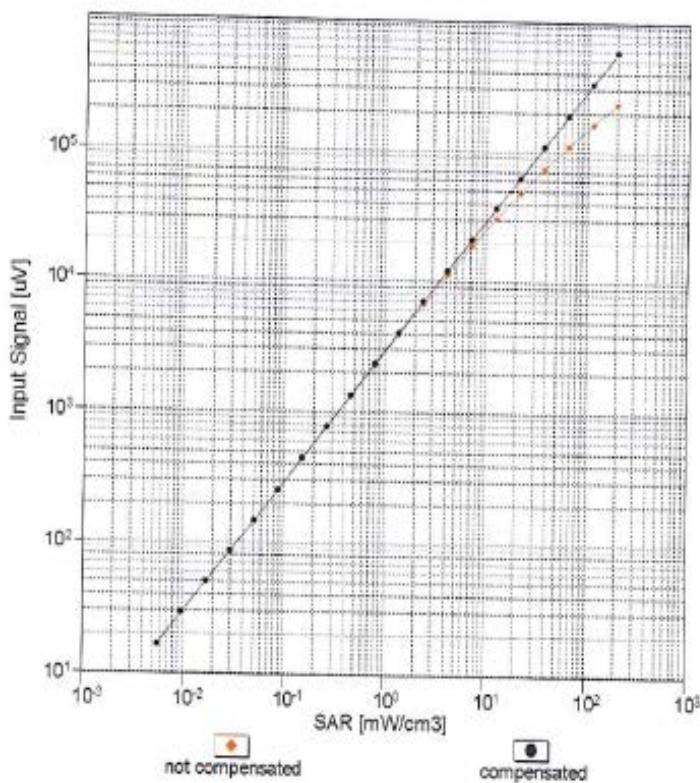

Uncertainty of Frequency Response of E-field: $\pm 6.3\%$ ($k=2$)

EX3DV4- SN:3612



July 11, 2016

Receiving Pattern (ϕ), $\theta = 0^\circ$

f=600 MHz, TEM

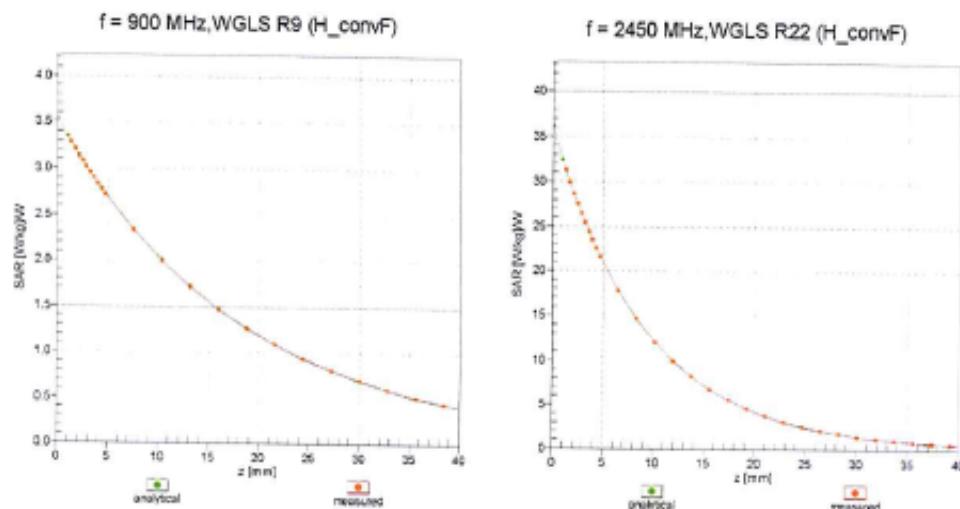


f=1800 MHz, R22

Uncertainty of Axial Isotropy Assessment: $\pm 0.5\%$ ($k=2$)

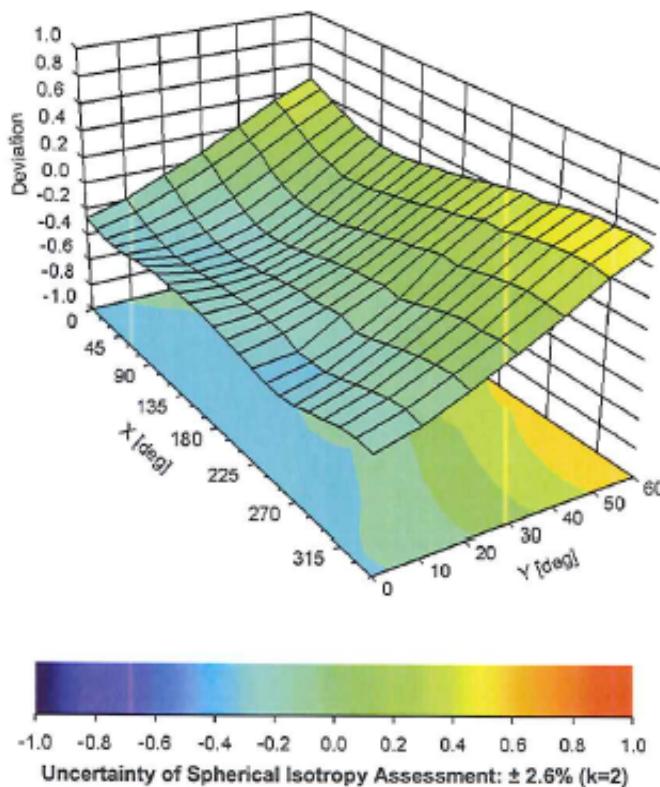
EX3DV4- SN:3612

July 11, 2016

Dynamic Range $f(\text{SAR}_{\text{head}})$
(TEM cell, $f_{\text{eval}} = 1900$ MHz)



Uncertainty of Linearity Assessment: $\pm 0.6\%$ ($k=2$)


EX3DV4- SN:3612

July 11, 2016

Conversion Factor Assessment

Deviation from Isotropy in Liquid

Error (ϕ, θ), $f = 900 \text{ MHz}$

EX3DV4- SN:3612

July 11, 2016

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3612**Other Probe Parameters**

Sensor Arrangement	Triangular
Connector Angle (°)	80.1
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Appendix C

Dipole Calibration Certificates

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client Motorola Solutions MY

Certificate No: CLA150-4016_Dec14

CALIBRATION CERTIFICATE

Object CLA150 - SN: 4016

Calibration procedure(s) QA CAL-15.v8
Calibration procedure for system validation sources below 700 MHz

Calibration date: December 03, 2014

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^\circ\text{C}$ and humidity $< 70\%$.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	03-Apr-14 (No. 217-01911)	Apr-15
Power sensor E4412A	MY41498087	03-Apr-14 (No. 217-01911)	Apr-15
Reference 3 dB Attenuator	SN: S5054 (3c)	03-Apr-14 (No. 217-01915)	Apr-15
Reference 20 dB Attenuator	SN: S5058 (20k)	03-Apr-14 (No. 217-01918)	Apr-15
Type-N mismatch combination	SN: 5047.2 / 06327	03-Apr-14 (No. 217-01921)	Apr-15
Reference Probe EX3DV4	SN: 3877	06-Jan-14 (No. EX3-3877_Jan14)	Jan-15
DAE4	SN: 654	30-Jun-14 (No. DAE4-654_Jun14)	Jun-15

Secondary Standards	ID #	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	04-Aug-99 (in house check Apr-13)	In house check: Apr-16
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-14)	In house check: Oct-15

Calibrated by:	Name	Function	Signature
	Jeton Kastrati	Laboratory Technician	
Approved by:	Katja Pokovic	Technical Manager	

Issued: December 4, 2014

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

- DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions:** Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL:** The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss:** This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured:** SAR measured at the stated antenna input power.
- SAR normalized:** SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters:** The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $k=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	ELI4 Flat Phantom	Shell thickness: 2 ± 0.2 mm
EUT Positioning	Touch Position	
Zoom Scan Resolution	$dx, dy = 4.0$ mm, $dz = 1.4$ mm	
Frequency	150 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	55.0	0.75 mho/m
Measured Head TSL parameters	(22.0 \pm 0.2) °C	51.7 \pm 6 %	0.79 mho/m \pm 6 %
Head TSL temperature change during test	< 0.5 °C	---	---

SAR result with Head TSL

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	1 mW input power	3.89 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	3.76 W/kg \pm 18.1 % (k=2)

SAR averaged over 10 cm³ (10 g) of Head TSL	condition	
SAR measured	1 mW input power	2.54 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	2.46 W/kg \pm 17.6 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	61.9	0.80 mho/m
Measured Body TSL parameters	(22.0 \pm 0.2) °C	60.8 \pm 6 %	0.83 mho/m \pm 6 %
Body TSL temperature change during test	< 0.5 °C	---	---

SAR result with Body TSL

SAR averaged over 1 cm³ (1 g) of Body TSL	Condition	
SAR measured	1 W input power	3.96 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	3.83 W/kg \pm 18.4 % (k=2)

SAR averaged over 10 cm³ (10 g) of Body TSL	condition	
SAR measured	1 W input power	2.58 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	2.50 W/kg \pm 18.0 % (k=2)

Appendix (Additional assessments outside the scope of SCS108)**Antenna Parameters with Head TSL**

Impedance, transformed to feed point	$48.0 \Omega + 4.2 j\Omega$
Return Loss	- 26.5 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$49.2 \Omega + 2.8 j\Omega$
Return Loss	- 30.7 dB

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	August 26, 2014

DASY5 Validation Report for Head TSL

Date: 03.12.2014

DUT: CLA150; Type: CLA150; Serial: CLA150 - SN: 4016

Communication System: UID 0 - CW; Frequency: 150 MHz

Medium parameters used: $f = 150$ MHz; $\sigma = 0.79$ S/m; $\epsilon_r = 51.7$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

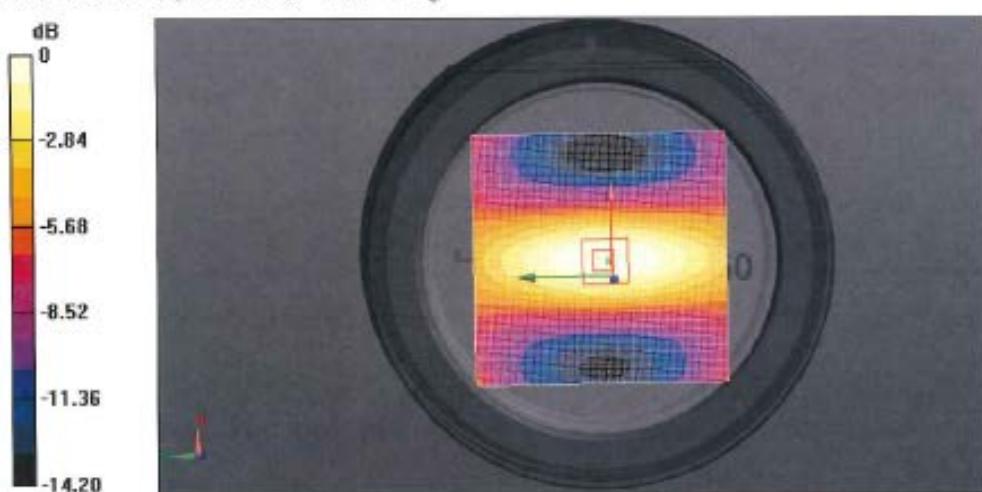
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

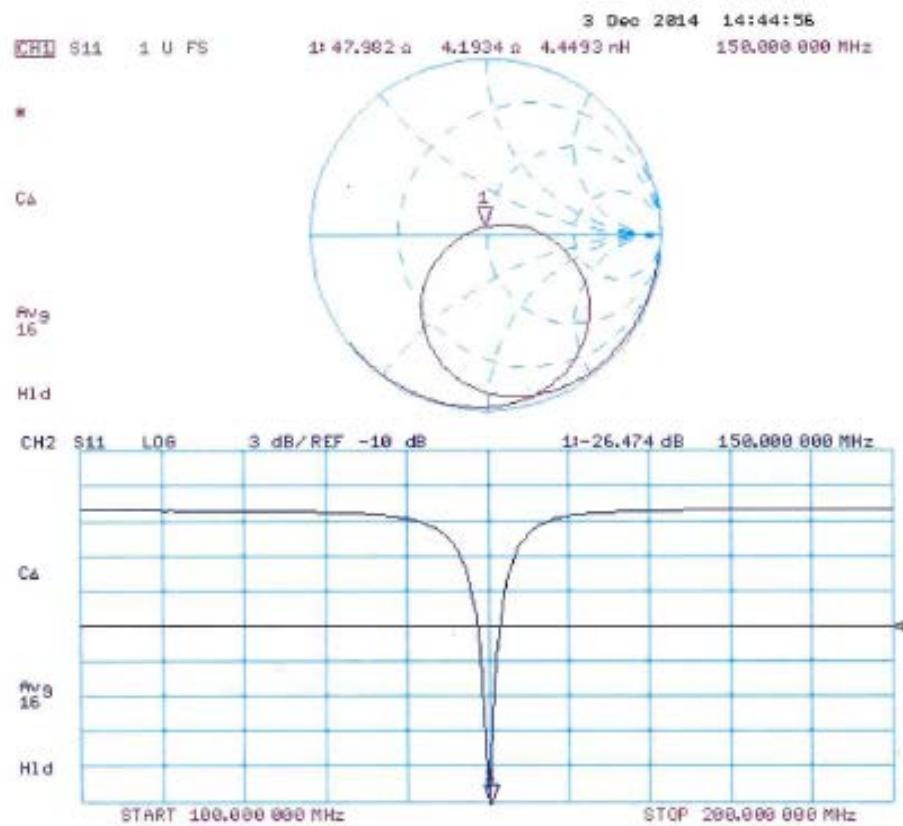
- Probe: EX3DV4 - SN3877; ConvF(11.76, 11.76, 11.76); Calibrated: 06.01.2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn654; Calibrated: 30.06.2014
- Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:1003
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

CLA Calibration for HSL-LF Tissue/CLA150, touch configuration, Pin=1W/Area Scan**(81x81x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 4.96 W/kg


CLA Calibration for HSL-LF Tissue/CLA150, touch configuration, Pin=1W/Zoom Scan,**dist=1.4mm (8x9x7)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 79.04 V/m; Power Drift = -0.01 dB


Peak SAR (extrapolated) = 7.43 W/kg

SAR(1 g) = 3.89 W/kg; SAR(10 g) = 2.54 W/kg

Maximum value of SAR (measured) = 5.53 W/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 03.12.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: CLA150; Type: CLA150; Serial: CLA150 - SN: 4016

Communication System: UID 0 - CW; Frequency: 150 MHz

Medium parameters used: $f = 150$ MHz; $\sigma = 0.83$ S/m; $\epsilon_r = 60.8$; $\rho = 1000$ kg/m³

Phantom section: Flat Section.

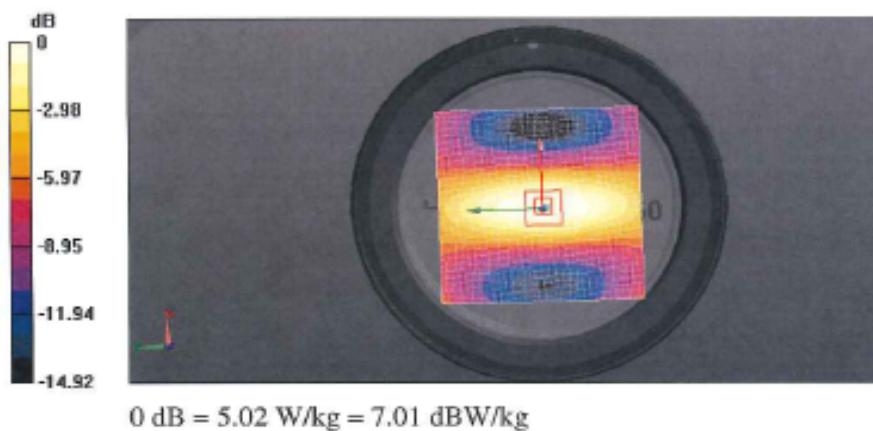
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

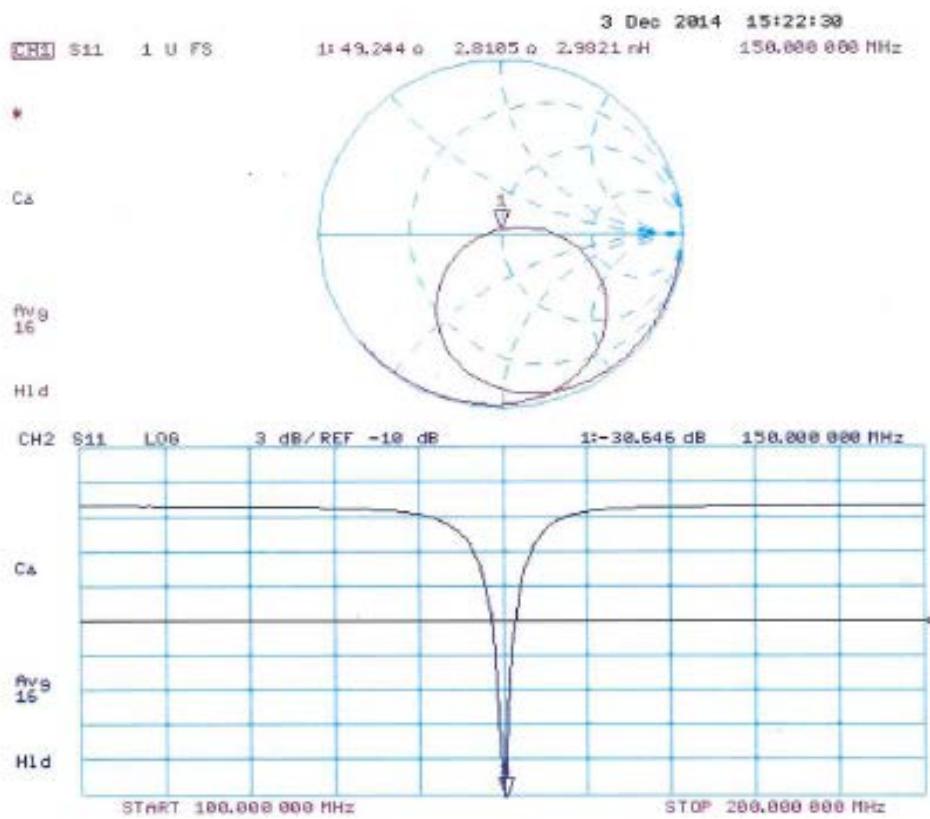
- Probe: EX3DV4 - SN3877; ConvF(11.45, 11.45, 11.45); Calibrated: 06.01.2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn654; Calibrated: 30.06.2014
- Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:1003
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

CLA Calibration for MSL-LF Tissue/CLA150, touch configuration, Pin=1W/Area Scan**(81x81x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 5.02 W/kg


CLA Calibration for MSL-LF Tissue/CLA150, touch configuration, Pin=1W/Zoom Scan, dist=1.4mm (8x9x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 77.24 V/m; Power Drift = 0.02 dB


Peak SAR (extrapolated) = 7.63 W/kg

SAR(1 g) = 3.96 W/kg; SAR(10 g) = 2.58 W/kg

Maximum value of SAR (measured) = 5.60 W/kg

Impedance Measurement Plot for Body TSL

Dipole Data

As stated in KDB 865664, only dipoles exceed annual calibration interval required to provide supporting information and measurement to qualify for extended calibration interval.

The table below includes dipole impedance and return loss measurement data measured by Motorola Solutions' EME lab. The results meet requirements stated in KDB 865664.

Dipole CLA150 (SN 4016)	Head			Body		
	Impedance		Return Loss	Impedance		Return Loss
	real Ω	imag $j\Omega$	dB	real Ω	imag $j\Omega$	dB
03/14/2015	49.05	-2.77	-30.55	47.86	1.85	-31.14
12/01/2015	47.70	2.03	-31.73	48.57	3.70	-28.03