

TEST REPORT

Report Number: A-002-13-C Date of Issue: 21 June 2013 FCC Rules and Regulations Part 95: Radio Control (R/C) Radio Service This test report is to certify that the device was tested according to the requirements of the above and these results met the specifications of requirements. The results of this report should not be construed to imply compliance of devices other than the sample tested. Without the laboratory approval by the documents, this report should not be copied in part. 1. Applicant Company Name : JAPAN REMOTE CONTROL CO., LTD. : 2-2-12 EIWA, HIGASHIOSAKA-CITY, OSAKA, 577-0809 JAPAN Mailing Address 2. Identification of Tested Device Type of Device : Radio Control (R/C) Transmitter Equipment Authorization : DoC □ Certification ☐ Verification FCC ID : AXGL25-N4580 Device Name : L25 FM TRANSMITTER Model Number : L25-N4580-40 Serial Number : 1773306 Trade Name : JR PROPO Type of Test : Production ☐ Pre-production □ Prototype 3. Test Items Maximum Transmit Power (Conducted) ☐ Pass ☐ Fail ⊠ N/A Maximum Transmit Power (Radiated) ⊠ Pass ☐ Fail □ N/A R/C Transmitter Channel Frequencies □ Pass ☐ Fail □ N/A **Emission Bandwidth** □ Pass ☐ Fail □ N/A Antenna Conducted Spurious Emissions ☐ Pass ☐ Fail N/A Radiated Emission of Transmitter (Spurious and Harmonics) □ Pass ☐ Fail □ N/A **Modulation Characteristics** □ Pass ☐ Fail □ N/A Refer the below reason(s) with respect to the decision and justification not to test. (*1) EUT Specifications (*2) Request of Applicant (*3) According to Test Plan KEC Electronic Industry Development Center Testing Division 3-2-2, Hikari-dai, Seika-cho, Soraku-gun, Kyoto 619-0237 Japan Test Engineer(s) Hironobu Matsuyama Naoki Norimoto

Approved by

Ikuya Minematsu / Group Manager

Table of Contents

1. I	LAL	3URATORY INFORMATION	
1	.1.	Laboratory Accreditation	3
	.2.	· · · · · · · · · · · · · · · · · · ·	
1	.3.	·	
	a Terr	NERAL INFORMATION	
2	.1.	Product Description	4
3.]	ΓES	STED SYSTEM	5
3	.1.	Reference Rule and Specification	5
3	.2.	Date of Test	5
3	.3.	Deviation of Standard	5
3	.4.	Test Mode	
3	.5.	Block Diagram of TEST System	6
3	.6.	List of Test System	
3	.7.	List of Cables	6
4 N	\ЛГ А [*]	XIMUM TRANSMIT POWER (RADIATED)	7
	via. .1.	Test Procedure	
•		Test Results	
5. I	R/C	TRANSMITTER CHANNEL FREQUENCIES	8
5	.1.	Test Procedure	8
5	.2.	Test Result	8
6 I	FMI	ISSION BANDWIDTH	Q
	.1.		
_	.2.		
_			
		DIATED EMISSION of TRANSMITTER (SPURIOUS and HARMONICS)	
	.1.		
7	.2.	Test Results	12
8. N	MO	DULATION CHARACTERISTICS	13
		Test Results	
9. I	USF	ED TEST EQUIPMENTS AND CALIBRATION STATUS	14

LABORATORY INFORMATION

1.1. Laboratory Accreditation

The KEC has been accredited by the following organizations based on their criteria for testing laboratory (ISO/IEC 17025).

(1) American Association for Laboratory Accreditation (A2LA) : Accreditation Number: 2070.01

(1) American Association for Laboratory Accreditation (A2LA)
 (2) Japan Accreditation Board for Conformity Assessment (JAB)
 (3) Voluntary EMC Laboratory Accreditation Center Inc. (VLAC)
 : Accreditation Number: RTL02810
 : Accreditation Number: VLAC-005

1.2. Test Facility

All tests described in this report were performed by:						
Name:	KEC Electronic Industry Dev Testing Division	elopment Cent	er			
Address:	3-2-2, Hikari-dai, Seika-cho,	Soraku-gun, K	yoto 619-023°	7 Japan		
Ar	nechoic Chamber	: □ No.1 □ No.8	☐ No.2 ☐ No.9	☐ No.3☑ No.10	□ No.6 □ No.11	☐ No.7 ☐ No.12
~	ielded Room rmonic Current Meas. Room	:	□ No.7	☐ No.8	⊠ No.9	□ No.10

1.3. Measurement Uncertainty

The result of a measurement is only an approximation or estimate of the value of a specific quantity. And thus the measurand is complete only when a statement of uncertainty is given. KEC quotes Measurement Uncertainty (U) as follows.

Maximum Transmit Power (Conducted Measurement)	+/- 0.6dB
Maximum e.i.r.p. Spectral Density	+/- 0.6dB
Frequency Range	+-1.9%
Emission Bandwidth	+-1.9%
Occupied Bandwidth	+-1.9%
Dwell Time	+-2.4%
Hopping Sequence	+-2.4%
Carrier Frequency	+/- 2.4×10 ⁻⁷
Spurious Emissions at Frequency Range from 9kHz up to 26.5GHz (Conducted Measurement)	+/- 0.7dB
Spurious Emissions at Frequency Range from 26.5GHz up to 40GHz (Conducted Measurement)	+/- 2.1dB
Spurious Emissions at Frequency Range from 30MHz up to 300MHz (Radiated Measurement)	+/- 3.6dB
Spurious Emissions at Frequency Range from 300MHz up to 1000MHz (Radiated Measurement)	+/- 3.2dB
Spurious Emissions at Frequency Range from 1GHz up to 12.75GHz (Radiated Measurement)	+/- 4.2dB
Spurious Emissions at Frequency Range from 12.75GHz up to 18GHz (Radiated Measurement)	+/- 5.2dB
Spurious Emissions at Frequency Range from 18GHz up to 40GHz (Radiated Measurement)	+/- 6.0dB
Frequency Tolerance of Carrier Signal	+/- 1.0×10 ⁻⁷

Expiration Date: 2013/9/30

The above values are calculated as Expanded Uncertainty (k=2 [95%]).

Note]

If the measured result is below the specification limit and a margin is less than the above measurement uncertainty, it is impossible to determine compliance at a level of confidence of 95%. However, the measured result indicates high probability that the tested device complies with the specification limit.

2. GENERAL INFORMATION

2.1. Product Description

(1) Frequency Range : $72.010 \sim 72.990$ MHz

(2) Antenna Gain : -6dBi

(3) Antenna Type : Rod Antenna

(4) Modulation : FSK

(5) Modulation / Speeding : F1D

(5) Rated Power Supply : DC 9.6V (Ni-MH Battery ×8)

3. TESTED SYSTEM

3.1. Reference Rule and Specification

(1) Reference Rule and Regulation

: FCC Part 2 Sec2.1046, Sec2.1047, Sec2.1049(C)(1), Sec2.1053, Sec2.1051, Sec2.1055 and Sec2.1057.

□ Section 95 623
□ Section 95 633
□ Section 95 635 (b)
□ Section 95 639

(2) Test Procedure

: ANSI C63.4-2003 + ANSI TIA-603-C-2004

3.2. Date of Test

Receipt of Test Sample : 29 May 2013

Condition of Test Sample : \(\subseteq \text{ Damage is not found on the set.} \)

☐ Damage is found on the set. (Details are described in this report)

Test Completed on : 14 June 2013

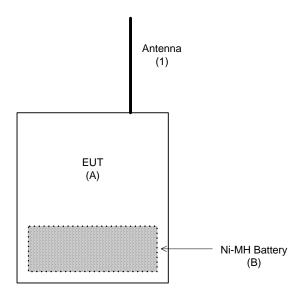
Condition of Test Sample :

Damage is not found on the set.

☐ Damage is found on the set. (Details are described in this report)

3.3. Deviation of Standard

\boxtimes	without	deviation,		deviation	(details are	found	inside (of this	report)
-------------	---------	------------	--	-----------	--------------	-------	----------	---------	---------


3.4. Test Mode

Mode No.	Operation Mode
A	EUT Continuously transmits modulated signal at a single channel (72.550MHz)

- (1) The test modes were planned by TÜV Rheinland JAPAN EMC Test Plan (EMC Test Plan_Ref: 12030291).
- (2) The test program was prepared by applicant.
- (3) Radiated emission of transmitter and Maximum Transmit Power (Radiated) were performed 3-othganal axis, and the data of the producing the maximum emissions were reported at each frequency.

3.5. Block Diagram of TEST System

3.6. List of Test System

No.	Device Name	Model Number	Serial Number	Trade Name	Note
Α	L25 FM TRANSMITTER	L25-N4580-40	1773306	JR PROPO	EUT
В	Ni-MH Battery	8H2000SC	-	-	9.6V, 200mA

[Note]

(1): Option of EUT

3.7. List of Cables

No.	Cable Name	Shielded (Y/N)	Length (m)	Note	
1	Built-in Rod Antenna	-	1.15	-	-

- (1): Undetachable cable type
- (2): Accessories cable of EUT
- (3): 3-wires type, earth plug is grounded
- (4) : 2-wires type

4. MAXIMUM TRANSMIT POWER (RADIATED)

4.1. Test Procedure

- (1) Place the transmitter to be tested (EUT) on the turntable.
- (2) For carrier frequency, raise and lower the test antenna from 1m to 4m to obtain a maximum reading on the spectrum analyzer (*1) with the test antenna at horizontal polarity.

 Then the turntable should be rotated 360° to determine the maximum reading. Repeat this procedure to

obtain the highest possible reading. Record this maximum reading.

- (3) Repeat step (2) for carrier frequency with the test antenna polarized vertically.
- (4) Remove the transmitter and replace it with a substitution antenna (the antenna should be half-wavelength for each frequency involved). The center of the substitution antenna should be approximately at the same location as the center of the transmitter.
- (5) Feed the substitution antenna at the transmitter end with a signal generator connected to the antenna by means of a non-radiating cable. With the antennas at both ends horizontally polarized and with the signal generator tuned to a carrier frequency, raise and lower the test antenna to obtain a maximum reading at the spectrum analyzer. Adjust the level of the signal generator output until the previously recorded maximum reading for this set of conditions is obtained. This should be done carefully repeating the adjustment of the test antenna and generator output.
- (6) Repeat step (5) with both antenna vertically polarized for carrier frequency.
- (7) Calculate power in dBm into a reference ideal half-wave dipole antenna by reducing the readings obtained in steps (5) and (6) by the power loss in the cable between the generator and the antenna and further corrected for the gain of the substitution antenna used relative to an ideal half-wave dipole antenna.

[Note]

(*1) Spectrum Analyzer Set Up Conditions

Frequency range : 9kHz – 1GHz Resolution bandwidth : 10kHz

Video bandwidth : 10kHz
Sweep time : 300kHz
: Auto

Detector function : RMS Average

4.2. Test Results

Carrier	S pectrum Ana	lyzer Reading	RF Meter	r Reading	Antenna	Cable	ERP	RF Output	Limit
Frequency	Horizontal	Vertical	Horizontal	Vertical	Gain	Loss	EKI	Power	LAIIII
(MHz)	(dBµV)	(dBµV)	(dBm)	(dBm)	(dBi)	(dB)	(dBm)	(mW)	(mW)
(IVIIIZ)	(иви у	(иби у	(ubiii)	(ubiii)	(ubi)	(ub)	(ubiii)	(111 **)	(111 44)

[Note]

(1) ERP(dBm) = RF Meter Reading(dBm) + Antenna Gain(dBi) - 2.15(dB) - Cable Loss(dB)

Tested Date	Environment			
rested Date	Temperature	Humidity		
5 June 2013	19 ℃	43 %		

5. R/C TRANSMITTER CHANNEL FREQUENCIES

5.1. Test Procedure

- (1) Connect the equipment as illustrated.
- (2) Operate the equipment in standby conditions for 15 minutes before proceeding.
- (3) Record the carrier frequency of the transmitter as MCFMHz.
- (4) Calculate the Frequency Drift by the following

Frequency Drift (%)

$$= \left(\frac{MCF_{MHz}}{ACF_{MHz}} - 1\right) \times 100$$

(5) Repeat with following conditions

Temperature: $-30 \, ^{\circ}\text{C} \sim +50 \, ^{\circ}\text{C}$

(Only at the time of 20 °C, it is measured also with minimum voltage.)

5.2. Test Result

Test Voltage: 9.6V

ACF	MCF [MHz]	TEMPERATURE [℃]	FREQUENCY DRIFT [%]	LIMIT [%]
	72.550164	-30	0.000226	
72.550000	72.550400	-20	0.000551	± 0.002
	72.550652	-10	0.000899	
	72.550551	0	0.000760	
	72.550503	+10	0.000693	
	72.550659	+20	0.000908	
	72.549960	+30	-0.000055	
	72.549870	+40	-0.000179	
	72.549850	+50	-0.000207	

Temperature: 20°C

ACF	MCF [MHz]	SUPPLIED VOLTAGE [V]	FREQUENCY DRIFT	LIMIT [%]
72.550000	72.550659	8.5	0.000908	± 0.002

[Note]

Reduced primary supply voltage to the operating and point which shall be specified by the manufacturer.

Tostad Data	Environment			
Tested Date	Temperature	Humidity		
14 June 2013	24 °C	45 %		

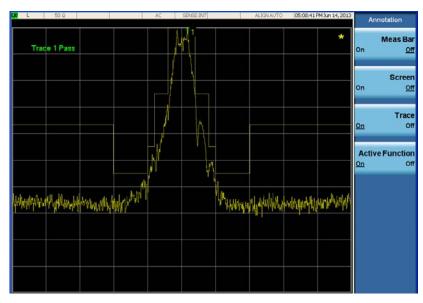
6. EMISSION BANDWIDTH

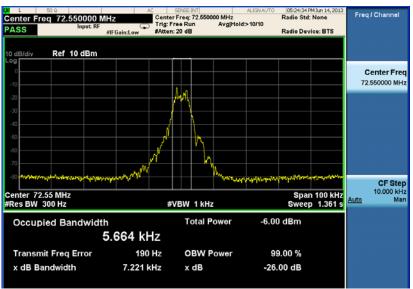
6.1. Test Procedure

- (1) Connect the EUT RF output port to spectrum analyzer via calibrated coaxial cable and suitable attenuator (if necessary).
- (2) Activates the EUT System and execute the software prepared for test (if necessary).
- (3) To find out the maximum emission condition, the transmitting data rate of EUT is set to maximum data rate (if necessary).
- (4) The Spectrums are scanned and allow the trace stabilized.
- (5) The emission bandwidth were measured by using "Trace Mode" and "Occupied BW" function of the spectrum analyzer (*1).

[Note]

(*1) Spectrum Analyzer Set Up Conditions


 $\begin{tabular}{lll} Resolution bandwidth & : 300 Hz \\ Video bandwidth & : <math>\geq 3 \times RBW \\ Sweep & : Auto \\ Trace Mode & : Max Hold \\ \end{tabular}$



6.2. Test Results

Modulation

Trace mode of Spectrum Analyzer: Maximum Hold

Frequency [MHz]	Emission Bandwidth [kHz]	LIMIT [kHz]
72.550	5.664 (*1)	0
	7.221 (*2)	0

- (*1) 99% Occupied Bandwidth
- (*2) 26dB Emission Bandwidth

Tested Date	Enviro	nment
	Temperature	Humidity
14 June 2013	24 °C	45 %

7. RADIATED EMISSION of TRANSMITTER (SPURIOUS and HARMONICS)

7.1. Test Procedure

- (1) Place the transmitter to be tested (EUT) on the turntable.
- (2) Measurements are investigated from the lowest radio frequency signal generated in the equipment, without going below 9 kHz, up to tenth harmonic of the carrier.
- (3) For each spurious frequency, raise and lower the test antenna from 1m to 4m to obtain a maximum reading on the spectrum analyzer (*1) with the test antenna at horizontal polarity. Then the turntable should be rotated 360° to determine the maximum reading. Repeat this procedure to obtain the highest possible reading. Record this maximum reading.
- (4) Repeat step (3) for each spurious frequency with the test antenna polarized vertically.
- (5) Remove the transmitter and replace it with a substitution antenna (the antenna should be half-wavelength for each frequency involved). The center of the substitution antenna should be approximately at the same location as the center of the transmitter. At the lower frequencies, where the substitution antenna is very long, this will be impossible to achieve when the antenna is polarized vertically. In such case the lower end of the antenna should be 0.3m above the ground.
- (6) Feed the substitution antenna at the transmitter end with a signal generator connected to the antenna by means of a non-radiating cable. With the antennas at both ends horizontally polarized and with the signal generator tuned to a particular spurious frequency, raise and lower the test antenna to obtain a maximum reading at the spectrum analyzer. Adjust the level of the signal generator output until the previously recorded maximum reading for this set of conditions is obtained. This should be done carefully repeating the adjustment of the test antenna and generator output.
- (7) Repeat step (6) with both antennas vertically polarized for each spurious frequency.
- (8) Calculate power in dBm into a reference ideal half-wave dipole antenna by reducing the readings obtained in steps (6) and (7) by the power loss in the cable between the generator and the antenna and further corrected for the gain of the substitution antenna used relative to an ideal half-wave dipole antenna.
- (9) The levels record in step (8) are the absolute levels of radiated spurious emissions in dBm. The radiated spurious emissions in dB can be calculated by the following:

Radiated spurious emissions (dBc) =

$$10 \log_{10} \left[\frac{\text{TX power in watts}}{0.001} \right]$$
 - the levels in step (8)

Note: It is permissible to use other antennas provided they can be referenced to a dipole.

[Note]

(*1) Spectrum Analyzer Set Up Conditions

Frequency range : 9kHz – 1GHz Resolution bandwidth : 10kHz Video bandwidth : 300kHz

Sweep time : Auto

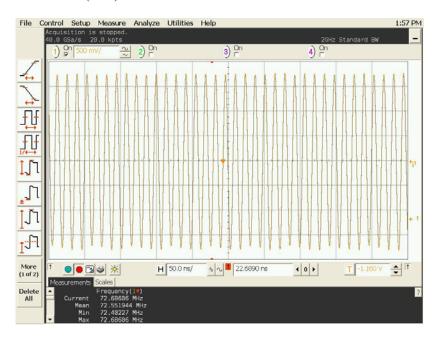
Detector function : RMS Average

7.2. Test Results

Carrier	Spectrum Ana	lyzer Reading	RF Meter	r Reading	Antenna	Cable	ERP	RF Output	Limit
Frequency	Horizontal	Vertical	Horizontal	Vertical	Gain	Loss		Power	
(MHz)	(ID X/)	(ID 17)	(.ID)	(.ID)	(JD.)	(JD)	(dBm)	(\\)	(XX)
(IVIIIZ)	(dBµV)	(dBµV)	(dBm)	(dBm)	(dBi)	(dB)	(abm)	(mW)	(mW)

Measured	Spectrum Ana	lyzer Reading	RF Meter	r Reading	Antenna	Cable	ERP	Limit	Margin
Frequency	Horizontal	Vertical	Horizontal	Vertical	Gain	Loss	ENI	LAIIII	Margin
(MHz)	$(dB\mu V)$	$(dB\mu V)$	(dBm)	(dBm)	(dBi)	(dB)	(dBm)	(dBm)	(dB)
145.10	44.8	38.5	-34.1	-35.8	2.15	0.7	-34.8	-26.0	8.8
217.65	43.1	36.4	-31.5	-32.8	2.15	0.8	-32.3	-26.0	6.3
290.20	37.1	34.1	-38.4	-37.2	2.15	0.9	-38.1	-26.0	12.1
362.75	37.6	37.5	-40.1	-39.5	2.15	1.1	-40.6	-26.0	14.6
435.30	28.2	27.2	-47.4	-47.6	2.15	1.2	-48.6	-26.0	22.6
507.85	27.0	25.6	-49.6	-48.9	2.15	1.3	-50.2	-26.0	24.2
580.40	19.7	15.9	-54.0	-55.8	2.15	1.4	-55.4	-26.0	29.4
652.95	21.9	19.6	-51.9	-50.7	2.15	1.4	-52.1	-26.0	26.1
725.50	26.4	24.6	-44.8	-45.0	2.15	1.5	-46.3	-26.0	20.3
798.05	27.2	24.1	-42.9	-44.3	2.15	1.6	-44.5	-26.0	18.5
870.60	18.8	15.2	-49.5	-51.9	2.15	1.7	-51.2	-26.0	25.2
943.15	23.4	19.5	-45.1	-47.4	2.15	1.7	-46.8	-26.0	20.8

- (1) ERP(dBm) = RF Meter Reading(dBm) + Antenna Gain(dBi) 2.15(dB) Cable Loss(dB)
- (2) For the relative radiated power of each spurious emission with reference to the rated power output of the transmitter, the value of the twelve highest spurious emissions relative to the limit were reported.


Tested Date	Environment		
rested Date	Temperature	Humidity	
5 June 2013	19 °C	43 %	

8. MODULATION CHARACTERISTICS

8.1. Test Results

Waveform (F1D)

Tested Date	Environment		
	Temperature	Humidity	
14 June 2013	24 °C	45 %	

9. USED TEST EQUIPMENTS AND CALIBRATION STATUS

- Maximum Transmit Power (Radiated)
- Radiated Emission of Transmitter (Spurious and Harmonics)

KEC No.	Equipment	Manufacturer	Model No.	Last Cal.	Next Cal.
AM-098	Pre-Amplifier	SONOMA	SONOMA 310N	2013/03	2014/03
AN-054	Loop Antenna	ROHDE & SCHWARZ	HFH2-Z2	2012/10	2013/10
AN-220	LPDA Antenna	Schwarzbeck	UHALP 9108A	2013/04	2014/04
AN-296	Biconical Antenna	Schwarzbeck	VHBB9124	2013/04	2014/04
AT-100	3dB Attenuator	JFW	50HF-003	2013/03	2014/03
AT-101	3dB Attenuator	JFW	50HF-003	2013/03	2014/03
FS-099	Test Receiver	ROHDE & SCHWARZ	ESS	2012/12	2013/12
MM-302	RF Selector	TOYO	NS4900	2013/04	2014/04
SA-058	Spectrum Analyzer	Agilent	N9010A	2013/04	2014/04

- R/C Transmitter Channel Frequencies
- · Emission Bandwidth
- Modulation Characteristics

KEC No.	Equipment	Manufacturer	Model No.	Last Cal.	Next Cal.
AT-148	Fixed Attenuator	Anritsu	41KC-10	2013/03	2014/03
CL-622	Coaxial Cable	Suhner	Sucoflex 106	2013/03	2014/03
SA-058	Spectrum Analyzer	Agilent	N9010A	2013/04	2014/04
SF-093	Temperature (& Humidity) Chamber	ESPEC CORP.	SH-641	2012/07	2013/07

Note: (*1) We check the performance, before using this device.

The overall program of calibration and verification of equipment is designed and operated so as to ensure that measurements made by KEC are traceable to national standards of measurement or equivalent abroad.