

SECTION 3**OCCUPIED BANDWIDTH**

(FOR 25 kHz CHANNELIZATION)

Method of Measurement Per 2.989 (c,1) Data on Occupied Bandwidth is presented in the form of a spectrum analyzer plot which illustrates the transmitter sidebands. A plot is taken of the carrier sideband modulated with a 2500 Hz tone at a level 16 dB greater than that required to produce 50 percent modulation. (The spectrum analyzer grid indicates the reference level of the carrier unmodulated in all exhibits.)

SECTION 3B,C,G,H
Telephony

$$Bn = 2M + 2DK \text{ where}$$

$$M = 3000 \text{ Hz}$$

$$D = 4300 \text{ Hz}$$

$$K = 1(\text{assumed})$$

$$Bn = 14600$$

Therefore, Emission Designator = 14K6F3E

SECTION 3D
Data, Digital Voice

$$Bn = 2(B/2) + 2DK \text{ where}$$

$$B = 9600 \text{ Hz}$$

$$D = 3000 \text{ Hz}$$

$$K = 1(\text{assumed})$$

$$Bn = 15600$$

Therefore, Emission Designators are,

15K6F1D

15K6F1E

SECTION 3**OCCUPIED BANDWIDTH**

(FOR NPSPAC CHANNELIZATION)

Method of Measurement Per Data on Occupied Bandwidth is presented in the form of a spectrum analyzer plot which illustrates the transmitter sidebands. A plot is taken of the carrier sideband modulated with a 2500 Hz tone at a level 16 dB greater than that required to produce 50 percent modulation. (The spectrum analyzer grid indicates the reference level of the carrier unmodulated in all exhibits.)

Section E,F
Voice

$$B_n = 2M + 2DK \text{ where}$$

$$M = 3000 \text{ Hz}$$

$$D = 3800 \text{ Hz}$$

$$K = 1 \text{ (assumed)}$$

$$B_n = 13600 \text{ Hz}$$

Therefore, Emission Designator = 13K6F3E

Section G
Data

$$B_n = 2(B/2) + 2DK \text{ where}$$

$$B = 9600 \text{ bps}$$

$$D = 2400 \text{ bps}$$

$$K = 1 \text{ (assumed)}$$

$$B_n = 14400 \text{ Hz}$$

Therefore, Emission Designator = 14K4F1D, 14K4F1E