

Prepared (also subject responsible if other) RT/EUS/VR/X Mark Douglas		No. EUS/VR-99:5507/REP		
Approved EUS/VR/X Mark Douglas	Checked MGD	Date 1999-11-22	Rev A	File U:\FCC_TRNS\FCC_378 dana linda\Exhibit 11\Source\sar.doc
EN				

SAR Test Report: R280d

Date of test: November 19, 1999

Laboratory: Electromagnetic Near Field and Radio Frequency Dosimetry Laboratory
Ericsson, Inc.
7001 Development Drive, P.O. Box 13969,
Research Triangle Park, NC, 27709, USA

Test Responsible: Mark Douglas, Ph.D.
Senior Staff Engineer, Antenna Development Group
mark.douglas@ericsson.com
(919) 472-6334

Statement of Compliance

Ericsson, Inc. declares under its sole responsibility that the product

Ericsson R280d

to which this declaration relates, is in conformity with the appropriate RF exposure standards, recommendations and guidelines. It also declares that the product was tested in accordance with the appropriate measurement standards, guidelines and recommended practices.

© Ericsson, Inc. 1999

This test report shall not be reproduced except in full, without written approval of the laboratory.

The results and statements contained herein relate only to the items tested. The names of individuals involved may be mentioned only in connection with the statements or results from this report.

Prepared (also subject responsible if other) RT/EUS/VR/X Mark Douglas	919-472-6334	No. EUS/VR-99:5507/REP	
Approved EUS/VR/X Mark Douglas	Checked MGD	Date 1999-11-22	Rev A
EN			

Table of Contents

1. Introduction	0
2. Device Under Test	0
2.1 Antenna description	0
2.2 Device description	0
3. Test equipment	0
3.1 Dosimetric system	0
3.2 Additional equipment	0
4. Electrical parameters of the tissue simulating liquid	0
5. System accuracy verification	0
6. Test results	0
References	0
Appendix 1: SAR distribution comparison for system accuracy verification	0
Appendix 2: SAR distribution plots	0
Appendix 3: Photographs of the device under test	0
Appendix 4: Position of device on Generic Twin Phantom	0
Appendix 5: Probe calibration parameters for ET3DV5 SN:1337	0

Prepared (also subject responsible if other) RT/EUS/VR/X Mark Douglas	919-472-6334	No. EUS/VR-99:5507/REP		
Approved EUS/VR/X Mark Douglas	Checked MGD	Date 1999-11-22	Rev A	File U:\FCC_TRNS\FCC_378 dana linda\Exhibit 11\Source\sar.doc
EN				

1. Introduction

In this test report, compliance of the Ericsson R280d portable telephone with RF safety guidelines is demonstrated (applicable RF safety guidelines are given in [1]). The device was tested in accordance with the latest available test guidelines [1]. Detailed procedures of the test are described in the *Ericsson SAR Measurement Specification* [2].

2. Device Under Test

2.1 Antenna description

Type	Fixed stub	
Location	Left side	
Dimensions	length	30 mm
	width at base	11 mm
Configuration	Dual-band helix	

2.2 Device description

Device model	R280d		
Serial number	UA20148X59		
Mode	800 AMPS	800 TDMA	1900 TDMA
Multiple Access Scheme	FDMA	TDMA	TDMA
Maximum Output Power Setting ¹	26 dBm	26 dBm	26 dBm
Factory Tolerance in Power Setting	± 0.25dbm	± 0.25dBm	± 0.25 dB
Maximum Peak Output Power ²	26.25 dBm	26.25 dBm	26.25 dBm
Duty Cycle	1	1 / 3	1 / 3
Transmitting Frequency Range	824 – 849 MHz	824 – 849 MHz	1850-1910 MHz
Prototype or Production Unit ³	Prototype		

3. Test equipment

3.1 Dosimetric system

SAR measurements were made using the DASY3 professional system (software version 3.1c), manufactured by Schmid & Partner Engineering AG and installed February, 1998. The total SAR assessment uncertainty (K = 1) of the system is ±16% and includes a +15% offset (overestimation). The extended uncertainty (K = 2) is ±32% with a +15% offset. This results in a total uncertainty range of -1% to +31% for K = 1, or -17% to +47% for K = 2. The equipment list is given below.

Description	Serial Number	Due Date
DASY3 DAE V1	345	10/00
E-field probe ETDV5	1337	3/00
Dipole Validation Kit, D900V2	049	12/00
Dipole Validation Kit, D1800V2	238	12/00

¹ Conducted power measured at the antenna port when the device is set to its highest power setting. Measured in the middle of the transmit frequency band.

² This equals the maximum output power setting plus the factory tolerance.

³ It shall be understood that a statement of compliance for a prototype unit also applies to production units [3].

Prepared (also subject responsible if other) RT/EUS/VR/X Mark Douglas	919-472-6334	No. EUS/VR-99:5507/REP		
Approved EUS/VR/X Mark Douglas	Checked MGD	Date 1999-11-22	Rev A	File U:\FCC_TRNS\FCC_378 dana linda\Exhibit 11\Source\sar.doc
EN				

3.2 Additional equipment

Description	Serial Number	Due Date
Signal Generator HP8648C	3537A01598	9/00
Dielectric probe kit HP 85070B	US33020390	2/00
Network analyzer HP 8752C	3410A03105	7/00
Power meter HP 437B	3125U13481	12/99
Power sensor HP 8482H	3318A07097	2/00
Radio communications analyzer Anritsu MT8801B	MB12477	10/00

4. Electrical parameters of the tissue simulating liquid

Prior to conducting SAR measurements, the relative permittivity, ϵ_r , and the conductivity, σ , of the tissue simulating liquids were measured with the dielectric probe kit. These values are shown in the table below. The mass density, ρ , entered into the DASY3 program is also given. Recommended limits for maximum permittivity, minimum conductivity and maximum mass density are also shown [3]. It is seen that the measured parameters satisfy the recommendations, resulting in an overestimation of SAR.

f (MHz)	Limits / Measured	Dielectric Parameters		
		ϵ_r	σ (S/m)	ρ (g/cm ³)
835	Measured	43.9	0.77	1.00
	Recommended Limits [3]	46.1	0.74	1.03
	Difference	-4.8%	+4.1%	-2.9%
1800	Measured	39.1	1.70	1.00
	Recommended Limits [3]	43.5	1.15	1.03
	Difference	-10.1%	+47.8%	-2.9%

5. System accuracy verification

A system accuracy verification of the DASY3 was performed using the dipole validation kits listed in Section 3.1. The system verification test was conducted on the same day as the measurement of the DUT. The obtained results are displayed in the table below. It is seen that the system is operating within its specification, as the results are within $\pm 5\%$ of the reference values obtained from the system manufacturer [4]. The distribution of SAR also compares well with that provided by the system manufacturer (see Appendix 1).

f (MHz)	Measured / Reference	SAR (W/kg), 1 gram	Dielectric Parameters			Temp. (°C)
			ϵ_r	σ (S/m)	ρ (g/cm ³)	
900	Measured	9.04	43.3	0.83	1.00	23
	Reference [4]	9.48	42.0	0.86	1.00	?
1800	Measured	40.4	39.1	1.70	1.00	23
	Reference [4]	38.9	41.0	1.70	1.00	?

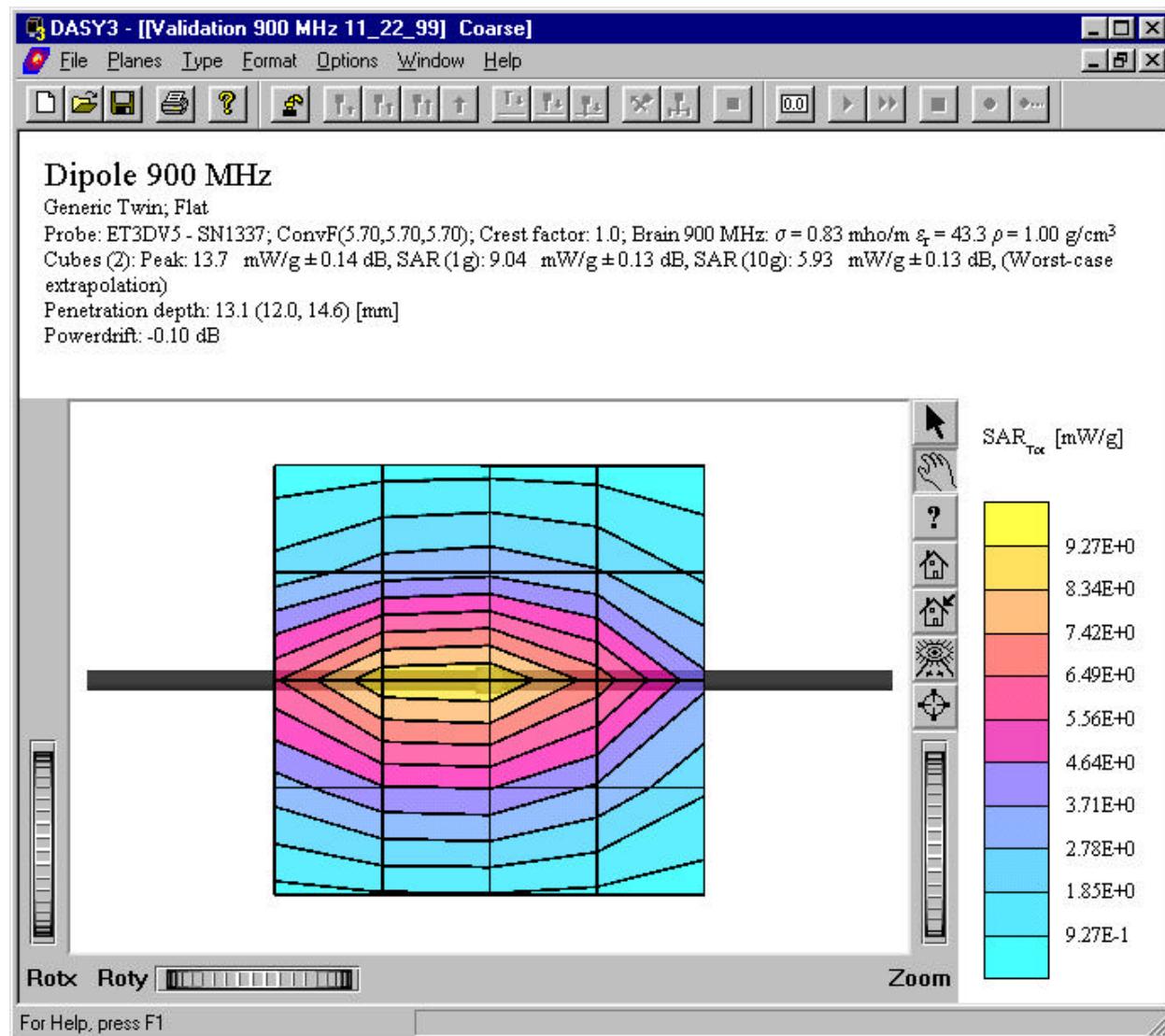
6. Test results

The measured SAR values and conducted output powers are shown in Table 1. The device was tested on both the right-hand phantom (corresponding to the right side of the head) and the left-hand phantom. The SAR results shown are maximum SAR values averaged over 1 g of tissue.

A base station simulator was used to control the device during the SAR measurements. The phone was supplied with a fully-charged battery for the tests. The temperature of the test facility during the tests was 23.0 ± 1 °C, and the depth of the tissue simulating liquid was 14.0 cm.

Prepared (also subject responsible if other) RT/EUS/VR/X Mark Douglas		919-472-6334	No. EUS/VR-99:5507/REP			
Approved EUS/VR/X Mark Douglas	Checked MGD		Date 1999-11-22	Rev A	File U:\FCC_TRNS\FCC_378 dana linda\Exhibit 11\Source\sar.doc	
EN						

mode	<i>f</i> (MHz)	Output Power (dBm)	SAR, 1g (W/kg)			
			left-hand		right-hand	
			measured	calculated to max. power	measured	calculated to max. power
800 AMPS	824	26.1	1.36	1.31	1.46	1.41
	837	26.4	1.24	1.20	1.36	1.31
	849	26.4	1.17	1.13	1.27	1.23
800 TDMA	824	25.9	0.436	0.484	0.475	0.527
	837	25.8	0.413	0.458	0.498	0.552
	849	25.9	0.384	0.426	0.477	0.529
1900 TDMA	1850	25.2	0.589	0.701	0.852	1.01
	1880	25.5	0.633	0.753	0.962	1.14
	1910	25.4	0.661	0.787	0.996	1.19

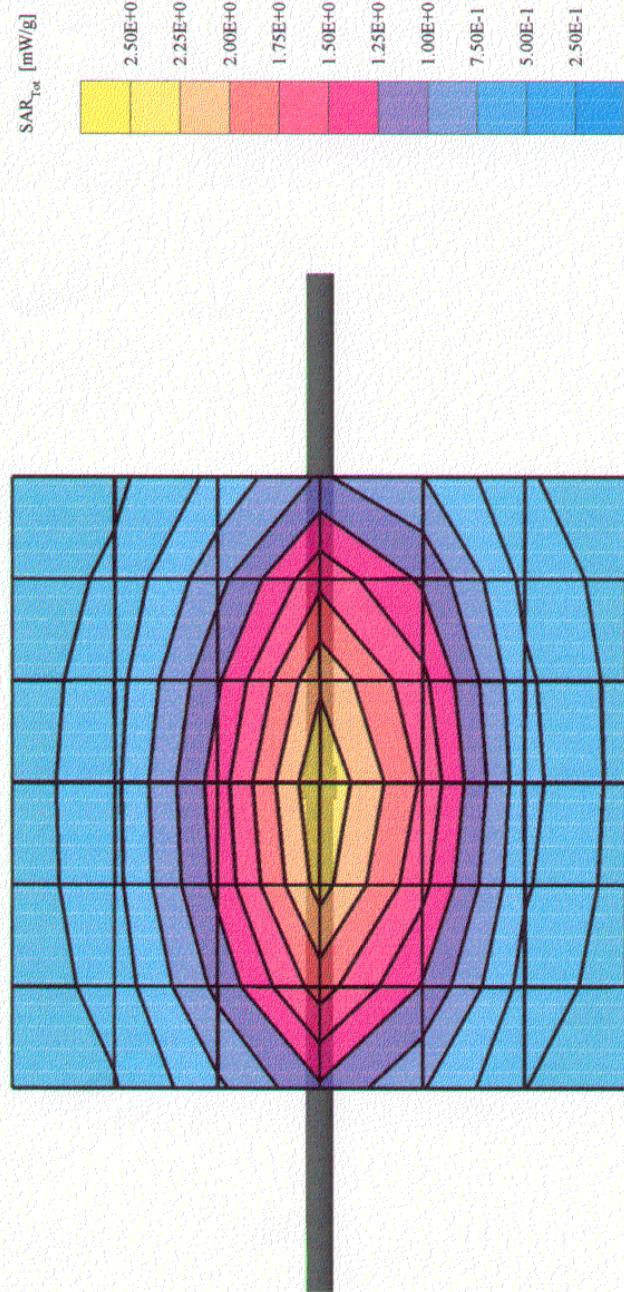

Table 1: SAR measurement results for the Ericsson R280d telephone at highest possible output power.

References

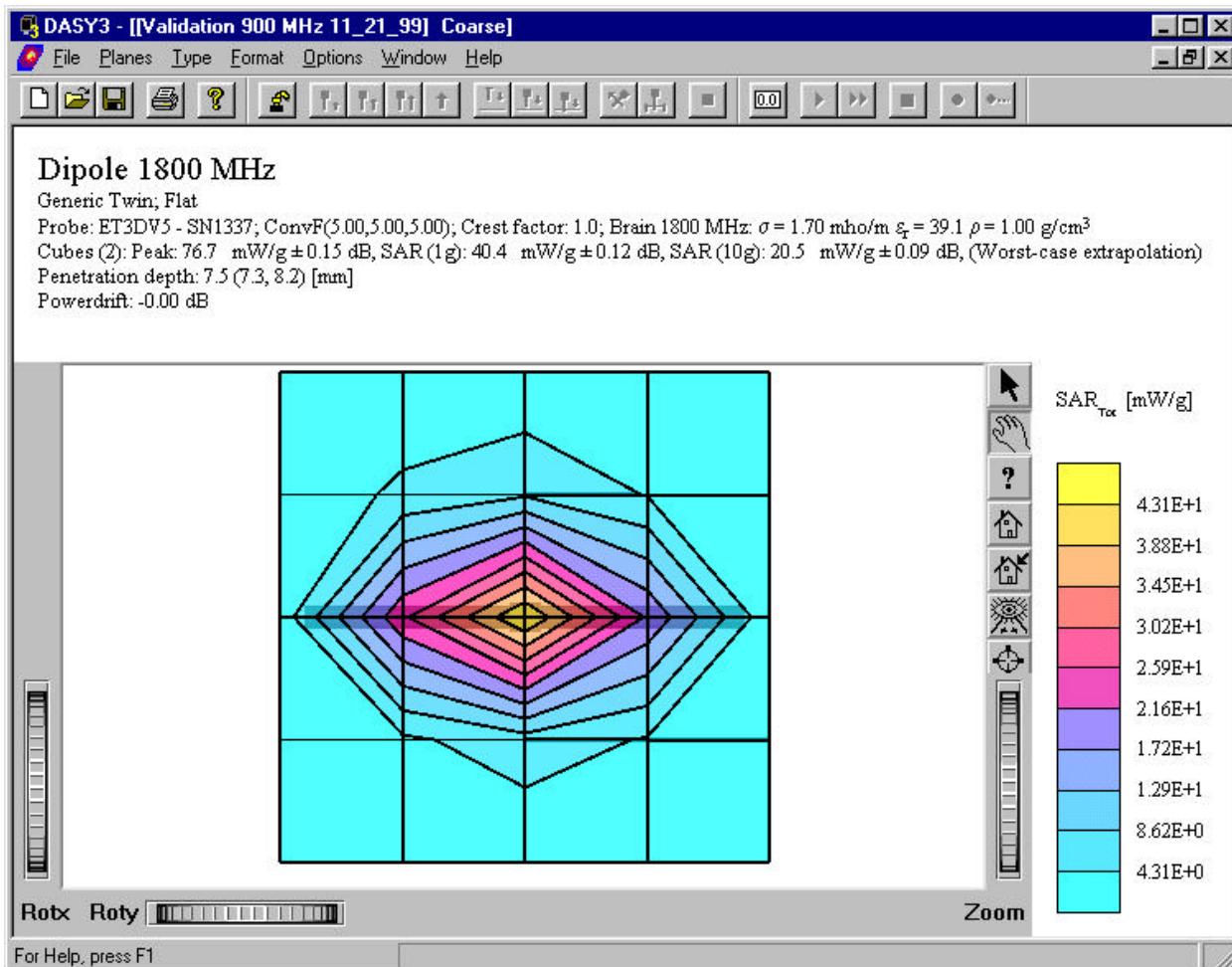
- [1] C. Törnevik, "Ericsson SAR measurement specification, part 1: Introduction and Purpose," Internal Document ERA/T/U-98:446, February, 1999.
- [2] C. Törnevik, M. Siegbahn, T. Persson, M. Douglas, and R. Plicanic, "Ericsson SAR measurement specification", Internal Document ERA/T/U-98:442, February 1999.
- [3] Federal Communications Commission, "Tissue Dielectric Properties," <http://www.fcc.gov/fcc-bin/dielec.sh>.
- [4] Schmid and Partner Engineering AG, "DASY Dipole Validation Kit," Type: D1800V2, S/N: 217, November, 1997.

Prepared (also subject responsible if other) RT/EUS/VR/X Mark Douglas	919-472-6334	No. EUS/VR-99:5507/REP	
Approved EUS/VR/X Mark Douglas	Checked MGD	Date 1999-11-22	Rev A
EN			

Appendix 1: SAR distribution comparison for system accuracy verification

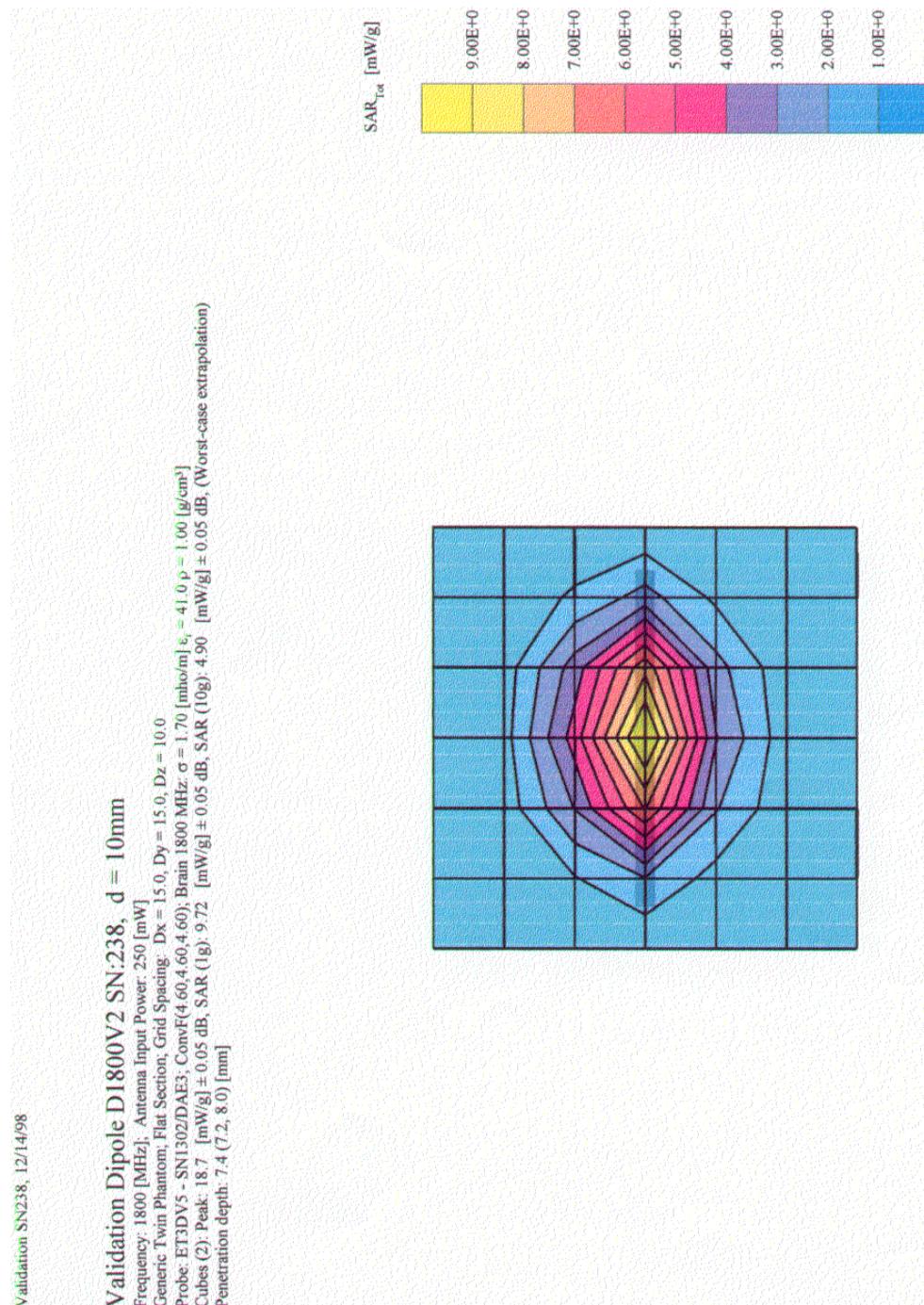

900 MHz SAR distribution of validation dipole antenna from system accuracy verification test.

Prepared (also subject responsible if other) RT/EUS/VR/X Mark Douglas	919-472-6334	No. EUS/VR-99:5507/REP		
Approved EUS/VR/X Mark Douglas	Checked MGD	Date 1999-11-22	Rev A	File U:\FCC_TRNS\FCC_378 dana linda\Exhibit 11\Source\sar.doc
EN				


Validation SN049, 12/12/98

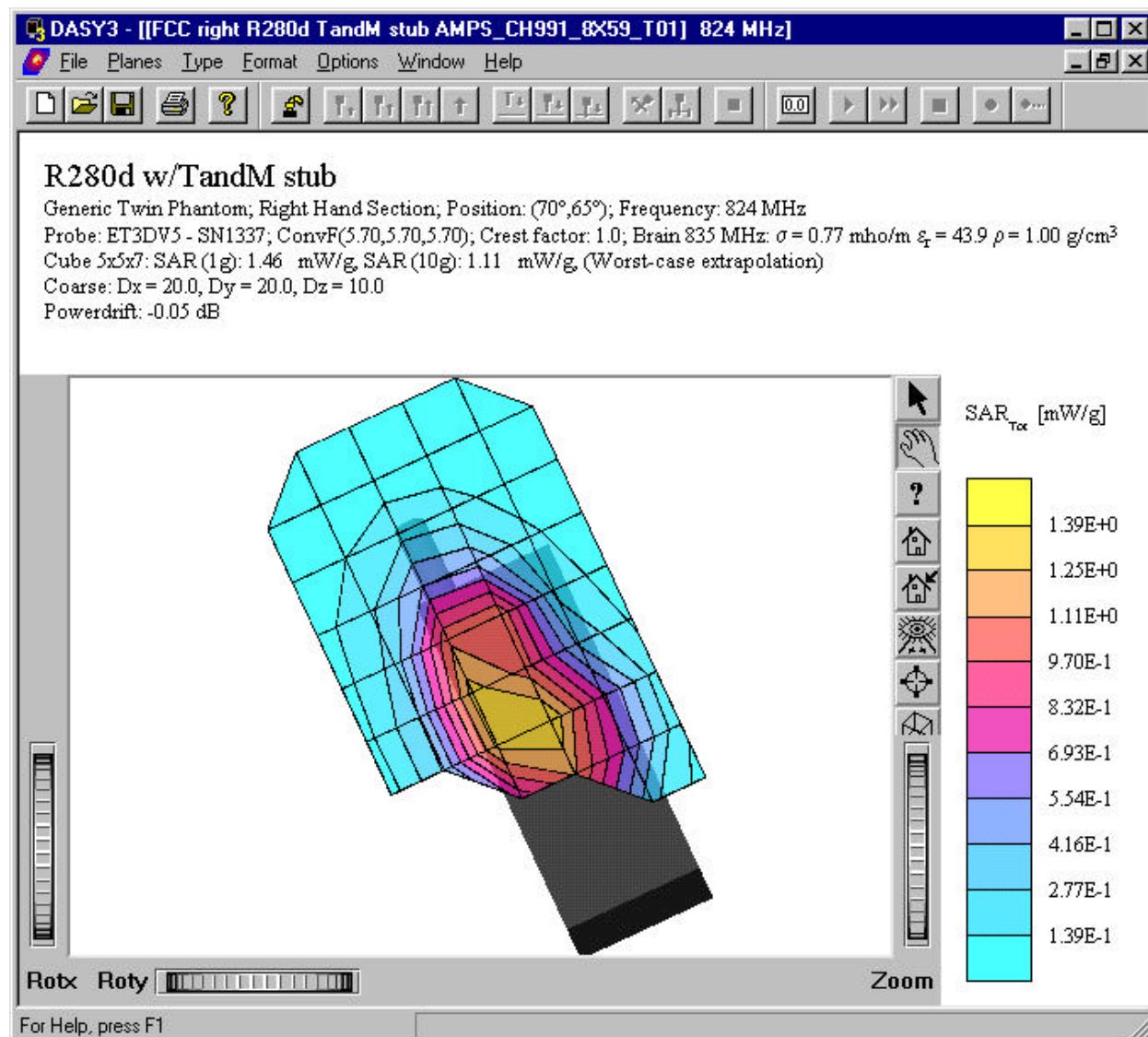
Validation Dipole D900V2 SN:049, d = 15mm

Frequency: 900 [MHz]; Antenna Input Power: 250 [mW]
 Generic Twin Phantom; Flat Section; Grid Spacing: Dx = 15.0, Dy = 15.0, Dz = 10.0
 Probe: ET3DV5 - SN11302/DAE3; ConvF(5.50,5.50,5.50); Brain 900 MHz; $\sigma = 0.86$ [mho/m]; $\epsilon_r = 42.0$; $P = 1.00$ [μ J/cm³]
 Cubes (2): Peak: 3.63 [mW/g] ± 0.04 dB, SAR (1g): 2.37 [mW/g] ± 0.05 dB, (Worst-case extrapolation)
 Penetration depth: 12.8 (11.7, 14.1) [mm]
 Powerdrift: -0.00 dB

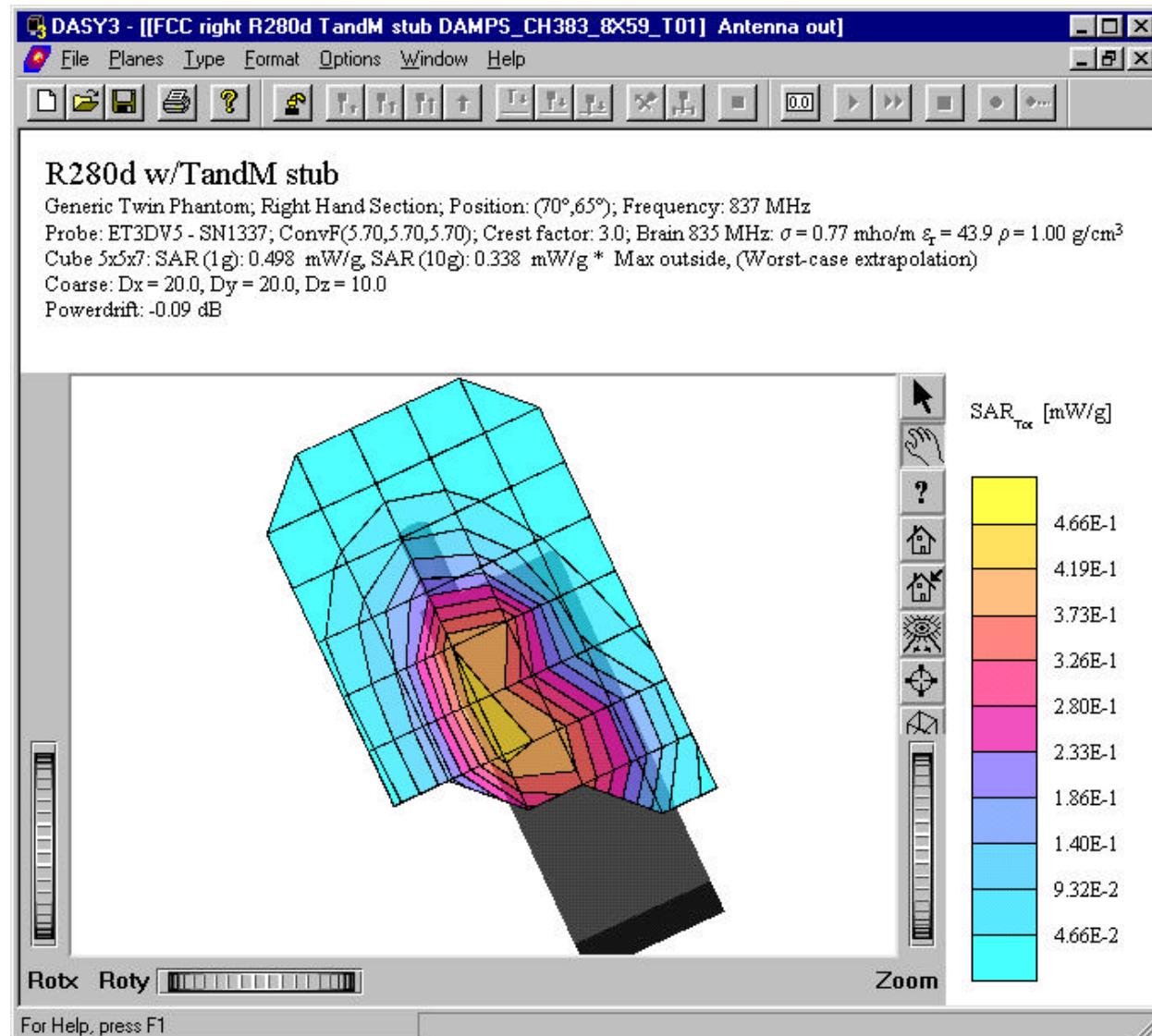

900 MHz SAR distribution of validation dipole antenna provided by system manufacturer.

Prepared (also subject responsible if other) RT/EUS/VR/X Mark Douglas	919-472-6334	No. EUS/VR-99:5507/REP		
Approved EUS/VR/X Mark Douglas	Checked MGD	Date 1999-11-22	Rev A	File U:\FCC_TRNS\FCC_378 dana linda\Exhibit 11\Source\sar.doc
EN				

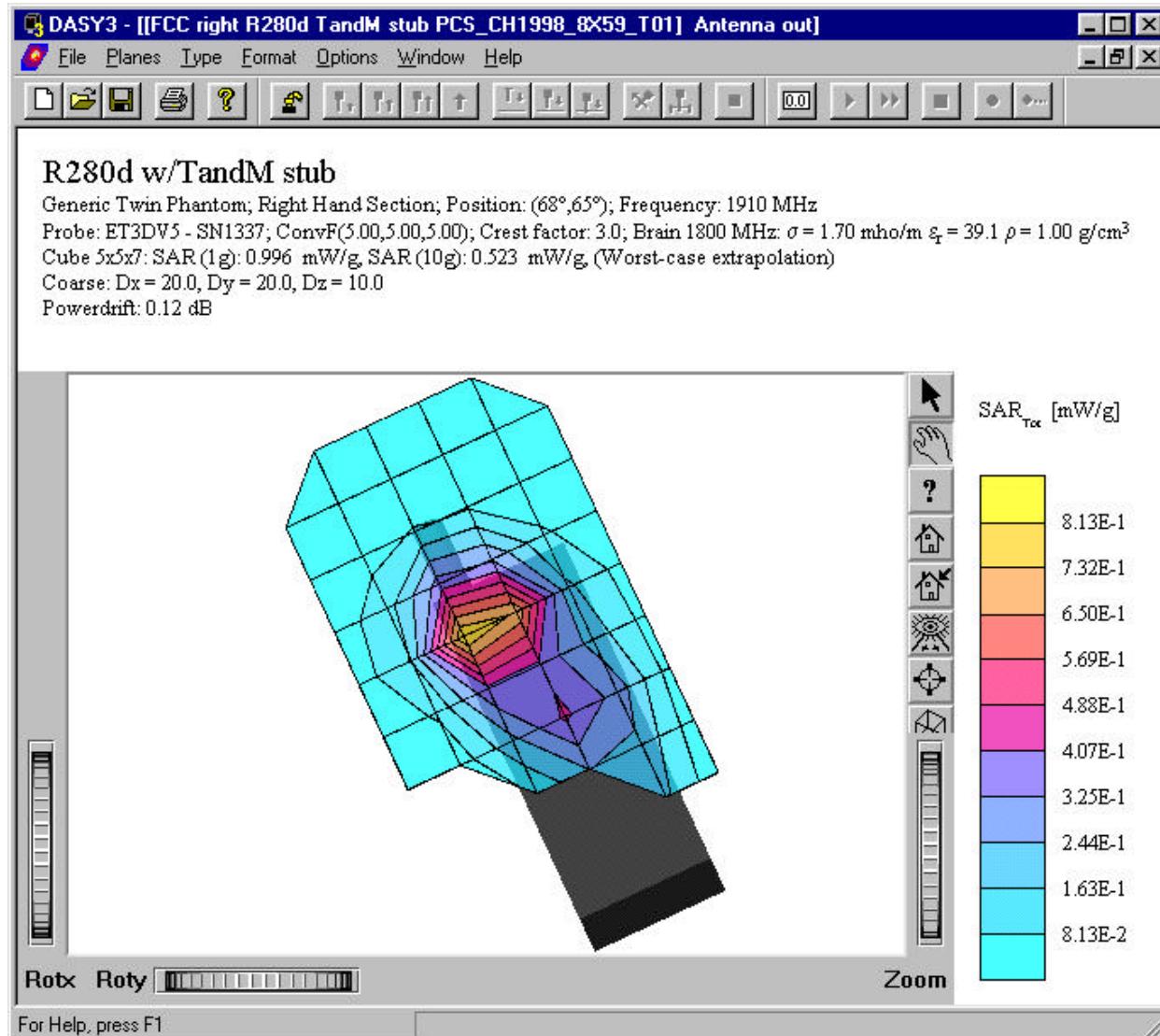
1800 MHz SAR distribution of validation dipole antenna from system accuracy verification test.


Prepared (also subject responsible if other) RT/EUS/VR/X Mark Douglas	919-472-6334	No. EUS/VR-99:5507/REP		
Approved EUS/VR/X Mark Douglas	Checked MGD	Date 1999-11-22	Rev A	File U:\FCC_TRNS\FCC_378 dana linda\Exhibit 11\Source\sar.doc
EN				

1800 MHz SAR distribution of validation dipole antenna provided by system manufacturer.


Prepared (also subject responsible if other) RT/EUS/VR/X Mark Douglas	919-472-6334	No. EUS/VR-99:5507/REP		
Approved EUS/VR/X Mark Douglas	Checked MGD	Date 1999-11-22	Rev A	File U:\FCC_TRNS\FCC_378 dana linda\Exhibit 11\Source\sar.doc
EN				

Appendix 2: SAR distribution plots

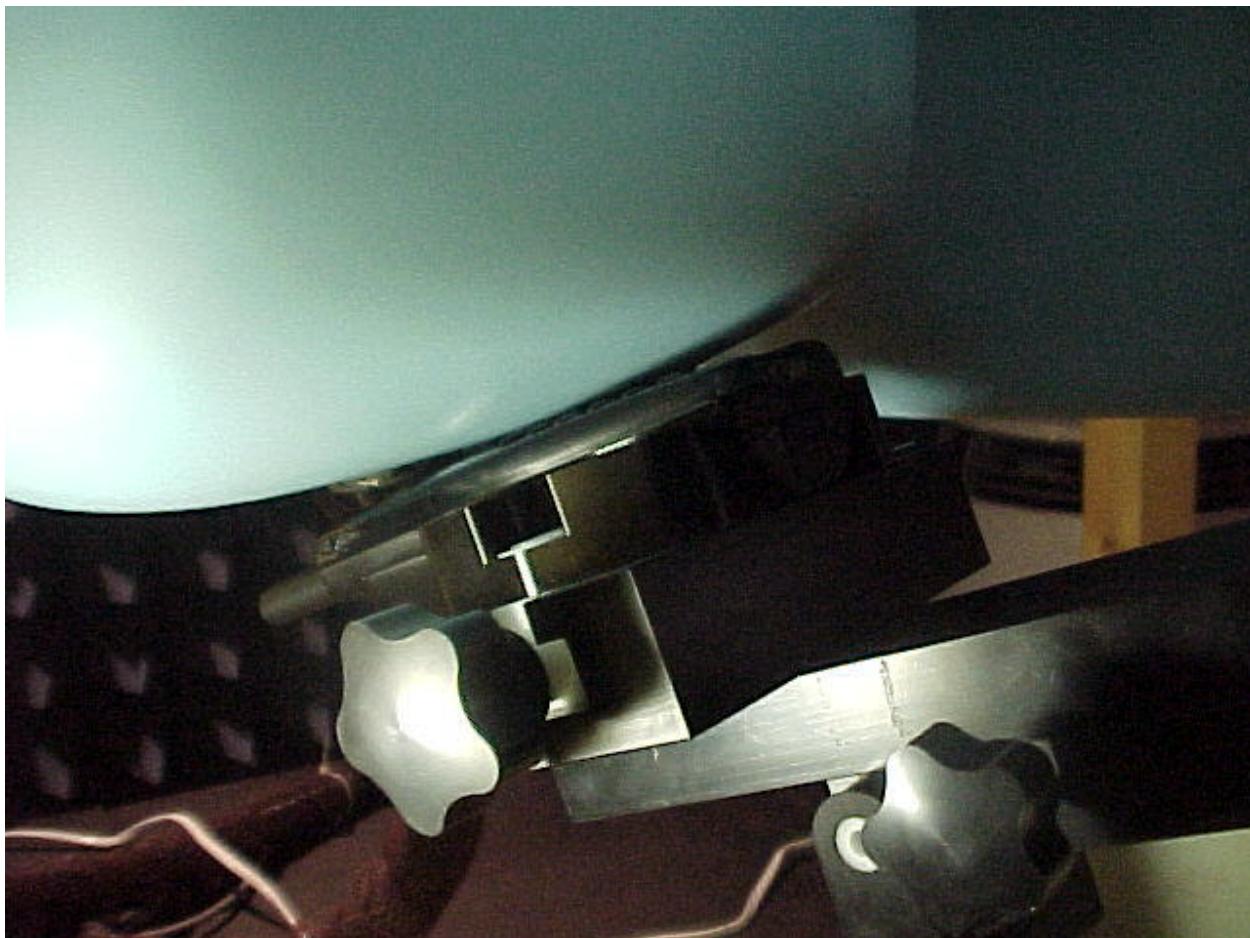

Distribution of maximum SAR in 800 AMPS band.

Prepared (also subject responsible if other) RT/EUS/VR/X Mark Douglas	919-472-6334	No. EUS/VR-99:5507/REP	
Approved EUS/VR/X Mark Douglas	Checked MGD	Date 1999-11-22	Rev A
EN			

Distribution of maximum SAR in 800 TDMA band.

Prepared (also subject responsible if other) RT/EUS/VR/X Mark Douglas	919-472-6334	No. EUS/VR-99:5507/REP		
Approved EUS/VR/X Mark Douglas	Checked MGD	Date 1999-11-22	Rev A	File U:\FCC_TRNS\FCC_378 dana linda\Exhibit 11\Source\sar.doc
EN				

Distribution of maximum SAR in 1900 TDMA band.


Prepared (also subject responsible if other) RT/EUS/VR/X Mark Douglas	919-472-6334	No. EUS/VR-99:5507/REP	
Approved EUS/VR/X Mark Douglas	Checked MGD	Date 1999-11-22	Rev A
EN			

Appendix 3: Photographs of the device under test**Front view of device.**

Prepared (also subject responsible if other) RT/EUS/VR/X Mark Douglas	919-472-6334	No. EUS/VR-99:5507/REP	
Approved EUS/VR/X Mark Douglas	Checked MGD	Date 1999-11-22	Rev A
EN			

Side view of device.

Prepared (also subject responsible if other) RT/EUS/VR/X Mark Douglas	919-472-6334	No. EUS/VR-99:5507/REP		
Approved EUS/VR/X Mark Douglas	Checked MGD	Date 1999-11-22	Rev A	File U:\FCC_TRNS\FCC_378 dana linda\Exhibit 11\Source\sar.doc
EN				

Appendix 4: Position of device on Generic Twin Phantom

Prepared (also subject responsible if other) RT/EUS/VR/X Mark Douglas	919-472-6334	No. EUS/VR-99:5507/REP	
Approved EUS/VR/X Mark Douglas	Checked MGD	Date 1999-11-22	Rev A
EN			

Appendix 5: Probe calibration parameters for ET3DV5 SN:1337

ET3DV SN:1337

DASY3 - Parameters of Probe: ET3DV SN:1337

Sensitivity in Free Space

NormX	2.32	$\mu\text{V}/(\text{V}/\text{m})^2$
NormY	2.09	$\mu\text{V}/(\text{V}/\text{m})^2$
NormZ	2.16	$\mu\text{V}/(\text{V}/\text{m})^2$

Diode Compression

DCP X	98	mV
DCP Y	98	mV
DCP Z	98	mV

Sensitivity in Tissue Simulating Liquid

450 MHz	ConvF X	6.0	extrapolated	$\epsilon_r = 48 \pm 5\%$
	ConvF Y	6.0	extrapolated	$\sigma = 0.50 \pm 10\% \text{ mho/m}$
	ConvF Z	6.0	extrapolated	(brain tissue simulating liquid)
900 MHz	ConvF X	5.7	$\pm 10\%$	$\epsilon_r = 42.5 \pm 5\%$
	ConvF Y	5.7	$\pm 10\%$	$\sigma = 0.86 \pm 10\% \text{ mho/m}$
	ConvF Z	5.7	$\pm 10\%$	(brain tissue simulating liquid)
1500 MHz	ConvF X	5.3	interpolated	$\epsilon_r = 41 \pm 5\%$
	ConvF Y	5.3	interpolated	$\sigma = 1.32 \pm 10\% \text{ mho/m}$
	ConvF Z	5.3	interpolated	(brain tissue simulating liquid)
1800 MHz	ConvF X	5.0	$\pm 10\%$	$\epsilon_r = 41 \pm 5\%$
	ConvF Y	5.0	$\pm 10\%$	$\sigma = 1.69 \pm 10\% \text{ mho/m}$
	ConvF Z	5.0	$\pm 10\%$	(brain tissue simulating liquid)

Sensor Offset

Probe Tip to Sensor Center	2.7	mm
Surface to Probe Tip	1.9 ± 0.2	mm