

APPLICATION CERTIFICATION FCC Part 15C On Behalf of NYNE MULTIMEDIA INC.

NYNE REBEL Model No.: NYNE REBEL

FCC ID: AWA-NYNEREBEL

Prepared for Address	:	NYNE MULTIMEDIA INC. 3451 LUNAR COURT, OXNARD, California, United States. 93030
Prepared by Address	:	ACCURATE TECHNOLOGY CO., LTD F1, Bldg. A, Chan Yuan New Material Port, Keyuan Rd. Science & Industry Park, Nan Shan, Shenzhen, Guangdong P.R. China
		Tel: (0755) 26503290 Fax: (0755) 26503396

Report No.	:	ATE20152367
Date of Test	:	Nov 4-Dec 3, 2015
Date of Report	:	Dec 7, 2015

TABLE OF CONTENTS

Description

Page

Test	Report Certification	
1.	GENERAL INFORMATION	5
1.1	Description of Device (EUT)	5
1.2		
1.3	3. Special Accessory and Auxiliary Equipment	6
1.4	Lescription of Test Facility	7
1.5	5. Measurement Uncertainty	7
2.	MEASURING DEVICE AND TEST EQUIPMENT	8
3.	OPERATION OF EUT DURING TESTING	9
3.1		
3.2	2. Configuration and peripherals	9
4.	TEST PROCEDURES AND RESULTS	
5.	POWER LINE CONDUCTED MEASUREMENT	
5.1	Block Diagram of Test Setup	
5.2		
5.3		
5.4	6	
5.5		
5.6	5. Power Line Conducted Emission Measurement Results	
6.	6DB BANDWIDTH MEASUREMENT	
6.1	Block Diagram of Test Setup	
6.2		
6.3		
6.4		
6.5	5. Test Procedure	
6.6	5. Test Result	
7.	MAXIMUM PEAK OUTPUT POWER	
7.1	Block Diagram of Test Setup	
7.2		
7.3		
7.4	4. Operating Condition of EUT	
7.5	5. Test Procedure	
7.6	5. Test Result	
8.	POWER SPECTRAL DENSITY MEASUREMENT	
8.1	Block Diagram of Test Setup	
8.2	÷ .	
8.3	B. EUT Configuration on Measurement	
8.4		
8.5	5. Test Procedure	
8.6	5. Test Result	27
9.	BAND EDGE COMPLIANCE TEST	
9.1	Block Diagram of Test Setup	
9.2	2. The Requirement For Section 15.247(d)	
9.3	0	
9.4	A. Operating Condition of EUT	
ID: AWA-	-NYNEREBEL ACCURATE	E TECHNOLOGY CO., LTD

Report	No.:	ATE20	152367
		Page	3 of 56

9.5.	Test Procedure	
9.6.	Test Result	
10. RA	DIATED SPURIOUS EMISSION TEST	
10.1.	Block Diagram of Test Setup	
10.2.	The Limit For Section 15.247(d)	
10.3.	Restricted bands of operation	
10.4.	Configuration of EUT on Measurement	
10.5.	Operating Condition of EUT	40
10.6.	Test Procedure	
10.7.	The Field Strength of Radiation Emission Measurement Results	40
11 CO	NDUCTED SPURIOUS EMISSION COMPLIANCE TEST	52
Π . CO	INDUCTED SPURIOUS EMISSION COMPLIANCE TEST	
11. CO 11.1.		
	Block Diagram of Test Setup	53
11.1.	Block Diagram of Test Setup The Requirement For Section 15.247(d)	53 53
11.1. 11.2.	Block Diagram of Test Setup The Requirement For Section 15.247(d) EUT Configuration on Measurement Operating Condition of EUT	
11.1. 11.2. 11.3.	Block Diagram of Test Setup The Requirement For Section 15.247(d)	
11.1. 11.2. 11.3. 11.4.	Block Diagram of Test Setup The Requirement For Section 15.247(d) EUT Configuration on Measurement Operating Condition of EUT	
11.1. 11.2. 11.3. 11.4. 11.5. 11.6.	Block Diagram of Test Setup The Requirement For Section 15.247(d) EUT Configuration on Measurement Operating Condition of EUT Test Procedure	
11.1. 11.2. 11.3. 11.4. 11.5. 11.6.	Block Diagram of Test Setup The Requirement For Section 15.247(d) EUT Configuration on Measurement Operating Condition of EUT Test Procedure Test Result TENNA REQUIREMENT	
11.1. 11.2. 11.3. 11.4. 11.5. 11.6. 12. AN	Block Diagram of Test Setup The Requirement For Section 15.247(d) EUT Configuration on Measurement Operating Condition of EUT Test Procedure Test Result	

Test Report Certification

Applicant: NYNE MULTIMEDIA INC.EUT Description: NYNE REBELModel No.: NYNE REBELTrade Mark: OUCE

Measurement Procedure Used:

FCC Rules and Regulations Part 15 Subpart C Section 15.247: 2015 ANSI C63.10: 2013

The EUT was tested according to DTS test procedure of Jun 09, 2015 KDB558074 D01 DTS Meas Guidance v03r03 for compliance to FCC 47CFR 15.247 requirements

The device described above is tested by ACCURATE TECHNOLOGY CO. LTD to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart C Section 15.247 limits. The measurement results are contained in this test report and ACCURATE TECHNOLOGY CO. LTD is assumed full responsibility for the accuracy and completeness of these measurements. Also, this report shows that the Equipment Under Test (EUT) is to be technically compliant with the FCC requirements.

This report applies to above tested sample only. This report shall not be reproduced in part without written approval of ACCURATE TECHNOLOGY CO. LTD.

Date of Test : Date of Report:

Prepared by :

Dec 7, 2015

Nov 4-Dec 3, 2015

(Mark Chen, Engineer)

Approved & Authorized Signer :

(Sean Liu, Manager)

1. GENERAL INFORMATION

1.1.Description of Device (EUT)

EUT Model Number Bluetooth version Frequency Range Number of Channels Antenna Gain Antenna type Power Supply Adapter Modulation mode	• • • • • • • • • •	NYNE REBEL NYNE REBEL Bluetooth V4.1 BLE 2402MHz-2480MHz 40 2dBi PCB Antenna AC 120V/60Hz Model: AS360-180-AD200 Input: AC100-240V; 50/60Hz 1.2A Output: DC 18V; 2A GFSK
Applicant	:	OFSK NYNE MULTIMEDIA INC.
Address	:	3451 LUNAR COURT, OXNARD, California, United States. 93030
Date of sample received Date of Test	: :	Nov 4, 2015 Nov 4-Dec 3, 2015

Channel	Frequceny (MHz)	Channel	Frequceny (MHz)	Channel	Frequceny (MHz)	Channe 1	Frequceny (MHz)
0	2402	10	2422	20	2442	30	2462
1	2404	11	2424	21	2444	31	2464
2	2406	12	2426	22	2446	32	2466
3	2408	13	2428	23	2448	33	2468
4	2410	14	2430	24	2450	34	2470
5	2412	15	2432	25	2452	35	2472
6	2414	16	2434	26	2454	36	2474
7	2416	17	2436	27	2456	37	2476
8	2418	18	2438	28	2458	38	2478
9	2420	19	2440	29	2460	39	2480

1.2.Carrier Frequency of Channels

1.3. Special Accessory and Auxiliary Equipment

Mobile Phone

Model: 5S

1.4.Description of Test Facility

EMC Lab	:	Accredited by TUV Rheinland Shenzhen
		Listed by FCC The Registration Number is 752051
		Listed by Industry Canada The Registration Number is 5077A-2
		Accredited by China National Accreditation Committee for Laboratories The Certificate Registration Number is L3193
Name of Firm		ACCURATE TECHNOLOGY CO. LTD
Site Location	:	F1, Bldg. A, Changyuan New Material Port, Keyuan Rd. Science & Industry Park, Nanshan, Shenzhen, Guangdong
		Science & Industry Park, Nanshan, Shenzhen, Guangdong P.R. China

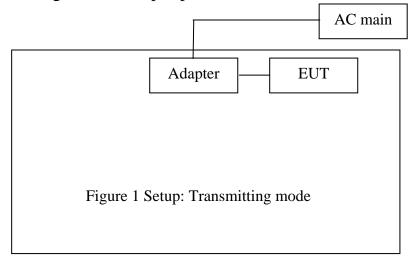
1.5.Measurement Uncertainty

Conducted Emission Expanded Uncertainty	=	2.23dB, k=2
Radiated emission expanded uncertainty (9kHz-30MHz)	=	3.08dB, k=2
Radiated emission expanded uncertainty (30MHz-1000MHz)	=	4.42dB, k=2
Radiated emission expanded uncertainty (Above 1GHz)	=	4.06dB, k=2

2. MEASURING DEVICE AND TEST EQUIPMENT

Kind of equipment	Manufacturer	Туре	S/N	Calibrated dates	Calibrated until
EMI Test Receiver	Rohde&Schwarz	ESCS30	100307	Jan. 11, 2015	Jan. 10, 2016
EMI Test Receiver	Rohde&Schwarz	ESPI3	101526/003	Jan. 11, 2015	Jan. 10, 2016
Spectrum Analyzer	Agilent	E7405A	MY45115511	Jan. 11, 2015	Jan. 10, 2016
Pre-Amplifier	Rohde&Schwarz	CBLU118354 0-01	3791	Jan. 11, 2015	Jan. 10, 2016
Loop Antenna	Schwarzbeck	FMZB1516	1516131	Jan. 15, 2015	Jan. 14, 2016
Bilog Antenna	Schwarzbeck	VULB9163	9163-323	Jan. 15, 2015	Jan. 14, 2016
Horn Antenna	Schwarzbeck	BBHA9120D	9120D-655	Jan. 15, 2015	Jan. 14, 2016
Horn Antenna	Schwarzbeck	BBHA9170	9170-359	Jan. 15, 2015	Jan. 14, 2016
LISN	Rohde&Schwarz	ESH3-Z5	100305	Jan. 11, 2015	Jan. 10, 2016
LISN	Schwarzbeck	NSLK8126	8126431	Jan. 11, 2015	Jan. 10, 2016
Highpass Filter	Wainwright Instruments	WHKX3.6/18 G-10SS	N/A	Jan. 11, 2015	Jan. 10, 2016
Band Reject Filter	Wainwright Instruments	WRCG2400/2 485-2375/2510 -60/11SS	N/A	Jan. 11, 2015	Jan. 10, 2016

Table 1: List of Test and Measurement Equipment

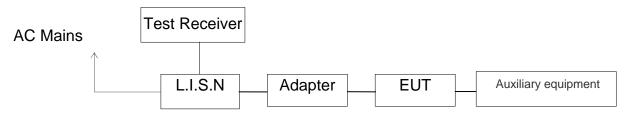


3. OPERATION OF EUT DURING TESTING

3.1.Operating Mode

The mode is used: **BLE Transmitting mode** Low Channel: 2402MHz Middle Channel: 2440MHz High Channel: 2480MHz

3.2. Configuration and peripherals


4. TEST PROCEDURES AND RESULTS

FCC Rules	Description of Test	Result
Section 15.247(a)(2)	6dB Bandwidth Test	Compliant
Section 15.247(e)	Power Spectral Density Test	Compliant
Section 15.247(b)(3)	Maximum Peak Output Power Test	Compliant
Section 15.247(d)	Band Edge Compliance Test	Compliant
Section 15.247(d) Section 15.209	Radiated Spurious Emission Test	Compliant
Section 15.247(d)	Conducted Spurious Emission Test	Compliant
Section 15.207	AC Power Line Conducted Emission Test	Compliant
Section 15.203	Antenna Requirement	Compliant

5. POWER LINE CONDUCTED MEASUREMENT

5.1.Block Diagram of Test Setup

(EUT: NYNE REBEL)

5.2. Power Line Conducted Emission Measurement Limits

Frequency	Limit dB(μV)				
(MHz)	Quasi-peak Level	Average Level			
0.15 - 0.50	66.0 - 56.0 * 56.0 - 46.0 *				
0.50 - 5.00	0.50 - 5.00 56.0 46.0				
5.00 - 30.00 60.0 50.0					
	all apply at the transition fre				
	es linearly with the logarithm	n of the frequency in the			
range 0.15MHz to	o 0.50MHz.				

5.3.Configuration of EUT on Measurement

The following equipments are installed on Power Line Conducted Emission Measurement to meet the commission requirement and operating regulations in a manner, which tends to maximize its emission characteristics in a normal application.

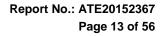
5.4. Operating Condition of EUT

5.4.1.Setup the EUT and simulator as shown as Section 5.1.

- 5.4.2. Turn on the power of all equipment.
- 5.4.3.Let the EUT work in test mode and measure it.

5.5.Test Procedure

The EUT is put on the plane 0.8 m high above the ground by insulating support and is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC lines are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to ANSI C63.4: 2014 on Conducted Emission Measurement.


The bandwidth of test receiver (R & S ESCS30) is set at 9kHz.

The frequency range from 150kHz to 30MHz is checked.

5.6. Power Line Conducted Emission Measurement Results

PASS.

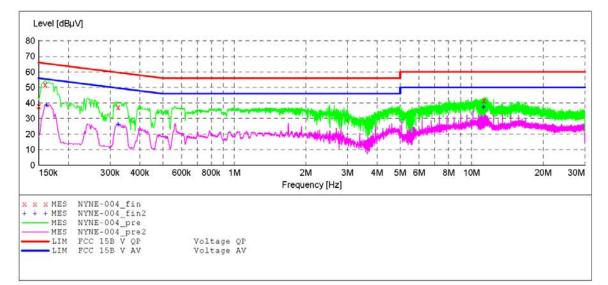
The frequency range from 150kHz to 30MHz is checked.

MEASUREMENT	RESULT	: "NYNE	-004_1	in"			
2015-11-4 15:	56	m	T 1 1 h	Manuala	Detector		5.5
Frequency MHz	dBµV	dB	dBµV	Margin dB	Detector	Line	FF
0.160000	52.00	10.4	66	13.5	QP	L1	GND
0.160000 0.324000 11.252000	37.20 41.80	11.1 11.9	60 60	22.4 18.2	QP QP	L1 L1	GND GND
MEASUREMENT	RESULT	: "NYNE	-004 1	in2"			
2015-11-4 15:			-				
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB		Line	ΡE
0.162000 0.324000	38.70 26.20	10.4	55 50	16.7 23.4	AV AV	L1 L1	GND GND
11.252000	37.20	11.9	50	12.8	AV	L1	GND
ŒASUREMENT	RESIII.T	· "NYNE	-003 f	in"			
015-11-4 15:			000_1				
Energyenau	Level	Transd	Limit dBµV	Margin dB	Detector	Line	PE
MHz	dBµV	uв					
MHz				34.6	QP	Ν	GND
0.158000 1.122000 11.265500				34.6 23.6 17.7	QP QP QP	N	GND GND GND
MHz 0.158000 1.122000 11.265500	31.00 32.40 42.30	10.4 11.6 11.9	66 56 60		QP QP QP		GND
MHz 0.158000 1.122000 11.265500 TEASUREMENT 015-11-4 15:	31.00 32.40 42.30 RESULT	10.4 11.6 11.9	66 56 60 -003_£	in2"		Ν	GND GND
MHz 0.158000 1.122000 11.265500 MEASUREMENT 015-11-4 15: Frequency	31.00 32.40 42.30 RESULT	10.4 11.6 11.9 : "NYNE Transd	66 56 60 -003_f Limit	in2" Margin		Ν	GND GND

MEASUREMENT	RESULT	: "NYNE	E-012_1	fin"			
2015-11-4 16:	24		* 1		Detector	* 4	5.5
Frequency MHz	dBµV	Transd dB	dBµV	Margin dB	Detector	Line	ΡE
0.154000 0.206000 0.416000	48.80	10.4	66	17.0	QP	L1	GND GND
0.416000	25.80	11.3	58	31.7	QP	L1	GND
MEASUREMENT	RESULT	: "NYNE	5-012_1	fin2"			
2015-11-4 16:			_				
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.156000 0.206000 0.416000	34.40 32.30	10.4 10.6	56 53	21.3 21.1	AV AV	L1 L1	GND GND
0.416000	33.60	11.3	48	13.9	AV	L1	GND
EASUREMENT	RESULT:	"NYNE	-011_f:	in"			
015-11-4 16:2		There and	Timit	Mongin	Detector	Tine	DD
Frequency MHz		dB			Detector	Line	PE
0.156000	49.70	10.4	66	16.0	QP	N	GND
0.212000 0.526000	37.80	11.5	56	18.2	QP	N	GND
ÆASUREMENT	RESULT:	"NYNE	-011_f:	in2″			
015-11-4 16:2							
Frequency	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
MHz 0.158000 0.212000 0.526000							

Emissions attenuated more than 20 dB below the permissible value are not reported.

The spectral diagrams are attached as below.



CONDUCTED EMISSION STANDARD FCC PART 15B

EUT:NYNE REBELM/N:NYNE REBELManufacturer:NYNEOperating Condition:BT4.1Test Site:2#Shielding RoomOperator:starTest Specification:L 120V/60HzComment:Report NO:ATE20152367Start of Test:2015-11-4 / 15:54:40

SCAN TABLE: "V 150K-30MHz fin"

Short Description:			SUB STD VTE	RM2 1.70		
Start	Stop	Step	Detector	Meas.	IF	Transducer
Frequency	Frequency	Width		Time	Bandw.	
150.0 kHz	30.0 MHz	4.5 kHz	QuasiPeak Average	1.0 s	9 kHz	LISN(ESH3-Z5)

MEASUREMENT RESULT: "NYNE-004 fin"

6						
Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	ΡE
52.00	10.4	66		~	Ll	GND
				QP OP	L1 L1	GND GND
	Level dBµV 52.00 37.20	Level Transd dBµV dB 52.00 10.4 37.20 11.1	Level Transd Limit dBµV dB dBµV 52.00 10.4 66 37.20 11.1 60	Level Transd Limit Margin dBµV dB dBµV dB 52.00 10.4 66 13.5	Level Transd Limit Margin Detector dBµV dB dBµV dB 52.00 10.4 66 13.5 QP 37.20 11.1 60 22.4 QP	Level Transd Limit Margin Detector Line dBμV dB dBμV dB 52.00 10.4 66 13.5 QP L1 37.20 11.1 60 22.4 QP L1

MEASUREMENT RESULT: "NYNE-004 fin2"

2015-11-4 15:	56						
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	ΡE
0.162000	38.70	10.4	55	16.7	AV	L1	GND
0.324000	26.20	11.1	50	23.4	AV	L1	GND
11.252000	37.20	11.9	50	12.8	AV	L1	GND

CONDUCTED EMISSION STANDARD FCC PART 15B

EUT:NYNE REBELM/N:NYNE REBELManufacturer:NYNEOperating Condition:BT4.1Test Site:2#Shielding RoomOperator:starTest Specification:N 120V/60HzComment:Report NO:ATE20152367Start of Test:2015-11-4 / 15:48:55

SCAN TABLE: "V 150K-30MHz fin"

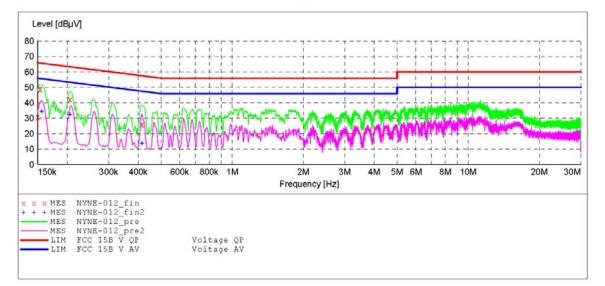
Short Desc	ription:		SUB STD VTE	RM2 1.70		
	Stop Frequency	and the second	Detector	Meas. Time	IF Bandw.	Transducer
150.0 kHz	30.0 MHz	4.5 kHz	QuasiPeak Average	1.0 s	9 kHz	LISN(ESH3-Z5)

MEASUREMENT RESULT: "NYNE-003 fin"

2015-11-4 15: Frequency MHz	51 Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	ΡE
0.158000	31.00	10.4	66	34.6	QP	Ν	GND
1.122000	32.40	11.6	56	23.6	QP	N	GND
11.265500	42.30	11.9	60	17.7	QP	N	GND
					<u> </u>		

MEASUREMENT RESULT: "NYNE-003 fin2"

2015-11-4 15:	51						
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	ΡE
0.162000	40.20	10.4	55	15.2	AV	Ν	GND
1.122000	23.40	11.6	46	22.6	AV	Ν	GND
11.265500	38.00	11.9	50	12.0	AV	N	GND



CONDUCTED EMISSION STANDARD FCC PART 15B

EUT:NYNE REBELM/N:NYNE REBELManufacturer:NYNEOperating Condition:BT4.1Test Site:2#Shielding RoomOperator:starTest Specification:L 240V/60HzComment:Report NO:ATE20152367Start of Test:2015-11-4 / 16:21:36

SCAN TABLE: "V 150K-30MHz fin"

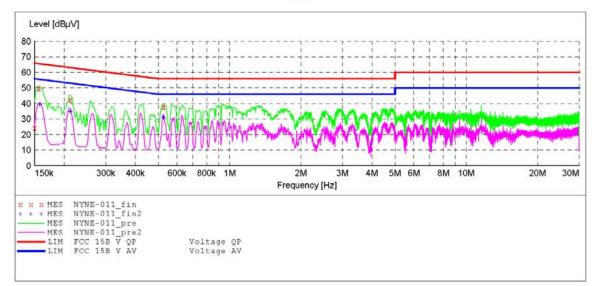
Short Desc	ription:		SUB STD VTE	RM2 1.70		
	Stop Frequency		Detector	Meas. Time	IF Bandw.	Transducer
150.0 kHz		4.5 kHz	QuasiPeak Average	1.0 s	9 kHz	LISN(ESH3-Z5)

MEASUREMENT RESULT: "NYNE-012 fin"

2015-11-4 16:	24						
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	ΡE
0.154000	48.80	10.4	66	17.0	QP	L1	GND
0.206000	42.20	10.6	63	21.2	QP	L1	GND
0.416000	25.80	11.3	58	31.7	QP	L1	GND

MEASUREMENT RESULT: "NYNE-012 fin2"

2015-11-4 16:	24						
Frequency	Level	Transd	Limit	Margin	Detector	Line	PE
MHz	dBµV	dB	dBµV	dB			
0.156000	34.40	10.4	56	21.3	AV	L1	GND
0.206000	32.30	10.6	53	21.1	AV	L1	GND
0.416000	33.60	11.3	48	13.9	AV	L1	GND



CONDUCTED EMISSION STANDARD FCC PART 15B

EUT:NYNE REBELM/N:NYNE REBELManufacturer:NYNEOperating Condition:BT4.1Test Site:2#Shielding RoomOperator:starTest Specification:N 240V/60HzComment:Report NO:ATE20152367Start of Test:2015-11-4 / 16:18:18

SCAN TABLE: "V 150K-30MHz fin"

Short Desc	ription:		SUB STD VTE	RM2 1.70		
	Stop Frequency	Step Width	Detector	Meas. Time	IF Bandw.	Transducer
150.0 kHz	30.0 MHz	4.5 kHz	QuasiPeak Average	1.0 s	9 kHz	LISN(ESH3-Z5)

MEASUREMENT RESULT: "NYNE-011 fin"

2015-11-4 16:	20						
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	ΡE
0.156000	49.70	10.4	66	16.0	QP	Ν	GND
0.212000	42.20	10.7	63	20.9	QP	Ν	GND
0.526000	37.80	11.5	56	18.2	QP	Ν	GND

MEASUREMENT RESULT: "NYNE-011 fin2"

2015-11-4 16:20

Frequency MHz	Level dBµV		Limit dBµV	Margin dB	Detector	Line	ΡE
0.158000	39.50	10.4	56	16.1	AV	Ν	GND
0.212000	34.70	10.7	53	18.4	AV	N	GND
0.526000	30.70	11.5	46	15.3	AV	Ν	GND

6. 6DB BANDWIDTH MEASUREMENT

6.1.Block Diagram of Test Setup

6.2. The Requirement For Section 15.247(a)(2)

Section 15.247(a)(2): Systems using digital modulation techniques may operate in the 902-928MHz, 2400-2483.5MHz, and 5725-5850MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

6.3.EUT Configuration on Measurement

The equipment is installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

6.4. Operating Condition of EUT

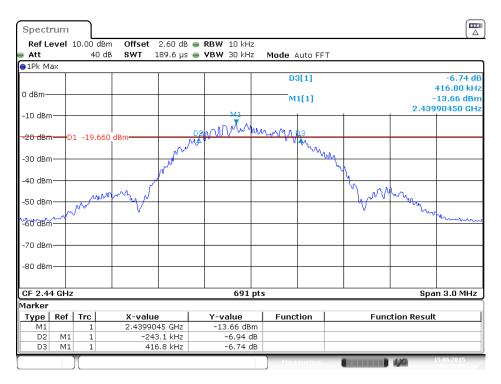
- 6.4.1.Setup the EUT and simulator as shown as Section 6.1.
- 6.4.2.Turn on the power of all equipment.
- 6.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 2402-2480 MHz. We select 2402MHz, 2440MHz, and 2480MHz TX frequency to transmit.

6.5.Test Procedure

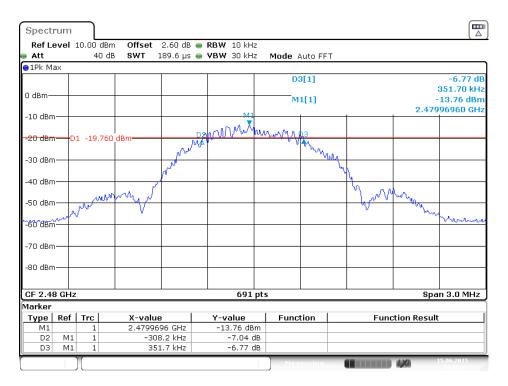
- 6.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 6.5.2.Set RBW of spectrum analyzer to 100 kHz and VBW to300 kHz.
- 6.5.3.The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB.

6.6.Test Result

Channel	Frequency (MHz)	6 dB Bandwith (MHz)	Minimum Limit(MHz)	PASS/FAIL
0	2402	0.6599	0.5	PASS
19	2440	0.6599	0.5	PASS
39	2480	0.6599	0.5	PASS


The spectrum analyzer plots are attached as below.

Spectr	um										
Ref Le	vel	10.00 dB		2.60 dB	🖷 RBW	10 kHz					(=
Att		40 c	IB SWT	189.6 µs	VBW	30 kHz	Mode /	Auto FFT			
⊖1Pk Ma	IX .										
							M	1[1]			-13.37 dBm
0 dBm—								0.5 4 3		2.401	196960 GHz
								2[1]			-6.87 dB 308.20 kHz
-10 dBm						<u>M1</u>		1			500.20 KHZ
					DahoM	7 Mir Mar	MAAAA				
-20 dBm	-D	1 -19.37	0 dBm		MA	<u> </u>	<u></u>	23 41.000 MM			
				Nº NO	Ť.			WWW.			
-30 dBm				N.					The second		
10 10				h					14		
-40 dBm			1.1.5	1					N 00		
-50 dBm		mer	on the p						- V V	WY 10	
00 00		M							-V	"hu	
-60 dBm	m										man
-70 dBm			_								
-80 dBm											
CF 2.40	2 GH	z		1	I	691 pt	ts	1		Spa	an 3.0 MHz
Marker										· · ·	
Туре	Ref	Trc	X-valu	e	Y-v	alue	Func	tion	Fund	tion Result	t
M1		1	2.40196			3.37 dBm					
D2	M1	1		8.2 kHz		-6.87 dB					
D3	M1	1	35	1.7 kHz		-6.76 dB					
][Mea	suring		4,70	15.06.2015


channel 0

channel 19

channel 39

7. MAXIMUM PEAK OUTPUT POWER

7.1.Block Diagram of Test Setup

7.2. The Requirement For Section 15.247(b)(3)

Section 15.247(b)(3): For systems using digital modulation in the 902-928MHz, 2400-2483.5MHz, and 5725-5850MHz bands: 1 Watt.

7.3.EUT Configuration on Measurement

The equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

7.4. Operating Condition of EUT

7.4.1.Setup the EUT and simulator as shown as Section 7.1.

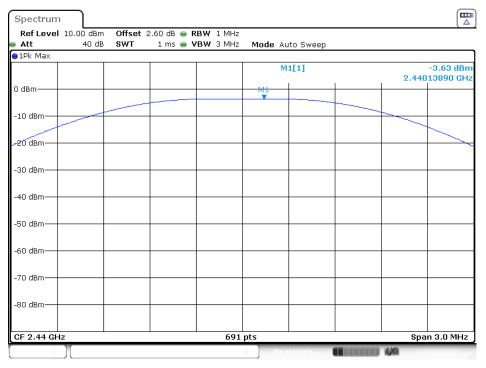
- 7.4.2.Turn on the power of all equipment.
- 7.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 2402-2480 MHz. We select 2402MHz, 2440MHz, and 2480MHz TX frequency to transmit.

7.5.Test Procedure

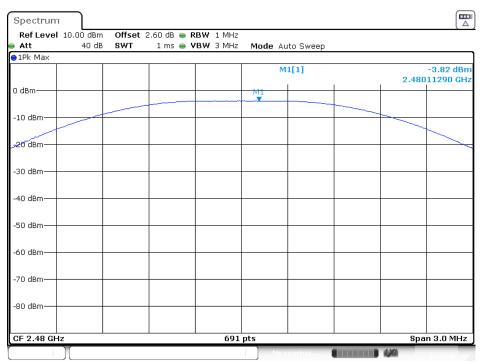
- 7.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 7.5.2.Test method is options 1 from KDB558074 D01 DTS Meas Guidance v03r03
- 7.5.3.Set RBW of spectrum analyzer to 1 MHz and VBW to 3 MHz.
- 7.5.4.Measurement the maximum peak output power.

7.6.Test Result

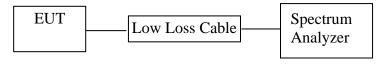
Channel	Frequency (MHz)	Peak Power Output (dBm)	Peak Power Limit (dBm)	Pass / Fail
0	2402	-3.36	30	PASS
19	2440 -3		30	PASS
39	2480	-3.82	30	PASS


The spectrum analyzer plots are attached as below.

Spectrum				
Ref Level 10.00 dBr Att 40 d			e Auto Sweep	
●1Pk Max				
			M1[1]	-3.36 dBm 2.40201740 GHz
0 dBm	<u> </u>	P41		
-10 dBm				
-20 dBm-				
-30 dBm				
-40 dBm				
-50 dBm				
-60 dBm				
-70 dBm				
-80 dBm				
CF 2.402 GHz		691 pts		Span 3.0 MHz
			Measuring	


channel 0

channel 19


channel 39

8. POWER SPECTRAL DENSITY MEASUREMENT

8.1.Block Diagram of Test Setup

8.2. The Requirement For Section 15.247(e)

Section 15.247(e): For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

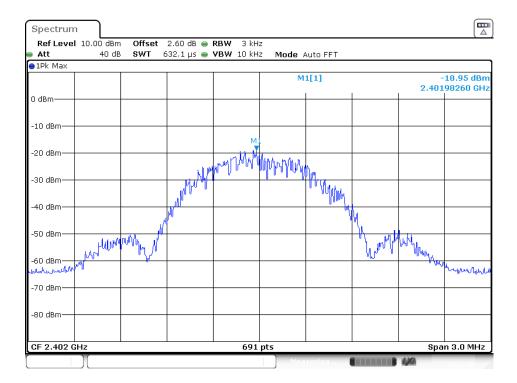
8.3.EUT Configuration on Measurement

The equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

8.4. Operating Condition of EUT

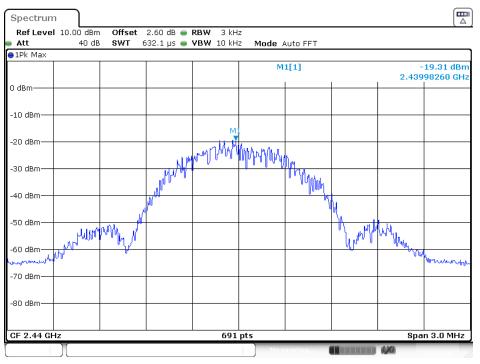
- 8.4.1.Setup the EUT and simulator as shown as Section 8.1.
- 8.4.2.Turn on the power of all equipment.
- 8.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 2402-2480. We select 2402MHz, 2440MHz, and 2480MHz TX frequency to transmit.

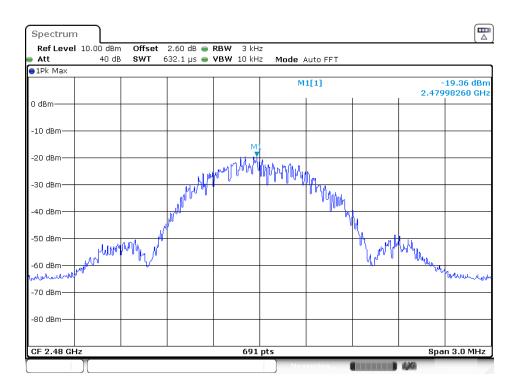
8.5.Test Procedure

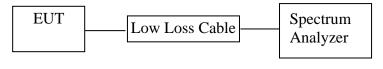

- 8.5.1.The EUT was tested according to DTS test procedure of Jun 09, 2015 KDB558074 D01 DTS Meas Guidance v03r03 for compliance to FCC 47CFR 15.247 requirements.
- 8.5.2.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 8.5.3.Measurement Procedure PKPSD:
- 8.5.4. This procedure must be used if maximum peak conducted output power was used to demonstrate compliance to the fundamental output power limit, and is optional if the maximum (average) conducted output power was used to demonstrate compliance.
 - 1. Set analyzer center frequency to DTS channel center frequency.
 - 2. Set the span to 1.5 times the DTS channel bandwidth.
 - 3. Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
 - 4. Set the VBW \geq 3 x RBW.
 - 5. Detector = peak.
 - 6. Sweep time = auto couple.
 - 7. Trace mode = max hold.
 - 8. Allow trace to fully stabilize.
 - 9. Use the peak marker function to determine the maximum amplitude level.
 - 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.
- 8.5.5.Measurement the maximum power spectral density.

8.6.Test Result

CHANNEL NUMBER	FREQUENCY (MHz)	PSD (dBm/3KHz)	LIMIT (dBm/3KHz)	PASS/FAIL
0	2402	-18.95	8	PASS
19	2440	-19.31	8	PASS
39	2480	-19.36	8	PASS


The spectrum analyzer plots are attached as below.


channel 0


channel 39

9. BAND EDGE COMPLIANCE TEST

9.1.Block Diagram of Test Setup

9.2. The Requirement For Section 15.247(d)

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

9.3.EUT Configuration on Measurement

The equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

9.4. Operating Condition of EUT

- 9.4.1.Setup the EUT and simulator as shown as Section 9.1.
- 9.4.2.Turn on the power of all equipment.
- 9.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 2402-2480 MHz. We select 2402MHz, 2480MHz TX frequency to transmit.

9.5.Test Procedure

Conducted Band Edge:

- 9.5.1.The transmitter output was connected to the spectrum analyzer via a low loss cable.
- 9.5.2.Set RBW of spectrum analyzer to 100 kHz and VBW to 300 kHz.
- 9.5.3. Radiate Band Edge:
- 9.5.4. The EUT is placed on a turntable, which is 0.1m above the ground plane and worked at highest radiated power.
- 9.5.5.The turntable was rotated for 360 degrees to determine the position of maximum emission level.
- 9.5.6.EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.
- 9.5.7.Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission:

9.5.8.RBW=1MHz, VBW=1MHz

9.5.9.The band edges was measured and recorded.

9.6.Test Result

Pass

Channel	Frequency	Delta peak to band emission	Limit(dBc)
0	2.4GHz	41.89	20
39	2.4835GHz	43.21	20

channel 0

Spectrum											(
Ref Level	10.00 d	Bm Offset	2.60 dB (■ RBW 100 kH	z							
Att	40	dB SWT	1 ms (> VBW 300 kH	z	Mode A	uto Sv	veep				
🔵 1Pk Max												\neg
						M4	[1]				46.70 d	
0 dBm										2.3	20810	
o dom						M1	[1]				-4.11 d	
-10 dBm										2.4	02030 (SHIZ
												111
-20 dBm												+++
												11
-30 dBm												
-40 dBm												()
-40 aBm	14							M3		M2		\square
-50 dem	hum	and we wanter the	monus	and the second s	Sam	munu	and all the	ury of whene	uni	mithun	monuter	Jι
00 00.00												
-60 dBm												_
-70 dBm												_
-80 dBm												
Start 2.31 (GHz			691	pts	•			•	Stop	2.404 G	Hz
Marker												
Type Ref	Trc	X-valu		Y-value		Funct	ion		Functio	n Result		
M1	1		203 GHz	-4.11 dB								
M2	1		39 GHz	-48.55 dB								
M3	1		27 GHz	-47.23 dB								
M4	1	2.321)81 GHz	-46.70 dB	ini							
	Л					Meas	uring.			0		

channel 39

Spectrum	·										
Ref Level	10.00 dB	m Offset	2.60 dB 🧉	RBW 100 kH	Ηz						
Att	40 (db SWT	56.9 µs 🥃	• VBW 300 kH	Hz r	Mode /	Auto FF	τ			
😑 1Pk Max											
						M	4[1]				-47.62 dBm
0 dBm1										2	.4885540 GHz
J. J.						M	1[1]			_	-4.41 dBm
-10 dBm	\				-					2	.4799900 GHz
	1										
-20 dBm	+				-					-	
-30 dBm											
10 00-	5										
-40 dBm		M2	МЗ	M4							
-50 dBm		James Tares	h. J.						A.000.00		
00 dbiii			Var					V		· · ·	
-60 dBm										_	
-70 dBm		-									
-80 dBm											
Start 2.478	3 GHz			691	pts						Stop 2.5 GHz
Marker											
Type Ref	Trc	X-valu	e	Y-value		Fund	tion		Fur	nction Res	ult
M1	1		99 GHz	-4.41 di							
M2	1		35 GHz	-49.15 di							
M3	1		39 GHz	-48.24 di							
M4	1	2.4885	54 GHz	-47.62 di	Bm						
						Mela	suring.			1/4	112408

Radiated Band Edge Result

Date of Test:	Nov 20, 2015	Temperature:	25°C
EUT:	NYNE REBEL	Humidity:	50%
Model No.:	NYNE REBEL	Power Supply:	AC 120V/60Hz
Test Mode:	TX (2402MHz) GFSK	Test Engineer:	Star

Frequency	Reading(dBµV/m)		Factor(dB)	Result(dBµV/m)		Limit(dBµV/m)		Margin(dB)		Polarization
(MHz)	AV	PEAK	Corr.	AV	PEAK	AV	PEAK	AV	PEAK	
2390.000	33.09	42.58	-7.53	25.56	35.05	54.00	74.00	-28.44	-38.95	Vertical
2400.000	53.10	62.53	-7.46	45.64	55.07	54.00	74.00	-8.36	-18.93	Vertical
2390.000	33.24	42.37	-7.53	25.71	34.84	54.00	74.00	-28.29	-39.16	Horizontal
2400.000	52.10	61.55	-7.46	44.64	54.09	54.00	74.00	-9.36	-19.91	Horizontal

Date of Test:	Nov 20, 2015	Temperature:	25°C
EUT:	NYNE REBEL	Humidity:	50%
Model No.:	NYNE REBEL	Power Supply:	AC 120V/60Hz
Test Mode:	TX (2480MHz) GFSK	Test Engineer:	Star

Frequency	Reading(dBµV/m)		Factor(dB)	Result(dBµV/m)		Limit(dBµV/m)		Margin(dB)		Polarization
(MHz)	AV	PEAK	Corr.	AV	PEAK	AV	PEAK	AV	PEAK	
2483.500	41.25	50.21	-7.37	33.88	42.84	54.00	74.00	-20.12	-31.16	Vertical
2500.000	32.67	41.90	-7.40	25.27	34.50	54.00	74.00	-28.73	-39.50	Vertical
2483.500	38.97	49.25	-7.37	31.60	41.88	54.00	74.00	-22.40	-32.12	Horizontal
2500.000	32.10	42.42	-7.40	24.70	35.02	54.00	74.00	-29.30	-38.98	Horizontal

Note:

1. Emissions attenuated more than 20 dB below the permissible value are not reported.

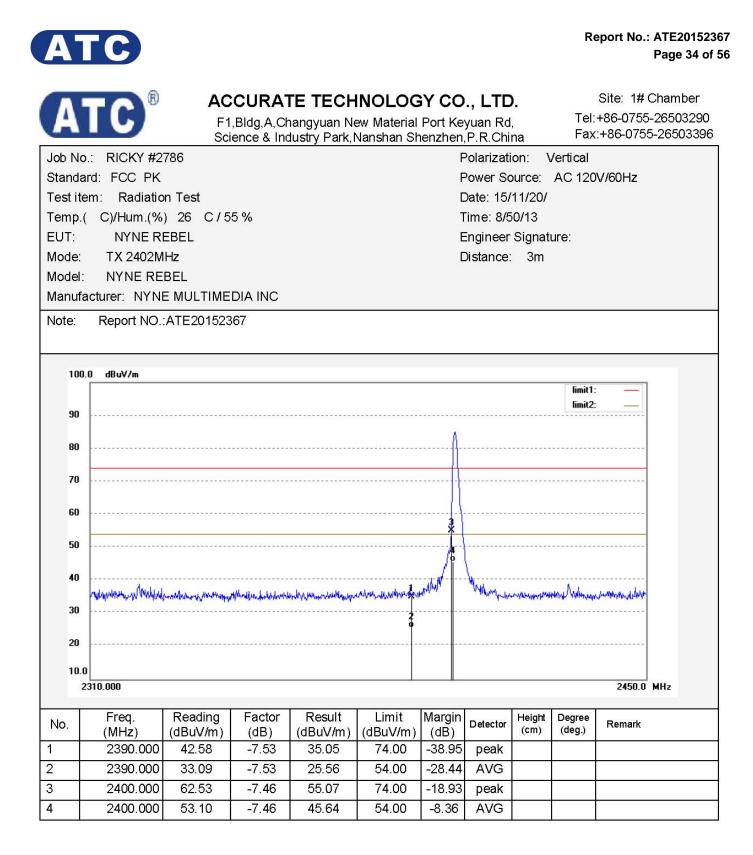
- 2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows: Result = Reading + Corrected Factor
- 3. Display the measurement of peak values.

Site: 1# Chamber ACCURATE TECHNOLOGY CO., LTD. Tel:+86-0755-26503290 F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Fax:+86-0755-26503396 Science & Industry Park, Nanshan Shenzhen, P.R. China Job No.: RICKY #2787 Polarization: Horizontal Standard: FCC PK Power Source: AC 120V/60Hz Test item: Radiation Test Date: 15/11/20/ Temp.(C)/Hum.(%) 26 C / 55 % Time: 8/54/19 EUT: NYNE REBEL Engineer Signature: Mode: Distance: 3m TX 2402MHz Model: NYNE REBEL Manufacturer: NYNE MULTIMEDIA INC Note: Report NO .: ATE20152367 100.0 dBuV/m limit1: limit2: 90 80 70 60 50 40 alternal wat assume and an angle and a second state and the and with the marchine 30 20 10.0 2310.000 2450.0 MHz Reading Factor Limit Freq. Result Margin Height Degree No. Detector Remark (MHz) (dBuV/m) (dB)(dBuV/m) (dBuV/m) (dB)(cm) (deg.) 42.37 2390.000 -7.53 34.84 74.00 -39.16 1 peak -7.53 2 2390.000 33.24 25.71 54.00 -28.29 AVG 3 2400.000 61.55 -7.46 54.09 74.00 -19.91 peak

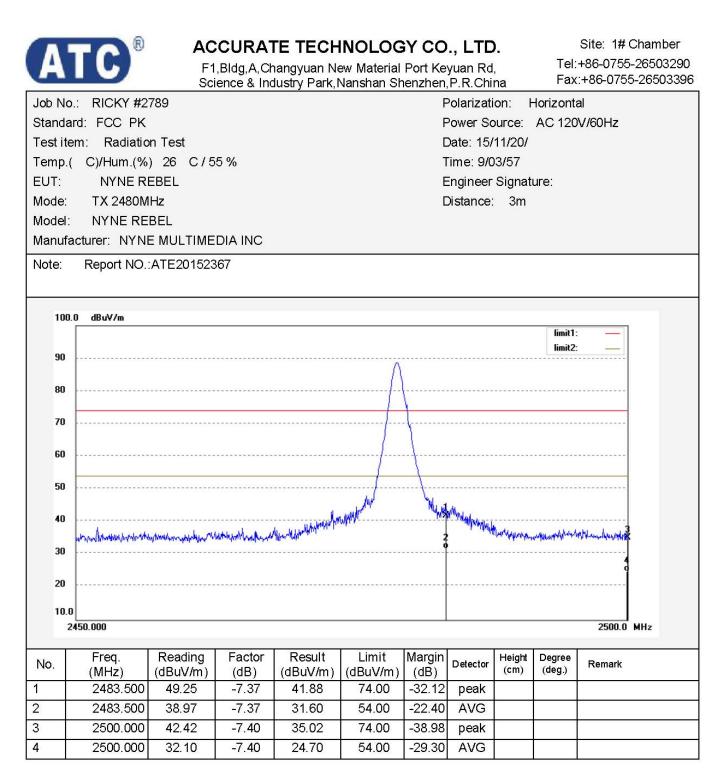
4

2400.000

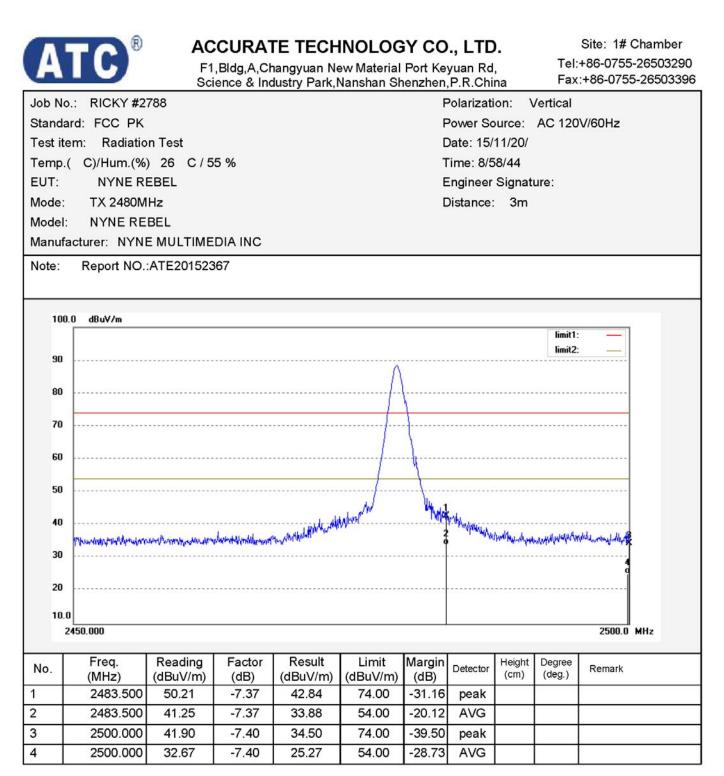
52.10


-7.46

44.64


54.00

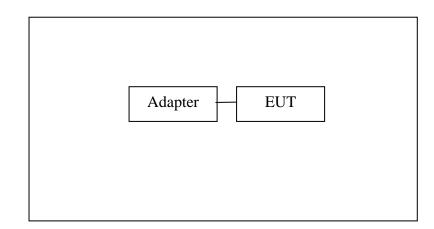
-9.36


AVG

Note:

- 1. Emissions attenuated more than 20 dB below the permissible value are not reported.
- 2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:

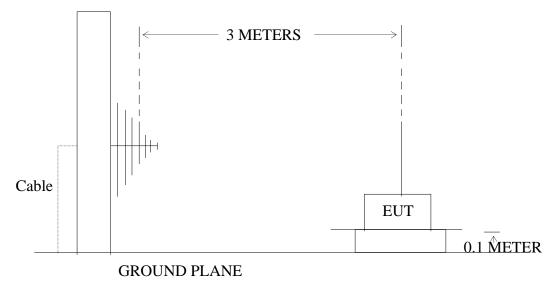
Result = Reading + Corrected Factor


3. Display the measurement of peak values.

10.RADIATED SPURIOUS EMISSION TEST

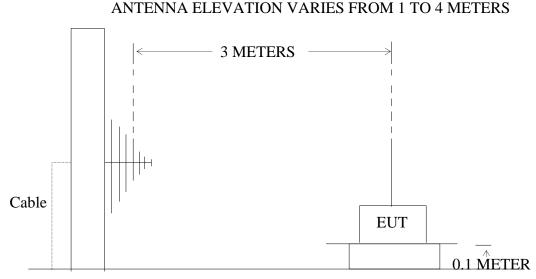
10.1.Block Diagram of Test Setup

10.1.1.Block diagram of connection between the EUT and peripherals


Setup: Transmitting mode

```
(EUT: NYNE REBEL)
```

10.1.2.Semi-Anechoic Chamber Test Setup Diagram


Below 1GHz

ANTENNA ELEVATION VARIES FROM 1 TO 4 METERS

Above 1GHz

GROUND PLANE

10.2.The Limit For Section 15.247(d)

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.209(a).

10.3.Restricted bands of operation

10.3.1.FCC Part 15.205 Restricted bands of operation

permitted in any of the frequency bands listed below.									
MHz	MHz	MHz	GHz						
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15						
$^{1}0.495-0.505$	16.69475-16.69525	608-614	5.35-5.46						
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75						
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5						
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2						
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5						
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7						
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4						
6.31175-6.31225	123-138	2200-2300	14.47-14.5						
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2						
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4						
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12						
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0						
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8						
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5						
12.57675-12.57725	322-335.4	3600-4400	$(^{2})$						
13.36-13.41									

(a) Except as shown in paragraph (d) of this section, Only spurious emissions are permitted in any of the frequency bands listed below:

¹Until February 1, 1999, this restricted band shall be 0.490-0.510 2 Above 38.6

(b) Except as provided in paragraphs (d) and (e), the field strength of emission appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000MHz, Compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000MHz, compliance with the emission limits in Section15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

10.4.Configuration of EUT on Measurement

The equipment are installed on Radiated Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

10.5. Operating Condition of EUT

10.5.1.Setup the EUT and simulator as shown as Section 10.1.

- 10.5.2.Turn on the power of all equipment.
- 10.5.3.Let the EUT work in TX modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2440MHz, and 2480MHz TX frequency to transmit.

10.6.Test Procedure

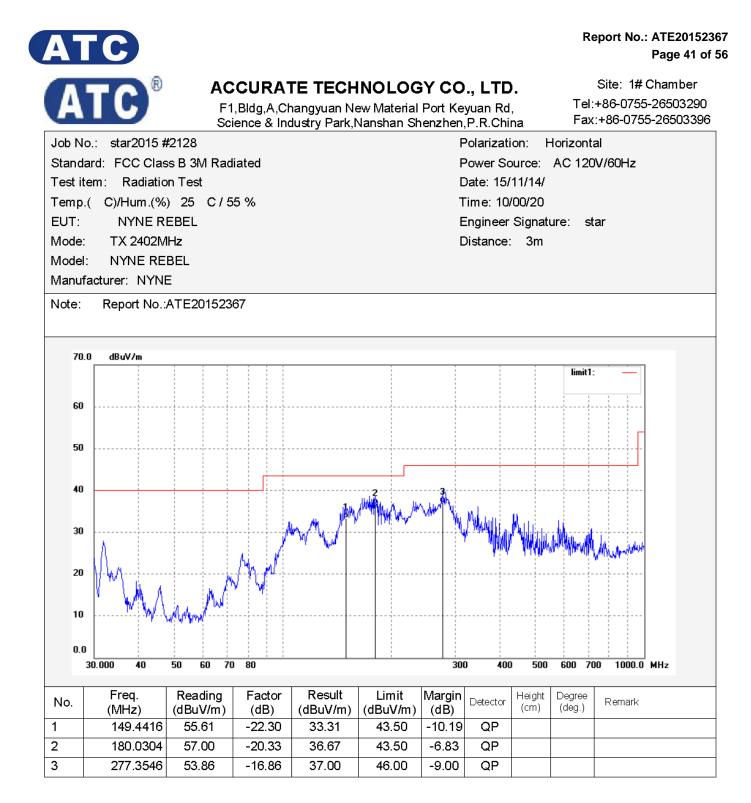
The EUT and its simulators are placed on a turntable, which is 0.8 meter high above ground(Below 1GHz). The EUT and its simulators are placed on a turntable, which is 1.5 meter high above ground(Above 1GHz). The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bi-log antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the EUT location must be manipulated according to ANSI C63.10:2013 on radiated emission measurement. The EUT was tested in 3 orthogonal planes.

The bandwidth of test receiver is set at 9 kHz in below 30MHz. and set at 120 kHz in 30-1000MHz, and 1MHz in above 1000MHz.

The frequency range from 9 kHz to 25GHz is checked.

The final measurement in band 9-90 kHz, 110-490 kHz and above 1000MHz is performed with Average detector. Except those frequency bands mention above, the final measurement for frequencies below 1000MHz is performed with Quasi Peak detector.

The field strength is calculated by adding the antenna factor, and cable loss, and subtracting the amplifier gain from the measured reading. The basic equation calculation is as follows:

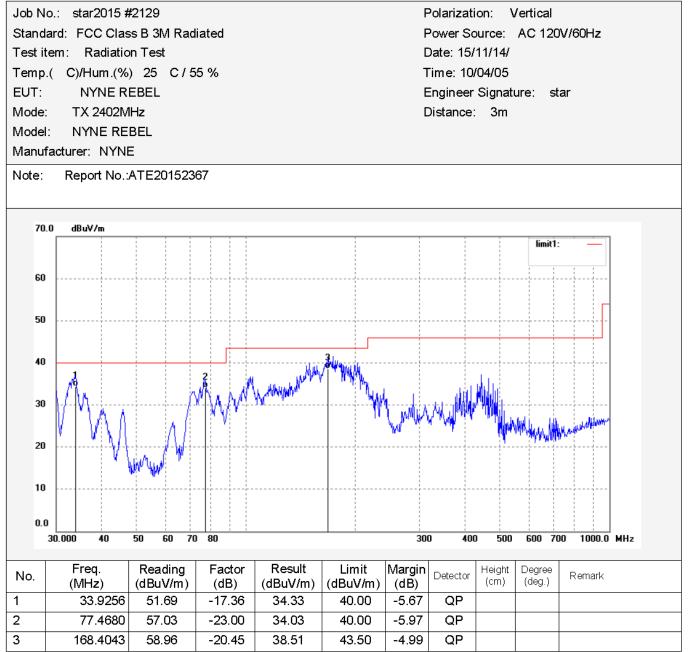

Result = Reading + Corrected Factor Where Corrected Factor = Antenna Factor + Cable Loss – Amplifier Gain

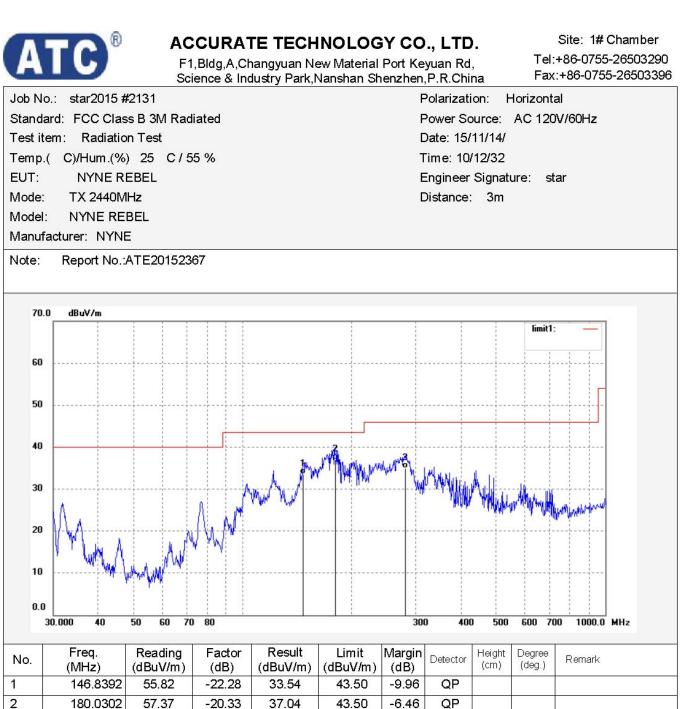
10.7.The Field Strength of Radiation Emission Measurement Results **PASS.**

Note: 1. Emissions attenuated more than 20 dB below the permissible value are not reported.

2. *: Denotes restricted band of operation.

3. The radiation emissions from 18-25GHz are not reported, because the test values lower than the limits of 20dB.





ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

3

281.2800

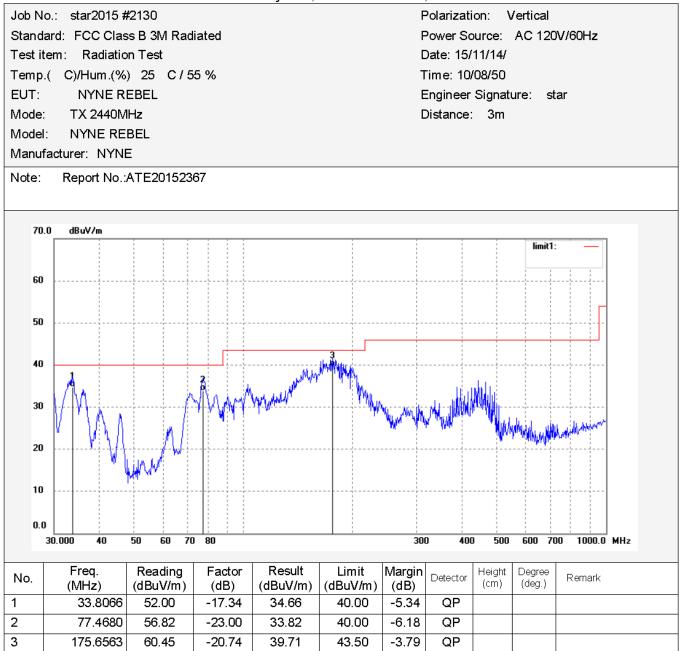
51.53

-16.68

34.85

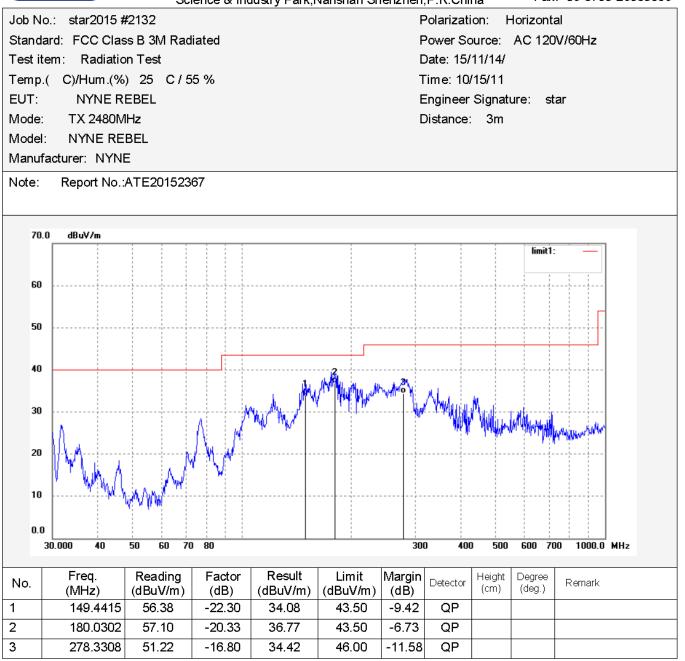
46.00

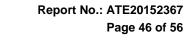
-11.15


QP

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

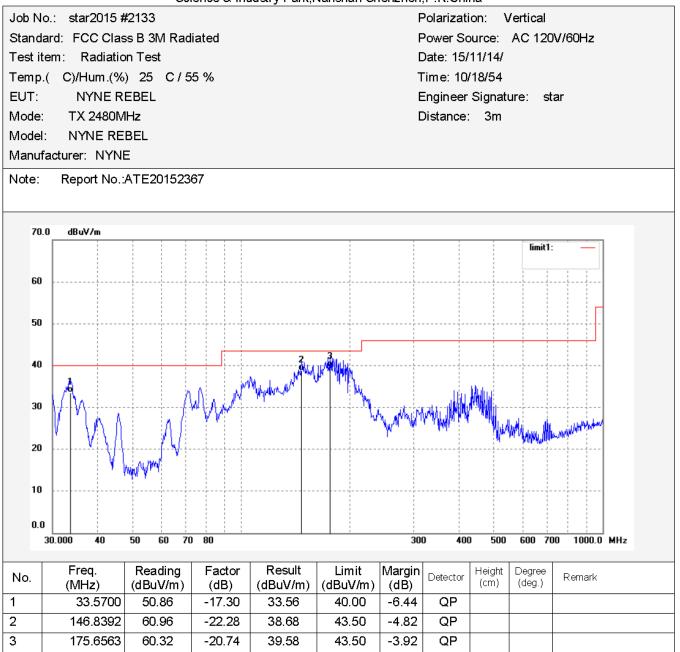




ATC®

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China



ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

1	TC)	F1	,Bldg,A,Cł	TE TECH hangyuan No dustry Park,I	ew Mater	ial Port k	(eyuai	n Rd,			Site: 1# (+86-0755 :+86-0755	-265032
) No.	.: STAR2015	#1990					Pola	rizatio	n: ۱	/ertical		
Indar	rd: FCC Class	s B 3M Rad	iated				Powe	er Sou	irce:	AC 120	V/60Hz	
st ite	m: Radiation	n Test					Date	: 15/1	1/05/			
np.(C)/Hum.(%)	25 C/5	5 %				Time	e: 9/21	1/04			
T:	NYNE RE	BEL					Engi	neer \$	Signat	ure: st	ar	
de:	TX 2402MH	Ηz					Dista	ince:	3m			
del:	NYNE REE	BEL										
nufa	cturer: NYNE											
te:	Report No.:A											
80.0	dBu∀/m							: :		1. 1.1		
										limit1:		
70												
60												
											Anne	
50					1			Mary Mary	Northe Mari	MAN - Marine a		
						1 when the other	that was a start of the					
				way want	+ HANLAM MARKA	and the second second	***************					
	ane walker the the the	aphatication and the	energy-spectra public	wayananananan	mound	yh y y y han a	thread in a first start of the					
	greigellurdurthervisen	uphal what we have the	eneralististerinskild	mprophet	manumation	yh _{el} eyddraellaegri ^{gg}	********					
	gergallurdurthurthurt	ligh-hurlplagen an An	unungtafabbethalhaphilk	wywwynaeth	nun men	gh-shyddraethagram	thranks					
40 30	greingthurduntleitvieng	uph-hospharinean ho	nongodfodd Afraningioldd	wijiyooguyodethe	www.minan	yh-yh-yhendrispat ^a						
40 30	gergalhurðurðhvývanj	uph-h-rhohagin dar h-r	usantata katan katan Katan katan kata	wyywantynaethe	and the second second	yh, yh yh der an						
40 30 20 10	greigdhurdurthwww.	uph-hospharinan hos	www.yoffoodinghild	with many many many many many many many many	n an	yh _{en} an yhen an tarantu	***** ********					
40 30 20 10	динара Мантира 			улунулан улунулан 3000		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		800090	000			MHz
40 30 20 10	000.000	20	00	3000	50	00 6000	7000	800090		D	18000.0	MHz
40 30 20 10	000.000 Freq.					00 6000 Margi	7000	800090	000 Height (cm)	Degree (deg.)	18000.0	MHz

ATC ATC[®]

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

Job No	D.: STAR201	5 #1992					Polarizat	ion: H	lorizonta	al
Standa	ard: FCC Clas	s B 3M Rad	liated				Power So	ource:	AC 120	V/60Hz
Test it	em: Radiatio	n Test					Date: 15/	11/05/		
Temp.	(C)/Hum.(%)) 25 C/5	65 %				Time: 9/2	27/01		
EUT:	NYNE R	EBEL					Engineer	Signat	ure: st	ar
Mode:	TX 2440M	Hz					Distance	: 3m		
Model:	NYNE RE	BEL								
Manuf	acturer: NYNE	Ξ								
Note:	Report No.:	ATE201523	67							
C.										
80.	0 dBuV/m			Ð						
									limit1:	
70								 		
60										
50	handersteller mensenterster						+			1 X.#
							un understitute	Kalipopehionala	when a property	e-water
40				Bergin Id. and Advantage	hipurtur war the will be	he have a start and a start a s	1.44			
	· · · · · · · · · · · · · · · · · · ·	we appropriately their	production and the line have	A. MIR . Re . Met .						
30	12 Martin How Martin And	Wex a.						<u> </u>		
20										
20					[
10										
10										
0.0										
	1000.000	20	00	3000	5000	6000	7000 8000	9000		18000.0 MHz
No.	Freq.	Reading	Factor	Result	Limit	Margir	Detector	Height	Degree	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)		(cm)	(deg.)	L YOU GUIY
1	16785.473	33.04	14.24	47.28	54.00	-6.72	peak			

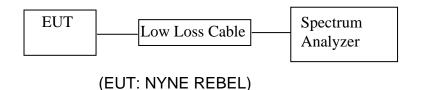
ATC ATC[®]

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

b No.	.: STAR201	5 #1993					Polarizat	ion: H	Horizonta	al
	rd: FCC Clas		diated		Power Source: AC 120V/60Hz					
	m: Radiatio						Date: 15/			
• •	C)/Hum.(%)		55 %				Time: 9/3			
IT:	NYNE R						Engineer	-	ure: st	ar
ode:	TX 2480M						Distance	: 3m		
del:										
	icturer: NYNE									
te:	Report No.:	ATE201523	367							
80.0	dBu∀/m									
									limit1:	—
70										
60										
50										·····
	in the state of th						Americanter	-an when the	handywhy	Marchan
40				Hunney by in matrice	high phoneses and	Makharluk kara tu				
30	A ALANA A ALANA A A A A A A A A A A A A	way while the providence	M. M. Martinger							
50	Wheel a state of the second									
20										
10										
0.0					5000	6000	: : 7000 8000	: : 9000		18000.0 MHz
0.0 11	000.000	2	DOO	3000	3000					
			1			1		T	1	
	000.000 Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	3000 Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark

ATC ACCURATE TECHNOLOGY CO., LTD. F1,Bldg,A,Changyuan New Material Port Keyuan Rd,


F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park Nanshan Shenzhen P. R. Chin

			ience & inc	iustry Park,i	vansnan Sr	renzner	I,P.K.Chi	na	1 60.		20000000
Job No.: STAR2015 #1994 Polarization: Vertical											
Stand	ard: FCC Clas	s B 3M Rad	liated				Power So	ource:	AC 120	V/60Hz	
Test if							Date: 15/				
	.(C)/Hum.(%		5 %				Time: 9/3				
EUT:											
Mode							Distance	3m			
Mode											
Manut	facturer: NYN	Ξ									
Note:	Report No.:	ATE201523	67								
80	.0 dBuV/m										
									limit1:		
70											
10		1									
60								ļ			
50										1	
	wordshow At Musica Analay					1. 14	المراجعة	utomente	AmothyphipH	www.andlaneverthern	
40			u . h	and the market	adred and extended to the	pelantarian antina	AD MALL IN				
	hu	. Anther What have	where Mary And Burn	and white and a							
30	checkshare and the second and the second	4.N/1-6-1									
20											
20											
10											
0.0	1000.000	20	00	3000	5000	6000	7000 8000	9000		18000.0 M	44.2
	1000.000	20		3000	5000	0000	1000 0000	5000		10000.01	1112
No.	Freq.	Reading	Factor	Result	Limit	Margin	Detector	Height	Degree	Remark	
1	(MHz) 14724.757	(dBuV/m) 33.68	(dB) 13.87	(dBuV/m) 47.55	(dBuV/m) 54.00	(dB) -6.45		(cm)	(deg.)		
•	17/24./3/	55.00	10.07	47.55	54.00	-0.43	Pear				

11.CONDUCTED SPURIOUS EMISSION COMPLIANCE TEST

11.1.Block Diagram of Test Setup

11.2. The Requirement For Section 15.247(d)

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

11.3.EUT Configuration on Measurement

The equipment is installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

11.4.Operating Condition of EUT

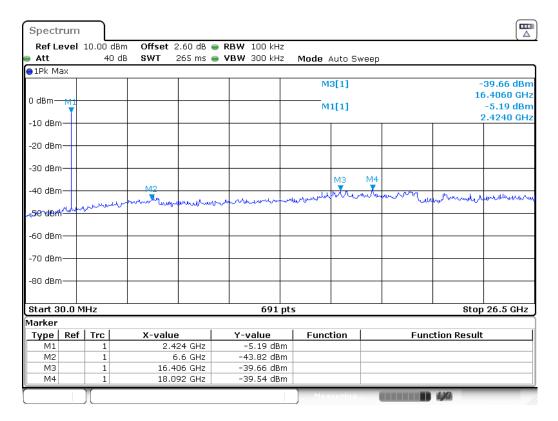
- 11.4.1.Setup the EUT and simulator as shown as Section 11.1.
- 11.4.2.Turn on the power of all equipment.
- 11.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 2402-2480 MHz. We select 2402MHz, 2440MHz, and 2480MHz TX frequency to transmit.

11.5.Test Procedure

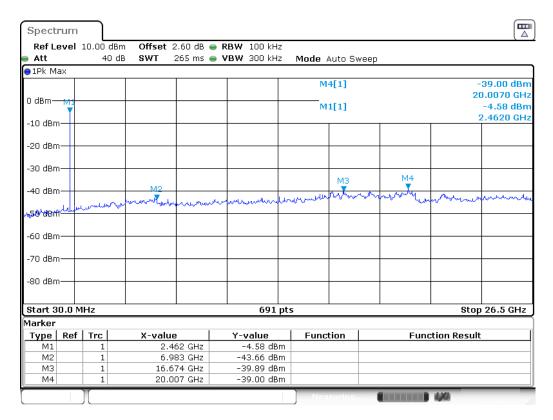
- 11.5.1.The transmitter output was connected to the spectrum analyzer via a low loss cable.
- 11.5.2.Set RBW of spectrum analyzer to 100kHz and VBW to 300kHz
- 11.5.3. The Conducted Spurious Emission was measured and recorded.

11.6.Test Result

Pass.


The spectrum analyzer plots are attached as below.

BLE Channel Low 2402MHz


Spectrun	n								
Ref Leve	l 10.00	dBm Offset	2.60 dB	🔵 RBW 100 kH	z				
🛛 Att	4	O dB SWT	265 ms	🔵 VBW 300 kH	z Mode	Auto Sw	/еер		
⊖1Pk Max									
					M	4[1]			-39.14 dBm
0 dBm-M1									18.0150 GHz
Ţ					M	1[1]			-4.55 dBm 2.3860 GHz
-10 dBm-									2.3800 GH2
-20 dBm									
00 d0									
-30 dBm							M4		
-40 dBm		M2		МЗ			-		
10 abiii	Jun	m humberry	muse the	when when the	whenever	www	mannen	monterbury	an march
w5848Brit	and the second			•••					
-60 dBm									
-70 dBm—									
-80 dBm—									
Start 30.0	MHz			691	pts			Ste	op 26.5 GHz
Marker									
Type Re		X-valu		Y-value	Func	tion	Fu	unction Resu	ılt
M1	1		386 GHz	-4.55 dB					
M2	1		523 GHz	-42.65 dB					
M3 M4	1		315 GHz)15 GHz	-42.93 dB -39.14 dB					
IVI+		18.0	13 GHZ	-39.14 UB					
	Д				Mea			1 4,44	

BLE Channel Middle 2440MHz

BLE Channel High 2480MHz

12.ANTENNA REQUIREMENT

12.1.The Requirement

According to Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

12.2.Antenna Construction

Device is equipped with PCB Antenna, which isn't displaced by other antenna. The Antenna gain of EUT is 2dBi. Therefore, the equipment complies with the antenna requirement of Section 15.203.

Antenna