TEST REPORT

Applicant:	NYNE Multimedia, Inc.
Address of Applicant:	3451 Lunar Court, Oxnard, Ca 93030, USA
Manufacturer:	First Audio Manufacturing (HK) Ltd.
Address of Manufacturer:	3/F., Block A, Wing Kut Industrial Bldg., 608 Castle Peak Rd., Kowloon, H Kong
Product name:	2.0 Speaker for iPod/iPhone/iPad
Model:	NH-6000
Rating(s):	AC 120V, 60Hz 80W
Trademark:	nyne
FCC register number :	935596
Standards:	FCC Part 15.247 :2010
FCC ID:	AWA-NH-6000
Data of Receipt:	2012-02-27
Date of Test:	2012-03-01~2012-03-20
Date of Issue:	2012-03-21
Test Result	Pass*

* In the configuration tested, the test item complied with the standards specified above.

Authorized for issue by:

Test by:	Jumy	qiu	Reviewed by:	Paules	/ L:
Mar.21.2012	Jumy Qiu		Mar.21.2012	Pauler Li	
	Project Engineer			Project Engineer	
Date	Name/Position	Signature	Date	Name/Position	Signature

Possible test case verdicts:	
test case does not apply to the test object:	N/A
test object does meet the requirement:	P (Pass)
test object does not meet the requirement:	F (Fail)
Testing Laboratory information:	
Testing Laboratory Name:	I-Test Laboratory
Address:	1-2 floor, South Block, Building A2 , No 3 Keyan Lu, Science City, Guangzhou, Guangdong Province, P.R. China
Testing location :	Same as above
Tel :	0086-20-32209330
Fax :	0086-20-62824387
E-mail :	itl@i-testlab.com

General remarks:

The test results presented in this report relate only to the object tested.

The results contained in this report reflect the results for this particular model and serial number. It is the responsibility of the manufacturer to ensure that all production models meet the intent of the requirements detailed within this report.

This report would be invalid test report without all the signatures of testing technician and approver.

This report shall not be reproduced, except in full, without the written approval of the Issuing testing laboratory.

Note:

1.

1 Test Summary

Test	Test Requirement	Test method	Result
	FCC PART 15 C	FCC PART 15 C	
Antenna Requirement	section 15.247 (c) and Section 15.203	section 15.247 (c) and Section 15.203	PASS
Occupied Bandwidth	FCC PART 15 C section 15.247 (a)(1)	ANSI C63.10: Clause 6.9 & DA 00-705	PASS
Carrier Frequencies Separated	FCC PART 15 C section 15.247(a)(1)	DA 00-705	PASS
Hopping Channel Number	FCC PART 15 C section 15.247(a)(1)(iii)	DA 00-705	PASS
Dwell Time	FCC PART 15 C section 15.247(a)(1)(iii)	DA 00-705	PASS
Pseudorandom Frequency Hopping Sequence	FCC PART 15 C section 15.247(a)(1)	DA 00-705	PASS
Maximum Peak Output Power	FCC PART 15 C section 15.247(b)(1)	ANSI C63.10: Clause 6.10 & DA 00-705	PASS
Conducted Spurious Emission (30 MHz to 25 GHz)	FCC PART 15 C section 15.247(d)	ANSI C63.10: Clause 6.7 & DA 00-705	PASS
Radiated Spurious Emission (30 MHz to 25 GHz)	FCC PART 15 C section 15.247(d)		PASS
Band Edges Measurement	FCC PART 15 C section 15.247 (d) &15.205		PASS
Conducted Emissions at Mains Terminals	FCC PART 15 C section 15.207	ANSI C63.10: Clause 6.2 & DA 00-705	PASS

Remark:

N/A: not applicable. Refer to the relative section for the details.

EUT: In this whole report EUT means Equipment Under Test.

Tx: In this whole report Tx (or tx) means Transmitter.

Rx: In this whole report Rx (or rx) means Receiver.

RF: In this whole report RF means Radio Frequency.

ANSI C63.10: the detail version is ANSI C63.10:2009 in the whole report.

DA 00-705: "Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems"

ITL

2 Contents

		Page
TES	ST REPORT	1
1	TEST SUMMARY	
2	CONTENTS	
3	GENERAL INFORMATION	5
3.		
3.		
3.		
3. 3.		
ა. 3.		
3. 3.		
3. 3.		
3.		
	.10 MEASUREMENT UNCERTAINTY	
4	INSTRUMENTS USED DURING TEST	
4	INSTRUMENTS USED DURING TEST	
5	TEST RESULTS	8
5.	.1 E.U.T. TEST CONDITIONS	
5.	.2 ANTENNA EQUIREMENT	
5.	.3 OCCUPIED BANDWIDTH	
5.	.4 CARRIER FREQUENCIES SEPARATED	
5.	.5 HOPPING CHANNEL NUMBER	
5.		
5.		
	5.7.1 Standard requirement	
	5.7.2 EUT Pseudorandom Frequency Hopping Sequence	
5.		
5.		
5.	.10 RADIATED SPURIOUS EMISSIONS	
_	5.10.1 Harmonic and other spurious emissions	
-	.11 RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS	
-	.12 BAND EDGES REQUIREMENT	
5.	.13 CONDUCTED EMISSIONS AT MAINS TERMINALS 150 KHZ TO 30 MHZ	
	5.13.1 Measurement Data	

3 General Information

3.1 Client Information

Applicant:	NYNE Multimedia, Inc.
Address of Applicant:	3451 Lunar Court, Oxnard, Ca 93030, USA

3.2 General Description of E.U.T.

Name:	2.0 Speaker for iPod/iPhone/iPad
Model No.:	P711F NH-6000
Trade Mark:	nyne
Operating Frequency:	2402 MHz to 2480 MHz
Channels:	79 channels with 1MHz step
Type of Modulation	CCK, DQPSK, DBPSK for DSSS 64QAM, 16QAM, QPSK, BPSK for OFDM
Dwell time	Per channel is less than 0.4s.
Antenna Type	PCB Layout
Antenna gain:	0dBi
Speciality:	Bluetooth 2.1with EDR
Function:	Speaker with BT function to transmit and receive audio signal.

3.3 Details of E.U.T.

EUT Power Supply:	AC Power, Class II
Rated power:	120Vac 60Hz 80W
Test mode:	The program used to control the EUT for staying in continuous transmitting and receiving mode is programmed.
	Channel lowest (2402MHz), middle (2441MHz) and highest (2480MHz) are chosen for full testing.
	Normal mode: the Bluetooth has been tested on the Modulation of GFSK; EDR mode: the Bluetooth has been tested on the Modulation of (π /4)DQPSK and 8DPSK, compliance test and record the worst case on 8DPSK.
Power cord:	1.5m x 2 wires unscreened AC cable

3.4 Description of Support Units

The EUT has been tested as an independent unit for fixed frequency by testing lab.

3.5 Test Location

All tests were performed at:

Guangzhou ITL Co., Ltd.

1-2 floor, South Block, Building A2 , No 3 Keyan Lu, Science City, Guangzhou, Guangdong Province, P.R. China

0086-20-32209330

itl@i-testlab.com

No tests were sub-contracted.

3.6 Deviation from Standards

Biconical and log periodic antennas were used instead of dipole antennas.

3.7 Abnormalities from Standard Conditions

None.

3.8 Other Information Requested by the Customer

None.

3.9 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

- CNAS(Lab code:L4957)
- FCC (Registration No.:935596)
- IC (Registration NO.:8368A)

3.10 Measurement Uncertainty

Parameter	Uncertainty
Radio frequency	±1.06 x 10 ⁻⁷
total RF power, conducted	1.37 dB
RF power density , conducted	2.89 dB
All emissions, radiated	±3.35 dB
Temperature	±0.23 °C
Humidity	±0.3 %
DC and low frequency voltages	±0.3 %

4 Instruments Used during Test

No	Test Equipment	Manufacturer	Model No	Serial No	Cal. Due Date
1	Signal Analyzer	Agilent	N9010A	MY51250936	2013.04.16
2	Low Noise Pre Amplifier	Tsj	MLA-10K01-B01-27	1205323	2012.09.06
3	Low Noise Pre Amplifier	Tsj	MLA-0120-A02-34	2648A04738	2012.04.07
4	Biconilog Antenna	ETS•Lindgren	3142D	00108096	2013.01.28
5	Horn Antenna	EMCO	3115	6124	2012.06.08
6	50Ω Coaxial Switch	Anritsu	MP59B	6200264416	2012.09.06
7	EMI Test Receiver	R&S	ESCI	100124	2012.06.07
8	LISN	R&S	ENV216	8-837-4	2012.05.04
9	LISN	Kyoritsu	KNW-407	8-1789-3	2012.04.06
10	50Ω Coaxial Switch	Anritsu	MP59B	6200264417	2012.09.06
11	Loop Antenna	ZHINAN	ZN30900A	002489	2013.01.22

5 Test Results

5.1 E.U.T. test conditions

Test Voltage:	Input: AC 120V, 60 Hz
Temperature:	20.0 -25.0 °C
Humidity:	38-50 % RH
Atmospheric Pressure:	1000 -1010 mbar
Test frequencies and frequency range:	According to the 15.31(m) Measurements on intentional radiators or receivers, other than TV broadcast receivers, shall be performed and, if required, reported for each band in which the device can be operated with the device operating at the number of frequencies in each band specified in the following table: According to the 15.33 (a) For an intentional radiator, the spectrum
	According to the 10.00 (a) for an interitorial radiator, the spectrum

According to the 15.33 (a) For an intentional radiator, the spectrum shall be investigated from the lowest radio frequency signal generated in the device, without going below 9 kHz, up to at least the frequency shown in the following table:

Frequency range in which	Number of	Location in frequency range
1 MHz or less	1	Middle
1 MHz to 10 MHz	2	1 near top and 1 near bottom
More than 10 MHz	3	1 near top, 1 near middle and 1
	-	near bottom

Number of fundamental frequencies to be tested in EUT transmit band

Frequency range of radiated emission measurements

Lowest frequency generated	Upper frequency range of measurement
9 kHz to below 10 GHz	10th harmonic of highest fundamental frequency or to 40 GHz,
At or above 10 GHz to below	5th harmonic of highest fundamental frequency or to 100 GHz,
At or above 30 GHz	5th harmonic of highest fundamental frequency or to 200 GHz,

Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402	11	2413	22	2424
1	2403	12	2414	23	2425
2	2404	13	2415	24	2426
3	2405	14	2416	25	2427
4	2406	15	2417	26	2428
5	2407	16	2418	27	2429
6	2408	17	2419	28	2430
7	2409	18	2420	29	2431
8	2410	19	2421	30	2432
9	2411	20	2422	31	2433
10	2412	21	2423	32	2434
33	2435	49	2451	65	2467
34	2436	50	2452	66	2468
35	2437	51	2453	67	2469
36	2438	52	2454	68	2470
37	2439	53	2455	69	2471
38	2440	54	2456	70	2472
39	2441	55	2457	71	2473
40	2442	56	2458	72	2474
41	2443	57	2459	73	2475
42	2444	58	2460	74	2476
43	2445	59	2461	75	2477
44	2446	60	2462	76	2478
45	2447	61	2463	77	2479
46	2448	62	2464	78	2480
47	2449	63	2465		
48	2450	64	2466		

EUT channels and frequencies list:

Test frequencies are the lowest channel: 0 channel(2402 MHz), middle channel: 39 channel(2441 MHz) and highest channel: 78 channel(2480 MHz)

5.2 Antenna equirement

Standard requirement

15.203 requirement:

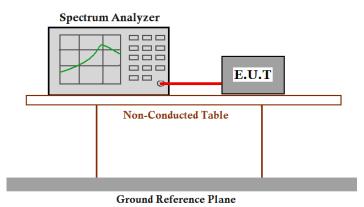
For intentional device. According to 15.203. an intentional radiator shall be designed to Ensure that no antenna other than that furnished by the responsible party shall be used with the device.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz bands that are used exclusively for fixed.
Point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna

The antenna is an External WIFI antenna and no consideration of replacement. The best case gain of the antenna is 0dBi.


Test result: The unit does meet the FCC requirements.

Page 11 of 62

5.3 Occupied Bandwidth

Test Requirement:	FCC Part 15 C section 15.247
	(a)(1) Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.
Test Method:	ANSI C63.10: Clause 6.9 & DA 00-705
Test Status:	Pre-test the EUT in continuous transmitting mode at the lowest (2402 MHz), middle (2441 MHz) and highest (2480 MHz) channel with different data package. Compliance test in normal mode (DH5) and EDR mode (3DH5) as the worst case was found.

Test Configuration:

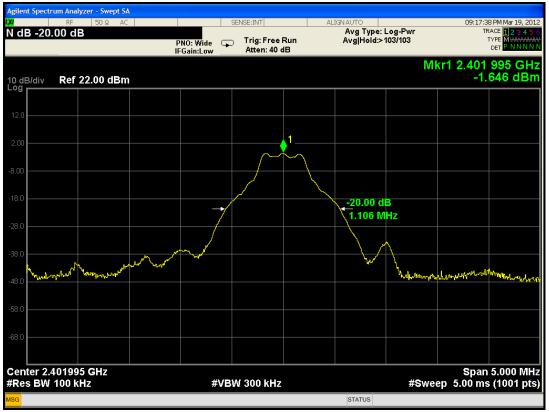
Test Procedure:

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;
- 2. Set the spectrum analyzer: Span = approximately 2 to 3 times the 20dB bandwidth, centring on a hopping channel;
- Set the spectrum analyzer: RBW >= 1% of the 20dB bandwidth VBW >= RBW. Sweep = auto; Detector Function = Peak. Trace = Max Hold.
- 4. Mark the peak frequency and -20dB points bandwidth.

Test result:

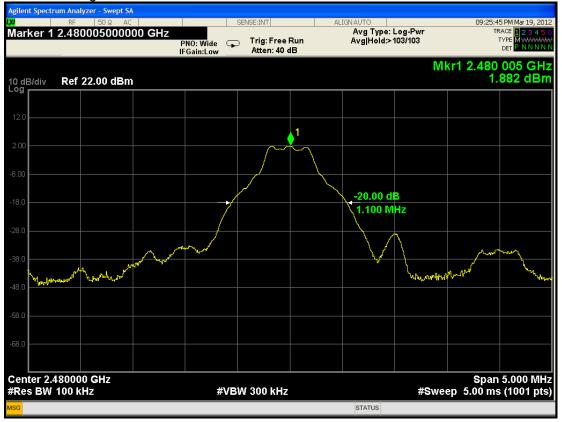
Normal mode:

Test Channel	Bandwidth(MHz)	2/3 bandwidth(MHz)
Lowest	1.106	0.730
Middle	1.104	0.729
Highest	1.100	0.726


EDR mode:

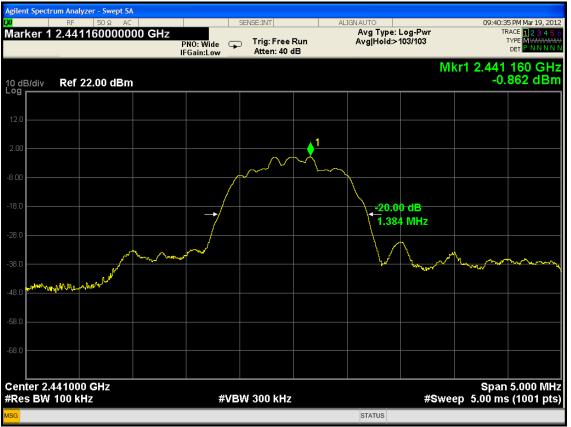
Test Channel	Bandwidth(MHz)	2/3 bandwidth(MHz)
Lowest	1.381	0.912
Middle	1.384	0.913
Highest	1.377	0.909

Result plot as follows:


DH5:

Lowest Channel:

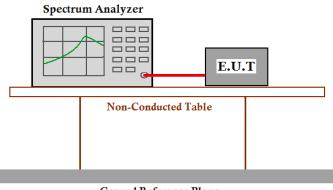
Middle Channel:			
Agilent Spectrum Analyzer - Swept SA			
Marker 1 2.441005000000 GHz	PNO: Wide IFGain:Low Atten: 40	ALIGN AUTO Avg Type: L e Run Avg Hold:>1 0 dB	
10 dB/div Ref 22.00 dBm			Mkr1 2.441 005 GH: 0.839 dBn
12.0			
2.00		1	
		\sim	
3.00		-20,00 dE	
18.0	7	1.104 M	
28.0			
			how we have have have have have have have hav
58.0			
Center 2.441000 GHz Res BW 100 kHz	#VBW 300 kH	Z	Span 5.000 MH Sweep 5.00 ms (1001 pts#
15G		STATUS	


Highest Channel:

3DH5:

Lowest channel: nt Spectrum Analyzer - Swept SA 09:36:58 PM Mar 19, 2012 TRACE 1 2 3 4 5 TYPE M WWWWW DET P N N N N N SENSE:INT ALIGN Avg Type: Log-Pwr Avg|Hold:>103/103 Marker 1 2.401990000000 GHz PNO: Wide Trig: Free Run IFGain:Low Atten: 40 dB Mkr1 2.401 990 GHz -3.422 dBm Ref 22.00 dBm 10 dB/div Log -20.00 dB 1.381 MHz 4 the second and mon Although Center 2.402000 GHz #Res BW 100 kHz Span 5.000 MHz #Sweep 5.00 ms (1001 pts) #VBW 300 kHz

Middle channel:


Highest channel:

5.4 Carrier Frequencies Separated

Test Requirement:	FCC Part 15 C section 15.247 (a),(1) Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.
Test Method:	DA 00-705
Test Status:	Pre-test the EUT in continuous transmitting mode at the lowest (2402 MHz), middle (2441 MHz) and highest (2480 MHz) channel and hopping mode with different data packet. Compliance test in hopping with normal mode (DH5) as the worst case was found.

Test Configuration:

Ground Reference Plane

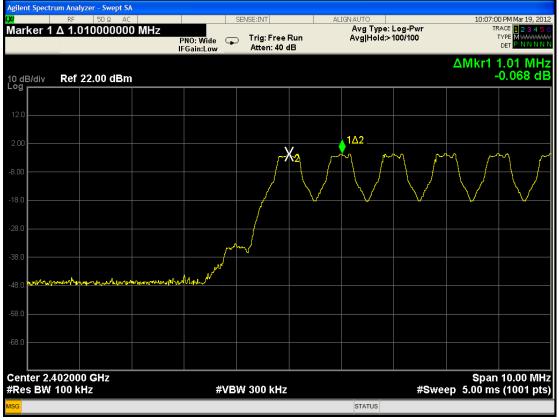
Test Procedure:

- 1. Remove the antenna from the EUT and then connect a low attenuation RF cable from the antenna port to the spectrum.
- 2. Set the spectrum analyzer: RBW >= 1% of the span, VBW >= RBW,. Sweep = auto; Detector

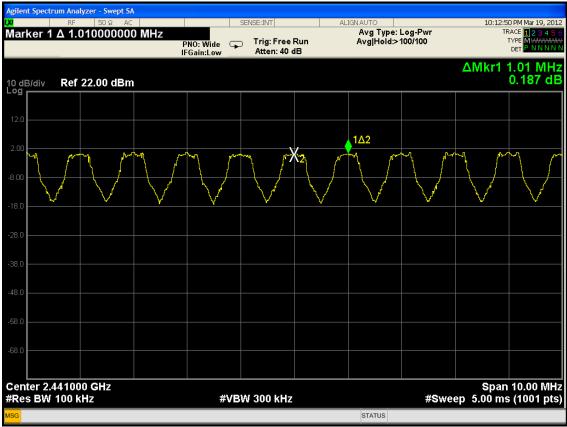
Function = Peak. Trace = Max, hold.

 Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section. Submit this plot.

ITL

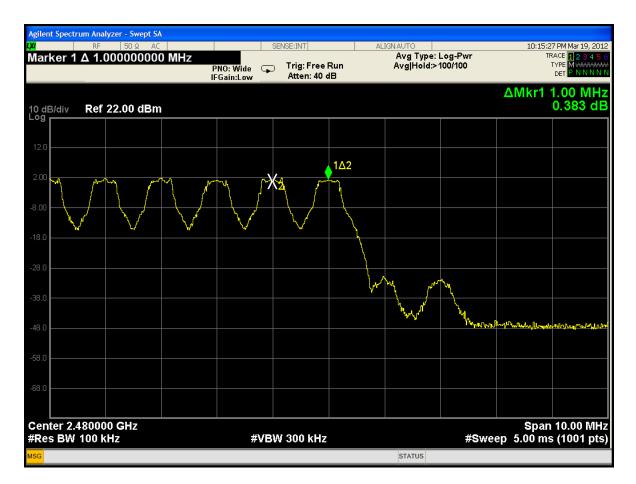

ITL

Test result:


Test Channel	Carrier Frequencies Separated	Pass/Fail	
Lower Channels (channel 0 and channel 1)	1.01MHz	Pass	
Middle Channels (channel 39 and channel 40)	1.01MHz	Pass	
Upper Channels (channel 77 and channel 78)	1.01MHz	Pass	
Remark: The limit is maximum two-thirds of the 20 dB bandwidth: 0.913 MHz			

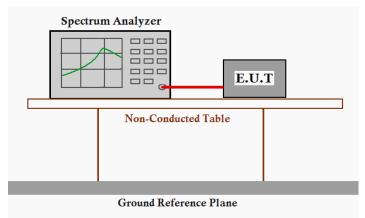
Carrier Frequencies Separated plot:

1. Lowest Channels:



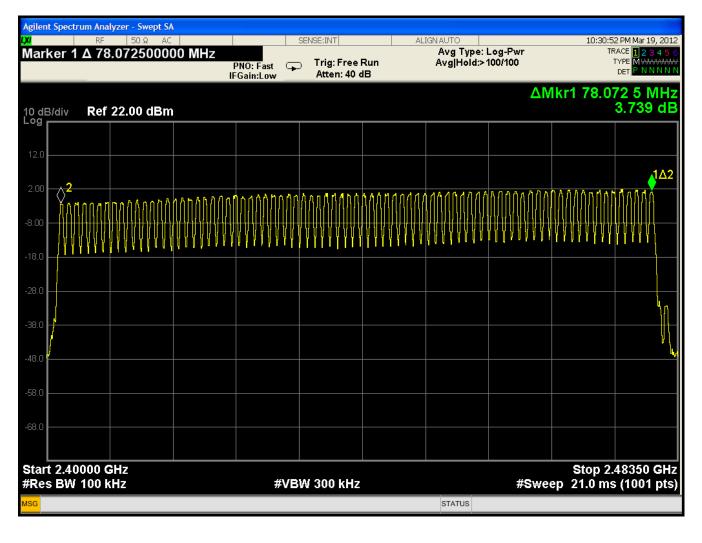
2. Middle Channels:

3. Highest Channels



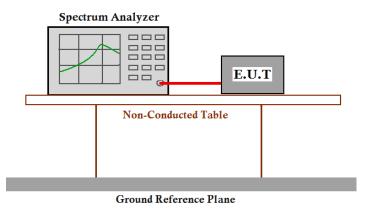
5.5 Hopping Channel Number

Test Requirement:	FCC Part15 C section 15.247
	(a)(1)(iii) Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.
Test Method:	DA 00-705
Test Status:	Pre-test the EUT in hopping mode with different data packet. Compliance test
	in hopping with normal mode (DH5) as the worst case was found.


Test Configuration:

Test Procedure:

- 1. Remove the antenna from the EUT and then connect a low attenuation RF cable from the antenna port to the spectrum.
- 2. Set the spectrum analyzer: RBW = 100 kHz. VBW = 100 kHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. It may prove necessary to break the span up to sections. in order to clearly show all of the hopping frequencies. The limit is specified in one of the subparagraphs of this Section.
- 4. Set the spectrum analyzer: start frequency = 2400 MHz. stop frequency = 2483.5 MHz. Submit the test result graph.


Test result: Total channels are 79 channels.

Test result: The unit does meet the FCC requirements.

5.6 Dwell Time

Test Requirement:	FCC Part 15 C section 15.247
	(a)(1)(iii) Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.
Test Method:	DA 00-705
Test Status:	Pre-test the EUT in continuous transmitting mode at the lowest (2402 MHz), middle (2441 MHz) and highest (2480 MHz) channel with different data packet. Compliance test in hopping with EDR mode (3DH1, 3DH3 and
	3DH5) as the worst case was found.

Test Configuration:

Test Procedure:

1. Remove the antenna from the EUT and then connect a low attenuation RF cable from the antenna port to the spectrum.

2.Set spectrum analyzer span = 0. centered on a hopping channel;

3.Set RBW = 1 MHz and VBW = 1 MHz. Sweep = as necessary to capture the entire dwell time per hopping channel. Detector Function = Peak. Trace = View;

4. Use the marker-delta function to determine the dwell time. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.). Repeat this test for each variation. The limit is specified in one of the subparagraphs of this Section. Submit this plot(s). An oscilloscope may be used instead of a spectrum analyzer.

Test Result:

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s

```
1. Channel 0: 2.402GHz
```

3DH1 time slot = 0.39(ms) * (1600/(2*79)) * 31.6 = 124.8ms 3DH3 time slot = 1.66 (ms) * (1600/(4*79)) * 31.6 = 265.6 ms

3DH5 time slot = 2.88 (ms) * (1600/(6*79)) * 31.6 = 307.2ms

2. Channel 39: 2.441GHz

3DH1 time slot = 0.39 (ms) * (1600/(2*79)) * 31.6 = 124.8ms

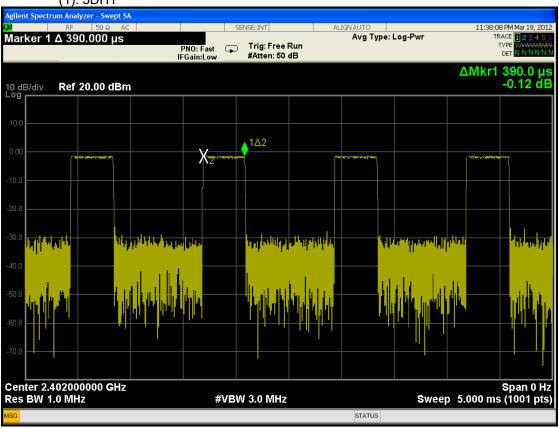
3DH3 time slot = 1.66 (ms) * (1600/(4*79)) * 31.6 = 265.6ms

3DH5 time slot = 2.84 (ms) * (1600/(6*79)) * 31.6 = 302.9ms

3. Channel 78: 2.480GHz

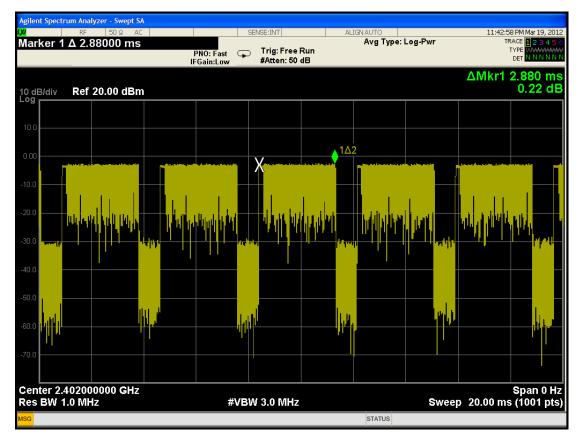
3DH1 time slot = 0.41 (ms) * (1600/(2*79)) * 31.6 = 131.2ms

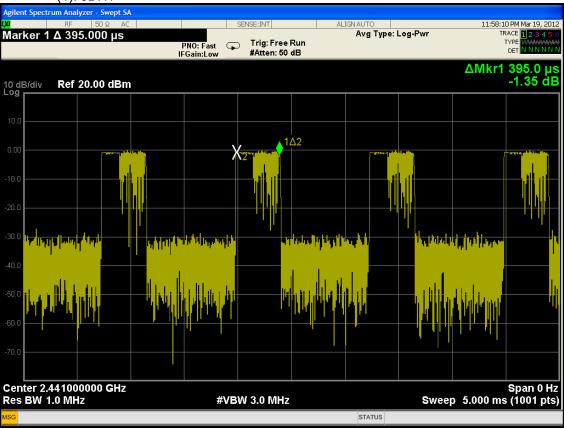
3DH3 time slot = 1.66 (ms) * (1600/(4*79)) * 31.6 = 265.6ms

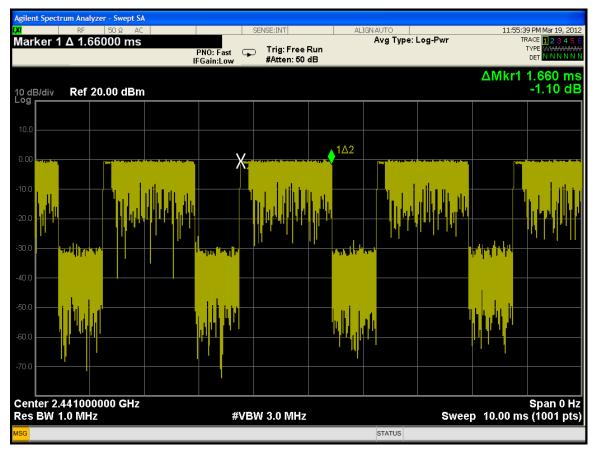

3DH5 time slot = 2.91(ms) * (1600/(6*79)) * 31.6 = 310.4ms

The results are not greater than 0.4 seconds

The unit does meet the FCC requirements.

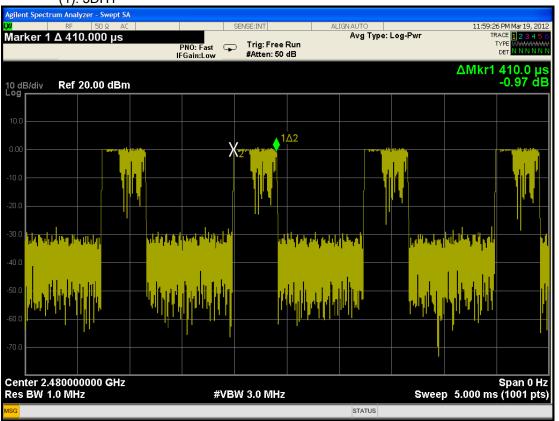

1. Lowest channel (2.402 GHz):


(2) 3DH3 - Swept SA zilent Spectrum Analyzer 11:33:48 PM Mar 19, 2012 TRACE Marker 1 Δ 1.66000 ms Avg Type: Log-Pwr PNO: Fast IFGain:Low Trig: Free Run #Atten: 50 dB TYPE DET ΔMkr1 1.660 ms -1.25 dB Ref 20.00 dBm 10 dB/div Loa <u>1∆2</u> Х n in se भग भग Center 2.402000000 GHz Res BW 1.0 MHz Span 0 Hz Sweep 10.00 ms (1001 pts) #VBW 3.0 MHz STATUS

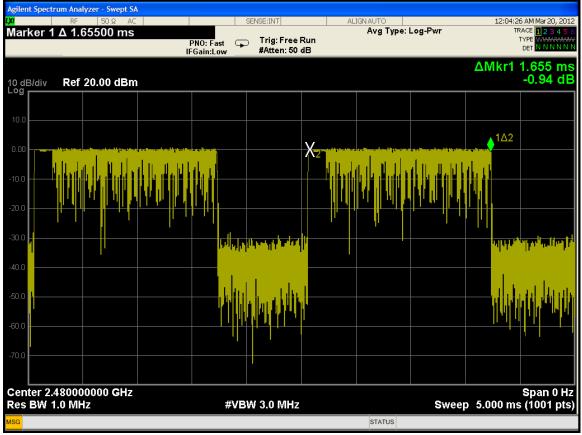

(3) 3DH5

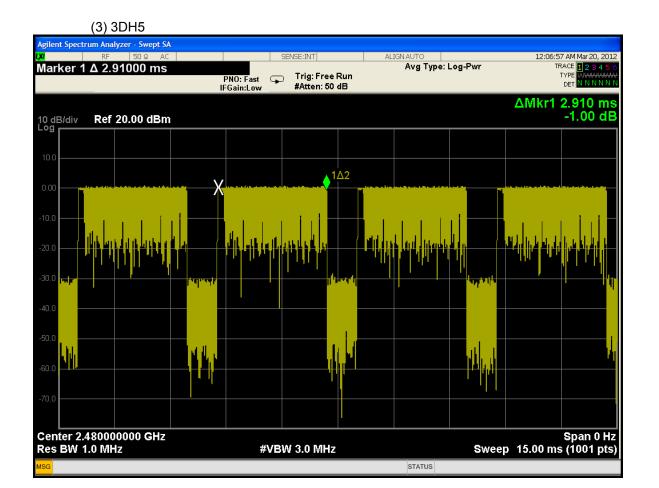
2. Middle channel (2.441 GHz):

(1). 3DH1



(3) 3DH5




3. Lowest channel (2.480 GHz):

(2) 3DH3

Remark:

In communication data link mode (expect inquiry or page mode) the hopping rate is 1600 per second, the 79 channels will be randomly selected for RF channel, and each channel have equal probability to be selected. The hop selection scheme is defined in Clause 2.6 of Part B of Volume

2 of core specification of Bluetooth.

The Dwell time must be calculated via following formula:

Dwell time = Pulse wide x (Hopping rate / Number of channels) x Period

Period = 0.4 (seconds/ channel) x 79 (channel) = 31.6 seconds

So

Dwell time DH1= slot time * (1600/2/79) * 31.6

Dwell time DH3= slot time * (1600/4/79) * 31.6

Dwell time DH5= slot time * (1600/6/79) * 31.6

The RF channel will remain fixed for duration of a packet, that means for DH3 packet the RF frequency will remain unchanged during 3 slots (1slot=1/1600=625us), and for DH5 packet the RF frequency will remain unchanged during 5 slots, illustrated the principle as below:

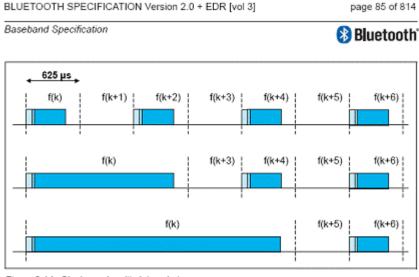


Figure 2.14: Single- and multi-slot packets.

Therefore, in a certain period for different packet types, the quantities of hops (not hopping rate 1600) are different, accurately, the quantity of hops for DH1 is double of DH3's and triple of DH5's. "for DH1 packet, 1 hop in 1 slot; for DH3 packet, ½ hop in 1 slot; for DH5 packet, 1/3 hop in 1 slot.", explained as below:

From the illustrated hopping scheme:

For DH1, in two slots, there are two hops, i.e. f(k) in Slot(k), f(k+1) in Slot(k+1), means DH1 1 hop in 1 slot;

For DH3, in four slots, there are two hops, i.e. f(k) in Slot(k) & Slot(k+1) & Slot(k+2), f(k+3) in

Slot(k+3), means DH3 2 hops in four slots -> 1/2 hop in 1 slot;

For DH5, in six slots, there are two hops, i.e. f(k) in Slot(k) & Slot(k+1) & Slot(k+2) & Slot(k+3) & Slot(k+4), f(k+5) in Slot(k+5), means DH3 2 hops in six slots -> 1/3 hop in 1 slot.

The Hopping rate in the formula should not be fixed value, for DH1, it is 1600/2; for DH3, it is

1600/4; for DH5, it is 1600/6.

To calculate Dwell time of data transmission of Bluetooth system, the worst case is for Bluetooth PICONET that contains two devices only (although Bluetooth PICONET can support up to eight devices), and for Bluetooth data transmission, after device A sending a packet to device B, device A must get response packet from device B to continue data transmission;

For DH1 packet: assume device A is EUT, the worst case is after device A sending a DH1 packet to device B, device A gets a DH1 response packet from device B, that means device A needs 1 time slot for transmitting and 1 time slot for receiving, therefore, the actual hopping rate of device A is half of 1600, i.e. 800 hops per second for EUT;

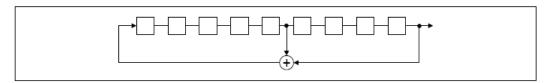
For DH3 packet: assume device A is EUT, the worst case is after device A sending a DH3 packet to device B, device A gets a DH1 response packet from device B, that means device A needs 3 time slots for transmitting and 1 time slot for receiving, therefore, the actual hopping rate of device A is quarter of 1600, i.e. 400 hops per second for EUT;

For DH5 packet: assume device A is EUT, the worst case is after device A sending a DH5 packet to device B, device A gets a DH1 response packet from device B, that means device A needs 5 time slots for transmitting and 1 time slot for receiving, therefore, the actual hopping rate of device A is sixth of 1600, i.e. 1600/6=266.7 hops per second for EUT;

5.7 Pseudorandom Frequency Hopping Sequence

5.7.1 Standard requirement

15.247(a)(1) requirement:


Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

5.7.2 EUT Pseudorandom Frequency Hopping Sequence

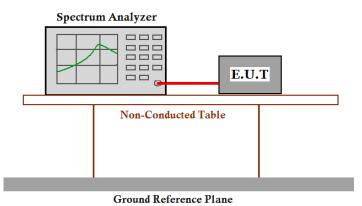
The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 29 -1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

0 2 4 6	62 64	78 1	73 75 77

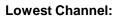

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

5.8 Maximum Peak Output Power

Test Requirement:	FCC Part 15 C section 15.247
	(b)(1)For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band:
	0.125 watts. Refer to the result "Hopping channel number" of this document. The 1 watt (30.0 dBm) limit applies.
Test Method:	ANSI C63.10: Clause 6.10 & DA 00-705
Test Limit:	
Test mode:	Pre-test the EUT in continuous transmitting mode at the lowest (2402 MHz), middle (2441 MHz) and highest (2480 MHz) channel with different data packet. Compliance test in continuous transmitting mode with normal (DH5) and EDR mode (3DH5) as the worst case was found.

Test Configuration:

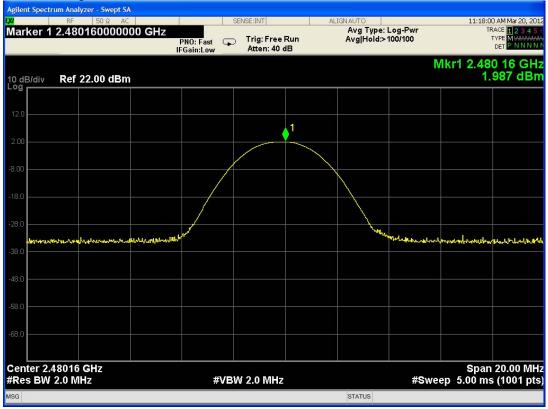


Test Procedure:

- 1. Remove the antenna from the EUT and then connect a low attenuation RF cable from the antenna port to the spectrum.
- 2. Set the spectrum analyzer: RBW = 2 MHz. VBW = 2 MHz. Sweep = auto; Detector Function =
 - Peak.
- 3. Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.

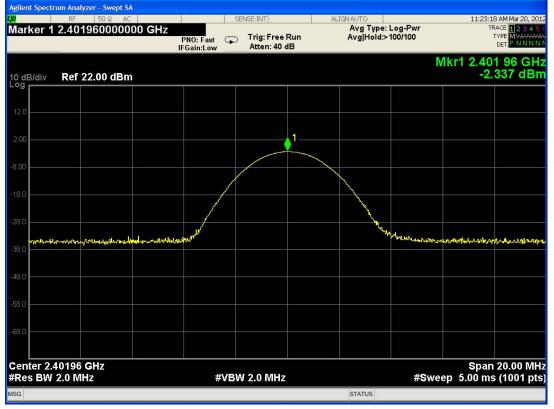
Test Channel	Fundamenta I Frequency (MHz)	Output Power (dBm)	Limit (dBm)	Result
Lowest	2402	1.38	30.0	Pass
Middle	2441	3.80	30.0	Pass
Highest	2480	4.80	30.0	Pass
R mode:				
Test Channel	Fundamental Frequency (MHz)	Output Power (dBm)	Limit (dBm)	Result
Lowest	2402	0.47	30.0	Pass
Middle	2441	3.99	30.0	Pass
	2480	3.78	30.0	Pass
Highest				

Normal mode:



3		STATUS	
enter 2.40200 GHz tes BW 2.0 MHz	#VBW 2.0 MHz	Sw	Span 20.00 MH eep 1.00 ms (1001 pt
.0			
.0			
.0			
:0			
.0	num and had	Mar mar marker when	ษรษณะเห็นหารระบูเมษตระบุ
.0			
0			
00			
2.0			
g			
dB/div Ref 22.00 dBm			Mkr1 2.401 91 GH -1.426 dB
	PNO: Fast Fig: Free Run IFGain:Low Atten: 40 dB	Avg Hold≫100/100	TYPE M WWWW DET PNNN
RF 50 Ω AC Dan 20.0000000 MHz	SENSE:INT	ALIGNAUTO Avg Type: Log-Pwr	11:11:44 AM Mar 20, 2 TRACE 1 2 3 4

Middle Channel:


Agilent Spectr	um Analyzer - Swept SA			10				
Marker 1	RF 50 Ω AC 2.441060000000	GHz PNO: Fast IFGain:Low	SENSE:INT Trig: Free Ri Atten: 40 dE	un	IGN AUTO Avg Type: Avg Hold:>*		TF	7 AM Mar 20, 2012 ACE 1 2 3 4 5 6 I'YPE M WWWWW DET P N N N N N
10 dB/div Log	Ref 22.00 dBm						1kr1 2.44 1.	1 06 GHz 006 dBm
12.0						8		
2.00			•	1				
-8.00					<u> </u>	8		
-18.0								
-28.0					- A A A A A A A A A A A A A A A A A A A		·	
-38.0 -38.0	witenel barren Morrose higher strig into	mentalling				Mar marten and fail	Val - March Marker	yoyoga (rangeden)
-48.0								
-58.0								
-68.0								
Center 2.4 #Res BW	14106 GHz 2.0 MHz	#VB	W 2.0 MHz			Swee	Span Span Sp 1.00 ms	20.00 MHz (1001 pts)
MSG					STATUS			

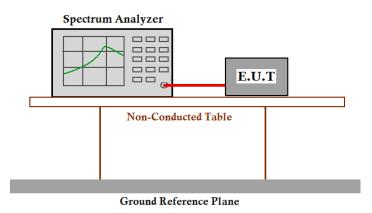
Highest Channel:

EDR mode:

Lowest Channel:

Middle Channel:

gilent Spectrum Analyzer - Swept SA RF 50 Ω AC	SENSE:INT	ALIGN AUTO	11:22:12 AM Mar 20, 201
larker 1 2.441000000000 GHz	PNO: Fast 🕞 Trig: Free Run IFGain:Low Atten: 40 dB	Avg Type: Log-Pwr Avg Hold:>100/100	TRACE 1 2 3 4 5 TYPE M WWWW DET P N N N N
0 dB/div Ref 22.00 dBm		Μ	kr1 2.441 00 GH 0.189 dBr
12.0			
2.00	1		
3.00			
8.0			
28.0	na n	Mar Manungerstand	hered and a state of the second s
8.0			
8.0			
8.0			
			0 20.00 BA
enter 2.44100 GHz Res BW 2.0 MHz	#VBW 2.0 MHz	#Swee	Span 20.00 MH p 5.00 ms (1001 pt


Highest Channel:

	RF 50 Ω AC		SENSE:INT	AL	IGN AUTO		11:20	:49 AM Mar 20, 20
arker 1	2.4800000000000		Trig: Free Ru Atten: 40 dB	Jn	Avg Type: Avg Hold:>*			TRACE 1234 TYPE MWWW DET PNNN
dB/div	Ref 22.00 dBm						Mkr1 2.48	80 00 GH).977 dB
2.0						8		
00				1				
00					1	C.		
3.0					- And			
.0 .0 huhungru	Haral Jan Martin	what when works			here	W. A. Marken	han and an and a start of the	htter week to and here by a
o								
.0								
enter 2.4 les BW 2	8000 GHz 2.0 MHz	#VI	BW 2.0 MHz			#Sw	Spa veep 5.00 m	n 20.00 M 1s (1001 p
ì					STATUS			

5.9 Conducted Spurious Emissions

Test Requirement:	FCC Part15 C section 15.247
	(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating. The radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. Based on either an RF conducted or a radiated measurement. Provided the transmitter demonstrates compliance with the peak conducted power limits.
Test Method:	ANSI C63.10: Clause 6.7 & DA 00-705
Test Status:	Pre-test the EUT in continuous transmitting mode at the lowest (2402 MHz), middle (2441 MHz) and highest (2480 MHz) channel with different data packet. Compliance test in continuous transmitting mode with normal
	mode (DH5) as the worst case was found.

Test Configuration:

Test Procedure:

1. Remove the antenna from the EUT and then connect a low attenuation RF cable from the antenna port to the spectrum.

2. Set the spectrum analyzer: RBW = 100 kHz. VBW >= RBW. Sweep = auto; Detector Function = Peak (Max. hold).

ITL

Test result plot as follows: Lowest Channel:

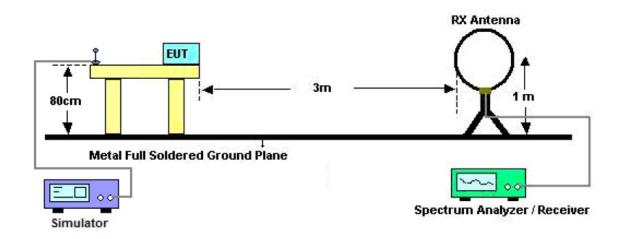
ilent Spectrum Analyzer - Swept SA			
RF 50 Ω AC	SENSE:INT	ALIGN AUTO	01:06:30 PM Mar 20, 20
arker 1 Δ 2.402000000000 GH	Z PNO: Fast IFGain:Low #Atten: 30 dB	Avg Type: Log-Pwr Avg Hold: 13/100	TRACE 12349 TYPE MWWW DET PNNN
dB/div Ref 20.00 dBm			∆Mkr1 2.402 GF -31.278 d
0.0			
⁰⁰ X ₂			
.0			
o			
1Δ2			
.0		. www.somer-Augusterions	and bridger Viray land and and a start
	have were and a south when the second of the	wheel and a state of the state	
.0			
.0			
art 30 MHz	#\/B\W 300 kHz		Stop 25.00 G
Res BW 100 kHz	#VBW 300 kHz	STATUS	reep 2.39 s (1001 pr

Middle Channel

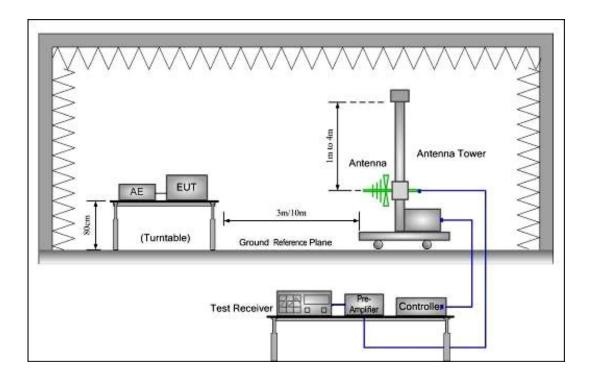
ITL

Highest channel

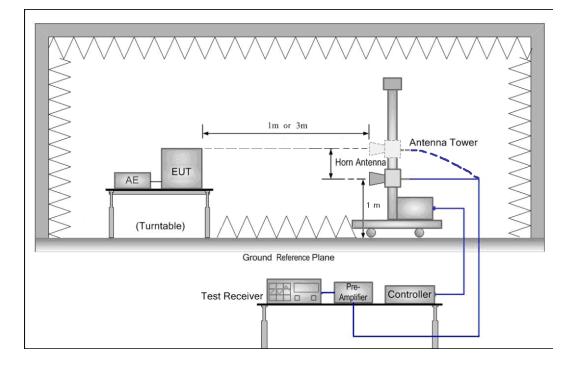
gilent Spectr	um Analyzer - Swept S	A							
	RF 50 Ω A			SENSE:INT	AL	IGNAUTO			6 PM Mar 20, 20
arker 1	Δ 2.4800000		PNO: Fast 🕞 FGain:Low	⊃ Trig: Free #Atten: 30		Avg Type: Avg Hold:>	Log-Pwr 100/100	TF	RACE 1 2 3 4 TYPE MWWW DET P N N N
) dB/div	Ref 20.00 dBn	n						ΔMkr1 2 -4	.480 GH 6.434 d
0.0		c			-		12		
.00	X								
).0		C					15		
.0									
).0		6					8		
	-	1Δ2						where where where the	an structure and
0.0	when we have the part of the	and long and ball the reason	44	broke my maner	معيليه بالمحمد والمعامة	and a state of the second states	for the stand and the second	where where	T.
h~~~~ 0.0	when we		North Coloring Color	and the only and a second					
.0									
art 30 N Res BW	1Hz 100 kHz		#VB	W 300 kHz			Sw	Stop /eep 2.39 s	25.00 G (1001 p
Alian	ment Completed					STATUS			


5.10 Radiated Spurious Emissions

Test Requirement:	FCC Part15 C section 15.247 (d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating. The radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that Contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, and provided the transmitter demonstrates compliance with the peak conducted power limits.
Test Method:	ANSI C63.10: Clause 6.4, 6.5 and 6.6 & DA 00-705
Test Status:	Pre-test the EUT in continuous transmitting mode at the lowest (2402 MHz), middle (2441 MHz) and highest (2480 MHz) channel with different data packet. Compliance test in continuous transmitting mode with normal mode (DH5) as the worst case was found.
Detector:	For PK value:
	RBW = 1 MHz for f ≥ 1 GHz, 100 kHz for f < 1 GHz, 9kHz for <30MHz VBW ≥ RBW Sweep = auto
	Detector function = peak
	Trace = max hold
	For AV value:
	RBW = 1 MHz for f \ge 1 GHz, 100 kHz for f < 1 GHz, 9kHz for <30MHz
	VBW =10 Hz
	Sweep = auto
	Detector function = peak
	Trace = max hold
15.209 Limit:	40.0 dBµV/m between 30MHz & 88MHz
	43.5 dBµV/m between 88MHz & 216MHz
	46.0 dBµV/m between 216MHz & 960MHz
	54.0 dBµV/m above 960MHz


ITL

Test Configuration:


1) 9kHz to 30MHz emissions:

2) 30 MHz to 1 GHz emissions:

3) 1 GHz to 40 GHz emissions:

Test Procedure: The procedure used was ANSI Standard C63.4:2003. The receiver was scanned from 30MHz to 25GHz.When an emission was found, the table was rotated to produce the maximum signal strength. An initial pre-scan was performed for in peak detection mode using the receiver. The EUT was measured for both the Horizontal and Vertical polarities and performed a pre-test three orthogonal planes. For intentional radiators, measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage. The worst case emissions were reported.

Now set the VBW to 10 Hz, while maintaining all of the other instrument settings. This peak level, once corrected, must comply with the limit specified in Section 15.209. If the dwell time per channel of the hopping signal is less than 100 ms, then the reading obtained with the 10 Hz VBW may be further adjusted by a "duty cycle correction factor", derived from 20log(dwell time/100 ms), in an effort to demonstrate compliance with the 15.209 limit. Submit this data.

5.10.1 Harmonic and other spurious emissions

Test at low Channel in transmitting status

24.32

QP

12.38

256.521

9kHz~30MHz Test result

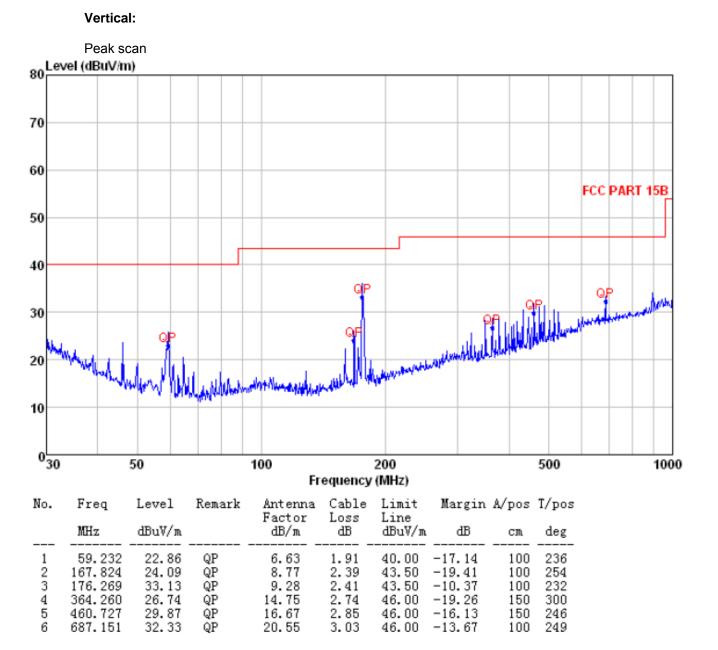
Horizontal:

The Low frequency, which started from 9kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not report

30 MHz~1 GHz Spurious Emissions .Quasi-Peak Measurement

Peak scan 80 Level (dBuVim) 70 60 FCC PART 15B 50 40 QP 30 Willedelinder 20 10 0<mark>'30</mark> 200 500 1000 50 100 Frequency (MHz) No. Freq Level Cable Limit Margin A/pos T/pos Renark Antenna Factor Loss Line $|\mathbf{H}\mathbf{z}|$ dB/n dBuV∕m dBu¥/n ďĐ dB deg сm 44.90112.2010.291.7840.00-27.80 235 L QP 2002 165.487 24.69 43.50 -18.81 QP 8.63 2.38 200 228 2.41 2.44 2.45 2.58 34 176.269 43.50243 35.T1 QP 9.28 -7.79 150223 249 43.50 43.50 187.096 29.18 QP 9.36 -14.32 200 5 6 192.419 28.35 QP 9.49 -15.15 200

-21.68


252

150

46.00

Test at low Channel in transmitting status

30 MHz~1 GHz Spurious Emissions .Quasi-Peak Measurement

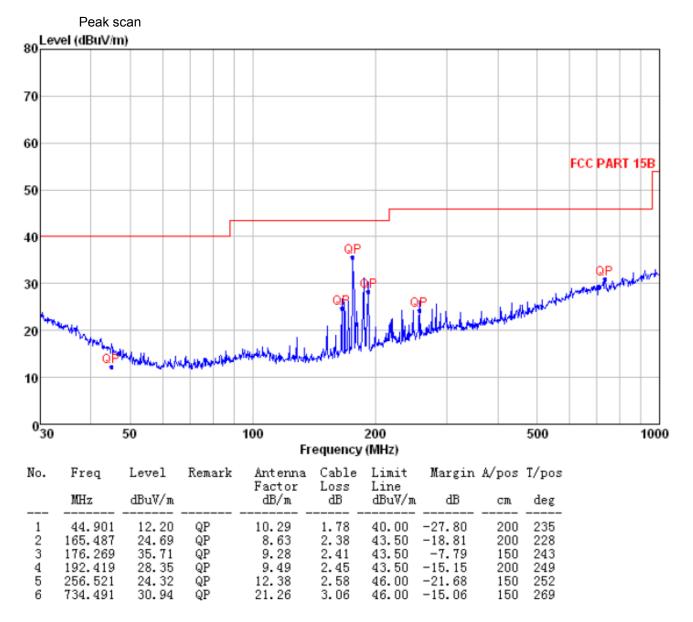
1~25 GHz Harmonics & Spurious Emissions. Peak & Average Measurement

Peak Measurement:

Frequency (MHz)	Antenna factors	Cable loss (dB)	Preamp factor	Reading Level	Emission Level	Limit (dBµV/m)	Antenna polarization
	(dB/m)		(dB)	(dBµV)	(dBµV/m)		
4804.000	31.53	6.20	33.48	49.61	53.86	74.00	V
7206.000	36.47	7.20	32.76	49.21	60.12	74.00	V
9608.000	38.08	8.56	34.08	48.22	60.78	74.00	V
4804.000	31.53	6.20	33.48	49.45	53.7	74.00	Н
7206.000	36.47	7.20	32.76	48.28	59.19	74.00	Н
9608.000	38.08	8.56	34.08	48.43	60.99	74.00	Н

Average Measurement:

Frequency (MHz)	Antenna factors	Cable loss (dB)	Preamp factor	Reading Level	Emission Level	Limit (dBµV/m)	Antenna polarization
	(dB/m)		(dB)	(dBµV)	(dBµV/m)		
4804.000	31.53	6.20	33.48	38.61	42.86	54.00	V
7206.000	36.47	7.20	32.76	39.18	50.09	54.00	V
9608.000	38.08	8.56	34.08	36.23	48.79	54.00	V
4804.000	31.53	6.20	33.48	39.79	44.04	54.00	Н
7206.000	36.47	7.20	32.76	38.75	49.66	54.00	Н
9608.000	38.08	8.56	34.08	36.86	49.42	54.00	Н

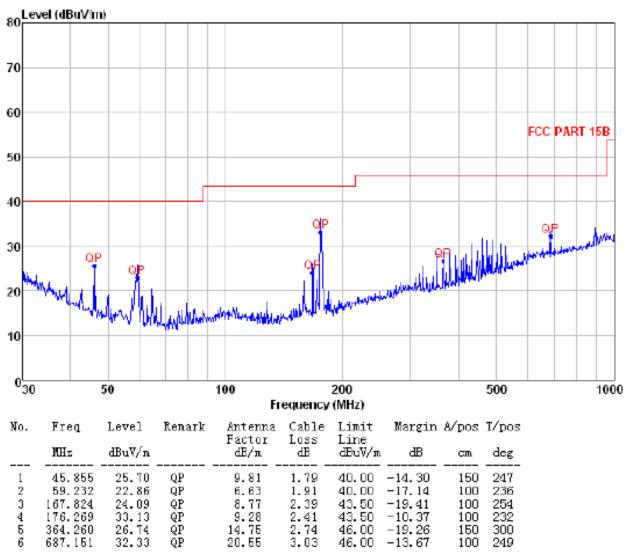

Test at Middle Channel in transmitting status

9kHz~30MHz Test result

The Low frequency, which started from 9kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not report

30 MHz~1 GHz Spurious Emissions .Quasi-Peak Measurement

Horizontal:


ITL

Test at Middle Channel in transmitting status

30 MHz~1 GHz Spurious Emissions .Quasi-Peak Measurement

Vertical:

Peak scan

ITL

ITL

1~25 GHz Harmonics & Spurious Emissions. Peak & Average Measurement

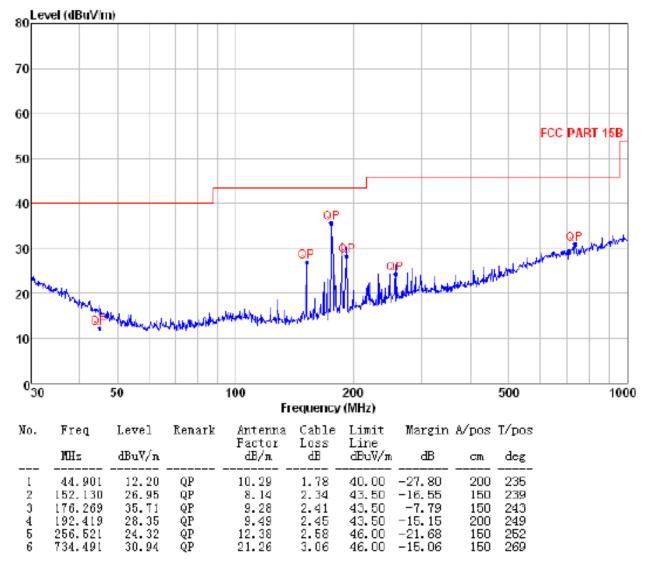
Peak Measurement:

Frequency (MHz)	Antenna factors	Cable loss (dB)	Preamp factor	Reading Level	Emission Level	Limit (dBµV/m)	Antenna polarization
	(dB/m)		(dB)	(dBµV)	(dBµV/m)		
4882.000	31.57	6.27	33.15	49.78	54.47	74.00	V
7323.000	36.50	7.68	32.61	49.45	61.02	74.00	V
9764.000	38.51	8.66	34.17	45.32	58.32	74.00	V
4882.000	31.57	6.27	33.15	48.13	52.82	74.00	Н
7323.000	36.50	7.68	32.61	47.62	59.19	74.00	Н
9764.000	38.51	8.66	34.17	45.39	58.39	74.00	Н

Average Measurement:

Frequency (MHz)	Antenna factors	Cable loss (dB)	Preamp factor	Reading Level	Emission Level	Limit (dBµV/m)	Antenna polarization
	(dB/m)		(dB)	(dBµV)	(dBµV/m)		
4882.000	31.57	6.27	33.15	37.62	42.31	54.00	V
7323.000	36.50	7.68	32.61	38.46	50.03	54.00	V
9764.000	38.51	8.66	34.17	35.69	48.69	54.00	V
4882.000	31.57	6.27	33.15	38.32	43.01	54.00	Н
7323.000	36.50	7.68	32.61	38.77	50.34	54.00	Н
9764.000	38.51	8.66	34.17	35.31	48.31	54.00	Н

Test at high Channel in transmitting status

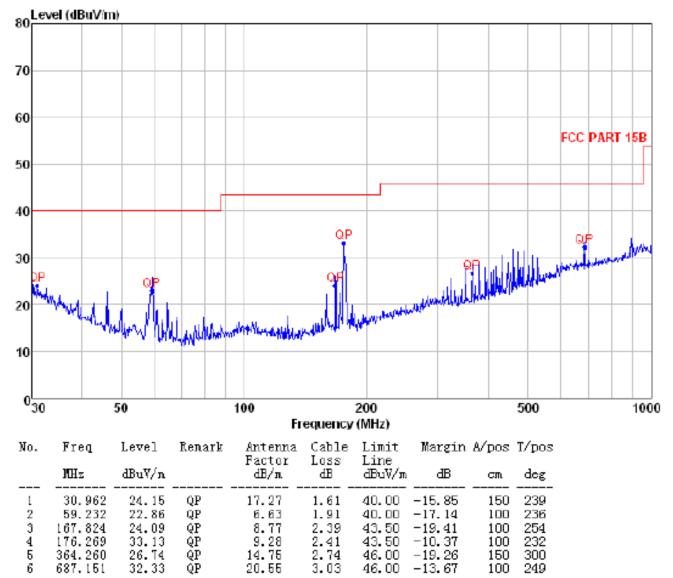

9kHz~30MHz Test result

The Low frequency, which started from 9kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not report

30 MHz~1 GHz Spurious Emissions .Quasi-Peak Measurement

Horizontal:

Peak scan


ITL

Test at High Channel in transmitting status

30 MHz~1 GHz Spurious Emissions .Quasi-Peak Measurement

Vertical:

Peak scan

1~25 GHz Harmonics & Spurious Emissions. Peak & Average Measurement

Peak Measurement:

Frequency (MHz)	Antenna factors	Cable loss (dB)	Preamp factor	Reading Level	Emission Level	Limit (dBµV/m)	Antenna polarization
	(dB/m)		(dB)	(dBµV)	(dBµV/m)		
4960.000	31.70	6.20	32.82	50.62	55.70	74.00	V
7440.000	36.60	7.47	32.46	45.05	56.66	74.00	V
9920.000	38.68	8.75	34.26	45.39	58.56	74.00	V
4960.000	31.70	6.20	32.82	49.42	54.50	74.00	Н
7440.000	36.60	7.47	32.46	45.88	57.49	74.00	Н
9920.000	38.68	8.75	34.26	46.38	59.55	74.00	Н

Average Measurement:

Frequency (MHz)	Antenna factors	Cable loss (dB)	Preamp factor	Reading Level	Emission Level	Limit (dBµV/m)	Antenna polarization
	(dB/m)		(dB)	(dBµV)	(dBµV/m)		
4960.000	31.70	6.20	32.82	37.38	42.46	54.00	V
7440.000	36.60	7.47	32.46	38.03	49.64	54.00	V
9920.000	38.68	8.75	34.26	36.72	49.89	54.00	V
4960.000	31.70	6.20	32.82	39.32	44.40	54.00	Н
7440.000	36.60	7.47	32.46	38.67	50.28	54.00	Н
9920.000	38.68	8.75	34.26	36.02	49.19	54.00	Н

Remark:

1). The field strength is calculated by adding the Antenna Factor. Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Loss –Preamplifier Factor.

- 2). As shown in Section, for frequencies above 1000 MHz. the above field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.
- 3). The test only perform the EUT in transmitting status since the test frequencies were over 1GHz only required transmitting status.

Test result: The unit does meet the FCC requirements.

ITL

Page 52 of 62

5.11 Radiated Emissions which fall in the restricted bands

Test Requirement:	FCC Part15 C Section 15.247 (d) In addition, radiated emissions which fall in the restricted bands. as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).
Test Method:	ANSI C63.10: Clause 6.4, 6.5 and 6.6 & DA 00-705
Test Status:	Pre-test the EUT in continuous transmitting mode at the lowest (2402 MHz), middle (2441 MHz) and highest (2480 MHz) channel with different data packet. Compliance test in continuous transmitting mode with normal mode (DH5) as the worst case was found.
Measurement Distance:	3m (Semi-Anechoic Chamber)
Limit:	Section 15.209(a)
	40.0 dBµV/m between 30MHz & 88MHz;
	43.5 dBµV/m between 88MHz & 216MHz;
	46.0 dBµV/m between 216MHz & 960MHz;
	54.0 dBµV/m above 960MHz.
Detector:	For PK value:
	RBW = 1 MHz for f ≥ 1 GHz, 100 kHz for f < 1 GHz VBW ≥ RBW Sweep = auto
	Detector function = peak
	Trace = max hold
	For AV value:
	RBW = 1 MHz for $f \ge 1$ GHz, 100 kHz for $f < 1$ GHz
	VBW =10 Hz
	Sweep = auto
	Detector function = peak
	Trace = max hold

Test Result:

1. Low Channel

Antenna polarization: Vertical

Frequency (MHz)	Antenna factors (dB/m)	Cable loss(dB)	Preamp factor(dB)	Peak Reading Level (dBµV)	Average Reading Level (dBµV)	Peak Emission Level (dBµV/m)	Average Emission Level (dBµV/m)
2310.000	27.93	4.23	35.60	48.16	37.89	44.72	34.45
2390.000	27.61	4.30	35.60	49.37	38.21	45.68	34.52
2500.000	27.55	4.40	35.60	47.33	37.66	43.68	34.01
2483.500	27.55	4.40	35.60	48.18	37.99	44.53	34.34

Antenna polarization: Horizontal

Frequency (MHz)	Antenna factors (dB/m)	Cable loss(dB)	Preamp factor(dB)	Peak Reading Level (dBµV)	Average Reading Level (dBµV)	Peak Emission Level (dBµV/m)	Average Emission Level (dBµV/m)
2310.000	27.93	4.23	35.60	48.52	37.22	45.08	33.78
2390.000	27.61	4.30	35.60	48.63	38.23	44.94	34.54
2500.000	27.55	4.40	35.60	49.55	39.24	45.90	35.59
2483.500	27.55	4.40	35.60	48.30	39.38	44.65	35.73

2. Middle Channel

Antenna polarization: Vertical

Frequency (MHz)	Antenna factors (dB/m)	Cable loss(dB)	Preamp factor(dB)	Peak Reading Level (dBµV)	Average Reading Level (dBµV)	Peak Emission Level (dBµV/m)	Average Emission Level (dBµV/m)
2310.000	27.93	4.23	35.60	47.38	38.17	43.94	34.73
2390.000	27.61	4.30	35.60	48.47	38.26	44.78	34.57
2500.000	27.55	4.40	35.60	48.74	39.74	45.09	36.09
2483.500	27.55	4.40	35.60	50.19	38.89	46.54	35.24

Antenna polarization: Horizontal

Frequency (MHz)	Antenna factors (dB/m)	Cable loss(dB)	Preamp factor(dB)	Peak Reading Level (dBµV)	Average Reading Level (dBµV)	Peak Emission Level (dBµV/m)	Average Emission Level (dBµV/m)
2310.000	27.93	4.23	35.60	49.61	37.69	46.17	34.25
2390.000	27.61	4.30	35.60	48.65	38.07	44.96	34.38
2500.000	27.55	4.40	35.60	48.15	39.16	44.50	35.51
2483.500	27.55	4.40	35.60	49.39	37.31	45.74	33.66

3. High Channel

Antenna polarization: Vertical

Frequency (MHz)	Antenna factors (dB/m)	Cable loss(dB)	Preamp factor(dB)	Peak Reading Level (dBµV)	Average Reading Level (dBµV)	Peak Emission Level (dBµV/m)	Average Emission Level (dBµV/m)
2310.000	27.93	4.23	35.60	49.05	37.28	45.61	33.84
2390.000	27.61	4.30	35.60	49.44	37.18	45.75	33.49
2500.000	27.55	4.40	35.60	50.17	39.27	46.52	35.62
2483.500	27.55	4.40	35.60	50.24	39.34	46.59	35.69

Antenna polarization: Horizontal

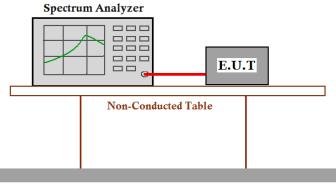
Frequency (MHz)	Antenna factors (dB/m)	Cable loss(dB)	Preamp factor(dB)	Peak Reading Level (dBµV)	Average Reading Level (dBµV)	Peak Emission Level (dBµV/m)	Average Emission Level (dBμV/m)
2310.000	27.93	4.23	35.60	49.17	39.17	45.73	35.73
2390.000	27.61	4.30	35.60	50.26	38.57	46.57	34.88
2500.000	27.55	4.40	35.60	49.23	37.12	45.58	33.47
2483.500	27.55	4.40	35.60	48.24	37.63	44.59	33.98

Remark: No any other emission which falls in restricted bands can be detected and be reported.

Test result: The unit does meet the FCC requirements.

Section 15.205 Restricted bands of operation.

(a) Except as shown in paragraph (d) of this section. only spurious emissions are


permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2655 - 2900	22.01 - 23.12

5.12 Band Edges Requirement

Test Requirement:	FCC Part15 C section 15.247
	(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).
Frequency Band:	2400 MHz to 2483.5 MHz
Test Method:	ANSI C63.10: Clause 6.9 & DA 00-705
Test Status:	Pre-test the EUT in continuous transmitting mode at the lowest (2402 MHz), and highest (2480 MHz) channel and hopping mode with different data packet. Compliance test in continuous transmitting mode with normal (DH5) and EDR mode (3DH5) as the worst case was found.

Test Configuration:

Ground Reference Plane

Test Procedure:

Set RBW of spectrum analyzer to 100 kHz and VBW of spectrum analyzer to 100 kHz with suitable frequency span including 100 kHz bandwidth from band edge.

The band edges was measured and recorded Result:

The Lower Edges attenuated more than 20dB.

The Upper Edges attenuated more than 20dB.

The graph as below. Represents the emissions take for this device.

DH5:

Low channel:			
gilent Spectrum Analyzer - Swept SA			
Aarker 3 2.4000000000000 GHz	PNO: Wide IFGain:Low	ALIGNAUTO Avg Type: I Avg Hold:>1	
0 dB/div Ref 13.00 dBm			Mkr3 2.400 00 GF -47.751 dB
.0g 3.00 7.00			
17.0			
37.0	3		
67.0			
77.0			
Center 2.402000 GHz Res BW 100 kHz	#VBW 300 kHz		Span 10.00 MI #Sweep 5.000 ms (1001 pt
IKR MODE TRC SCL X	Y FUNCTION	FUNCTION WIDTH	FUNCTION VALUE
1 N 1 f 2.404 15 GH 2 N 1 f 2.401 43 GH 3 N 1 f 2.400 00 GH	lz -22.138 dBm		
7 6 7			
8 9 10			

DH5:

High channel:

r ngri enamien			
Agilent Spectrum Analyzer - Swept SA			
LX/ RF 50 Ω AC	SENSE:INT	ALIGN AUTO	03:48:37 PM Mar 20, 2012
	NO: Wide 🕞 Trig: Free R Gain:Low #Atten: 30 dl		TRACE 123456 TYPE MWWWWW DET PNNNN
10 dB/div Ref 13.00 dBm			Mkr3 2.483 50 GHz -51.008 dBm
Log			
3.00 -7.00 -17.0		<u>\</u> 2	
-27.0			
-37.0		her and have	3
-57.0			whow have have by home
-67.0			
-77.0			
Center 2.480000 GHz #Res BW 100 kHz	#VBW 300 kHz	#S	Span 10.00 MHz weep 5.00 ms (1001 pts)
MKR MODE TRC SCL X	Y FUNCT	ION FUNCTION WIDTH	FUNCTION VALUE
1 N 1 f 2.478 99 GHz	1.856 dBm		
2 N 1 f 2.480 55 GHz 3 N 1 f 2.483 50 GHz	-18.328 dBm -51.008 dBm		
2.483 50 GHZ	-51.008 dBm		
5			
6			
8			
9			
10			
11			
MSG		STATUS	

3DH5:

Low channel:

High channel:

Test result: The unit does meet the FCC requirements.

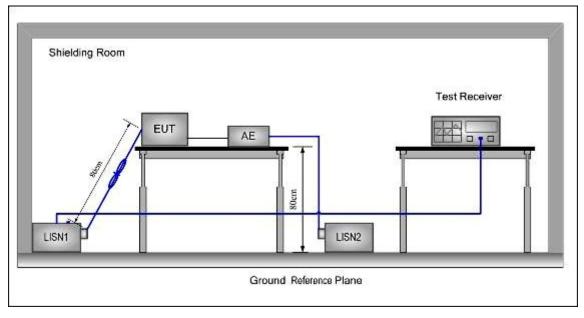
5.13 Conducted Emissions at Mains Terminals 150 kHz to 30 MHz

Test Requirement:	FCC Part 15 C section 15.207
Test Method:	ANSI C63.10: Clause 6.2 & DA 00-705
Frequency Range:	150 kHz to 30 MHz

Detector: Peak for pre-scan (9 kHz Resolution Bandwidth)

Test Limit

	Class B Limit dB(µV)				
Frequency Range	Quasi-peak	Average			
0.15 to 0.50	66 to 56	56 to 46			
0.50 to 5	56	46			
5 to 30	60	50			
NOTE 1 The limit decreases linearly with the logarithm of the frequency in the range 0,15 MHz to 0,50 MHz.					


Limits for conducted disturbance at the mains ports of class B

EUT Operation: Test in normal operating mode. For intentional radiators, measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage. Pre-Scan has been conducted to determine the worstcase mode from all possible combinations between

EUT with antenna diversity architecture).

available modulations, data rates and antenna ports (if

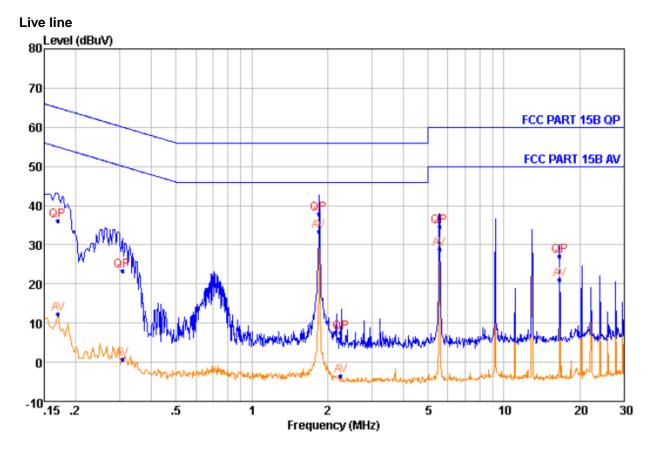
Test Configuration:

Test procedure:

1. The mains terminal disturbance voltage test was conducted in a

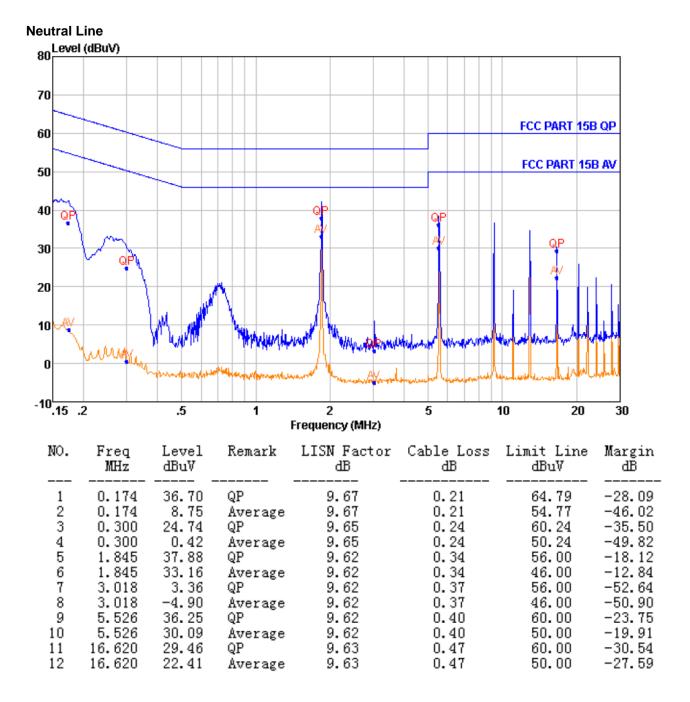
shielded room.

2. The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a $50\Omega/50\mu$ H + 5Ω linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.


3. The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane, but separated from metallic contact with the ground reference plane by 0.1m of insulation.

4. The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0,4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0,8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0,8 m from the LISN 2.

5.13.1 Measurement Data


An initial pre-scan was performed on the live and neutral lines with peak detector. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected. For EUT the communicating was worst case mode.

The following Quasi-Peak and Average measurements were performed on the EUT:

NO.	Freq MHz	Level dBuV	Remark	LISN Factor dB	Cable Loss dB	Limit Line dBu∛	Margin dB
1	0.170	36.13	QP	9.69	0.21	64.96	-28.83
-							
2	0.170	12.25	Average	9.69	0.21	54.94	-42.69
3	0.306	23.26	QP	9.67	0.24	60.08	-36.82
4	0.306	0.90	Average	9.67	0.24	50.08	-49.18
5	1.845	38.00	QP	9.65	0.34	56.00	-18.00
6	1.845	33.32	Average	9.65	0.34	46.00	-12.68
7	2.255	7.61	QP	9.64	0.35	56.00	-48.39
8	2.255	-3.36	Average	9.64	0.35	46.00	-49.36
9	5.550	34.55	QP	9.63	0.40	60.00	-25.45
10	5.550	28.92	Average	9.63	0.40	50.00	-21.08
11	16.620	27.11	QP	9.70	0.47	60.00	-32.89
12	16.620	21.05	Average	9.70	0.47	50.00	-28.95

ITL

--End of Report--