

11.5.Test Procedure

- 11.5.1.The transmitter output was connected to the spectrum analyzer via a low loss cable.
- 11.5.2.Set RBW of spectrum analyzer to 100 kHz and VBW to 300 kHz with convenient frequency span including 100 kHz bandwidth from band edge.
- 11.5.3.The band edges was measured and recorded.

Frequency	Result of Band Edge	Limit of Band Edge
(MHz)	(dBc)	(dBc)
	GFSK	
2400.00	42.02	> 20dBc
2483.50	41.25	> 20dBc
	∏/4-DQPSK Mode	
2400.00	40.87	> 20dBc
2483.50	39.89	> 20dBc
	8DPSK	
2400.00	41.07	> 20dBc
2483.50	39.60	> 20dBc

11.6.Test Result

GFSK

Spectrum	₩									E⊞
Ref Level Att SGL				 RBW 100 kHz VBW 300 kHz 	Mode	Auto F	FT			
⊜1Pk Max			-							
					M	1[1]				-3.67 dBn
20 dBm					<u> </u>					183730 GH:
					IM	2[1]				-38.35 dBn)00000 GH;
10 dBm						1	1	1	2.400	
				N	41					
					T.					
-10 dBm					A					
					Π					
-20 dBm					4					
)1 -23.	670 dBm								
-30 dBm		M4	MЗ	M2/						
-40 dente	hand and a mention	unational distribution	networkely "entry	M2/	Yuntyalan	All Mary	alarian jan ta parta s	Nelmalarum	he many when	and the second
-50 dBm										
-60 dBm										
CF 2.4 GHz				8001 pt	s				Spar	n 60.0 MHz
Marker										
Type Ref	Trc	X-valu		Y-value	Func	tion		Functi	on Result	t
M1	1	2.40183		-3.67 dBm						
M2	1		2.4 GHz	-38.35 dBm						
M3 M4	1	2.38362	39 GHz	-38.50 dBm -34.87 dBm						
1714		2.38302	.75 GH2	-34.87 UBM			l			
	П				R	te a d y			X	09.09.2017

Rofi		_ * (30.00	Bm Offset 19	34 dP 4	RBW 100 kH;	,					(⊽
Att	ever				VBW 300 kH;		Auto P	FT			
SGL				2.0 p		- moue	Autor				
1Pk M	эх										
						M	1[1]				-3.63 dBn
20 dBm										2.4	7983300 GH
to ubin						M	2[1]				-37.62 dBr
10 dBm										2.4	8350000 GH
) dBm—					M1						
ah. ah											
10 dBm											
20 dBrr											
20 0011	<u> </u> D	1 -23.0	530 dBm		+ $+$ $+$ $+$						
-30 dBrr	∩— -								M3		
a da	المارد	ware how	in the second second	the later	M2	manine and	a dun an	ALL NO.		A. M. A. May	www.www.www.www.
40 081			a statu statu ata funda	A REAL PROPERTY AND		And a Million of	1999 Barry 1	1.00		Contraction and the	
50 dBm											
-JU UBII											
-60 dBrr	<u> </u>				_						
CF 2.4	335 G	Hz				nts				Sna	an 60.0 MHz
1arker											
Type	Ref	Trc	X-value	1	Y-value	Func	tion	1	Fun	ction Res	ılt
M1		1	2.479833	3 GHz	-3.63 dBm						
M2		1	2.4835	5 GHz	-37.62 dBm						
MЗ		1		5 GHz	-37.64 dBm						
M4		1	2.4862975	5 GHz	-34.68 dBm						

Π /4-DQPSK Mode

Spect													₩
Ref Lo Att SGL	evel	30.00 (40			 ● RBW 100 k ● VBW 300 k 		Mode	Auto F	FT				
∋1Pk M	ах												
							N	11[1]					-2.63 dBn
20 dBm													183730 GH:
							M	12[1]					-38.24 dBn
10 dBm								1	1		1	2.40	000000 GH:
- In						M1							
0 dBm—						N N							
-10 dBm	-												
10 000	.					1 1							
-20 dBm	ז— ו ב		530 dBm			\vdash							
		1 -22.	530 UBIII										
-30 dBr				M3	N	21	t						
***	مي اريدا وره	ANNALANA	normal states and a state of	-hand wales	manumment	N	MALAM	All the second	when	dy motion and	NAN ANT	atrial design	and with a horse want
10 001	'						- C						
-50 dBrr	∩—+												
-60 dBr	י <u>+</u> ו												
CF 2.4	GHz		· ·		8001	pts						Spai	n 60.0 MHz
/larker													
Туре	Ref	Trc	X-valu	e	Y-value		Fund	tion		F	unctio	n Resul	t
M1		1	2.40183		-2.63 dB								
M2		1		2.4 GHz	-38.24 dB								
M3 M4		1	2.38856	39 GHz	-37.42 dB								
IM14			2.38855	25 GHZ	-34.96 dB	orti							

Spectrum	*					
Ref Level			B 👄 RBW 100 kHz			
Att	40 d	B SWT 132.6 μ	s 👄 VBW 300 kHz	Mode Auto P	FT	
SGL						
●1Pk Max		· · · ·				
				M1[1]		-2.53 dBm
20 dBm						2.47983300 GHz
				M2[1]		-37.36 dBm
10 dBm				i	1	2.48350000 GHz
.			M1			
0 dBm						
-10 dBm			<u> </u>			
-10 UBIII						
-20 dBm						
D	1 -22.53) dBm				
-30 dBm				1014		
بالمريعين عده سب	and the state of	mature and the providence of the second s	In the second	LANDER THE LARD LA	M3	warmen warmen warmen warmen
-40 dBm	A REPORT OF A R	and the second second second second	A CONTRACTOR OF A CONTRACTOR	and the first of the second	A NEW YORK AND A SAME A	And the second se
-50 dBm						
-60 dBm						
-00 UBIII						
CF 2.4835 G	Hz		8001 pt	ts		Span 60.0 MHz
Marker						
Type Ref	Trc	X-value	Y-value	Function	Fun	ction Result
M1	1	2.479833 GHz	-2.53 dBm			
M2	1	2.4835 GHz				
M3	1	2.5 GHz	-38.83 dBm			
M4	1	2.4882475 GHz	-35.19 dBm			
				Ready		09.09.2017

8DPSK

Spectrum	₩									₩
Ref Level Att SGL				 RBW 100 kHz VBW 300 kHz 		Auto F	FT			
●1Pk Max										
					М	1[1]				-3.06 dBm
20 dBm									2.4019	98730 GHz
20 00111					M	2[1]			-:	38.01 dBm
10 dBm									2.4000)0000 GHz
10 0.0										
0 dBm					<u>M1</u>					
					Å.					
-10 dBm					1					
-20 dBm	1 -23	060 dBm								
-30 dBm										
		M4 V	M3	M2						
-40 78 m	and the second	anay Madaara Sura	- Marken	minun share the	Ningert	Phil way	man and the second of the second	ywarawa with	num prinada	million
-50 dBm										
-60 dBm										
CF 2.4 GHz		1		8001 p	ts				Span	60.0 MHz
Marker				· · ·						
Type Ref	Trc	X-value	. 1	Y-value	Fund	tion		Functio	n Result	
M1	1	2.40198		-3.06 dBm						
M2	1		.4 GHz	-38.01 dBm						
M3	1	2.3	39 GHz	-36.87 dBm						
M4	1	2.385	37 GHz	-35.58 dBm						
						te ad y			n •	.09.2017

Ref Lo	evel	30.00 d	IBm Offset 1	.5.34 dB (RBW 100 kH;	z					
Att		40	dB SWT 1	L32.6 μs (VBW 300 kH:	z Mode	Auto F	FT			
SGL				·							
1Pk M	ах										
						M	1[1]				-2.70 dBr
20 dBm·										2.479	983300 GH
20 0000						M	2[1]				-36.90 dBi
10 dBm·										2.483	350000 GH
) dBm—					M1						
					<u> </u>						
10 dBm	ו-+-										
20 dBm		1 -22.7	700 dBm								
-30 dBm							MA				
					M2		TY -		M3	- a.	h
40 dBm	any starty	الما كورارهوه	to palatery and a pillinger in just	an that was a set of the	Walker Walker	www.	here have been a stand and	where where the property where	-wantshi	MALALYMAN	- AND
50 dBm	ו										
-60 dBm	+-י										
CF 2.40	835 G	Hz			8001	ots				Spar	1 60.0 MHz
1arker											
Type	Ref	Trc	X-value		Y-value	Fund	tion	1	Funct	ion Resul	t
M1		1	2.4798	33 GHz	-2.70 dBm	1					
M2		1	2.48	35 GHz	-36.90 dBm	1					
MЗ		1		.5 GHz	-37.42 dBm	_					
M4		1	2.49067	75 GHz	-34.59 dBm	1					

Radiated Band Edge Result

Note:

- 1. Emissions attenuated more than 20 dB below the permissible value are not reported.
- 2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

3. Display the measurement of peak values.

Test Procedure:

The EUT and its simulators are placed on a turntable, which is 1.5 meter high above ground(Above 1GHz). The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bi-log antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the EUT location must be manipulated according to ANSI C63.10:2013 on radiated emission measurement. The EUT was tested in 3 orthogonal planes.

Let the EUT work in TX (Hopping off, Hopping on) modes measure it. We select 2402MHz, 2480MHz TX frequency to transmit(Hopping off mode). We select 2402-2480MHz TX frequency to transmit(Hopping on mode).

During the radiated emission test, the spectrum analyzer was set with the following configurations:

1.The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for peak measurement with peak detector at frequency above 1GHz.

2.The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 10Hz for Average measurement with peak detection at frequency above 1GHz.

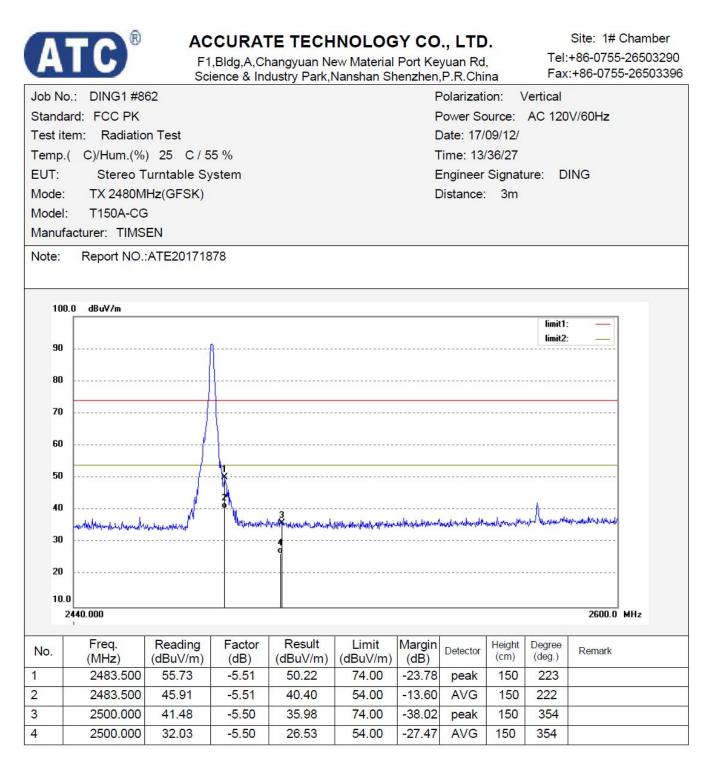
3.All modes of operation were investigated and the worst-case emissions are reported.

ATC

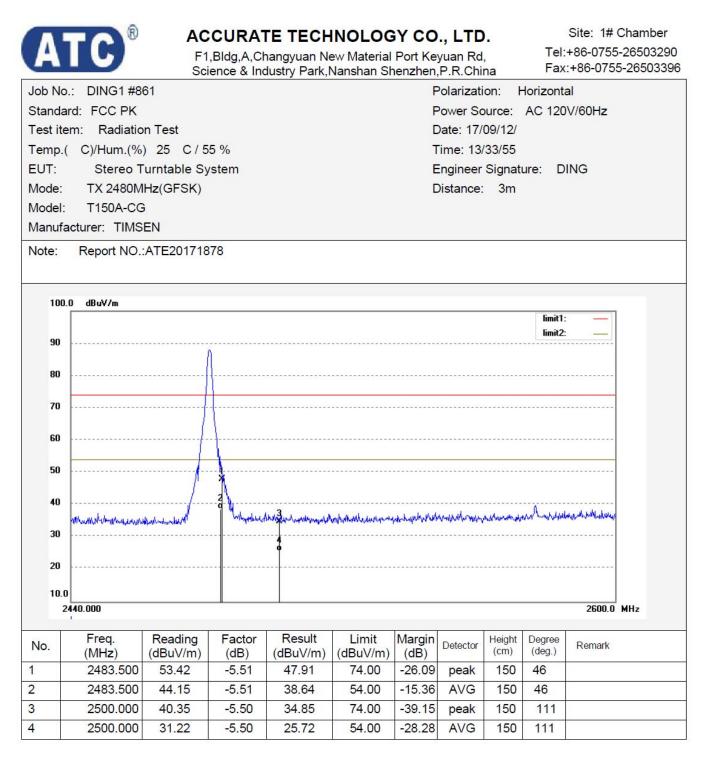
®

Non-hopping mode

ACCURATE TECHNOLOGY CO., LTD.

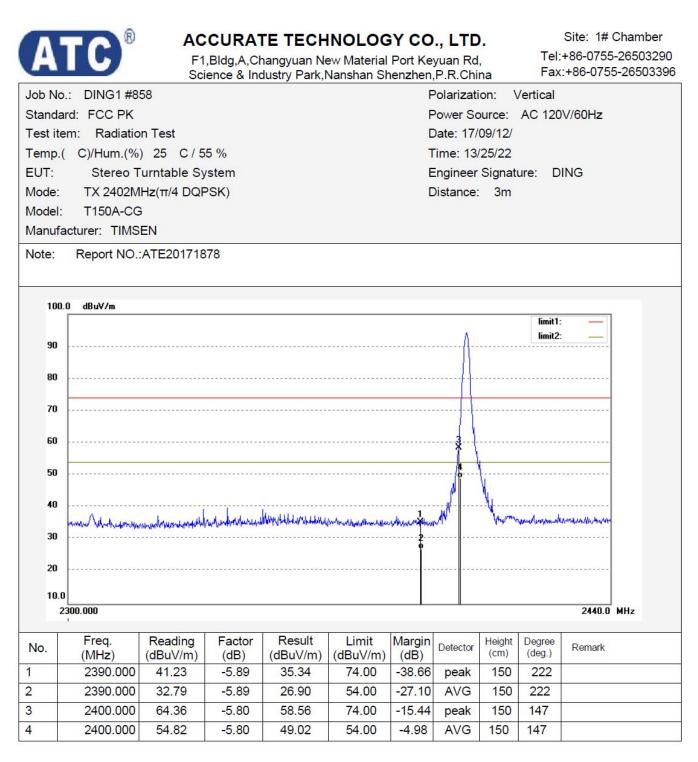

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

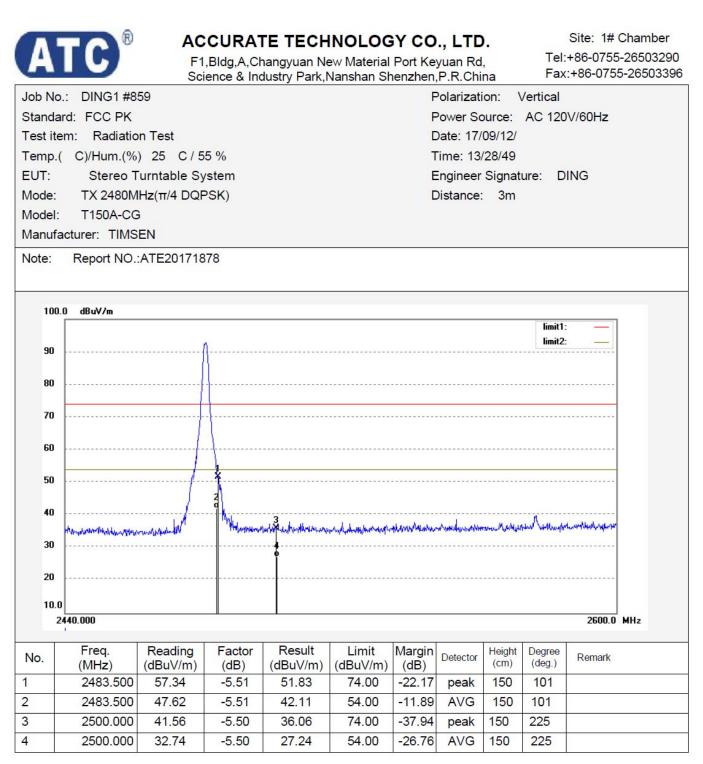
	ता नग		Sci	ence & Ind	dustry Park,	Nanshan Sh	nenzhen	,P.R.Chi	na	Fax	:+86-0755	-2650339
Job I	No.:	DING1 #8	64				F	Polarizati	ion: H	lorizonta	al	
Stan	dard	FCC PK					F	Power So	ource:	AC 120	V/60Hz	
Test	item	: Radiatio	n Test				[Date: 17/	09/12/			
Tem	p.(C)/Hum.(%) 25 C/5	5 %				Time: 13	42/04			
EUT		Stereo T	urntable Sy	stem			E	Engineer	Signat	ure: D	ING	
Mod	e:	TX 2402M	Hz(GFSK)				[Distance	3m			
Mod	el:	T150A-CG										
Man	ufact	urer: TIMS	EN									
Note	•	Report NO	ATE201718	78								
1010												
1	00.0	dBuV/m								1-34		
										limit1: limit2:		
9	90											
	80							Δ				
								П				
7	70 -											
								-1				
6	50											
	50 .											
								6				
4	10 · ·							f	h			
	wh	m. Augunoung	distances with the second	annual strategy likes	munhamatalapath	harry always share	with the state of	anna	Whender	distantes design	software and the	
3	80						2					
2	20						ľ.					
1	0.0											
	230	D.000									2440.0	MHZ
No.		Freq.	Reading	Factor	Result		Margin	Detector	Height (cm)	Degree (deg.)	Remark	
1	+	(MHz) 2390.000	(dBuV/m) 40.93	(dB) -5.89	(dBuV/m) 35.04	(dBuV/m) 74.00	-38.96	peak	150	(deg.) 21		
2	-	2390.000	30.93	-5.89	25.04	54.00	-28.96	51	150	21		
3		2400.000	62.97	-5.80	57.17	74.00	-16.83		150	113	7	
								peak AVG				
4		2400.000	52.87	-5.80	47.07	54.00	-6.93	AVG	150	113		

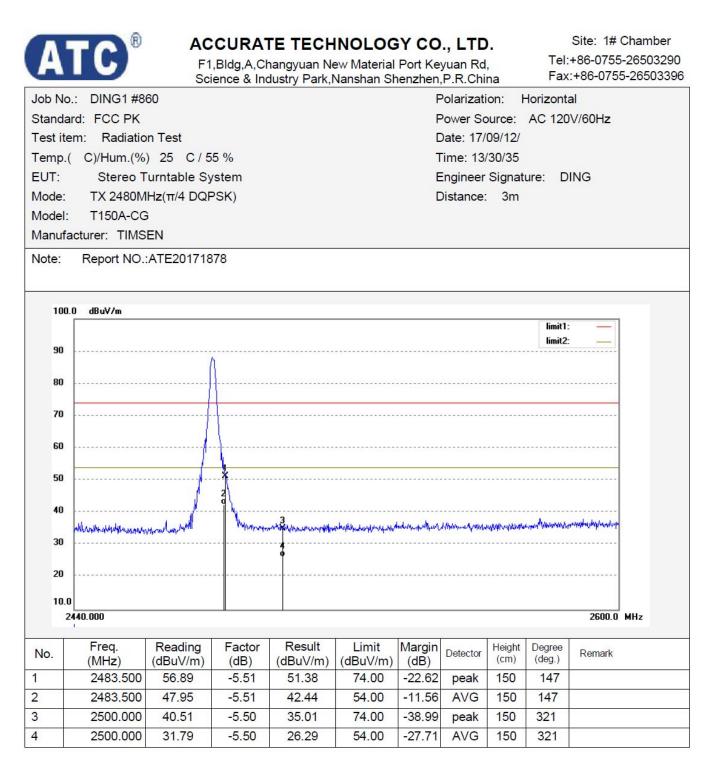


A	TC®	F1	,Bldg,A,Cl	TE TECH hangyuan Ne dustry Park,I	ew Material	Port Ke	yuan Rd	,		+86-0755	Chamber -2650329 5-2650339
Job No	b.: DING1 #8	63				F	olarizat	ion: \	/ertical		
Standa	ard: FCC PK					F	ower So	ource:	AC 120	V/60Hz	
Test it	em: Radiatio	n Test					Date: 17/	09/12/			
Temp.	(C)/Hum.(%)) 25 C/5	5 %			Г	ime: 13	/39/33			
EUT:	Stereo T	urntable Sy	stem			E	Ingineer	Signat	ure: D	ING	
Mode:	TX 2402M	Hz(GFSK)				0	Distance	3m			
Model	: T150A-CG	3									
Manuf	acturer: TIMS	EN									
Note:	Report NO.:	ATE201718	/8								_
100).0 dBuV/m								limit1:		
90							····· A ··		limit2:		
1919											
80							A				
70											
							1				
60							····¥				
50								2			
50							Ĩ				
40			<mark> -</mark>					\			
30	underly Aspidrassin hours	north here the second	Manufan	why appreciation pulling	nthanahaddahaad	mansast	MM'	Modulation	where the second	handhandrachan	
20						2					
10.	n										
	2300.000									2440.0	MHz
No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark	
1	2390.000	39.87	-5.89	33.98	74.00	-40.02	peak	150	220		
2	2390.000	30.46	-5.89	24.57	54.00	-29.43	AVG	150	220		
3	2400.000	66.62	-5.80	60.82	74.00	-13.18	peak	150	146		
4	2400.000	56.01	-5.80	50.21	54.00	-3.79	AVG	150	146		

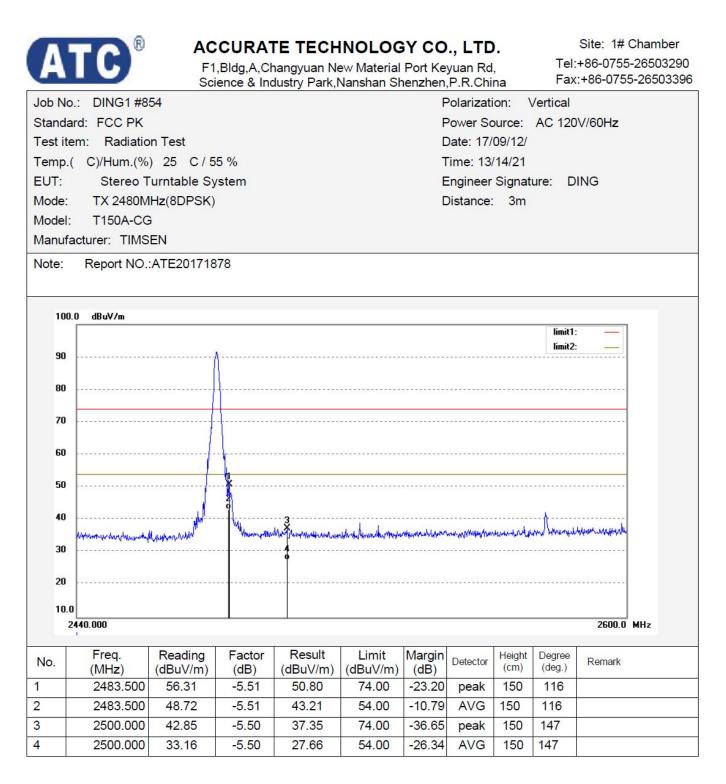






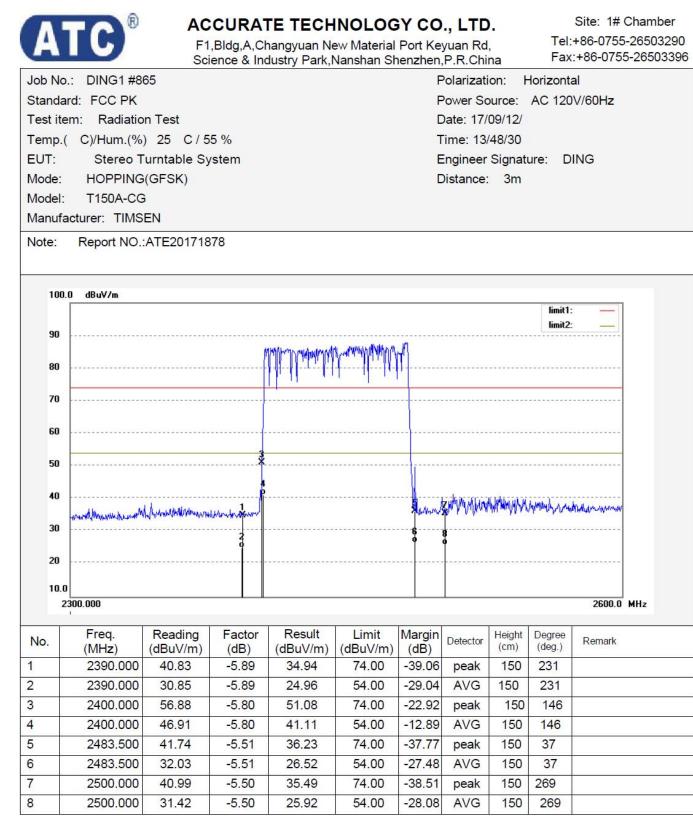


A	TC®	F1	,Bldg,A,Cl	TE TECH hangyuan Ne dustry Park,I	ew Material	Port Ke	yuan Rd	,		Site: 1# (+86-0755 (:+86-0755	-2650 <mark>3290</mark>
Job No	o.: DING1 #8	56				F	Polarizati	ion: H	Horizont	al	
Standa	ard: FCC PK					F	Power So	ource:	AC 120)V/60Hz	
Test it	em: Radiatio	n Test				[Date: 17/	09/12/			
Temp.	.(C)/Hum.(%)) 25 C/5	5 %			1	Time: 13	/19/56			
EUT:	Stereo T	urntable Sy	stem			E	Engineer	Signat	ure: D	ING	
Mode:	TX 2402M	Hz(8DPSK)				[Distance:	3m			
Model	: T150A-CG	6									
Manuf	facturer: TIMS	EN									
Note:	Report NO.:	ATE201718	78								
100	0.0 dBuV/m								limit1:		
90									limit2		
50							۵				
80											
70											
60											
							*				
50							···· /				
40								1			
40	an A materia	and the man should be	a to he and the state	march and the mark which we down	A	. Jul	J	Whenene	man	MARY MARKEN	
30	neuron vehicentricity	vera, netter lauret rug der aund.	And Antonio a Anda and	and an or both so we of seattless	An and and and larated	Merla-Midelina, J	"				
						ě					
20											
10.	.0										
:	2300.000									2440.0	MHz
No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark	
1	2390.000	40.69	-5.89	34.80	74.00	-39.20	peak	150	102		
2	2390.000	30.95	-5.89	25.06	54.00	-28.94	AVG	150	102		
3	2400.000	62.06	-5.80	56.26	74.00	-17.74	peak	150	331		
1	2400.000	52.34	-5.80	46.54	54.00	-7.46	AVG	150	331		

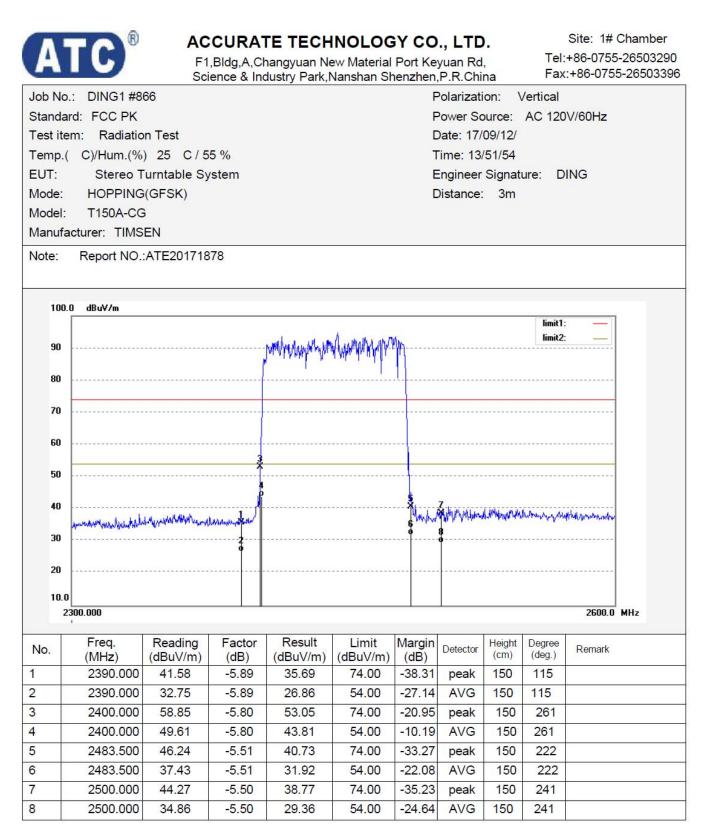


F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

		SCI		dustry Park,	varistiari Si	lenznen.	,1.11.011	lla		+80-075	200000
Job No	.: DING1 #8	55				F	Polarizat	ion: 🛝	/ertical		
Standa	ard: FCC PK					F	Power So	ource:	AC 120	V/60Hz	
est ite	em: Radiatio	n Test				0	Date: 17/	09/12/			
emp.	(C)/Hum.(%)) 25 C/5	5 %			Т	Time: 13	/17/10			
UT:	Stereo T	urntable Sy	stem			E	Ingineer	Signat	ure: D	ING	
Mode:	TX 2402M	Hz(8DPSK)				0	Distance	3m			
/lodel:	T150A-CG	3									
/lanufa	acturer: TIMS	EN									
Note:	Report NO.:	ATE201718	78								
anar standar 7,75			CARTON I								
100	.0 dBuV/m								1 24		
							10		limit1: limit2:		
90							····· <u>}</u> -·				
80											
00							1				
70											
							3				
60							···· 🕅 ···				
50							i i				
60								١			
40							·	1			
	Mr. H. M. Henrydon as	humanitorialis	anathenderstalls	AMenonananahanahan	withour mount	month interior	nd m	Maddurant	international production	whilehoughten	
30						2					
20											
10.0										2440.0	MHz
	2300.000									2440.0	MHz
2	2300.000 Freq.	Reading	Factor	Result	Limit	Margin	Detector	Height (cm)	Degree (deg.)	2440.0 Remark	MHz
No.	Freq. (MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Detector	(cm)	(deg.)		MHz
No.	Freq. (MHz) 2390.000	(dBuV/m) 39.95	(dB) -5.89	(dBuV/m) 34.06	(dBuV/m) 74.00	(dB) -39.94	peak	(cm) 150	(deg.) 331		MHz
	Freq. (MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	peak AVG	(cm)	(deg.)		MHz



A	TC®	F1	,Bldg,A,Cl	TE TECH hangyuan Ne dustry Park,I	ew Material	Port Ke	yuan Rd	,		Site: 1# C +86-0755-2 :+86-0755-	2650329
ob No	o.: DING1 #8		ence a m	uusuy ran,i	Narisrian On		olarizati		orizonta	al	
	ard: FCC PK						ower So			A MARCELLE	
	em: Radiatio	n Test)ate: 17/		/ 10 / 120	VI COLIE	
	.(C)/Hum.(%)		5%			-	ime: 13/	1000			
UT:		urntable Sy					Ingineer		ure: D	ING	
/lode:		Hz(8DPSK))istance:				
/lodel											
	acturer: TIMS										
lote:	Report NO.:	ATE201718	78								
100	D.O dBuV/m								limit1:		
90									limit2:		
		1	1								
80											
70											
10											
60			·{								
50											
40 30 20	e benetestertebenetest	and a constant of the	- Al-	าาร์จีการ์การ์การ์การ์การ์การ์การ์การ์การ์การ์	Krihallansonan-so	entrativenenations	up.M. dopodran	nan hypolansia an	anthatter	man degen of	
10.	0										
	2440.000									2600.0 M	Hz
No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark	
	2483.500	55.29	-5.51	49.78	74.00	-24.22	peak	150	231		
	2483.500	46.83	-5.51	41.32	54.00	-12.68	AVG	150	231		
	2500.000	39.41	-5.50	33.91	74.00	-40.09	peak	150	134		



Hopping mode

Note: Average measurement with peak detection at No.2&4&6&8

Note: Average measurement with peak detection at No.2&4&6&8

A	TC®	F1	,Bldg,A,C	TE TECH hangyuan Ne dustry Park,I	ew Material	Port Ke	yuan Rd	,	Tel:	+86-0755	Chamber 5-2650329 5-2650339
Job N	No.: DING1 #8	67				F	Polarizati	on: \	/ertical		
Stand	dard: FCC PK					F	ower So	ource:	AC 120	V/60Hz	
Test	item: Radiatio	n Test				0	Date: 17/	09/12/			
Temp	p.(C)/Hum.(%) 25 C/5	5 %			г	ime: 13	56/24			
EUT:	Stereo T	urntable Sy	stem			E	Ingineer	Signat	ure: D	ING	
Mode	: HOPPING	i(π/4 DQPSI	<)			0	Distance:	3m			
Mode	el: T150A-CG	6									
Manu	ufacturer: TIMS	EN									
11	00.0 dBuV/m	:ATE201718									
									limit1:		
9	o			MANN ANT MANY	AWAYAYAWCY	¥4			limit2:		
				and other to	0. [1] , 1						
8	0										
7	0										
6	o		×								
5	0										
5			þ								
4							entras art al.		chan v. Kau		
	multithermithiantlation	are and her all appreciated	Mytownwaserbill			Stran horte	et litte the dear of	ANN AN AN ANN AN	la la la dela dela dela dela dela dela d	hter a la constanta da la constanta da constanta da constanta da constanta da constanta da constanta da constan Constanta da constanta da constant	
3	0		2			9	8				
2	o]								
1	2200.000									2600.0	MUs
	2300.000									2000.0	PHILE
No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark	
	2390.000	40.92	-5.89	35.03	74.00	-38.97	peak	150	111		
2	2390.000	31.25	-5.89	25.36	54.00	-28.64	AVG	150	111		
3	2400.000	63.94	-5.80	58.14	74.00	-15.86	peak	150	107		
ŀ	2400.000	53.76	-5.80	47.96	54.00	- <u>6.04</u>	AVG	150	107		
5	2483.500	4 <mark>1.7</mark> 3	-5.51	36.22	74.00	-37.78	peak	150	222		
5	2483.500	32.87	-5.51	27.36	54.00	-26.64	AVG	150	222		
7	2500.000	4 <mark>0.67</mark>	-5.50	35.17	74.00	-38.83	peak	150	336		
3	2500.000	31.56	-5.50	26.06	54.00	-27.94	AVG	150	336		

Note: Average measurement with peak detection at No.2&4&6&8

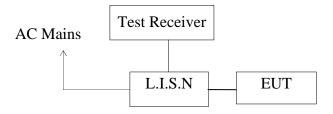
A	TC®	F1	,Bldg,A,Cl	TE TECH hangyuan Ne dustry Park,I	ew <mark>Mater</mark> ial	Port Ke	yuan Rd	,			Chamber -26503290 5-2650339
Job No	b.: DING1 #8	68				F	Polarizati	ion: H	Horizont	al	
Standa	ard: FCC PK					F	ower So	ource:	AC 120	V/60Hz	
Fest it	em: Radiatio	n Test				[Date: 17/	09/12/			
Г <mark>е</mark> тр.	(C)/Hum.(%) 25 C/5	5 %			1	lime: 14	/06/08			
EUT:	Stereo T	urntable Sy	/stem			E	Engineer	Signat	ure: D	ING	
Node:	HOPPING	i(π/4 DQPS	K)			0	Distance:	3m			
Model:	T150A-CG	6									
Manuf	acturer: TIMS	EN									
Note: 100	Report NO.								1		
									limit1: limit2:		
90				h a war all a	whether the units						
80			1	M. M. Mushaha	bar older Mada	1					
70											
60						••••					
50			*								
			4			5					
40		والإيران والمناط	,			6	Soundary white	Melundhauld	Munumuhant	Marrie B. Astronombar	
30	man the second s	1. 1. And March 1. And Alashing . And	daw water a strate a			l l	8				
30			0				d				
20											
10.											
	2300.000									2600.0	MHz
	1			I	100-5 4405	1945 - Sola		1	1	100.402.0000	an al su an f
No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark	
	2390.000	41.49	-5.89	35.60	74.00	-38.40	peak	150	157		
	2390.000	32.46	-5.89	26.57	54.00	-27.43	AVG	150	157		
3	2400.000	56.27	-5.80	50.47	74.00	-23.53	peak	150	133		
2	2400.000	48.17	-5.80	42.37	54.00	-11.63	J. 15	150	133		
13	2483.500	49.96	-5.51	44.45	74.00	-29.55	peak	150	222		
	2403.000			-							
;	2483.500	40.22	-5.51	34.71	54.00	-19.29	AVG	150	222		
5 5 5		40.22 43.30	-5.51 -5.50	34.71 37.80	54.00 74.00	-19.29 -36.20	AVG peak	150 150	222 332		

Note: Average measurement with peak detection at No.2&4&6&8

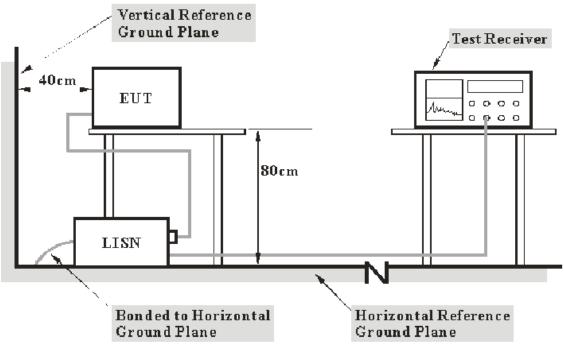
F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

			Sc	ience & Ind	dustry Park,I	Nanshan Sh	nenzhen	,P.R.Chi	na	Fax	:+86-075	5-265033
ob	No.:	DING1 #8	69				F	Polarizati	ion: H	lorizonta	al	
Star	ndar	: FCC PK					F	Power So	ource:	AC 120	V/60Hz	
est	iter	n: Radiatio	on Test				0)ate: 17/	09/12/			
em	ip.(C)/Hum.(%) 25 C/5	5 %	Time: 14/13/06							
UT			urntable Sy				E	Ingineer	Signat	ure: D	ING	
/loc	e:	HOPPING	(8DPSK)					Distance:	3m			
/loc	el:	T150A-CO										
/lar	ufad	turer: TIMS	EN									
lote	e:	Report NO.	:ATE201718	378								
	100.0	dBuV/m										
	[limit1:		
	90									limit2:		
				1	YMANNA WAYA	hard have been been been been been been been be	Λ					
	80				.:Г. <u>Р</u>		-}					
	70											
	~ [
	60											
	50											
	40							7				
		where the start and the start of the	of any atter the physical atter	what you and the			Sal-united	MAMMAN.	ANALAMY	Alexander Alexander	durman	
	30	contained for a con-						8 0				
				6			•					
	20											
	10.0											
	23	DO.000									2600.0	MHz
l o.		Freq.	Reading	Factor	Result	Limit	Margin	Detector	Height (cm)	Degree	Remark	
	_	(MHz) 2390.000	(dBuV/m) 40.95	(dB) -5.89	(dBuV/m) 35.06	(dBuV/m) 74.00	(dB) -38.94	peak	150	(deg.) 111		
	+	2390.000	30.84	-5.89	24.95	54.00	-29.05	AVG	150	111		
	+-	2390.000	54.09	-5.80	48.29	74.00	-29.05		150	211		
	+-	2400.000	44.56		48.29 38.76	54.00	-25.71	peak AVG		211		
	_			-5.80					150			
	_	2483.500	41.82	-5.51	36.31	74.00	-37.69		150	146		
	_	2483.500	32.01	-5.51	26.50	54.00	-27.50		150	146		
	_	2500.000	44.71	-5.50	39.21	74.00	-34.79	peak	150	232		
		2500.000	34.83	-5.50	29.33	54.00	-24.67	AVG	150	232		

A	TC)"	F1	,Bldg,A,Cl	TE TECH hangyuan Ne dustry Park,I	ew Material	Port Ke	yuan Rd	,		+86-0755 :+86-075	
ob No	: DING1 #8			<i>y</i> - <i>u</i> , ,			olarizat		/ertical		
tanda	rd: FCC PK			Power Source: AC 1					AC 120	V/60Hz	
est ite	m: Radiatio	n Test				Ľ	Date: 17/	09/12/			
emp.(C)/Hum.(%) 25 C/5	5 %			Т	Time: 14	/22/17			
UT:	Stereo T	urntable Sy	stem			E	Engineer	Signat	ure: D	ING	
lode:	HOPPING	(8DPSK)				[Distance	3m			
lodel:	T150A-CG	3									
lanufa	cturer: TIMS	EN									
lote:	Report NO.:	ATE201716	10								_
100.									limit1:		
90			<mark>/</mark>	cost manufacture and	when the alternation	۳ ۸			limit2		
80											
70											
60			¥								
50							22 200 101 22 20				
50											
40						5	3	Internetium	black talles.		
	handratter blight data for for the second	hilly with the the the the second	MMAMPIN Service			6	B Lun which	htse danse as	at No. Mathematical	hillyn fa tage an aird	
30			2			9					
20											
20											
10.0	300.000									2600.0	MIL-
2	1									2600.0	MILZ
lo.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark	
	2390.000	41.75	-5.89	35.86	74.00	-38.14	peak	150	211		
	2390.000	32.74	-5.89	26.85	54.00	-27.15	AVG	150	211		
	2400.000	65.77	-5.80	59.97	74.00	-14.03	peak	150	321		
	2400.000	55.69	-5.80	49.89	54.00	-4.11	AVG	150	321		
1	2483.500	45.45	-5.51	39.94	74.00	-34.06	peak	150	222		
	2483.500	35.98	-5.51	30.47	54.00	-23.53	AVG	150	222		
	2403.000										
	2483.500	44.33	-5.50	38.83	74.00	-35.17	peak	150	136		


Note: Average measurement with peak detection at No.2&4&6&8

12.AC POWER LINE CONDUCTED EMISSION FOR FCC PART 15 SECTION 15.207(A)


12.1.Block Diagram of Test Setup

12.1.1.Block diagram of connection between the EUT and simulators

12.1.2.Test System Setup

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

Frequency	Limit d	B(µV)								
(MHz)	Quasi-peak Level	Average Level								
0.15 - 0.50	66.0 - 56.0 *	56.0 - 46.0 *								
0.50 - 5.00	56.0	46.0								
5.00 - 30.00	60.0	50.0								
NOTE1: The lower limit shall	NOTE1: The lower limit shall apply at the transition frequencies.									
NOTE2: The limit decreases	linearly with the logarithm of	the frequency in the range								
0.15MHz to 0.50MHz.										

12.2.Power Line Conducted Emission Measurement Limits

12.3.Configuration of EUT on Measurement

The equipments are installed on Power Line Conducted Emission Measurement to meet the commission requirement and operating regulations in a manner, which tends to maximize its emission characteristics in a normal application.

12.4.Operating Condition of EUT

12.4.1.Setup the EUT and simulator as shown as Section 12.1.

12.4.2.Turn on the power of all equipment.

12.4.3.Let the EUT work in test mode and measure it.

12.5.Test Procedure

The EUT is put on the plane 0.8m high above the ground by insulating support and is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 500hm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC lines are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to ANSI C63.10: 2013 on Conducted Emission Measurement. The bandwidth of test receiver (R & S ESCS30) is set at 9kHz.

The frequency range from 150kHz to 30MHz is checked.

12.6.Data Sample

	Frequency	Transducer	QuasiPeak	Average	QuasiPeak	Average	QuasiPeak	Average	Remark
	(MHz)	value	Level	Level	Limit	Limit	Margin	Margin	(Pass/Fail)
		(dB)	(dBµV)	(dBµV)	(dBµV)	(dBµV)	(dB)	(dB)	
Γ	10.51000	11.6	42.60	27.90	60.0	50.0	-17.4	-22.1	Pass

Frequency(MHz) = Emission frequency in MHz

Transducer value(dB) = Insertion loss of LISN + Cable Loss Level(dB μ V) = Quasi-peak Reading/Average Reading + Transducer value Limit (dB μ V) = Limit stated in standard Margin = Limit (dB μ V) - Level (dB μ V)

Calculation Formula: Margin = Limit ($dB\mu V$) - Level ($dB\mu V$)

ΡE

GND GND GND GND GND GND

PE

GND GND GND GND GND GND

PE

GND GND GND GND GND GND

ΡE

GND GND GND GND GND

GND

12.7

7.Power Line C	onducte	d Emiss	sion Me	easurem	ent Resul	ts
PASS.		4 5 0 1				
The frequency r Test mode : B1	-					
EUT mode : T1		•			Z)	
Adapter 1						
MEASUREMENT		: "TS-0	909-03	8_fin"		
2017-9-9 14:0 Frequency MHz	Level			_	Detector	Line
0.256000 0.382000 1.150000 2.150000 10.510000 12.930000	41.10 44.90 34.20 32.40 42.60 33.60	10.9 11.2 11.3 11.6	56 56 60	13.3 21.8 23.6	QP QP QP QP	N N N N N
<i>MEASUREMENT</i> 2017-9-9 14:0		: "TS-0	909-03	3_fin2"		
Erequency MHz			Limit dBµV	_	Detector	Line
0.254000 0.384000 1.136000 2.135000 10.510000 16.960000	31.70 38.20 28.40 25.20 27.90 24.50	10.9 10.9 11.2 11.3 11.6 11.7	52 48 46 50 50	10.0 17.6 20.8 22.1	AV AV AV AV	N N N N N
MEASUREMENT	RESULT	: "TS-0	909-02	_fin"		
2017-9-9 11:33 Frequency MHz		Transd dB	Limit dBµV	Margin dB	Detector	Line
0.258000 0.404000 1.728000 2.195000 9.825000 17.540000	45.80 47.30 36.40 34.90 46.70 35.70	10.9 11.0 11.2 11.3 11.6 11.7	56 56 60	10.5 19.6 21.1 13.3	QP QP QP QP	N N N N N
MEASUREMENT	RESULT	: "TS-0	909-02	_fin2"		
2017-9-9 11:33 Frequency MHz	3 Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line
0.260000 0.404000 1.610000 2.170000 9.825000 17.540000	38.90 37.70 30.30 26.70 29.90 24.50	10.9 11.0 11.2 11.3 11.6 11.7	51 48 46 50 50	12.5 10.1 15.7 19.3 20.1 25.5	AV AV AV AV AV	N N N N N

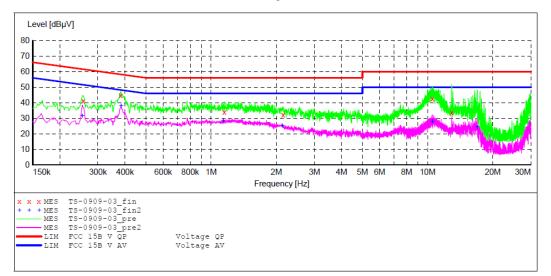
Test mode : BT communicating (AC 240V/60Hz)										
EUT mode : T Adapter 1	150A-CG	j								
MEASUREMENT	RESULT	: "TS-0	909-01	_fin"						
2017-9-9 11:2	.9									
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE			
$\begin{array}{c} 0.170000\\ 0.404000\\ 1.582000\\ 2.175000\\ 10.015000\\ 17.280000\end{array}$	36.10 46.60 37.50 35.40 47.00 33.60	10.8 11.0 11.2 11.3 11.6 11.7	65 58 56 60 60	28.9 11.2 18.5 20.6 13.0 26.4	QP QP QP QP QP QP	L1 L1 L1 L1 L1 L1	GND GND GND GND GND GND			
MEASUREMENT	RESULT	: "TS-0	909-01	_fin2"						
2017-9-9 11:2 Frequency MHz	29 Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE			
0.258000 0.404000 1.656000 2.190000 9.965000 17.280000	39.90 37.70 30.70 27.50 29.40 23.30	10.9 11.0 11.2 11.3 11.6 11.7	52 48 46 50 50	11.6 10.1 15.3 18.5 20.6 26.7	AV AV AV AV AV AV	L1 L1 L1 L1 L1 L1	GND GND GND GND GND GND			
MEASUREMENT	RESULT	: "TS-0	909-04	fin"						
2017-9-9 14:1	.1			-						
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE			
0.358000 0.384000 1.230000 3.970000 10.670000 16.920000	39.80 45.80 33.70 29.50 47.50 35.90	10.9 10.9 11.2 11.4 11.6 11.7	59 58 56 60 60	19.0 12.4 22.3 26.5 12.5 24.1	QP QP QP QP QP QP	L1 L1 L1 L1 L1 L1	GND GND GND GND GND GND			
MEASUREMENT	RESULT	: "TS-0	909-04	_fin2"						
2017-9-9 14:1 Frequency MHz	.1 Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE			
0.260000 0.384000 1.262000 2.190000 10.650000 16.645000	37.30 37.70 27.80 24.00 28.50 25.00	10.9 10.9 11.2 11.3 11.6 11.7	51 48 46 50 50	14.1 10.5 18.2 22.0 21.5 25.0	AV AV AV AV AV AV	L1 L1 L1 L1 L1 L1	GND GND GND GND GND GND			

Test mode : BT communicating (AC 120V/60Hz)											
EUT mode : T150A-CG Adapter 2											
MEASUREMENT	RESULT	: "TS-0	909-05	_fin"							
2017-9-9 14:17	7										
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE				
0.260000 0.550000 1.290000 2.180000 8.595000 16.690000	46.70 37.20 35.00 34.20 23.20 30.10	10.9 11.0 11.2 11.3 11.5 11.7	61 56 56 60 60	14.7 18.8 21.0 21.8 36.8 29.9	QP QP QP QP QP QP	L1 L1 L1 L1 L1 L1	GND GND GND GND GND GND				
MEASUREMENT	RESULT	: "TS-0	909-05	_fin2"							
2017-9-9 14:1 Frequency MHz	7 Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE				
0.260000 0.552000 1.810000 2.135000 6.510000 17.250000	45.50 33.30 32.00 29.30 20.40 18.70	10.9 11.0 11.2 11.3 11.5 11.7	51 46 46 50 50	5.9 12.7 14.0 16.7 29.6 31.3	AV AV AV AV AV	L1 L1 L1 L1 L1 L1	GND GND GND GND GND GND				
MEASUREMENT	RESULT	: "TS-0	909-06	fin"							
2017-9-9 14:20	0										
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE				
0.262000 0.554000 1.540000 2.925000 6.350000 17.920000	46.30 39.80 32.50 27.80 24.10 19.60	10.9 11.0 11.2 11.3 11.5 11.7	61 56 56 60 60	15.1 16.2 23.5 28.2 35.9 40.4	QP QP QP QP QP QP	N N N N N	GND GND GND GND GND GND				
MEASUREMENT RESULT: "TS-0909-06_fin2"											
2017-9-9 14:2 Frequency MHz	0 Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE				
0.262000 0.556000 1.940000 2.140000 5.385000 17.920000	45.70 36.30 28.20 26.20 18.20 14.30	10.9 11.0 11.3 11.3 11.5 11.7	51 46 46 50 50	5.7 9.7 17.8 19.8 31.8 35.7	AV AV AV AV AV AV	N N N N N	GND GND GND GND GND GND				

Test mode : BT communicating (AC 240V/60Hz) EUT mode : T150A-CG										
Adapter 2										
MEASUREMENT	RESULT:	"TS-0	909-07	_fin"						
2017-9-9 14:2 Frequency MHz	7 Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE			
0.264000 0.574000 1.660000 2.145000 11.515000 29.735000	41.70 44.60 35.90 38.20 26.90 30.20	10.9 11.0 11.2 11.3 11.6 11.8	61 56 56 60 60	19.6 11.4 20.1 17.8 33.1 29.8	QP QP QP QP QP QP	N N N N N	GND GND GND GND GND GND			
MEASUREMENT	RESULT:	"TS-0	909-07	_fin2"						
2017-9-9 14:2					.					
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE			
0.262000 0.576000 1.216000 2.135000 11.235000 29.910000	37.10 37.70 27.40 26.30 10.50 20.50	10.9 11.0 11.2 11.3 11.6 11.8	51 46 46 50 50	14.3 8.3 18.6 19.7 39.5 29.5	AV AV AV AV AV AV	N N N N N	GND GND GND GND GND GND			
MEASUREMENT	RESULT	: "TS-0	909-08	B_fin"						
2017-9-9 14:3 Frequency MHz	_	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE			
0.264000 0.576000 1.800000 2.305000 11.115000 15.885000	45.80 38.60 37.10 36.40 27.80 19.40	10.9 11.0 11.2 11.3 11.6 11.7	61 56 56 60 60	15.5 17.4 18.9 19.6 32.2 40.6	QP QP QP QP QP QP	L1 L1 L1 L1 L1 L1	GND GND GND GND GND GND			
MEASUREMENT	RESULT	: "TS-0	909-08	3_fin2"						
2017-9-9 14:3 Frequency MHz	4 Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE			
0.264000 0.576000 2.120000 2.125000 5.740000 16.710000	45.30 34.40 33.40 33.20 27.80 14.30	10.9 11.0 11.3 11.3 11.5 11.7	51 46 46 50 50	6.0 11.6 12.6 12.8 22.2 35.7	AV AV AV AV AV AV	L1 L1 L1 L1 L1 L1	GND GND GND GND GND GND			

Emissions attenuated more than 20 dB below the permissible value are not reported.

The spectral diagrams are attached as below.



CONDUCTED EMISSION STANDARD FCC PART15B

EUT:Stereo Turntable System M/N:T150A-CGManufacturer:TIMSENOperating Condition:BT communicatingTest Site:1#Shielding RoomOperator:BLACKTest Specification:N 120V/60HzComment:Report NO.:ATE20171878Start of Test:2017-9-9 / 14:03:53Adapter 1

SCAN TABLE: "V 150K-30MHz fin"

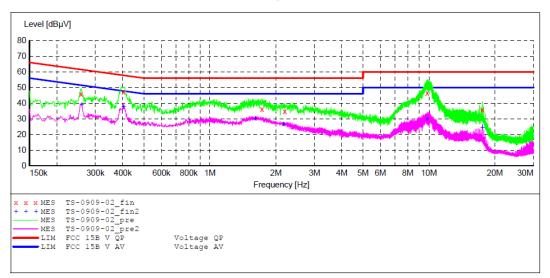
~	Short Desc			SUB STD VTER	RM2 1.70			
	Start	Stop	Step	Detector	Meas.	IF	Transducer	
	Frequency	Frequency	Width		Time	Bandw.		
	150.0 kHz	30.0 MHz	4.5 kHz	QuasiPeak	1.0 s	9 kHz	NSLK8126 2008	
				Average				

MEASUREMENT RESULT: "TS-0909-03 fin"

2017-9-9 14:06 Frequency Level Transd Limit Margin Detector Line PE MHz dBµV dB dBµV dB 0.256000 41.10 10.9 62 20.5 QP GND Ν 0.382000 44.90 58 13.3 10.9 QP Ν GND 1.150000 56 21.8 34.20 11.2 QP Ν GND 2.150000 32.40 11.3 56 23.6 QP Ν GND 10.510000 42.60 11.6 60 17.4 QΡ Ν GND 12.930000 33.60 11.6 60 26.4 QP Ν GND

MEASUREMENT RESULT: "TS-0909-03 fin2"

2017-9-9 14:06 Frequency MHz	-	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.254000 0.384000 1.136000 2.135000 10.510000 16.960000	31.70 38.20 28.40 25.20 27.90 24.50	10.9 10.9 11.2 11.3 11.6 11.7	52 48 46 50 50	19.9 10.0 17.6 20.8 22.1 25.5	AV AV AV AV AV AV	N N N N N	GND GND GND GND GND GND



CONDUCTED EMISSION STANDARD FCC PART15B

EUT:	Stereo Turntable System M/N:T150A-CG
Manufacturer:	TIMSEN
Operating Condition:	BT communicating
Test Site:	1#Shielding Room
Operator:	BLACK
Test Specification:	N 240V/60Hz
Comment:	Report NO.:ATE20171878
Start of Test:	2017-9-9 / 11:31:32
	Adapter 1

SCAN TABLE: "V 150K-30MHz fin"

	Description:	in Somiz	_SUB_STD_VTE	RM2 1.70		
Start	Stop	Step	Detector	Meas.	IF	Transducer
Freque	ncy Frequency	Width		Time	Bandw.	
150.0	kHz 30.0 MHz	4.5 kHz	QuasiPeak Average	1.0 s	9 kHz	NSLK8126 2008

MEASUREMENT RESULT: "TS-0909-02 fin"

2017-9-9 11:33

Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.258000 0.404000 1.728000 2.195000 9.825000 17.540000	45.80 47.30 36.40 34.90 46.70 35.70	10.9 11.0 11.2 11.3 11.6 11.7	62 58 56 60 60	15.7 10.5 19.6 21.1 13.3 24.3	QP QP	N N N N N	GND GND GND GND GND GND

MEASUREMENT RESULT: "TS-0909-02 fin2"

2017-9-9 11:33

Level Transd Limit Margin Detector Line Frequency PE MHz dBµV dB dBµV dB 0.260000 38.90 10.9 51 12.5 AV N GND 10.1 0.404000 37.70 11.0 48 AV GND Ν 1.610000 2.170000 9.825000 30.30 26.70 29.90 11.2 11.3 15.7 46 AV GND Ν 19.3 46 AV GND Ν 11.6 50 20.1 AV GND Ν 17.540000 24.50 25.5 11.7 50 AV Ν GND

CONDUCTED EMISSION STANDARD FCC PART15B

EUT:	Stereo Turntable System M/N:T150A-CG
Manufacturer:	TIMSEN
Operating Condition:	BT communicating
Test Site:	1#Shielding Room
Operator:	BLACK
Test Specification:	L 240V/60Hz
Comment:	Report NO.:ATE20171878
Start of Test:	2017-9-9 / 11:25:04
	Adapter 1

SCAN TABLE: "V 150K-30MHz fin"

Short Desci			SUB STD VTER	RM2 1.70		
Start	-	1				Transducer
Frequency 150.0 kHz					Bandw. 9 kHz	NSLK8126 2008
			Average			

MEASUREMENT RESULT: "TS-0909-01_fin"

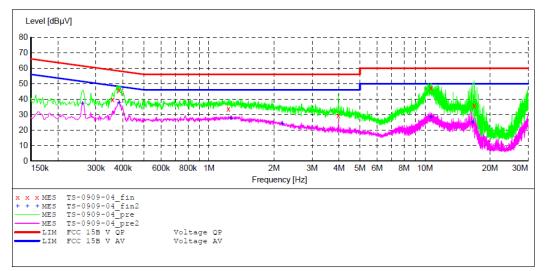
2017-9-9 11:29

Frequency MHz		Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.170000 0.404000 1.582000 2.175000 10.015000 17.280000	36.10 46.60 37.50 35.40 47.00 33.60	10.8 11.0 11.2 11.3 11.6 11.7	65 58 56 60 60	28.9 11.2 18.5 20.6 13.0 26.4	QP QP QP QP QP QP QP	L1 L1 L1 L1 L1 L1	GND GND GND GND GND GND

MEASUREMENT RESULT: "TS-0909-01_fin2"

2017-9-9 11:29

Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.258000 0.404000 1.656000 2.190000 9.965000 17.280000	39.90 37.70 30.70 27.50 29.40 23.30	10.9 11.0 11.2 11.3 11.6 11.7	52 48 46 50 50	11.6 10.1 15.3 18.5 20.6 26.7	AV AV AV AV AV AV	L1 L1 L1 L1 L1 L1	GND GND GND GND GND GND



CONDUCTED EMISSION STANDARD FCC PART15B

EUT:	Stereo Turntable System M/N:T150A-CG
Manufacturer:	TIMSEN
Operating Condition:	BT communicating
Test Site:	1#Shielding Room
Operator:	BLACK
Test Specification:	L 120V/60Hz
Comment:	Report NO.:ATE20171878
Start of Test:	2017-9-9 / 14:09:14
	Adapter 1

SCAN TABLE: "V 150K-30MHz fin"

Short Desci	iption:		UB_STD_VTE	RM2 1.70		
	Stop	1				Transducer
	Frequency 30.0 MHz			Time 1.0 s	Bandw. 9 kHz	NSLK8126 2008

MEASUREMENT RESULT: "TS-0909-04_fin"

2017-9-9 14:11

Frequency MHz	-	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.358000 0.384000 1.230000 3.970000 10.670000 16.920000	39.80 45.80 33.70 29.50 47.50 35.90	10.9 10.9 11.2 11.4 11.6 11.7	59 58 56 60 60	19.0 12.4 22.3 26.5 12.5 24.1	QP QP QP QP QP QP QP	L1 L1 L1 L1 L1 L1	GND GND GND GND GND GND

MEASUREMENT RESULT: "TS-0909-04_fin2"

Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.260000 0.384000 1.262000 2.190000 10.650000 16.645000	37.30 37.70 27.80 24.00 28.50 25.00	10.9 10.9 11.2 11.3 11.6 11.7	51 48 46 50 50	14.1 10.5 18.2 22.0 21.5 25.0	AV AV AV AV AV	L1 L1 L1 L1 L1 L1	GND GND GND GND GND GND

CONDUCTED EMISSION STANDARD FCC PART15B

EUT:	Stereo Turntable System M/N:T150A-CG
Manufacturer:	TIMSEN
Operating Condition:	BT communicating
Test Site:	1#Shielding Room
Operator:	BLACK
Test Specification:	L 120V/60Hz
Comment:	Report NO.:ATE20171878
Start of Test:	2017-9-9 / 14:14:50
	Adapter 2

SCAN TABLE: "V 150K-30MHz fin"

Short Desci	iption:		SUB_STD_VTER	RM2 1.70		
Start	Stop	Step	Detector	Meas.	IF	Transducer
Frequency	Frequency	Width		Time	Bandw.	
150.0 kHz	30.0 MHz	4.5 kHz	QuasiPeak Average	1.0 s	9 kHz	NSLK8126 2008

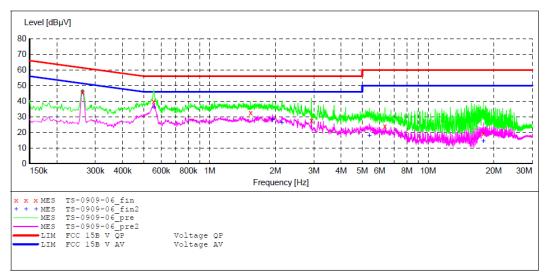
MEASUREMENT RESULT: "TS-0909-05_fin"

2017-9-9 14:17

Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.260000 0.550000 1.290000 2.180000 8.595000 16.690000	46.70 37.20 35.00 34.20 23.20 30.10	10.9 11.0 11.2 11.3 11.5 11.7	61 56 56 60 60	14.7 18.8 21.0 21.8 36.8 29.9	QP QP QP QP QP QP	L1 L1 L1 L1 L1 L1	GND GND GND GND GND GND

MEASUREMENT RESULT: "TS-0909-05_fin2"

017-9-9 14:17 Frequency MHz		Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.260000	45.50	10.9	51			L1	GND
0.552000	33.30	11.0	46	12.7	AV	L1	GND
1.810000	32.00	11.2	46	14.0	AV	L1	GND
2.135000	29.30	11.3	46	16.7	AV	L1	GND
6.510000	20.40	11.5	50	29.6	AV	L1	GND
17.250000	18.70	11.7	50	31.3	AV	L1	GND
1,1100000	20.10	÷÷• /	00	01.0			0111



CONDUCTED EMISSION STANDARD FCC PART15B

EUT:	Stereo Turntable System M/N:T150A-CG
Manufacturer:	TIMSEN
Operating Condition:	BT communicating
Test Site:	1#Shielding Room
Operator:	BLACK
Test Specification:	N 120V/60Hz
Comment:	Report NO.:ATE20171878
Start of Test:	2017-9-9 / 14:18:14
	Adapter 2

SCAN TABLE: "V 150K-30MHz fin"

Short Desc	cription:	R 301112	_SUB_STD_VTER	RM2 1.70		
	Stop	-	Detector	Meas.	IF	Transducer
Frequency	Frequency	Width		Time	Bandw.	
150.0 kHz	30.0 MHz	4.5 kHz	QuasiPeak Average	1.0 s	9 kHz	NSLK8126 2008

MEASUREMENT RESULT: "TS-0909-06_fin"

2017-9-9 14:20

Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.262000 0.554000 1.540000 2.925000 6.350000 17.920000	46.30 39.80 32.50 27.80 24.10 19.60	10.9 11.0 11.2 11.3 11.5 11.7	61 56 56 60 60	15.1 16.2 23.5 28.2 35.9 40.4	QP QP	N N N N N	GND GND GND GND GND GND

MEASUREMENT RESULT: "TS-0909-06_fin2"

Frequency MHz		Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.262000 0.556000 1.940000 2.140000 5.385000 17.920000	45.70 36.30 28.20 26.20 18.20 14.30	10.9 11.0 11.3 11.3 11.5 11.7	51 46 46 50 50	5.7 9.7 17.8 19.8 31.8 35.7	AV AV AV AV AV AV	N N N N N	GND GND GND GND GND GND

CONDUCTED EMISSION STANDARD FCC PART15B

EUT:	Stereo Turntable System M/N:T150A-CG
Manufacturer:	TIMSEN
Operating Condition:	BT communicating
Test Site:	1#Shielding Room
Operator:	BLACK
Test Specification:	N 240V/60Hz
Comment:	Report NO.:ATE20171878
Start of Test:	2017-9-9 / 14:22:21
	Adapter 2

SCAN TABLE: "V 150K-30MHz fin"

Short Description:				SUB STD VTER	RM2 1 70		
		-	-	Detector		IF	Transducer
	Frequency	-	-		Time	Bandw.	
	150.0 kHz	30.0 MHz	4.5 kHz	QuasiPeak	1.0 s	9 kHz	NSLK8126 2008
				Average			

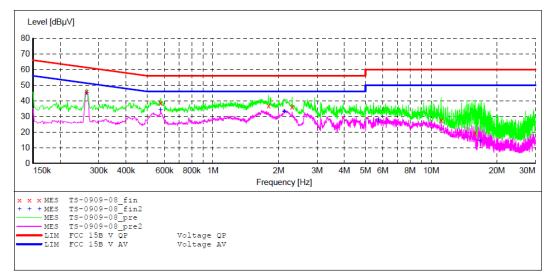
MEASUREMENT RESULT: "TS-0909-07_fin"

2017-9-9 14:27

Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.264000 0.574000 1.660000 2.145000 11.515000 29.735000	41.70 44.60 35.90 38.20 26.90 30.20	10.9 11.0 11.2 11.3 11.6 11.8	61 56 56 60 60	19.6 11.4 20.1 17.8 33.1 29.8	~	N N N N N	GND GND GND GND GND GND

MEASUREMENT RESULT: "TS-0909-07_fin2"

Frequency MHz		Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.262000 0.576000 1.216000 2.135000 11.235000 29.910000	37.10 37.70 27.40 26.30 10.50 20.50	10.9 11.0 11.2 11.3 11.6 11.8	51 46 46 50 50	14.3 8.3 18.6 19.7 39.5 29.5	AV	N N N N N	GND GND GND GND GND GND



CONDUCTED EMISSION STANDARD FCC PART15B

EUT:	Stereo Turntable System M/N:T150A-CG
Manufacturer:	TIMSEN
Operating Condition:	BT communicating
Test Site:	1#Shielding Room
Operator:	BLACK
Test Specification:	L 240V/60Hz
Comment:	Report NO.:ATE20171878
Start of Test:	2017-9-9 / 14:29:46
	Adapter 2

SCAN TABLE: "V 150K-30MHz fin"

Short Description:			SUB_STD_VTERM2 1.70			
	-	-	Detector	Meas.	IF	Transducer
	Frequency			Time	Bandw.	
150.0 kHz	30.0 MHz	4.5 kHz	QuasiPeak Average	1.0 s	9 kHz	NSLK8126 2008

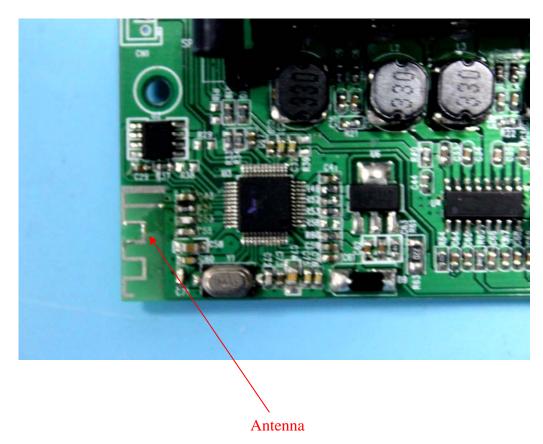
MEASUREMENT RESULT: "TS-0909-08_fin"

2017-9-9 14:34

Frequency MHz		Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.264000 0.576000 1.800000 2.305000 11.115000 15.885000	45.80 38.60 37.10 36.40 27.80 19.40	10.9 11.0 11.2 11.3 11.6 11.7	61 56 56 60 60	15.5 17.4 18.9 19.6 32.2 40.6	QP QP QP QP QP QP QP	L1 L1 L1 L1 L1 L1	GND GND GND GND GND GND

MEASUREMENT RESULT: "TS-0909-08_fin2"

017-9-9 14:34 Frequency MHz		Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.264000	45.30	10.9	51	6.0		L1	GND
0.576000	34.40	11.0	46	11.6	AV	L1	GND
2.120000	33.40	11.3	46	12.6	AV	L1	GND
2.125000	33.20	11.3	46	12.8	AV	L1	GND
5.740000	27.80	11.5	50	22.2	AV	L1	GND
16.710000	14.30	11.7	50	35.7	AV	L1	GND


13.ANTENNA REQUIREMENT

13.1.The Requirement

According to Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

13.2.Antenna Construction

Device is equipped with permanent attached antenna, which isn't displaced by other antenna. The Max Antenna gain of EUT is 2dBi. Therefore, the equipment complies with the antenna requirement of Section 15.203.

***** End of Test Report *****