

FCC ID: AUSCR3046A 18220WC40049601 Page 1 of 39 Report No.:

FCC Test Report

Applicant Modern Marketing Concepts, Inc.

1220 E Oak St., Louisville, Kentucky, United Address States

Bluetooth speaker Product Name

: Jun. 19, 2024 **Report Date**

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)0755-26066440 Fax:(86)0755-26014772 Email:service@anbotek.com

FCC ID: AUSCR3046A

Page 2 of 39

Contents

1. Ge	eneral Information	<u>AN0-</u>		<u>k</u>	00 ¹	- Ali		6
P.	1.1. Client Information 1.2. Description of Device (EUT)		Ano		Aribotek	Anbor	yek Au	6 6
1en	 1.2. Description of Device (EUT) 1.3. Auxiliary Equipment Used Durin 1.4. Operation channel list 1.5. Description of Test Modes 1.6. Measurement Uncertainty 1.7. Test Summary 1.8. Description of Test Facility 1.9. Disclaimer 1.10. Test Equipment List 1.10. Test Equipment List 2.1. Conclusion 2.1. Conclusion at AC power line 3.2. Test Setup 3.3. Test Data 	ig Test	(e¥)	nooter	^{od} n4		botek	1007
botek.	1.5. Description of Test Modes				Autos		Lotek	<i>1</i> 8
abotek	1.6. Measurement Uncertainty	oten Ar	100 100		<u>ж</u>	bose.	Ann	8
D11.	1.7. Test Summary 1.8. Description of Test Facility	nborok	-Magazza		oter	Anboten		9
And	1.9. Disclaimer	no ^{tek}	Anbote			nb ^{otek}	Aupo.	10
Þ.r	1.10. Test Equipment List	Ann		KOK.	No. Vona		ek	11
^{&} 2. An	itenna requirement	Anb		hotek		Nr.	worket	13
ootek	2.1. Conclusion	k Anbo.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			re. Pr		13
3. Co	onducted Emission at AC power line	otek An	0 ⁰¹⁰	P.I.	<u>к</u> ре	boter	Anbr	14
Ann	3.1. EUT Operation	otek	Anbore	Ann		hnbotek	Anbo	14
Aupo	3.2. Test Setup	~otey	Ancoten		- ACK	nboyet.		14
An		hor otek	anbo	(e),	upu: 	^{to} ot,	ek Anb	47
y 4. Oc	ccupied Bandwidth 4.1. EUT Operation 4.2. Test Setup		×	botek	Aupor		otek	Lier
otek	4.1. EUT Operation	bupo.		boten	Aupor	<u></u> bu	otek	17 18
hotek	4.3. Test Data	stek prot		Pur	<u></u>	o ^{ter}	Anto	18
5. Ma	 4.2. Test Setup 4.3. Test Data aximum Conducted Output Power 5.1. EUT Operation 5.2. Test Setup 5.3. Test Data nannel Separation 6.1. EUT Operation 6.2. Test Setup 6.3 Test Data 		nboter	And		botek	Anbo	19
Anbe	5.1. EUT Operation		npoten	Anb			Anbore	19
AUK	5.2. Test Setup	And		<u>%</u>	abo'		×	20
		ANDE	K	potek	Auport	by	otek	ZU
b. Ur	nannel Separation	Aupol		botek	Anbore		dek.	Z1
Lotek	6.1. EUT Operation 6.2 Test Setup	iek Aup	o	An-	ant	0 ⁴⁶¹		21 21
inb. ate	6.3. Test Data	wo ^{tek}	obote	Aur		notek	Anbo	21
7. Nu	6.3. Test Data wher of Hopping Frequencies		botek	Anbe	·····		Anbore	22
Aup	7.1. EUT Operation	Anbergek		K Pi	'po'			22
	7.2 Test Setun	- av.			- Kupole	An	ofett	22
Nek D		Anboi		botek	Anbote		dek	22
8. DV		er Vupe	ېې ب	un	anb	Hayb		23
nbu	8.1. EUT Operation 8.2. Test Setup	otek Al	nboter	·····	ek.	nbotok	Anbor	24 24
Anbo.	7.3. Test Data well Time 8.1. EUT Operation 8.2. Test Setup 8.3. Test Data		Anbotek	Anbo		, wotek	Aupore	24
9. Er	nissions in non-restricted frequency	bands		4 0.0	por	All	pulpot	25
P	nissions in non-restricted frequency 9.1. EUT Operation	Anbo.		otek	Anbote	Ann	, national	26
No.	9.2. Test Setup					<u> </u>		26
otek	9.3. Test Data	Anbo		nr	Anbo	Xo _X		

Shenzhen Anbotek Compliance Laboratory Limited	
Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community,	
Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China.	
Tel:(86)0755-26066440 Fax:(86)0755-26014772 Email:service@anbotek.com	

Report No.: 18220WC40049601	FCC ID: AUSCR3046A Page 3 of 39	
10. Band edge emissions (Radiated)	Anbotek Anbotek 2	Anb ^o 7
10.1. EUT Operation		7 P
10.2. Test Setup 10.3. Test Data		-
11. Emissions in frequency bands (below 1GHz)	net	0
11.1. EUT Operation 11.2. Test Setup 11.3. Test Data		1,00
12. Emissions in frequency bands (above 1GHz).		-
12.1. EUT Operation	All den under ak	4
12.2. Test Setup 12.3. Test Data		-
APPENDIX I TEST SETUP PHOTOGRAPH		9
APPENDIX II EXTERNAL PHOTOGRAPH APPENDIX III INTERNAL PHOTOGRAPH		7V

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)0755–26066440 Fax:(86)0755–26014772 Email:service@anbotek.com

Report No.:	18220WC40049601	FCC ID: AUSCR3046A

Page 4 of 39

TEST REPORT

SHENZHEN GXTSONIC TECHNOLOGY CO., LTD

Applicant

Modern Marketing Concepts, Inc.

Manufacturer

ma ust Diveta atta

Product Name

: Bluetooth speaker

CR3046A

N/A

Test Model No.

Reference Model No.

CR3046XX-XXXX ("X" can be replaced by letter from "A" to "Z", number from "0" to "9" or blank)

Trade Mark

Rating(s)

Input: 5V-1A (with DC 3.7V, 500mAh battery inside)

Test Standard(s)

47 CFR Part 15.247 ANSI C63.10-2020

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with above listed standard(s) requirements. This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Date of Receipt:

Date of Test:

Mar. 21, 2024

Mar. 21, 2024 to Apr. 03, 2024

Nian Xiu Chen

(Nianxiu Chen)

Idward pan

(Edward Pan)

Approved & Authorized Signer:

Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F., Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)0755–26066440 Fax:(86)0755–26014772 Email:service@anbotek.com Hotline 400–003–0500 www.anbotek.com.cn

Prepared By:

Report No.:18220WC40049601FCC ID: AUSCR3046APage 5 of 39

Revision History

Report Version	Description	Issued Date
Anbote R00 notek An	Original Issue.	Jun. 19, 2024
Anbor Anborek	Anbotek Anbotek Anbotek	Anboi Anbotek Anbotek Anbo
on stek unbotek Anboten	Anbotek Anbotek Anbot	htek Anbotek Anbotek A

Anbc

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)0755–26066440 Fax:(86)0755–26014772 Email:service@anbotek.com

FCC ID: AUSCR3046A

1. General Information

1.1. Client Information

Applicant	:	Modern Marketing Concepts, Inc.
Address	:	1220 E Oak St., Louisville, Kentucky, United States
Manufacturer	:	SHENZHEN GXTSONIC TECHNOLOGY CO., LTD
Address	:	1F,Building 3,Tianxin Shuichan Industrial Park,Gushu Village,Xixiang Town,Bao'an District,Shenzhen,Guangdong,CHINA
Factory	:	SHENZHEN GXTSONIC TECHNOLOGY CO., LTD
Address	:	1F,Building 3,Tianxin Shuichan Industrial Park,Gushu Village,Xixiang Town,Bao'an District,Shenzhen,Guangdong,CHINA

1.2. Description of Device (EUT)

Product Name	:	Bluetooth speaker
Test Model No.	:	CR3046A
Reference Model No.	:	CR3046XX-XXXX ("X" can be replaced by letter from "A" to "Z", number from "0" to "9" or blank) (Note: All samples are the same except the model number and color, so we prepare "CR3046A" for test only.)
Trade Mark	:	N/A Anborek Anborek Anborek Anborek Anborek Anbore
Test Power Supply	:	DC 5V from adapter input AC 120V/60Hz; DC 3.7V battery inside
Test Sample No.	:	1-2-1(Normal Sample), 1-2-2(Engineering Sample)
Adapter	:	N/A nbotek Anbotek Anbotek Anbotek Anbotek Anbotek

RF Specification

Operation Frequency	:	2402MHz to 2480MHz
Number of Channel	:	79ek Anbotek Anbotek Anbotek Anbotek Anbotek
Modulation Type		GFSK, π/4 DQPSK, 8DPSK
Antenna Type	:	PCB Antenna
Antenna Gain(Peak)	:	1.68dBi Andreak Andreak Andreak Andreak Andreak
		ation are provided by customer. eatures description, please refer to the manufacturer's specifications or the

User's Manual.

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)0755–26066440 Fax:(86)0755–26014772 Email:service@anbotek.com

Report No.: 18220WC40049601 FCC ID: AUSCR3046A Page 7 of 39

1.3. Auxiliary Equipment Used During Test

Title Manufacturer		Model No.	Serial No.	
Xiaomi 33W adapter	Xiaomi	MDY-11-EX	SA62212LA04358J	

1.4. Operation channel list

Operation Band:

Operation ba	anu. r	Jan Jan	DOLO DIL		noter no	v 11	Ya
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
Anboten	2402	20	2422	40	2442	And 60 tek	2462
Antotek	2403	21otek	2423	41 botek	2443	61	2463
2.nboter	2404	· 22 Anbore	2424	42	e ^x 2444 ^{bore}	62	2464
* 3 Ambor	2405	otek 23 Ant	2425 ^{mboo}	43	pote ^k 2445 pr ^{bc}	63	2465
otek 4 Ant	2406	24	2426	44	2446	64	2466
nbot 5	2407	25	2427	45	2447	65 K	2467
6 tek	2408	26	2428	46	2448	66	2468
7 _{nb} otek	2409	27	2429	47	2449	67 67	2469
< 8 mbole	2410	28	2430	48	2450	^{ek} 68 An ^{bc}	2470
otek 9 Anto	otek 2411 And	29	2431	49	2451	oo ^{tek} 69 M	2471
.10	2412	30	2432	50	2452	200 ⁰ 70	2472
11ek	2413	Anboi 31 ek	2433	An ⁶ 51	2453	71 ^{°e}	2473
12 nek	2414	32	2434	52	2454	72 ⁰¹⁰¹⁰	2474
13	2415	33	2435	53 mbon	2455	* 73 Anbo	2475
14	2416 Mar	34 Anbo	2436	otek 54 Anb	2456	otek 74 An	2476
15	2417	35 ×	2437	nb ^{ote} 55	2457	75	2477
16	2418	Anborat	2438	56	2458	76	2478
Anbois	2419	37	2439	57 ³¹⁰¹	2459	77 otek	2479
18	2420	38 ¹⁰⁰¹⁰¹¹	2440	58 pote	2460	78,00	2480
19 ¹⁰⁰¹	2421	^{sk} 39 Anbot	2441	rek 59 And	2461	nek - nek	otek - Anb

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)0755–26066440 Fax:(86)0755–26014772 Email:service@anbotek.com

FCC ID: AUSCR3046A

Page 8 of 39

1.5. Description of Test Modes

Pretest Modes	Descriptions
Anborek TM1 boren A	Keep the EUT in continuously transmitting mode (non-hopping) with GFSK modulation.
Anbotek TM2 Anbo	Keep the EUT in continuously transmitting mode (non-hopping) with $\pi/4$ DQPSK modulation.
TM3	Keep the EUT in continuously transmitting mode (non-hopping) with 8DPSK modulation.
nboten Anbo	Keep the EUT in continuously transmitting mode (hopping) with GFSK modulation,.
Anbour Manager A	Keep the EUT in continuously transmitting mode (hopping) with $π/4$ DQPSK modulation.
Anbotek TM6 Anbotek	Keep the EUT in continuously transmitting mode (hopping) with 8DPSK modulation.

1.6. Measurement Uncertainty

Parameter	Uncertainty
Conducted emissions (AMN 150kHz~30MHz)	3.4dB
Occupied Bandwidth	925Hz det Andre An
Conducted Output Power	0.76dB
Conducted Spurious Emission	1.24dB
Radiated spurious emissions (above 1GHz)	1G-6GHz: 4.78dB; 6G-18GHz: 4.88dB 18G-40GHz: 5.68dB
Radiated emissions (Below 30MHz)	3.53dB
Radiated spurious emissions (30MHz~1GHz)	Horizontal: 3.92dB; Vertical: 4.52dB

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F., Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)0755-26066440 Fax:(86)0755-26014772 Email:service@anbotek.com

Report No.: 18220WC40049601 FCC ID: AUSCR3046A Page 9 of 39

1.7. Test Summary

Test Items	Test Modes	Status
Antenna requirement	An Anbotek	AntPotek
Conducted Emission at AC power line	Mode1,2,3	P
Occupied Bandwidth	Mode1,2,3	PAN
Maximum Conducted Output Power	Mode1,2,3	P P
Channel Separation	Mode4,5,6	Inbot Pk
Number of Hopping Frequencies	Mode4,5,6	Anbo P
Dwell Time	Mode4,5,6	P
Emissions in non-restricted frequency bands	Mode1,2,3,4,5,6	PAND
Band edge emissions (Radiated)	Mode1,2,3	PAN
Emissions in frequency bands (below 1GHz)	Mode1,2,3	nboit P
Emissions in frequency bands (above 1GHz)	Mode1,2,3	Anbore P
Note: P: Pass	Anbotek Anbotek	Anbore

N: N/A, not applicable

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)0755–26066440 Fax:(86)0755–26014772 Email:service@anbotek.com

FCC ID: AUSCR3046A

1.8. Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.:434132

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No. 434132.

ISED-Registration No.: 8058A

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (ISED) Innovation, Science and Economic Development Canada. The acceptance letter from the ISED is maintained in our files. Registration 8058A.

Test Location

Shenzhen Anbotek Compliance Laboratory Limited. 1/F, Building D, Sogood Science and Technology Park, Sanwei community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China.

1.9. Disclaimer

- 1. The test report is invalid if not marked with the signatures of the persons responsible for preparing and approving the test report.
- 2. The test report is invalid if there is any evidence and/or falsification.
- 3. The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein.
- 4. This document may not be altered or revised in any way unless done so by Anbotek and all revisions are duly noted in the revisions section.
 - 5. Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
 - 6. The authenticity of the information provided by the customer is the responsibility of the customer and the laboratory is not responsible for its authenticity.

The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)0755–26066440 Fax:(86)0755–26014772 Email:service@anbotek.com

FCC ID: AUSCR3046A

Page 11 of 39

1.10. Test Equipment List

Conducted Emission at AC power line

00	i pr	And And	. 0	100	P' V	100 ¹⁰
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
بم 1	L.I.S.N. Artificial Mains Network	Rohde & Schwarz	ENV216	100055	2024-01-18	2025-01-17
otek 2	Three Phase V- type Artificial Power Network	CYBERTEK	EM5040DT	E215040D T001	2024-01-17	2025-01-16
3 of	Software Name EZ-EMC	Farad Technology	ANB-03A	N/A	Arootek	Anboth
4	EMI Test Receiver	Rohde & Schwarz	ESPI3	100926	2023-10-12	2024-10-11
1.00	bor	Pu	det no		od to	- Put

Occupied Bandwidth
Maximum Conducted Output Power
Channel Separation
Number of Hopping Frequencies
Dwell Time
Emissions in non-restricted frequency bands

		K W.			
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
Constant Temperature Humidity Chamber	ZHONGJIAN	ZJ- KHWS80B	pote ^k N/A An	2023-10-16	2024-10-15
DC Power Supply	IVYTECH	IV3605	1804D360 510	2023-10-20	2024-10-19
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	101792	2023-05-26	2024-05-25
MXA Spectrum Analysis	KEYSIGHT	N9020A	MY505318 23	2023-10-12	2024-10-11
Oscilloscope	Tektronix	MDO3012	C020298	2023-10-12	2024-10-11
MXG RF Vector Signal Generator	Agilent	N5182A	MY474206 47	2024-02-04	2025-02-03
	Equipment Constant Temperature Humidity Chamber DC Power Supply Spectrum Analyzer MXA Spectrum Analysis Oscilloscope MXG RF Vector	Constant Temperature Humidity ChamberZHONGJIANDC Power SupplyIVYTECHSpectrum AnalyzerRohde & SchwarzMXA Spectrum AnalysisKEYSIGHTOscilloscopeTektronixMXG RF VectorAgilent	EquipmentManufacturerModel No.Constant Temperature Humidity ChamberZHONGJIANZJ- KHWS80BDC Power SupplyIVYTECHIV3605Spectrum AnalyzerRohde & SchwarzFSV40-NMXA Spectrum AnalysisKEYSIGHTN9020AOscilloscopeTektronixMDO3012MXG RF VectorAgilentN5182A	EquipmentManufacturerModel No.Serial No.Constant Temperature Humidity ChamberZHONGJIANZJ- KHWS80BN/ADC Power SupplyIVYTECHIV36051804D360 510Spectrum AnalyzerRohde & SchwarzFSV40-N101792MXA Spectrum AnalysisKEYSIGHTN9020AMY505318 23OscilloscopeTektronixMDO3012C020298MXG RF VectorAnilentN15182AMY474206	EquipmentManufacturerModel No.Serial No.Last Cal.Constant Temperature Humidity ChamberZHONGJIANZJ- KHWS80BN/A2023-10-16DC Power SupplyIVYTECHIV36051804D360 5102023-10-20Spectrum AnalyzerRohde & SchwarzFSV40-N1017922023-05-26MXA Spectrum AnalysisKEYSIGHTN9020AMY505318 232023-10-12OscilloscopeTektronixMDO3012C0202982023-10-12MXG RF VectorAgileptN5182AMY474206 2024-02-042024-02-04

Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F., Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)0755–26066440 Fax:(86)0755–26014772 Email:service@anbotek.com

FCC ID: AUSCR3046A

Page 12 of 39

	edge emissions (Ra sions in frequency ba		Anbora	Anbotek	Anbotek	Anbo
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
1	EMI Test Receiver	Rohde & Schwarz	ESR26	101481	2024-01-23	2025-01-22
2	EMI Preamplifier	SKET Electronic	LNPA- 0118G-45	SKET-PA- 002	2024-01-17	2025-01-16
* ^{ek} 3	Double Ridged Horn Antenna	SCHWARZBECK	BBHA 9120D	02555	2022-10-16	2025-10-15
^{1b} 4	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	And	Anbotek
5	Horn Antenna	A-INFO	LB-180400- KF	J21106062 8	2023-10-12	2024-10-11
6	Spectrum Analyzer	Rohde & Schwarz	FSV40-N	101792	2023-05-26	2024-05-25
^{e¥} 7	Amplifier	Talent Microwave	TLLA18G40 G-50-30	23022802	2023-05-25	2024-05-24

Emissions in frequency bands (below 1GHz)

100	······	(8r. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.				
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
1	EMI Test Receiver	Rohde & Schwarz	ESR26	101481	2024-01-23	2025-01-22
2	Pre-amplifier	SONOMA	310N	186860	2024-01-17	2025-01-16
3	Bilog Broadband Antenna	Schwarzbeck	VULB9163	345	2022-10-23	2025-10-22
Antore	Loop Antenna (9K- 30M)	Schwarzbeck	FMZB1519 B	00053	2023-10-12	2024-10-11
5.nb	EMI Test Software EZ-EMC	SHURPLE	N/A N/A	N/A N/A	ak Anbo	k Anbotek

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)0755–26066440 Fax:(86)0755–26014772 Email:service@anbotek.com

FCC ID: AUSCR3046A

2. Antenna requirement

hotek Anbo.	Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to
And k hotek	ensure that no antenna other than that furnished by the responsible party
Test Requirement:	shall be used with the device. The use of a permanently attached antenna or
An otek unbot	of an antenna that uses a unique coupling to the intentional radiator shall be
an Anbor h	considered sufficient to comply with the provisions of this section.

2.1. Conclusion

The antenna is a PCB antenna which permanently attached, and the best case gain of the antenna is 1.68dBi . It complies with the standard requirement.

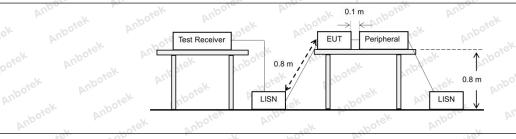
Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)0755–26066440 Fax:(86)0755–26014772 Email:service@anbotek.com

FCC ID: AUSCR3046A

Page 14 of 39

3. Conducted Emission at AC power line


Test Requirement:	Refer to 47 CFR 15.207(a), Except section, for an intentional radiator public utility (AC) power line, the r back onto the AC power line on ar band 150 kHz to 30 MHz, shall no measured using a 50 µH/50 ohms (LISN).	that is designed to be con adio frequency voltage that ny frequency or frequencie at exceed the limits in the fo	nected to the at is conducted s, within the ollowing table, as	
botek Anbore	Frequency of emission (MHz)	Conducted limit (dBµV)	Ann	
	Anbo k hotek Anbore	Quasi-peak	Average	
Anbois An.	0.15-0.5	66 to 56*	56 to 46*	
Test Limit:	0.5-5 tek noote And	56 Motel M	46	
	5-30 m	60	50 ter And	
Anbore An	*Decreases with the logarithm of the frequency.			
Test Method:	ANSI C63.10-2020 section 6.2	An botek Anboten	Antoniotek	
Procedure:	Refer to ANSI C63.10-2020 section line conducted emissions from un			

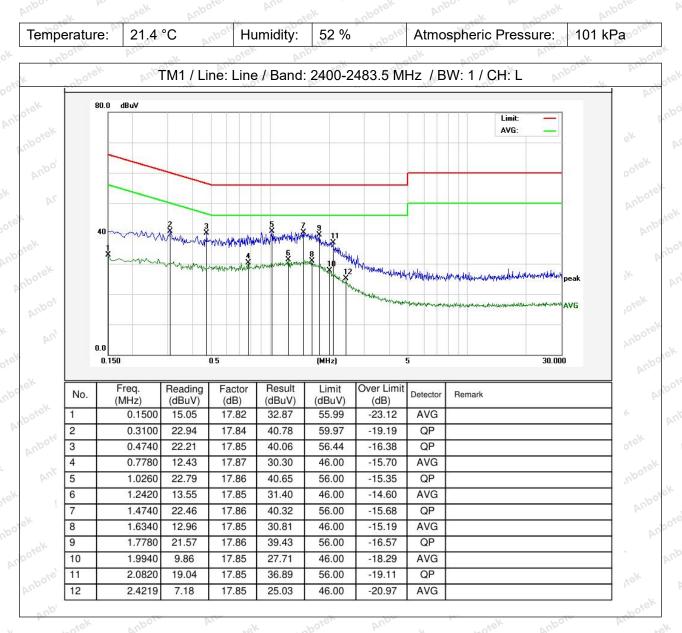
3.1. EUT Operation

Operating Environment:

And	1: TX-GFSK (Non-Hopping): Keep the EUT in continuously transmitting mode (non-
tek nbore	hopping) with GFSK modulation.
Testmader	2: TX-π/4-DQPSK (Non-Hopping): Keep the EUT in continuously transmitting mode
Test mode:	(non-hopping) with $\pi/4$ DQPSK modulation.
ak sol	3: TX-8DPSK (Non-Hopping): Keep the EUT in continuously transmitting mode (non-
Anbor An	hopping) with 8DPSK modulation.

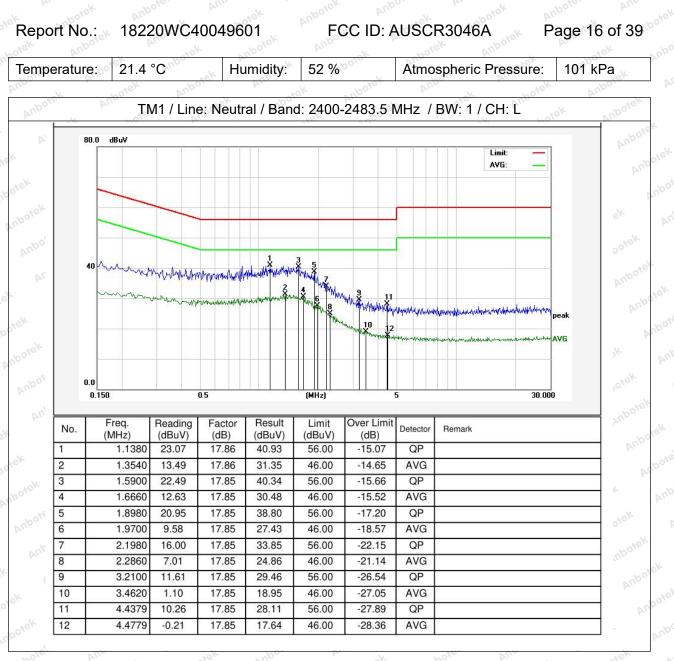
3.2. Test Setup

Shenzhen Anbotek Compliance Laboratory Limited


Address:1/F., Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)0755-26066440 Fax:(86)0755-26014772 Email:service@anbotek.com

FCC ID: AUSCR3046A

3.3. Test Data



Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F., Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)0755-26066440 Fax:(86)0755-26014772 Email:service@anbotek.com

Note: Only record the worst data in the report.

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)0755–26066440 Fax:(86)0755–26014772 Email:service@anbotek.com

Anbotek Product Safety

Report No.: 18220WC40049601

FCC ID: AUSCR3046A

4. Occupied Bandwidth

Toot Doguiromont	47 CER 15 215(a)
Test Requirement:	47 CFR 15.215(c)
Anbotek Anbote	Refer to 47 CFR 15.215(c), intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§
k sbotek Anbo.	15.217 through 15.257 and in subpart E of this part, must be designed to
Test Limit:	ensure that the 20 dB bandwidth of the emission, or whatever bandwidth
otek Anbor Ar	may otherwise be specified in the specific rule section under which the
et botek	equipment operates, is contained within the frequency band designated in
inbore Ann iek	the rule section under which the equipment is operated.
Test Method:	ANSI C63.10-2020, section 7.8.6, For occupied bandwidth measurements, use the procedure in 6.9.3. Frequency hopping shall be disabled for this test.
Anbote. And	The occupied bandwidth is the frequency bandwidth such that, below its
h hotek Anbor	lower and above its upper frequency limits, the mean powers are each equal
And	to 0.5% of the total mean power of the given emission. The following
stek anbore An	procedure shall be used for measuring 99% power bandwidth:
k hotek	a) The instrument center frequency is set to the nominal EUT channel center
nboten Anb	frequency. The frequency span for the spectrum analyzer shall be between
otek Anbote.	1.5 times and 5.0 times the OBW.
	b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to
aboten Anbe	5% of the OBW, and VBW shall be at least three times the RBW, unless
A	otherwise specified by the applicable requirement.
Anbo	c) Set the reference level of the instrument as required, keeping the signal
ek aboten Anb	from exceeding the maximum input mixer level for linear operation. In
Allek	general, the peak of the spectral envelope shall be more than [10 log
botek Anbo, P	(OBW/RBW)] below the reference level. Specific guidance is given in
rek abotek	4.1.6.2.
Anbor An	d) Step a) through step c) might require iteration to adjust within the
Procedure:	specified range.
An-	e) Video averaging is not permitted. Where practical, a sample detection and
Anbor An	single sweep mode shall be used. Otherwise, peak detection and max-hold
	mode (until the trace stabilizes) shall be used.
An	f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth.
notek Anboir A	g) If the instrument does not have a 99% power bandwidth function, then the
welt wotek	trace data points are recovered and directly summed in linear power terms.
Anbore Ane	The recovered amplitude data points, beginning at the lowest frequency, are
hotek Anboro	placed in a running sum until 0.5% of the total is reached; that frequency is
Ant work botek	recorded as the lower frequency. The process is repeated until 99.5% of the
Anbore Ano	total is reached; that frequency is recorded as the upper frequency. The 99%
k hotek anbo	power bandwidth is the difference between these two frequencies.
Ant	h) The occupied bandwidth shall be reported by providing spectral plot(s) of
otek anbore. An	the measuring instrument display; the plot axes and the scale units per
w wotek	division shall be clearly labeled. Tabular data may be reported in addition to
nboten Anb	the plot(s).

4.1. EUT Operation

Operating Environment:

Test mode:	1: TX-GFSK (Non-Hopping): Keep the El	JT in continuously	transmitting	mode (non-
Test mode.	hopping) with GFSK modulation.	Anbo	otek	Inpore An

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)0755–26066440 Fax:(86)0755–26014772 Email:service@anbotek.com

Report No.: 18220WC40049601 FCC ID: AUSCR3046A Page 18 of 39

and the second se	
of the	2: TX-π/4-DQPSK (Non-Hopping): Keep the EUT in continuously transmitting mode
	(non-hopping) with $\pi/4$ DQPSK modulation.
	3: TX-8DPSK (Non-Hopping): Keep the EUT in continuously transmitting mode (non-
np- nk	hopping) with 8DPSK modulation.

4.2. Test Setup

100	tek Ar	botek p	EUT		_ Spectrum An	alyzer	otek Ar	Anbotek P	.n
P.S	ibote.	Ancobotek	Anbor	AI	Anboten	Ano-	.nº potek	Anbotek	
	A 2 Teef	Data vel						aboten	

4.3. Test Data

Temperature:	25.5 °C	Pupe	Humidity:	47 %	Aupo	Atmosph	neric Pressur	e:"p	101 kPa	100,
	, V		~O, D	, e .		201	- 0Y		-V-	

Please Refer to Appendix for Details.

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)0755–26066440 Fax:(86)0755–26014772 Email:service@anbotek.com

FCC ID: AUSCR3046A

Page 19 of 39

5. Maximum Conducted Output Power

Test Requirement:	47 CFR 15.247(b)(1)
Test Limit: et Anboret	Refer to 47 CFR 15.247(b)(1), For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.
Test Method:	ANSI C63.10-2020, section 7.8.5
Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek	This is an RF-conducted test to evaluate maximum peak output power. Use a direct connection between the antenna port of the unlicensed wireless device and the spectrum analyzer, through suitable attenuation. Frequency hopping shall be disabled for this test. Use the following spectrum analyzer settings: a) Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel.
nbotek Anbotek A	 b) RBW > 20 dB bandwidth of the emission being measured. c) VBW ≥ RBW. d) Sweep: No faster than coupled (auto) time. e) Detector function: Peak.
Procedure:	 f) Trace: Max-hold. g) Allow trace to stabilize. h) Use the marker-to-peak function to set the marker to the peak of the emission.
ter And Andotek A	 i) The indicated level is the peak output power, after any corrections for external attenuators and cables. j) A spectral plot of the test results and setup description shall be included in
Anbotek Anbotek Anbotek Anbotek	the test report. NOTE—A peak responding power meter may be used, where the power meter and sensor system video bandwidth is greater than the occupied bandwidth of the unlicensed wireless device, rather than a spectrum analyzer.

5.1. EUT Operation

Operating Envir	ronment:					
Test mode:	1: TX-GFSK (Nor hopping) with GF 2: TX-π/4-DQPS (non-hopping) wi 3: TX-8DPSK (Nor hopping) with 8D	SK modulation K (Non-Hopping th π/4 DQPSK on-Hopping): Ke	g): Keep the modulation. eep the EU⁻	EUT in continu	uously transi	mitting mode

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)0755–26066440 Fax:(86)0755–26014772 Email:service@anbotek.com

Report No.: 18220WC40049601 FCC ID: AUSCR3046A Page 20 of 39

5.2. Test Setup

4	Anbotek		EUT	Spec	trum Analyzer	PU		Anbotek	
o ^{xe}	k Anbotek	Anbore	Annbotek	Anboter	And	Anborek	Anbotek	Anbor	

5.3. Test Data

Temperature:	25.5 °C	-xek	Humidity:	47 %	Atmospheric Pressure:	101 kPa
A OV	A I	NO.	124	20	ACV AND	601

Please Refer to Appendix for Details.

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)0755–26066440 Fax:(86)0755–26014772 Email:service@anbotek.com

Anbotek Product Safety

Report No.: 18220WC40049601

FCC ID: AUSCR3046A

6. Channel Separation

Test Requirement:	47 CFR 15.247(a)(1)
Test Limit: Anborek	Refer to 47 CFR 15.247(a)(1), Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.
Test Method:	ANSI C63.10-2020, section 7.8.2
Procedure:	The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: Wide enough to capture the peaks of two adjacent channels. b) RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel. c) Video (or average) bandwidth (VBW) ≥ RBW. d) Sweep: No faster than coupled (auto) time. e) Detector function: Peak. f) Trace: Max-hold. g) Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Compliance of an EUT with the appropriate regulatory limit shall be determined. A spectral plot of the data shall be included in the test report.

6.1. EUT Operation

Operating Envir	ronment;ek Anborek Anborek Anborek Anbor
Test mode:	 4: TX-GFSK (Hopping): Keep the EUT in continuously transmitting mode (hopping) with GFSK modulation,. 5: TX-π/4-DQPSK (Hopping): Keep the EUT in continuously transmitting mode (hopping) with π/4 DQPSK modulation. 6: TX-8DPSK (Hopping): Keep the EUT in continuously transmitting mode (hopping) with 8DPSK modulation.

6.2. Test Setup

2	otek		EUT		Spectrum Ana	alyzer		
	nbotek	Anboten	r-botek	Anbor	AI.	Anboter	Anboten	And
	6.3. T	est Data	Anbotek	Anboten	K nbotek	Anbotek	Anbore	Anbotek

Temperature:25.5 °CHumidity:47 %Atmospheric Pressure:101 kPa

Please Refer to Appendix for Details.

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)0755–26066440 Fax:(86)0755–26014772 Email:service@anbotek.com Hotline 400-003-0500 www.anbotek.com.cn

PUE

FCC ID: AUSCR3046A

7. Number of Hopping Frequencies

Test Requirement:	47 CFR 15.247(a)(1)(iii)
Test Limit:	Refer to 47 CFR 15.247(a)(1)(iii), Fequency hopping systems in the 2400- 2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.
Test Method:	ANSI C63.10-2020, section 7.8.3
Procedure:	 The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: The frequency band of operation. Depending on the number of channels the device supports, it could be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen. b) RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller. c) VBW ≥ RBW. d) Sweep: No faster than coupled (auto) time. e) Detector function: Peak. f) Trace: Max-hold. g) Allow the trace to stabilize. It might prove necessary to break the span up into subranges to show clearly all of the hopping frequencies. Compliance of an EUT with the appropriate regulatory limit shall be determined for the number of hopping channels. A
A. hotek Anboter	spectral plot of the data shall be included in the test report.

7.1. EUT Operation

Operating Envir	ronment:
Test mode: Anborek	4: TX-GFSK (Hopping): Keep the EUT in continuously transmitting mode (hopping) with GFSK modulation,. 5: TX- π /4-DQPSK (Hopping): Keep the EUT in continuously transmitting mode (hopping) with π /4 DQPSK modulation. 6: TX-8DPSK (Hopping): Keep the EUT in continuously transmitting mode (hopping) with 8DPSK modulation.

7.2. Test Setup

potek Anbotek	Ph'	EUT	S	pectrum Analy	zer	otek	Anbotek Anbotek	Anl
7.3. Test Dat	a hotek	Anbotek	Anbotek	Anbor	Anbotek	Anbotek	Anbore Anborek]
Temperature:	25.5 °C	Hur	midity: 47 %	Atr	nospheric F	Pressure:	101 kPa	34-

Please Refer to Appendix for Details.

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)0755–26066440 Fax:(86)0755–26014772 Email:service@anbotek.com

FCC ID: AUSCR3046A

8. Dwell Time

Test Requirement:	47 CFR 15.247(a)(1)(iii)
Test Limit:	Refer to 47 CFR 15.247(a)(1)(iii), Fequency hopping systems in the 2400- 2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.
Test Method:	ANSI C63.10-2020, section 7.8.4
Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek	The dwell time per hop on a channel is the time from the start of the first transmission to the end of the last transmission for that hop. If the device has a single transmission per hop then the dwell time is the duration of that transmission. If the device has a multiple transmissions per hop then the dwell time is measured from the start of the first transmission to the end of the last transmission. The time of occupancy is the total time that the device dwells on a channel over an observation period specified in the regulatory requirement. To determine the time of occupancy the spectrum analyzer will be configured to measure both the dwell time per hop and the number of times the device transmits on a specific channel in a given period.
Procedure:	The EUT shall have its hopping function enabled. Compliance with the requirements shall be made with the minimum and with the maximum number of channels enabled. If the dwell time per channel does not vary with the number of channels than compliance with the requirements may be based on the minimum number of channels. If the device supports different dwell times per channel (example Bluetooth devices can dwell on a channel for 1, 3 or 5 time slots) then measurements can be limited to the longest dwell time with the minimum number of channels.
otek Anboitek Ar	Use the following spectrum analyzer settings to determine the dwell time per hop:
Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek	 a) Span: Zero span, centered on a hopping channel. b) RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected transmission time per hop. c) Sweep time: Set so that the start of the first transmission and end of the last transmission for the hop are clearly captured. Setting the sweep time to be slightly longer than the hopping period per channel (hopping period = 1/hopping rate) should achieve this. d) Use a video trigger, where possible with a trigger delay, so that the start of the transmission is clearly observed. The trigger level might need adjustment to reduce the chance of triggering when the system hops on an adjacent channel. e) Detector function: Peak. f) Trace: Clear-write, single sweep. g) Place markers at the start of the first transmission on the channel and at

Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F., Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)0755–26066440 Fax:(86)0755–26014772 Email:service@anbotek.com

FCC ID: AUSCR3046A

stek unbore Ant	the shoter	Anbo	Note
these two markers.			
	er of hops on the cha		sweep
Anber Anber			
			s, tien tie
nbote Am	porek Anbo	hotek p	
			vell time
per hop by the number of ho	ops in the observation	n period.	P.I.
	To determine the number of period repeat the measurem uses a single hopping seque sufficient to capture at least hopping sequence, or the se need to capture multiple hop occupancy. Count the numb time. The average number of hop observation period is calcula divided by the spectrum and observation period. For example sweep time of 500 ms and t number of hops in that ten set	To determine the number of hops on a channel in period repeat the measurement using a longer sy uses a single hopping sequence the period of me sufficient to capture at least 2 hops. When the de hopping sequence, or the sequence varies, the p need to capture multiple hops to better determine occupancy. Count the number of hops on the char time. The average number of hops on the same chann observation period is calculated from the number divided by the spectrum analyzer sweep time mu observation period. For example, if three hops ar sweep time of 500 ms and the regulatory observa number of hops in that ten seconds is $3 / 0.5 \times 10^{10}$	To determine the number of hops on a channel in the regulatory o period repeat the measurement using a longer sweep time. When uses a single hopping sequence the period of measurement shou sufficient to capture at least 2 hops. When the device uses a dyna hopping sequence, or the sequence varies, the period of measure need to capture multiple hops to better determine the average tim occupancy. Count the number of hops on the channel across the set

8.1. EUT Operation

Operating Environment:

otek Anbotek	4: TX-GFSK (Hopping): Keep the EUT in continuously transmitting mode (hopping) with GFSK modulation,.
Test mode:	5: TX-π/4-DQPSK (Hopping): Keep the EUT in continuously transmitting mode (hopping) with $\pi/4$ DQPSK modulation.
Anbotek Anb	6: TX-8DPSK (Hopping): Keep the EUT in continuously transmitting mode (hopping) with 8DPSK modulation.

8.2. Test Setup

			EUT		Spectrum	Analyzer	34
Ņ-	Anbo.	Anbu	r.	botek	Anbote	Au-	ek so

8.3. Test Data

~ 0V	d'a			10	- 0V	No.
Temperature:	25.5 °C	Ann	Humidity: 47 %	Aupo	Atmospheric Pressure:	101 kPa

Please Refer to Appendix for Details.

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)0755–26066440 Fax:(86)0755–26014772 Email:service@anbotek.com

Anbotek Product Safety

Report No.: 18220WC40049601

FCC ID: AUSCR3046A

Page 25 of 39

9. Emissions in non-restricted frequency bands

Test Requirement:	47 CFR 15.247(d), 15.209, 15.205
Test Limit:	Refer to 47 CFR 15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Test Method:	ANSI C63.10-2020 section 7.8.7
nbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbote	7.8.7.1 General considerations To demonstrate compliance with the relative out-of-band emissions requirements conducted spurious emissions shall be measured for the transmit frequencies, per 5.5 and 5.6, and at the maximum transmit powers. Frequency hopping shall be disabled for this test with the exception of measurements at the allocated band-edges which shall be repeated with hopping enabled.
rek Anbore An botek Anborek A Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek	Connect the primary antenna port through an attenuator to the spectrum analyzer input; in the results, account for all losses between the unlicensed wireless device output and the spectrum analyzer. The frequency range of testing shall span 30 MHz to 10 times the operating frequency and this may be done in a single sweep or, to aid resolution, across a number of sweeps. The resolution bandwidth shall be 100 kHz, video bandwidth 300 kHz, and a coupled sweep time with a peak detector.
Procedure:	The limit is based on the highest in-band level across all channels measured using the same instrument settings (resolution bandwidth of 100 kHz, video
Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek	bandwidth of 300 kHz, and a coupled sweep time with a peak detector). To help clearly demonstrate compliance a display line may be set at the required offset (typically 20 dB) below the highest in-band level. Where the highest in-band level is not clearly identified in the out-of-band measurements a separate spectral plot showing the in-band level shall be provided.
All botek Anbot	provided of the start and the start and the start and
Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek	When conducted measurements cannot be made (for example a device with integrated, non-removable antenna) radiated measurements shall be used. The reference level for determining the limit shall be established by maximizing the field strength from the highest power channel and measuring using the resolution and video bandwidth settings and peak detector as described above. The field strength limit for spurious emissions outside of restricted-bands shall then be set at the required offset (typically 20 dB) below the highest in-band level. Radiated measurements will follow the standards measurement procedures described in Clause 6 with the exception that the resolution bandwidth shall be 100 kHz, video bandwidth

Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F., Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)0755–26066440 Fax:(86)0755–26014772 Email:service@anbotek.com

FCC ID: AUSCR3046A

Page 26 of 39

300 kHz, and a coupled sweep time with a peak detector. Note that use of wider measurement bandwidths are acceptable for measuring the spurious emissions provided that the peak detector is used and that the measured value of spurious emissions are compared to the highest in-band level measured with the 100 kHz / 300 kHz bandwidth settings to determine compliance.

7.8.7.2 Band-edges

Compliance with a relative limit at the band-edges (e.g., -20 dBc) shall be made on the lowest and on the highest channels with frequency hopping disabled and repeated with frequency hopping enabled. For the latter test the hopping sequence shall include the lowest and highest channels.

For measurements with the hopping disabled the analyzer screen shall clearly show compliance with the requirement within 10 MHz of the allocated band-edge.

For measurements with the hopping enabled the analyzer screen shall clearly show compliance with the requirement within 10 MHz of both of the allocated band-edges. This could require separate spectral plots for each band-edge.

9.1. EUT Operation

Operating Envir	onment:
oten Anbou	1: TX-GFSK (Non-Hopping): Keep the EUT in continuously transmitting mode (non-
botek Anbo.	hopping) with GFSK modulation.
and anotek Anbr	2: TX-π/4-DQPSK (Non-Hopping): Keep the EUT in continuously transmitting mode (non-hopping) with $\pi/4$ DQPSK modulation.
An-	3: TX-8DPSK (Non-Hopping): Keep the EUT in continuously transmitting mode (non- hopping) with 8DPSK modulation.
Test mode:	4: TX-GFSK (Hopping): Keep the EUT in continuously transmitting mode (hopping) with GFSK modulation,.
anboten k	5: TX- π /4-DQPSK (Hopping): Keep the EUT in continuously transmitting mode
nbotek Anboten	(hopping) with $\pi/4$ DQPSK modulation. 6: TX-8DPSK (Hopping): Keep the EUT in continuously transmitting mode (hopping) with 8DPSK modulation.

9.2. Test Setup

Anbotek	Anbote	EUT	Spectrum	Analyzer		ibotek Anbote
9.3. Test Dat	Anbu ak Anbore	k Anbotek	Anbotek	Ant- Anbotek	Anbotek	Anborek Anb
Temperature:	25.5 °C	Humidity:	47 %	Atmospher	c Pressure:	101 kPa

Please Refer to Appendix for Details.

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)0755–26066440 Fax:(86)0755–26014772 Email:service@anbotek.com

FCC ID: AUSCR3046A

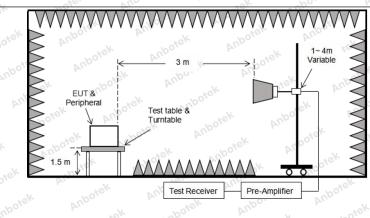
10. Band edge emissions (Radiated)

Test Requirement:	restricted bands, as defined	, In addition, radiated emissions d in § 15.205(a), must also comp ecified in § 15.209(a)(see § 15.2	ly with the wo
K Anbotek Anboi	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
	0.009-0.490	2400/F(kHz)	300 Mapor
aboten Anbo	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30° hi dek mbo	30 400
	30-88	100 **	3 tek noore
	88-216	150 **	3
	216-960	200 **	3 boten And
Test Limit:	Above 960	500 Motek Antoo	3
	intentional radiators operati frequency bands 54-72 MH However, operation within t	ragraph (g), fundamental emissi ng under this section shall not b z, 76-88 MHz, 174-216 MHz or hese frequency bands is permitt	e located in the 470-806 MHz.
	In the emission table above The emission limits shown employing a CISPR quasi-p 90 kHz, 110–490 kHz and a	§ 15.231 and 15.241. e, the tighter limit applies at the b in the above table are based on beak detector except for the freq above 1000 MHz. Radiated emis ed on measurements employing	and edges. measurements uency bands 9– sion limits in
Test Method:	In the emission table above The emission limits shown employing a CISPR quasi-p 90 kHz, 110–490 kHz and a these three bands are base	e, the tighter limit applies at the b in the above table are based on beak detector except for the freq above 1000 MHz. Radiated emis ed on measurements employing	and edges. measurements uency bands 9– sion limits in

10.1. EUT Operation

Operating Envir	ronment:	Anbo.	Anotek	Anbote.	Ant	Anbotek	Anbo
Test mode:	hopping) wit 2: TX-π/4-D0 (non-hopping 3: TX-8DPSI	h GFSK modu QPSK (Non-H g) with π/4 DC	Ilation. opping): Kee QPSK modula ng): Keep the	p the EUT i ation.	n continuousl	smitting mode y transmitting nsmitting mode	mode

Shenzhen Anbotek Compliance Laboratory Limited

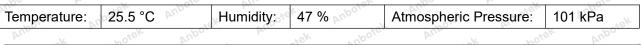

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)0755–26066440 Fax:(86)0755–26014772 Email:service@anbotek.com

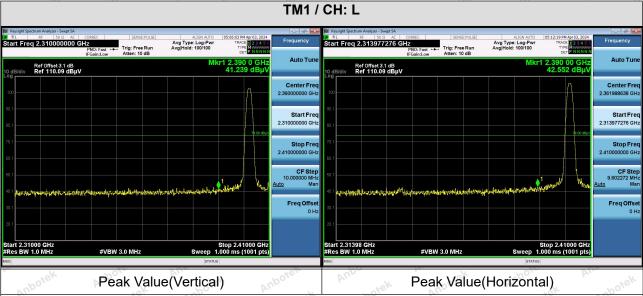
FCC ID: AUSCR3046A Page

10.2. Test Setup

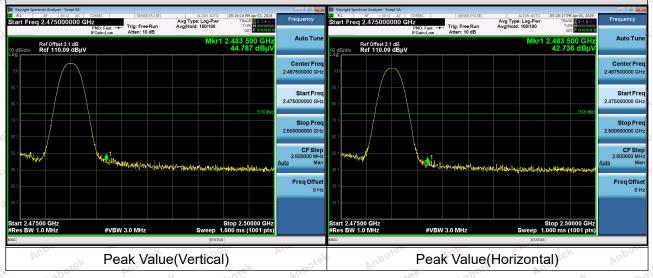
Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)0755–26066440 Fax:(86)0755–26014772 Email:service@anbotek.com





FCC ID: AUSCR3046A


Page 29 of 39

10.3. Test Data

Remark:

- 1. During the test, pre-scan all modes, the report only record the worse case mode.
- 2. When the PK measure result value is less than the AVG limit value, the AV measure result values test not applicable.

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)0755–26066440 Fax:(86)0755–26014772 Email:service@anbotek.com

FCC ID: AUSCR3046A

Page 30 of 39

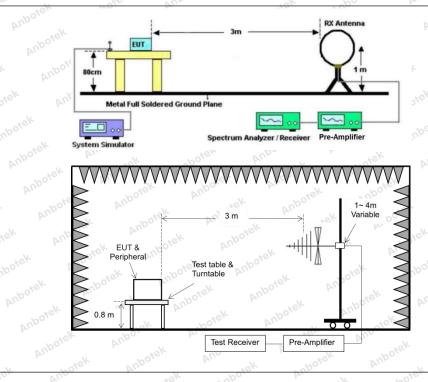
11. Emissions in frequency bands (below 1GHz)

Frequency (MHz)Field strength (microvolts/meter)Measurement distance (meters)0.009-0.4902400/F(kHz)3000.490-1.70524000/F(kHz)301.705-30.0303030-88100 **388-216150 **3216-960200 **3Above 9605003** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9– 90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average	Test Requirement:	restricted bands, as defined	In addition, radiated emissions in § 15.205(a), must also comp cified in § 15.209(a)(see § 15.2	ly with the 🔊 🔍
0.490-1.70524000/F(kHz)301.705-30.0303030-88100 **388-216150 **3216-960200 **3Above 9605003** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241. In the emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9– 	Anbotek Anbor	Frequency (MHz)		distance
1.705-30.0303030-88100 **388-216150 **3216-960200 **3Above 9605003** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9– 90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average	e handlek	0.009-0.490	2400/F(kHz)	300 10010
30-88100 **388-216150 **3216-960200 **3Above 9605003** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9– 90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average	nboten Anbo	0.490-1.705	24000/F(kHz)	30 John March
88-216150 **3216-960200 **3Above 9605003** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9– 90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average	atek unbote.	1.705-30.0		30 400
Z16-960200 **3Above 9605003** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9– 90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average	Anbo	30-88		NN
Above 9605003Test Limit:** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9– 90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average	aboten Anbo			· (m)
Test Limit: *** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9– 90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average	Ar. stek unbote		200 **	3 bote And
intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average	Anbo	Above 960	500 boten Anbo	3 dek no
tek pote pidetector. And k Ander his tek pote And	Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek	intentional radiators operati frequency bands 54-72 MH However, operation within t sections of this part, e.g., § In the emission table above The emission limits shown employing a CISPR quasi- 90 kHz, 110–490 kHz and a	ng under this section shall not b z, 76-88 MHz, 174-216 MHz or hese frequency bands is permitt § 15.231 and 15.241. e, the tighter limit applies at the b in the above table are based on beak detector except for the freq above 1000 MHz. Radiated emis	e located in the 470-806 MHz. ed under other and edges. measurements uency bands 9– sion limits in
Test Method: ANSI C63.10-2020 section 6.6.4	Test Method:	ANSI C63.10-2020 section	6.6.4	anbore.
Procedure: ANSI C63.10-2020 section 6.6.4	Procedure:	ANSI C63.10-2020 section	6.6.4 And And And	otek Anboten

11.1. EUT Operation

Operating Envir	ronment: Anbor An potek Anbore And stek Anborek Anbor
Test mode:	1: TX-GFSK (Non-Hopping): Keep the EUT in continuously transmitting mode (non-hopping) with GFSK modulation. 2: TX- π /4-DQPSK (Non-Hopping): Keep the EUT in continuously transmitting mode (non-hopping) with π /4 DQPSK modulation. 3: TX-8DPSK (Non-Hopping): Keep the EUT in continuously transmitting mode (non-hopping) with 8DPSK modulation.

Shenzhen Anbotek Compliance Laboratory Limited

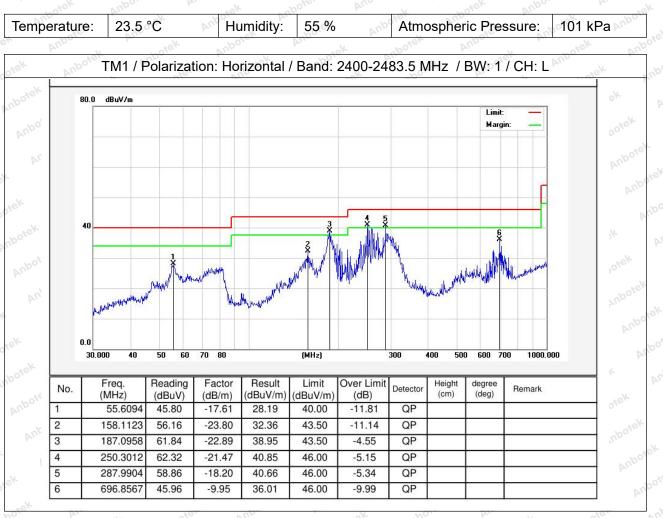

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)0755–26066440 Fax:(86)0755–26014772 Email:service@anbotek.com

FCC ID: AUSCR3046A Page 31 of 39

11.2. Test Setup

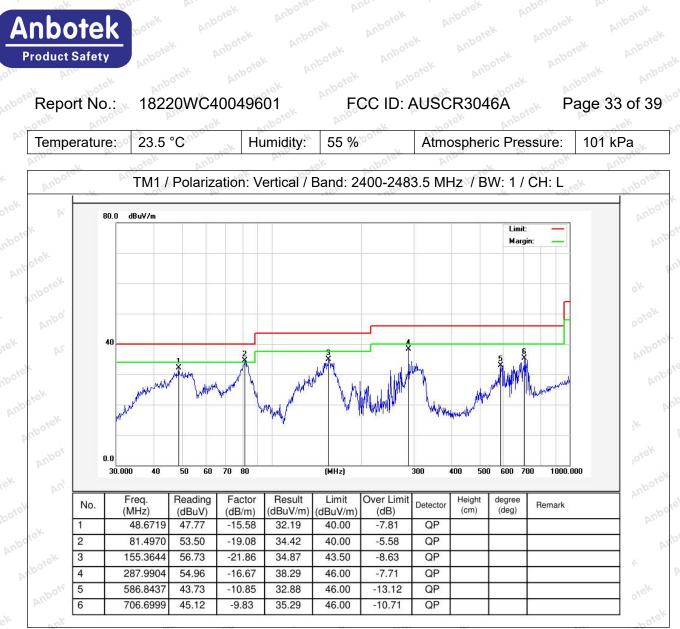
Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)0755–26066440 Fax:(86)0755–26014772 Email:service@anbotek.com



FCC ID: AUSCR3046A Page 32 of 39

11.3. Test Data


The test results of 9kHz-30MHz was attenuated more than 20dB below the permissible limits, so the results don't record in the report.

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F., Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)0755-26066440 Fax:(86)0755-26014772 Email:service@anbotek.com

Note: Only record the worst data in the report.

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)0755–26066440 Fax:(86)0755–26014772 Email:service@anbotek.com

Anbotek Product Safety

Report No.: 18220WC40049601

FCC ID: AUSCR3046A

Page 34 of 39

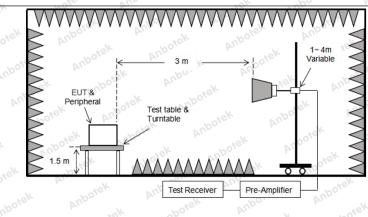
12. Emissions in frequency bands (above 1GHz)

Test Requirement:	In addition, radiated emissions which fall in the restricted bands, as defined in § $15.205(a)$, must also comply with the radiated emission limits specified in § $15.209(a)(see \ 15.205(c))$.					
k Anbotek Anbot otek Anbotek An	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)			
v hotek	0.009-0.490	2400/F(kHz)	300 000			
nboten And	0.490-1.705	24000/F(kHz)	30 Stek			
arek anborer	1.705-30.0	30° At More And	30 And			
Anbo	30-88	100 **	3 tek noore			
aboten Anbe	88-216	150 **	3 rel			
pr. stek snbote	216-960	200 **	3 boten And			
Anbo	Above 960	500 Motel Andre	3 dek no			
Test Limit:** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9– 90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.						
Test Method:	ANSI C63.10-2020 section	6.6.4				
Procedure:	ANSI C63.10-2020 section	6.6.4 And And	otek Anboten			
boten Ann	dek hobor	An above An	otek			

12.1. EUT Operation

Operating Envir	nmentiek Anbor An potek Anbore And Anborek Anbo
Test mode:	1: TX-GFSK (Non-Hopping): Keep the EUT in continuously transmitting mode (non-hopping) with GFSK modulation. 2: TX- π /4-DQPSK (Non-Hopping): Keep the EUT in continuously transmitting mode (non-hopping) with π /4 DQPSK modulation. 3: TX-8DPSK (Non-Hopping): Keep the EUT in continuously transmitting mode (non-hopping) with 8DPSK modulation.

Shenzhen Anbotek Compliance Laboratory Limited


Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)0755–26066440 Fax:(86)0755–26014772 Email:service@anbotek.com

FCC ID: AUSCR3046A Page 3

12.2. Test Setup

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)0755–26066440 Fax:(86)0755–26014772 Email:service@anbotek.com

Anbotek Product Safety

Report No.: 18220WC40049601

FCC ID: AUSCR3046A

Page 36 of 39

12.3. Test Data

Temperature:	25.5 °C	Humidity:	47 % Monto	Atmospheric Pressure:	101 kPa
202	- As		No. No.	N02	ek vo.

TM1 / CH: L Peak value: Frequency Reading Factor Result Limit Line **Over Limit** polarization (MHz) (dBuV) (dB/m)(dBuV/m) (dBuV/m) (dB) 4804.00 15.27 44.18 28.91 74.00 -29.82 Vertical 18.09 47.87 Vertical 7206.00 29.78 74.00 -26.13 9608.00 31.20 23.76 54.96 74.00 -19.04 Vertical 12010.00 * 74.00 Vertical ~~*[©] 14412.00 74.00 Vertical 4804.00 29.14 15.27 44.41 74.00 -29.59 Horizontal -25.31 Horizontal 7206.00 30.60 18.09 48.69 74.00 9608.00 28.98 23.76 52.74 74.00 -21.26 Horizontal 12010.00 74.00 Horizontal * 14412.00 74.00 Horizontal

Average value:

Frequency (MHz) Reading (dBuV) Factor (dB/m) Result (dBuV/m) Limit (dBuV/m) Over Limit (dB) p 4804.00 18.29 15.27 33.56 54.00 -20.44 7206.00 18.81 18.09 36.90 54.00 -17.10 7000 10.02 12010.00 * 54.00 -10.02 10000 10000 10000<	polarization
7206.00 18.81 18.09 36.90 54.00 -17.10 9608.00 20.22 23.76 43.98 54.00 -10.02	
9608.00 20.22 23.76 43.98 54.00 -10.02	Vertical
	Vertical
12010.00 * 54.00	Vertical
	Vertical
14412.00 * 54.00	Vertical
4804.00 17.49 15.27 32.76 54.00 -21.24	Horizontal
7206.00 19.66 18.09 37.75 54.00 -16.25	Horizontal
9608.00 18.29 23.76 42.05 54.00 -11.95	Horizontal
12010.00 * 54.00	Horizontal
14412.00 * 54.00	Horizontal

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)0755–26066440 Fax:(86)0755–26014772 Email:service@anbotek.com

Report No.:	18220WC40049601	FCC ID: AL	JSCR3046A
ooten Anbo		TM1 / CH: M	-boten Ant
Peak value:			

Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4882.00	28.93	15.42	44.35	74.00	-29.65	Vertical
7323.00	29.63	18.02	47.65	74.00	-26.35	Vertical
9764.00	30.21	23.80	54.01	74.00	-19.99	Vertical
12205.00	ek * notek	Anbor	pr. hotek	74.00	Annetek	Vertical
14646.00	*	rek Anbore	Ann	74.00	Anbo	Vertical
4882.00	28.84	15.42	44.26	74.00	-29.74	Horizontal
7323.00	30.59	18.02	48.61	74.00	-25.39	Horizontal
9764.00	28.68	23.80	52.48	74.00	-21.52	Horizontal
12205.00	* otek	Anbote	And	74.00	nbo. pr	Horizontal
14646.00	Art otek	Anbotek	Anbo	74.00	Anbore	Horizontal

Average value:

Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	polarization
4882.00	18.02	15.42	33.44	54.00	-20.56	Vertical
7323.00	18.91	18.02	36.93	54.00	17.07 Ant	Vertical
9764.00	20.08	23.80	43.88	54.00	-10.12	Vertical
12205.00	k \$nbore	Ann	Anbotek	54.00	abotek	Vertical
14646.00	otek * Anbot	Anbo	ek sootek	54.00	prin wotek	Vertical
4882.00	17.40	o ¹⁶ 15.42	32.82	54.00	-21.18	Horizontal
7323.00	19.22	18.02	37.24	54.00	-16.76	Horizontal
9764.00	18.80	23.80	42.60	54.00	note-11.40 pmbc	Horizontal
12205.00	Anbotek.	Anbo	abotek	54.00	and tek	Horizontal
14646.00	* * botek	Anbor	pri	54.00	And	Horizontal

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)0755–26066440 Fax:(86)0755–26014772 Email:service@anbotek.com Hotline 400–003–0500 www.anbotek.com.cn

Page 37 of 39

Anbotek Product Safety

otek Anbor	An	anboten	And	hotek	Aupor	dek .
		-	TM1 / CH: H			
Peak value:						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4960.00	29.20	15.58	44.78	74.00	-29.22	Vertical
7440.00	29.64	17.93	47.57	74.00	-26.43	Vertical
9920.00	30.76	23.83	54.59	74.00	-19.41	Vertical
12400.00	* wotek	Anboten	And	74.00	Anbor	Vertical
14880.00	* And	ek nbote	Anbo.	74.00	Anbote	Vertical
4960.00	28.91 M	15.58	44.49	74.00	-29.51	Horizontal
7440.00	30.62	17.93	48.55	74.00 ⁰⁰⁰	-25.45	Horizontal
9920.00	29.36	23.83	53.19	74.00	-20.81	Horizontal
12400.00	And *	abotek	Anbor	74.00	inbote. An	Horizontal
14880.00	Ar*bo.	h. hotek	Anbore	74.00	nbotek	Horizontal
Average value:						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	polarization
4960.00	19.14	15.58	34.72	54.00	-19.28	Vertical
7440.00	19.92	17.93	37.85	54.00	-16.15 M	Vertical
9920.00	20.63	23.83	44.46	54.00	-9.54	Vertical Vertical
12400.00	* * nbotek	Anbo	hinnotek	54.00	Ann	Vertical
14880.00	* * vot	ak Aupore	Ant	54.00	Anbo	Vertical
4960.00	18.84	15.58 no ^o	34.42	54.00 ote	-19.58	Horizontal
7440.00	20.59 M	17.93	o ^{tek} 38.52 pm ^{b0}	54.00	-15.4800 ¹⁰	Horizontal
9920.00	18.70	23.83	42.53	54.00 M	-11.47	Horizontal

Report No.: 18220WC40049601

FCC ID: AUSCR3046A

Page 38 of 39

Remark:

12400.00

14880.00

- 1. Result =Reading + Factor
- 2. "*" means the test results were attenuated more than 20dB below the permissible limits, so the results don't record in the report.

54.00

54.00

3. Only the worst case is recorded in the report.

*

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)0755–26066440 Fax:(86)0755–26014772 Email:service@anbotek.com Hotline 400–003–0500 www.anbotek.com.cn

Horizontal

Horizontal

Report No.: 18220WC40049601 FCC ID: AUSCR3046A Page 39 of 39

APPENDIX I -- TEST SETUP PHOTOGRAPH

Please refer to separated files Appendix I -- Test Setup Photograph_RF

APPENDIX II -- EXTERNAL PHOTOGRAPH

Please refer to separated files Appendix II -- External Photograph

APPENDIX III -- INTERNAL PHOTOGRAPH

Please refer to separated files Appendix III -- Internal Photograph

----- End of Report ----

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)0755–26066440 Fax:(86)0755–26014772 Email:service@anbotek.com

