

Multi-Tech Systems, Inc.

MTAC-003U00

FCC 15.247:2022, RSS-247 Issue 2:2017 902 – 928 MHz Wideband (DTS) Transceiver Radio

Report: MLTI0249.4 Rev. 3, Issue Date: September 20, 2023

CERTIFICATE OF TEST

Last Date of Test: July 21, 2023 Multi-Tech Systems, Inc. EUT: MTAC-003U00

Radio Equipment Testing

Standards

Specification	Method		
FCC 15.247:2022			
RSS-247 Issue 2:2017	ANSI C63.10:2013, KDB 558074 v05r02:2019		
RSS-Gen Issue 5:2018+A1:2019+A2:2021			

Results

Test Description	Result	FCC Section(s)	RSS Section(s)	ANSI Method Section(s)	Comments
Band Edge Compliance	Pass	15.247(d), KDB 558074 -8.7	RSS-247 5.5	11.11	
Band Edge Compliance - Hopping Mode	N/A	15.247(d)	RSS-247 5.5	7.8.6	Not required for DTS devices.
Carrier Frequency Separation	N/A	15.247(a)(1)	RSS-247 5.1(b)	7.8.2	Not required for DTS devices.
DTS Bandwidth (6 dB)	N/A	15.247(a), KDB 558074 -8.2	RSS-247 5.2(a)	11.8.2	
Duty Cycle	N/A	15.247, KDB 558074 -6.0	RSS-Gen 3.2	11.6	
Dwell Time	N/A	15.247(a)(1)	RSS-247 5.1(d)	7.8.4	Not required for DTS devices.
Equivalent Isotropic Radiated Power	Pass	15.247(b), KDB 558074 -8.3.2	RSS-247 5.4(d)	11.9.1.1	
Number of Hopping Frequencies	N/A	15.247(a)(1)	RSS-247 5.1(d)	7.8.3	Not required for DTS devices.
Occupied Bandwidth (99%)	Pass	15.247(a), KDB 558074 -8.2	RSS-247 5.2(a)	6.9.3	
Output Power	Pass	15.247(b), KDB 558074 -8.3.2	RSS-247 5.4(d)	11.9.1.1	
Power Spectral Density	Pass	15.247(e), KDB 558074 -8.4	RSS-247 5.2(b)	11.10.2	
Powerline Conducted Emissions (Transmitter)	Pass	15.207	RSS-Gen 8.8	6.2	
Spurious Conducted Emissions	Pass	15.247(d), KDB 558074 -8.5	RSS-247 5.5	11.11	
Spurious Emissions in Restricted Bands (Conducted)	Pass	15.247(d), KDB 558074 -8.6	RSS-247 5.5	11.12.2	
Spurious Radiated Emissions	Pass	15.247(d), KDB 558074 -8.6	RSS-247 5.5	6.5, 6.6, 11.12.1, 11.13.2	
Powerline Conducted Emissions (Receiver)	N/A	15.107	RSS-Gen 7.2	ANSI C63.4 12.2.4	Not included per FCC 15.101 as this will be covered under SDoC rules for the FCC.
Spurious Emissions of the Receiver	N/A	15.101, 15.109	RSS-Gen 7.3	ANSI C63.4 - 12.2.5	RSS-Gen section 7 stated receiver requirements only apply to standalone receivers operating in the 30-960 MHz band and this is not a standalone receiver.

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information. As indicated in the Statement of Work sent with the quotation, Element's standard process is to always use the latest published version of the test methods even when earlier versions are cited in the test specification. Issuance of a purchase order was de facto acceptance of this approach. Otherwise, the client would have advised Element in writing of the specific version of the test methods they wanted applied to the subject testing.

Deviations From Test Standards

None

Approved By:

Cole Ghizzone, Operations Manager

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information. As indicated in the Statement of Work sent with the quotation, Element's standard process is to always use the latest published version of the test methods even when earlier versions are cited in the test specification. Issuance of a purchase order was de facto acceptance of this approach. Otherwise, the client would have advised Element in writing of the specific version of the test methods they wanted applied to the subject testing.

REVISION HISTORY

Revision Number	Description	Date (yyyy-mm-dd)	Page Number
01	Added configuration MLTI0281-1.	2023-04-11	16
01	Updated equipment lists.	2023-04-11	18, 21, 29, 34, 38, 42 & 51
	Replaced Powerline Conducted Emissions and Spurious Conducted Emissions with data tested under MLTI0319	2023-08-22	46-50, 66-72
	Removed unused configurations and added configurations from MLTI0319	2023-08-22	13-16
	Updated test dates	2023-08-22	2, 11, 17
	Added EUT names	2023-08-22	1, 2, 11
	Added last statement to functional description to explain why the second unit was partially tested	2023-08-22	11
	Updated EUT name on product description page, CoT, and cover page	2023-09-11	1, 2, 11*
02	Added a line about this model being a part of the mCard series. The two enclosure names have been listed and it states that one is slide-in, the other integrated into the case. Updated the functional description to 2023 on FCC 15.247.	2023-09-11	11
	Added the Pulse Electronics antenna info (used with the waterproof enclosure) and CSS modulation and the channel frequencies.	2023-09-11	11
	DC block was used, this has been added.	2023-09-11	23
	Added RSS-Gen to Powerline CE.	2023-09-11	45-48
	Updated the equipment list (had to add a note to explain the cal dates) and frequency range.	2023-09-11	64-71
	Up to 12.4GHz was measured, changed 12750 to 12400.	2023-09-11	64
	Removed unused configurations	2023-09-11	13-14
	Added RSS-247 standard to the 99% OBW and SRE modules.	2023-09-19	24, 66, 69
03	Revised the power settings and antenna page with Comments section	2023-09-19	12
	Updated the antenna in configuration MLTI0319-1 with model number (W1063)	2023-09-19	14
	Fixed bookmark for PSD - removed 'edited'	2023-09-19	40

*page numbers above this line may have changed with revisions

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Each laboratory is accredited by A2LA to ISO / IEC 17025, and as a product certifier to ISO / IEC 17065 which allows Element to certify transmitters to FCC and IC specifications.

Canada

ISED - Recognized by Innovation, Science and Economic Development Canada as a Certification Body (CB) and as a CAB for the acceptance of test data.

European Union

European Commission – Recognized as an EU Notified Body validated for the EMCD and RED Directives.

United Kingdom

BEIS - Recognized by the UK as an Approved Body under the UK Radio Equipment and UK EMC Regulations.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIT / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA – Recognized by IDA as a CAB for the acceptance of test data.

Israel

MOC – Recognized by MOC as a CAB for the acceptance of test data.

Hong Kong

OFCA – Recognized by OFCA as a CAB for the acceptance of test data.

Vietnam

MIC – Recognized by MIC as a CAB for the acceptance of test data.

SCOPE						
For details on the Scopes of our Accreditations, please visit:						
<u>California</u>	<u>Minnesota</u>	<u>Oregon</u>	<u>Texas</u>	Washington		

FACILITIES

California Labs OC01-17 41 Tesla Irvine, CA 92618 (949) 861-8918	Minnesota Labs MN01-11 9349 W Broadway Ave. Brooklyn Park, MN 55445 (612)-638-5136	Oregon Labs EV01-12 6775 NE Evergreen Pkwy #400 Hillsboro, OR 97124 (503) 844-4066	Texas Labs TX01-09 3801 E Plano Pkwy Plano, TX 75074 (469) 304-5255	Washington Labs NC01-05 19201 120 th Ave NE Bothell, WA 98011 (425)984-6600					
	A2LA								
Lab Code: 3310.04	Lab Code: 3310.05	Lab Code: 3310.02	Lab Code: 3310.03	Lab Code: 3310.06					
	Innovation, Science and Economic Development Canada								
2834B-1, 2834B-3	2834E-1, 2834E-3	2834D-1	2834G-1	2834F-1					
		BSMI							
SL2-IN-E-1154R	SL2-IN-E-1152R	SL2-IN-E-1017	SL2-IN-E-1158R	SL2-IN-E-1153R					
	VCCI								
A-0029	A-0109	A-0108	A-0201	A-0110					
Re	Recognized Phase I CAB for ISED, ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA								
US0158	US0175	US0017	US0191	US0157					

MEASUREMENT UNCERTAINTY

Measurement Uncertainty

When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.

A measurement uncertainty estimation has been performed for each test per our internal quality document QM205.4.6. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) can be found in the table below. A lab specific value may also be found in the applicable test description section. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request.

The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.

Test	+ MU	- MU
Frequency Accuracy	0.0007%	-0.0007%
Amplitude Accuracy (dB)	1.2 dB	-1.2 dB
Conducted Power (dB)	1.2 dB	-1.2 dB
Radiated Power via Substitution (dB)	0.7 dB	-0.7 dB
Temperature (degrees C)	0.7°C	-0.7°C
Humidity (% RH)	2.5% RH	-2.5% RH
Voltage (AC)	1.0%	-1.0%
Voltage (DC)	0.7%	-0.7%
Field Strength (dB)	5.2 dB	-5.2 dB
AC Powerline Conducted Emissions (dB)	3.2 dB	-3.2 dB

TEST SETUP BLOCK DIAGRAMS

Measurement Bandwidths

Frequency Range (MHz)	Peak Data (kHz)	Quasi-Peak Data (kHz)	Average Data (kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

Unless otherwise stated, measurements were made using the bandwidths and detectors specified. No video filter was used.

Antenna Port Conducted Measurements

Measured Value		Measured Level		Reference Level Offset
71.2	=	42.6	+	28.6

Near Field Test Fixture Measurements

71.2

=

42.6

+

28.6

TEST SETUP BLOCK DIAGRAMS

Emissions Measurements

Sample Calculation (logarithmic units)

Radiated Emissions:

				Factor								
Measured Level (Amplitude)		Antenna Factor		Cable Factor		Amplifier Gain		Distance Adjustment Factor		External Attenuation		Field Strength
42.6	+	28.6	+	3.1	-	40.8	+	0.0	+	0.0	=	33.5

Conducted Emissions:

Radiated Power (ERP/EIRP) – Substitution Method:

Measured Level into Substitution Antenna (Amplitude dBm)		Substitution Antenna Factor (dBi)		EIRP to ERP (if applicable)		Measured power (dBm ERP/EIRP)
10.0	+	6.0	-	2.15	=	13.9/16.0

TEST SETUP BLOCK DIAGRAMS

Bore Sighting (>1GHz)

The diameter of the illumination area is the dimension of the line tangent to the EUT formed by 3 dB beamwidth of the measurement antenna at the measurement distance. At a 3 meter test distance, the diameter of the illumination area was 3.8 meters at 1 GHz and greater than 2.1 meters up to 6 GHz. Above 1 GHz, when required by the measurement standard, the antenna is pointed for both azimuth and elevation to maintain the receive antenna within the cone of radiation from the EUT. The specified measurement detectors were used for comparison of the emissions to the peak and average specification limits.

PRODUCT DESCRIPTION

Client and Equipment under Test (EUT) Information

Company Name:	Multi-Tech Systems, Inc.
Address:	2205 Woodale Dr
City, State, Zip:	Mounds View, MN 55112
Test Requested By:	Michael Kwilinski
EUT:	MTAC-003U00
First Date of Test:	May 26, 2022
Last Date of Test:	July 21, 2023
Receipt Date of Samples:	April 12, 2022
Equipment Design Stage:	Production
Equipment Condition:	No Damage
Purchase Authorization:	Verified

Information Provided by the Party Requesting the Test

Functional Description of the EUT:

The mCard[™] gateway accessory cards provide the flexibility needed to manage a wide range of different wired and wireless interfaces and associated communication protocols required to connect sensors, appliances, and assets to the Conduit® programmable gateway.

Available options include a LoRaWAN® Ready mCard capable of supporting thousands of mDot™ long range RF modules monitoring and controlling remote field assets. The MTAC-003U00 is a part of the mCard series. Want to know more about LoRaWAN technology?

Visit our LoRa® technology page today for the latest in-depth information.

The accessory card was integrated into a MTCDT-L4G1 and a MCTDTIP-L4G1 for radiated testing, by sliding into the housing or being integrated into the enclosure.

This was a module like system which we tested in both hosts for spurious radiated emissions since this is the test most likely to show degradation between hosts.

Testing Objective:

Seeking to demonstrate compliance under FCC 15.247:2023 and RSS-247 Issue 2:2017 for operation in the 902 - 928 MHz Band.

POWER SETTINGS AND ANTENNAS

The power settings, antenna gain value(s) and cable loss (if applicable) used for the testing contained in this report were provided by the customer and will affect the validity of the results. Element assumes no responsibility for the accuracy of this information. The power settings below reflect the maximum power that the EUT is allowed to transmit at during normal operation.

ANTENNA GAIN

Туре	Frequency Range (MHz)	Gain	Comments:
Pulse Larsen R08063/21704NM	806-960	3 dBi	Main antenna used with MTCDTIP models
Pulse Larsen W1063	868-928	1 dBi	Main antenna used with the MTCDT-L4G1 product
PCTEL MFB9155NF	902-928	5.07 dBi	Only for demonstration of max gain antenna

The EUT was tested using the power settings provided by the manufacturer which were based upon:

 \boxtimes Test software settings

Test software/firmware installed on EUT: <u>6.0.0-dev2-124-gec36e32</u>

□ Rated power settings

SETTINGS FOR ALL TESTS IN THIS REPORT

Modulation Types	Position	Power Setting
	Low Channel (923.3 MHz)	PA3 PWID15 Spreading Factor 10
Chirp Spread Spectrum modulation	Mid Channel (925.1 MHz)	PA3 PWID15 Spreading Factor 10
	High Channel (927.5 MHz)	PA3 PWID15 Spreading Factor 10

Configuration MLTI0249-7

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
MTCDT	Multi-Tech Systems, Inc.	MTCDT	None (no label)
MTAC-003U00	Multi-Tech Systems, Inc.	MTAC-003U00	21679377

Peripherals in Test Setup Boundary					
Description	Manufacturer	Model/Part Number	Serial Number		
AC Adapter (EUT)	Mega Electronics Inc	MJSW0901700N-5448	MJSW0901700N-5448		

Remote Equipment Outside of Test Setup Boundary					
Description	Manufacturer	Model/Part Number	Serial Number		
Laptop	Lenovo	ThinkPad	PK0WM2G		
Power Supply (Thinkpad)	Lenovo	8DLX90NCT2A	None		

Cables							
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2		
DC Cable (EUT)	No	1.5 m	No	MTAC-003U00	AC Adapter (EUT)		
Ethernet Cable (benchtop)	No	1.9 m	No	MTCDT	Laptop		

Configuration MLTI0266- 2

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
MTAC-003U00	Multi-Tech Systems, Inc.	MTAC-003U00	21679377

Peripherals in Test Setup Boundary					
Description	Manufacturer	Model/Part Number	Serial Number		
AC/DC Adapter	MEGA Electronics Inc.	FJ-SW0901700N	941828		
Laptop	Lenovo	2320JPU	13821		

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
DC Power	Yes	1.4 m	No	AC/DC Adapter	MTAC-003U00
Cat5 Ethernet	No	1.8 m	No	MTAC-003U00	MTAC-003U00

Configuration MLTI0319-1

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
LoRa Antenna 1	Pulse Larsen	W1063	None
MTCDT-L4G1 (HOST)	Multi-Tech Systems, Inc.	MTCDT-L4G1	22728636

Peripherals in Test Setup Boundary					
Description	Manufacturer	Model/Part Number	Serial Number		
Power Supply	MEGA Electronics	FJ-SW0901700N	MJSW0901700N-5448		

Remote Equipment Outside of Test Setup Boundary					
Description	scription Manufacturer Model/Part Number Serial Number				
Laptop	Lenovo	Thinkpad	None		

Cables							
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2		
Power Cable	No	1.8m	No	Power Supply	MTCDT-L4G1 (HOST)		
Ethernet Cable	No	>3m	No	LAN	Laptop		

Configuration MLTI0319-2

EUT								
Description	Manufacturer	Model/Part Number	Serial Number					
MTCDTIP-L4G1 (HOST)	Multi-Tech Systems, Inc.	MTCDTIP-L4G1	22761195					
LoRa Antenna 2	Pulse Electronics	R08063/21704NM	None					

Peripherals in Test Setup Boundary					
Description	Manufacturer	Model/Part Number	Serial Number		
POE Injector	Intellinet	561235	None		

Remote Equipment Outside of Test Setup Boundary					
Description	Manufacturer	Model/Part Number	Serial Number		
Laptop	Lenovo	Thinkpad	None		

Cables								
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2			
AC Cable	No	1.8m	No	POE Injector	AC Mains			
Ethernet Cable	No	2m	No	POE Injector	LAN			
Ethernet Cable	No	>3m	No	LAN	Laptop			

MODIFICATIONS

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT
1	2022-05-26	Band Edge Compliance	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
2	2022-05-26	DTS Bandwidth (6 dB)	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
3	2022-05-26	Duty Cycle	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
4	2022-05-26	Equivalent Isotropic Radiated Power	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT was taken home by the client before the next scheduled test.
5	2022-05-26	Output Power	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
6	2022-05-26	Power Spectral Density	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
7	2022-05-26	Spurious Conducted Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT was returned to the manufacturer.
8	2022-12-16	Occupied Bandwidth (99%)	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT was returned to the manufacturer.
9	2023-07-20	Powerline Conducted Emissions (Transmitter)	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT was returned to the manufacturer.
10	2023-07-21	Spurious Radiated Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.

BAND EDGE COMPLIANCE

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Keysight	N5171B (EXG)	TEY	2019-12-31	2022-12-31
Attenuator	Fairview Microwave	SA18S5W-20	RFX	2021-06-02	2022-06-02
Cable	Micro-Coax	UFD150A-1-0720-200200	MNL	2021-09-12	2022-09-12
Analyzer - Spectrum Analyzer	Agilent	E4440A	AFG	2022-05-18	2023-05-18
Block - DC	Fairview Microwave	SD3379	AMI	2021-08-13	2022-08-13
Attenuator	S.M. Electronics	SA26B-20	RFW	2022-02-08	2023-02-08

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer.

The spurious RF conducted emissions at the edges of the authorized bands were measured with the EUT set to low and high transmit frequencies in each available band. The channels closest to the band edges were selected. The EUT was transmitting at the data rate(s) listed in the datasheet.

The spectrum was scanned below the lower band edge and above the higher band edge.

BAND EDGE COMPLIANCE

		TbtTx 2022.05.02.0	XMit 2022.02.07.0
EUT: MTAC-003U00	Work Order:	MLTI0249	
Serial Number: 21679377	Date:	26-May-22	
Customer: Multi-Tech Systems, Inc.	Temperature:	21.9 °C	
Attendees: Dylan Rosenfeldt	Humidity:	40.9% RH	
Project: None	Barometric Pres.:	1013 mbar	
Tested by: Christopher Heintzelman Power: 120VAC/60Hz	Job Site:	MN08	
TEST SPECIFICATIONS Test Method			
FCC 15.247:2022 ANSI C63.10:2013			
RSS-247 Issue 2:2017 ANSI C63.10:2013			
COMMENTS			
Power level: PA3, PWID15, spreading factor 10.			
DEVIATIONS FROM TEST STANDARD			
None			
Configuration # 7 Cli April Hauften			
	Value	Limit	
	(dBc)	≤ (dBc)	Result
LoRa CSS 500 kHz Bandwidth			
Low Channel, 923.3 MHz	-66.23	-30	Pass
High Channel, 927.5 MHz	-39.7	-30	Pass

BAND EDGE COMPLIANCE

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Keysight	N5171B (EXG)	TEY	2019-12-31	2022-12-31
Block - DC	Fairview Microwave	SD3379	AMI	2021-08-13	2022-08-13
Attenuator	Fairview Microwave	SA18S5W-20	RFX	2021-06-02	2022-06-02
Attenuator	S.M. Electronics	SA26B-20	RFW	2022-02-08	2023-02-08
Cable	Micro-Coax	UFD150A-1-0720-200200	MNL	2021-09-12	2022-09-12
Analyzer - Spectrum Analyzer	Agilent	E4440A	AFG	2022-05-18	2023-05-18

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer.

The EUT was set to the channels and modes listed in the datasheet.

The 6dB DTS bandwidth was measured using 100 kHz resolution bandwidth and 300 kHz video bandwidth. The span of the analyzer shall be set to capture all products of the modulation process, including the emission skirts.

					TbtTx 2022.05.02.0	XMit 2022.02.07.0
EUT: I	MTAC-003U00			Work Order:	MLTI0249	
Serial Number:	21679377			Date:	26-May-22	
Customer:	Multi-Tech Systems, Inc.			Temperature:	21.8 °C	
Attendees:	Dylan Rosenfeldt			Humidity:	42.8% RH	
Project:	None			Barometric Pres.:	1013 mbar	
Tested by:	Christopher Heintzelman		Power: 120VAC/60Hz	Job Site:	MN08	
TEST SPECIFICATIO	DNS		Test Method			
FCC 15.247:2022			ANSI C63.10:2013			
RSS-247 Issue 2:201	7		ANSI C63.10:2013			
COMMENTS						
Power level: PA3, PV	WID15, spreading factor	10.				
DEVIATIONS FROM	TEST STANDARD					
None						
Configuration #	7	Signature	litter Hauten			
					Limit	
				Value	(>)	Result
LoRa CSS 500 kHz B	andwidth					
l	Low Channel, 923.3 MHz			627.316 kHz	500 kHz	Pass
r i	Mid Channel, 925.1 MHz			624.682 kHz	500 kHz	Pass
I	High Channel, 927.5 MHz			624.726 kHz	500 kHz	Pass

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Attenuator	S.M. Electronics	SA26B-20	RFW	2022-02-08	2023-02-08
Analyzer - Spectrum Analyzer	Agilent	E4443A	AAS	2022-06-06	2023-06-06
Signal Generator	Agilent	N5183A	TIK	2022-01-24	2025-01-24
Block - DC	Fairview Microwave	SD3379	AMI	2022-09-10	2023-09-10

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer.

The 99% occupied bandwidth was measured with the EUT configured for continuous modulated operation.

Per ANSI C63.10:2013, 6.9.3, the spectrum analyzer was configured as follows:

The span of the analyzer shall be set to capture all products of the modulation process, including the emission skirts.

The resolution bandwidth (RBW) of the spectrum analyzer was set to the range of 1% to 5% of the occupied bandwidth (OBW) and video bandwidth (VBW) bandwidth was set to at least 3 times the resolution bandwidth. The analyzer sweep time was set to auto to prevent video filtering or averaging. A sample detector was used unless the device was not able to be operated in a continuous transmit mode, in which case a peak detector was used.

The spectrum analyzer occupied bandwidth measurement function was used to sum the power of the transmission in linear terms to obtain the 99% bandwidth.

					TbtTx 2022	2.06.03.0 XMit 2022.02.07.0
EUT:	MTAC-003U00			Work C	rder: MLTI0249	
Serial Number:	22481781				Date: 16-Dec-22	
Customer:	Multi-Tech Systems, Inc.			Tempera	ture: 21.4 °C	
Attendees:	Brent Nielsen			Hum	idity: 29.4% RH	
Project:	None			Barometric	res.: 998 mbar	
Tested by:	Trevor Buls		Power: 110VAC/60Hz	Job	Site: MN10	
TEST SPECIFICATI	ONS		Test Method			
FCC 15.247:2022			ANSI C63.10:2013			
RSS-247 Issue 2:20	17		ANSI C63.10:2013			
COMMENTS						
DEVIATIONS FROM	TEST STANDARD	port terminated. KF path include DC	block, attenuator and cable.			
None						
Configuration #	19	Signature	Trevor Buls			
				Value	Limit	Result
LoRa CSS 500 kHz I	Bandwidth					
	Low Channel, 923.3 MHz			496.853 k	Hz N/A	N/A
	Mid Channel, 925.1 MHz			492.596 k	Hz N/A	N/A
	High Channel, 927.5 MHz			491.338 k	Hz N/A	N/A

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Keysight	N5171B (EXG)	TEY	2019-12-31	2022-12-31
Attenuator	Fairview Microwave	SA18S5W-20	RFX	2021-06-02	2022-06-02
Block - DC	Fairview Microwave	SD3379	AMI	2021-08-13	2022-08-13
Cable	Micro-Coax	UFD150A-1-0720-200200	MNL	2021-09-12	2022-09-12
Analyzer - Spectrum Analyzer	Agilent	E4440A	AFG	2022-05-18	2023-05-18
Attenuator	S.M. Electronics	SA26B-20	RFW	2022-02-08	2023-02-08

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer.

The Duty Cycle (x) of the single channel operation of the radio as controlled by the provided test software was measured for each of the EUT operating modes.

There is no compliance requirement to be met by this test, so therefore no Pass / Fail criteria.

The measurements were made using a zero span on the spectrum analyzer to see the pulses in the time domain. The transmit power was set to its default maximum.

The duty cycle was calculated by dividing the transmission pulse duration (T) by the total period of a single on and total off time.

If the transmit duty cycle < 98 percent, burst gating may have been used during some of the other tests in this report to only take the measurement during the burst duration.

							TbtTx 2022.05.02.0	XMit 2022.02.07.0
EUT:	MTAC-003U00					Work Order:	MLTI0249	
Serial Number:	21679377					Date:	26-May-22	
Customer:	Multi-Tech Systems, Inc.					Temperature:	21.9 °C	
Attendees:	Dylan Rosenfeldt					Humidity:	43.5% RH	
Project:	None				Barometric Pres.:	1014 mbar		
Tested by:	Christopher Heintzelman		Power: 120VAC/60Hz			Job Site:	MN08	
TEST SPECIFICATI	IONS		Test Method					
FCC 15.247:2022			ANSI C63.10:2013					
RSS-247 Issue 2:20)17		ANSI C63.10:2013					
COMMENTS								
Power level: PA3, F	PWID15, spreading factor 1	 Duty cycle was found to be variab 	ble, so a pulse with a longer off time wa	s used for these v	alues.			
DEVIATIONS FROM	I TEST STANDARD							
None								
Configuration #	7	Signature	li Am Hauften					
		•	Pulse Width	Period	Number of Pulses	Value (%)	Limit (%)	Results
LoRa CSS 500 kHz	Bandwidth							
	Low Channel, 923.3 MHz		562.637 ms	624.664 ms	1	90.1	N/A	N/A
	Low Channel, 923.3 MHz		N/A	N/A	5	N/A	N/A	N/A
	Mid Channel, 925.1 MHz		563.858 ms	629.914 ms	1	89.5	N/A	N/A
	Mid Channel, 925.1 MHz		N/A	N/A	5	N/A	N/A	N/A
	High Channel, 927.5 MHz		563.736 ms	625.151 ms	1	90.2	N/A	N/A
	High Channel, 927.5 MHz		N/A	N/A	5	N/A	N/A	N/A

	LoR	a CSS 500 kHz	Randwidth Low	Channel 023 3	8 MHz			
	Loiv		Number of	Value	Li	mit		
	Pulse Width	Period	Pulses	(%)	("	%)	Resu	ults
	562.637 ms	624.664 ms	1	90.1	Ň	/Á	N//	A
🔆 Agilent 13:38	6:50 May 25,	2022			R	Т		
Element Materials	Technology						Mkr2	1.748 s
Ref 38 dBm		#Atten 10 d	B				27	7.50 dBm
#Peak								
Log				4				3
5				<u> </u>			<u></u>	ŏ
dB/								
Offst								
40.2								
dB								
#VAva								
W1 S2								
Center 923.300 N	MHz						S	pan 0 Hz
Res BW 3 MHz			₩VBW 30 kHz			Sweep 2	2 s (8	192 pts)
Marker Trace	e Type	X	Axis	Âr	nplitude			
	Time		1.185 s	27	.55 dBm			
2 (1) 2 (1)	lime		1 01 0	27	.50 dBm 75 dBm			
	111116		1.01 8	27	.rə ubm			

LoRa CSS 500 kHz Bandwidth, Low Channel, 923.3 MHz											
			Number of	Value	Limit						
		Pulse Width	Period	Pulses	(%)	(%)	Results				
		N/A	N/A	5	N/A	N/A	N/A				

₩ А	gilent 13:	36 : 59 Ma	y 25,20	22					R '	Г				
Elemen	t Material	s Technol	ogy		_									
Ref 38	dBm		#At	ten 10 di	3									
#Peak														
Log r														
5 JD 7														
066-4 087														
UTTSC AM 2					7									
48.2 dB														
4D														
#VAva														
•••••9														
W1 S2														
S3 VS					T									
£ (f):														
FTun														
Center	923.300	MHz										Si	oan Ø	Hzî
Res Bk	I 3 MHz			#	VE	3W 30 k	Hz		Swee	p 2.	811	s (81	192 pt	ts)

	Lof	Ra CSS 500 kHz	Bandwidth. Mid C	hannel. 925.1 M	1Hz		
			Number of	Value	Limit		
	Pulse Width	Period	Pulses	(%)	(%)	Res	ults
	563.858 ms	629.914 ms	1	89.5	N/A	N	/A
🔆 Agilent 14:12	2:42 May 25,	, 2022			RΤ		
lement Materials	Technology					Mkr3	1.848 s
Ref 37 dBm		#Atten 10 c	IB			2	6.57 dBm
+Peak							
.og				1		-	2 3
5				¢.			<u>ه د</u>
dB/							
Offst 🛛 👘							
40.2							
dB				<mark> </mark>			
#VAvg							
A1 S2							
Center 925.100 M	1Hz					<pre></pre>	Span 0 Hz
Res BW 3 MHz			#VBW 30 kHz		Swe	ep 2 s (8	3192 pts)
Marker Trace	е Туре	X	Axis	Âmpl	litude		
	Time		1.218 s	26.5	7 dBm 4 dBm		
$\frac{2}{3}$ (1)	Time		1.782 S	26.5	4 abm 7 dBm		
	111116			20.3	a sub-uu		

LoRa CSS 500 kHz Bandwidth, Mid Channel, 925.1 MHz											
	Number of	Value	Limit								
		Pulse Width	Period	Pulses	(%)	(%)	Results				
		N/A	N/A	5	N/A	N/A	N/A				

LoRa CSS 500 kHz Bandwidth, High Channel, 927.5 MHz											
				Number of	Value	Limit					
		Pulse Width	Period	Pulses	(%)	(%)	Results				
		N/A	N/A	5	N/A	N/A	N/A				

₩ A	₩ Agilent 14:19:51 May 25, 2022														
Element	t Material:	s Technol	ogy												
Ref 36	dBm		#At	ten 10 dE	3										
#Peak ∣															
Log															
5															
dB/															
Offst					П										
40.2 dB															
					T										
#VAvg															
W1 S2															
S3 VS															
f .(f) [.]					╢										
FTun															
Center	927.500	MHz											S	oan 0) Hz^
Res BW	3 MHz			#	VE	3W 30 k	:Hz			Swee	p 2.	813	s (81	.92 p	ots)_

EQUIVALENT ISOTROPIC RADIATED POWER (EIRP)

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Keysight	N5171B (EXG)	TEY	2019-12-31	2022-12-31
Attenuator	Fairview Microwave	SA18S5W-20	RFX	2021-06-02	2022-06-02
Block - DC	Fairview Microwave	SD3379	AMI	2021-08-13	2022-08-13
Cable	Micro-Coax	UFD150A-1-0720-200200	MNL	2021-09-12	2022-09-12
Analyzer - Spectrum Analyzer	Agilent	E4440A	AFG	2022-05-18	2023-05-18
Attenuator	S.M. Electronics	SA26B-20	RFW	2022-02-08	2023-02-08

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer.

The fundamental emission output power (maximum average conducted output power) was measured using the channels and modes as called out on the following data sheets. The transmit power was set to its default maximum.

Prior to measuring output power; the emission bandwidth (B) and the transmission pulse duration (T) were measured. Both are required to determine the method of measuring Maximum Conducted Output Power. The transmission pulse duration (T) was measured using a zero span on the spectrum analyzer to see the pulses in the time domain.

The method AVGSA-2 in section 11.9.2.2.4 of ANSI C63.10:2013 was used to make the measurement. This method uses trace averaging across ON and OFF times of the EUT transmissions in the spectrum analyzer channel power function using an RMS detector. Following the measurement a duty cycle correction was applied by adding [10 log (1 / D)], where D is the duty cycle, to the measured power to compute the average power during the actual transmission times.

The AVGSA-2 method was modified as the available resolution bandwidth (RBw) on the spectrum analyzer could be set wider than the measured emissions bandwidth (B). RBw was set wider than B. This follows the guidance of section 11.9.1.1 and is equivalent to a measurement with a power meter AVGPM per section 11.9.2.3.

Equivalent Isotropic Radiated Power (EIRP) = Max Measured Power + Antenna gain (dBi)

EQUIVALENT ISOTROPIC RADIATED POWER (EIRP)

								TbtTx 2022.05.02.0	XMit 2022.02.07.0
EUT:	MTAC-003U00						Work Order:	MLTI0249	
Serial Number:	21679377						Date:	26-May-22	
Customer:	Multi-Tech Systems, Inc.						Temperature:	22.1 °C	
Attendees:	Dylan Rosenfeldt						Humidity:	41.7% RH	
Project:	None						Barometric Pres.:	1013 mbar	
Tested by:	Christopher Heintzelman		Power:	120VAC/60Hz			Job Site:	MN08	
TEST SPECIFICATI	ONS			Test Method					
FCC 15.247:2022				ANSI C63.10:2013					
RSS-247 Issue 2:20	17			ANSI C63.10:2013					
COMMENTS									
Power level: PA3, P	WID15, spreading factor	10.							
DEVIATIONS FROM	I TEST STANDARD								
None									
Configuration #	7	(Signature	CliAm t	tenten					
			Avg Cond Pwr (dBm)	Duty Cycle Factor (dB)	Out Pwr (dBm)	Antenna Gain (dBi)	EIRP (dBm)	EIRP Limit (dBm)	Result
LoRa CSS 500 kHz B	Bandwidth								
	Low Channel, 923.3 MHz		26.918	0.5	27.4	5.07	32.5	36	Pass
Mid Channel, 925.1 MHz 26.648 0.5						5.07	32.2	36	Pass
	High Channel, 927.5 MHz		26.033	0.4	26.4	5.07	31.5	36	Pass

EQUIVALENT ISOTROPIC RADIATED POWER (EIRP)

EQUIVALENT ISOTROPIC RADIATED POWER (EIRP)

		LoR	a CSS 500 kHz	Bandwidth, Hig	gh Channel, 927.5	MHz		
Avg (Cond Pwr	Duty Cycle	Out Pwr	Antenna	EIRP	EIRP Limit		
()	dBm)	Factor (dB)	(dBm)	Gain (dBi)	(dBm)	(dBm)	Result	
2	26.033	0.4	26.4	5.07	31.5	36	Pass	
								_
💥 Agil	lent 09:03:	:38 May 26,	2022			RT		
Element M	Materials	Technology				Mł	kr1 927.392 I	MHz
Ref 37 d	IBm		#Atten 10 d	В			26.033 d	Bm
#Avg								
Log								
5								
dB/				1				
Offst				~				
40.7 JB			and the second sec			~~~		
а р								
		Mar Martin and					~~~	
#PAug	and a second						the second second	
100 W1 S2	CAMPART .						- Ny	MANNA AND AND AND AND AND AND AND AND AND
S3 FS								
£(f):								
FTun								
Swp								
Center 9	27.500 MI	Hz					Span 2.5 №	1Hz
#Res B₩	1 MHz			#VBW 3 MH:	z	#Sweep 6	01 ms (601 p	ts)_

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Keysight	N5171B (EXG)	TEY	2019-12-31	2022-12-31
Attenuator	Fairview Microwave	SA18S5W-20	RFX	2021-06-02	2022-06-02
Block - DC	Fairview Microwave	SD3379	AMI	2021-08-13	2022-08-13
Cable	Micro-Coax	UFD150A-1-0720-200200	MNL	2021-09-12	2022-09-12
Analyzer - Spectrum Analyzer	Agilent	E4440A	AFG	2022-05-18	2023-05-18
Attenuator	S.M. Electronics	SA26B-20	RFW	2022-02-08	2023-02-08

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer.

The fundamental emission output power (maximum average conducted output power) was measured using the channels and modes as called out on the following data sheets. The transmit power was set to its default maximum.

Prior to measuring output power; the emission bandwidth (B) and the transmission pulse duration (T) were measured. Both are required to determine the method of measuring Maximum Conducted Output Power. The transmission pulse duration (T) was measured using a zero span on the spectrum analyzer to see the pulses in the time domain.

The method AVGSA-2 in section 11.9.2.2.4 of ANSI C63.10:2013 was used to make the measurement. This method uses trace averaging across ON and OFF times of the EUT transmissions in the spectrum analyzer channel power function using an RMS detector. Following the measurement a duty cycle correction was applied by adding [10 log (1 / D)], where D is the duty cycle, to the measured power to compute the average power during the actual transmission times.

The AVGSA-2 method was modified as the available resolution bandwidth (RBw) on the spectrum analyzer could be set wider than the measured emissions bandwidth (B). RBw was set wider than B. This follows the guidance of section 11.9.1.1 and is equivalent to a measurement with a power meter AVGPM per section 11.9.2.3.

							TbtTx 2022.05.02.0	XMit 2022.02.07.0	
EUT	MTAC-003U00					Work Order:	MLT10249		
Serial Number	: 21679377				Date: 26-May-22				
Customer	: Multi-Tech Systems, Inc.				Temperature: 21.9 °C				
Attendees	: Dylan Rosenfeldt					Humidity:	43.4% RH		
Project	Project: None					Barometric Pres.:	1013 mbar		
Tested by	Tested by: Christopher Heintzelman Power: 120VAC/60Hz					Job Site:	MN08		
TEST SPECIFICAT	TIONS		Test Method						
FCC 15.247:2022			ANSI C63.10:2013						
RSS-247 Issue 2:2	017		ANSI C63.10:2013						
COMMENTS									
DEVIATIONS FRO	M TEST STANDARD	0.							
None									
Configuration #	7	Signature	li Am Hauften						
				Avg Cond Pwr (dBm)	Duty Cycle Factor (dB)	Out Pwr (dBm)	Limit (dBm)	Result	
LoRa CSS 500 kHz	Bandwidth								
	Low Channel, 923.3 MHz 26.918					27.4	30	Pass	
	Mid Channel, 925.1 MHz			26.648	0.5	27.1	30	Pass	
	High Channel, 927.5 MHz			26.033	0.4	26.4	30	Pass	

	_	Lo	Ra CSS 500 kHz	Bandwidth, Hig	gh Channel, 927.	5 MHz		
			Avg Cond Pwr	Duty Cycle	Out Pwr	Limit		
Г			(dBm)	Factor (dB)	(dBm)	(dBm)	Result	
			20.033	0.4	20.4		F 455	
*	Agilent 09:	03 : 38 May 26	, 2022			RT		
Eleme	nt Material	s Technology					Mkr1 927.3	92 MHz
Ref 3	7 dBm		#Atten 10 d	В			26.03	3 dBm
#Avg								
Log								
5								
dB7				1				
011St 40.7				~~~~				
dB			Mart Mart and a star			~~~~		
		and the second				and the second sec	*	
#PAv	a	provide the second s					and the second second	
100 W1 S	2 100000000							Mr. Walker
\$3 F	S							
£(f):								
Flun								
Swb								
Cente	er 927.500	MHz					Span 2.	.5 MHz
#Res	BW 1 MHz			#VBW 3 MH;	z	#Sweep	601 ms (60)	1 pts)_

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Keysight	N5171B (EXG)	TEY	2019-12-31	2022-12-31
Attenuator	Fairview Microwave	SA18S5W-20	RFX	2021-06-02	2022-06-02
Attenuator	S.M. Electronics	SA26B-20	RFW	2022-02-08	2023-02-08
Block - DC	Fairview Microwave	SD3379	AMI	2021-08-13	2022-08-13
Cable	Micro-Coax	UFD150A-1-0720-200200	MNL	2021-09-12	2022-09-12
Analyzer - Spectrum Analyzer	Agilent	E4440A	AFG	2022-05-18	2023-05-18

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer.

The power spectral density was measured using the channels and modes as called out on the following data sheets. The transmit power was set to its default maximum.

The method AVGPSD-1 in section 11.10.3 of ANSI C63.10:2013 was used to make the measurement. This method uses trace averaging and RMS detection across the full power of the burst. This method is allowed as the same method has been used to determine the conducted output power.

							TbtTx 2022.05.02.0	XMit 2022.02.07.0
EUT: I	MTAC-003U00					Work Order:	MLTI0249	
Serial Number:	21679377					Date:	26-May-22	
Customer:	Multi-Tech Systems, Inc.					Temperature:	22 °C	
Attendees:	Dylan Rosenfeldt					Humidity:	42.2% RH	
Project:	None					Barometric Pres.:	1013 mbar	
Tested by:	Christopher Heintzelman		Power: 120VAC/60Hz			Job Site:	MN08	
TEST SPECIFICATIO	DNS		Test Method					
FCC 15.247:2022			ANSI C63.10:2013					
RSS-247 Issue 2:201	7		ANSI C63.10:2013					
COMMENTS								
from the actual day	TEST STANDARD	U. A U.S dB correction factor was ad	ded to the data as the measured cable o	riset from the pr	evious day (40.2 dB) was mistakeniy t	ised instead of the n	neasured offset
None								
Configuration #	7	Signature	li Am Hauften					
		-		Value dBm/3kHz	Offset Cor. Factor (dB)	Cor Value dBm/3kHz	Limit (dBm/3kHz)	Results
LoRa CSS 500 kHz B	andwidth							
l	Low Channel, 923.3 MHz 7.443					7.9	8	Pass
1	Mid Channel, 925.1 MHz			6.751	0.5	7.3	8	Pass
ł	High Channel, 927.5 MHz			6.22	0.5	6.7	8	Pass

TEST DESCRIPTION

Using the mode of operation and configuration noted within this report, conducted emissions tests were performed. The frequency range investigated (scanned), is also noted in this report. Conducted power line measurements are made, unless otherwise specified, over the frequency range from 150 kHz to 30 MHz to determine the line-to-ground radio-noise voltage that is conducted from the EUT power-input terminals that are directly (or indirectly via separate transformer or power supplies) connected to a public power network. Per the standard, an insulating material was also added to ground plane between the EUT's power and remote I/O cables. Equipment is tested with power cords that are normally used or that have electrical or shielding characteristics that are the same as those cords normally used. Typically those measurements are made using a LISN (Line Impedance Stabilization Network), the 500hm measuring port is terminated by a 500hm EMI meter or a 500hm resistive load. All 500hm measuring ports of the LISN are terminated by 500hm. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Receiver	Gauss Instruments	TDEMI 30M	ARS	2023-04-26	2024-04-26
Cable - Conducted Cable Assembly	Northwest EMC	MNC, HGN, TYK	MNCA	2023-03-09	2024-03-09
LISN	Solar Electronics	9252-50-R-24-BNC	LIY	2023-04-02	2024-04-02

MEASUREMENT UNCERTAINTY

Description		
Expanded k=2	3.2 dB	-3.2 dB

CONFIGURATIONS INVESTIGATED

MLTI0319-1

MODES INVESTIGATED

Radio transmitting Middle channel 925.1 MHz, whip antenna connected to radio

EUT:	MTCDT-L4G	1			Work Order:	MLTI0319	
Serial Number:	22728636				Date:	2023-07-20	
Customer:	Multi-Tech S	ystems, Inc			Temperature:	23.1°C	
Attendees:	Brent Nielser	Brent Nielsen			Relative Humidity:	49.7%	
Customer Project:	None			Bar. Pressure (PMSL):	1016 mb		
Tested By:	Marcelo Agu	ayo			Job Site:	MN03	
Power:	110VAC/60H	lz			Configuration:	MLTI0319-1	
TEST SPECIFIC	CATIONS						
Specification:				Method:			
FCC 15.207:2023 ANSI C63				ANSI C63.	.10:2013		
RSS-Gen Issue 5:2	018+A1:2019+	A2:2021		ANSI C63.	.10:2013		
TEST PARAME	TERS						
Run #: 1		Line:	High Line		Add. Ext. Attenuation (dB)): 0	
		4.0.6005	4 = 4050 == OWL = 400				
./test_loragw_hal_t	k -a /aev/spide	v1.0 -t 925.	1 -r 1250 -m CW -n 100	JU -S 10 -D 1	125 - z 255 pwid 15 pa 3		
EUT OPERATIN	IG MODES						
Radio transmitting Middle channel 925.1 MHz, whip antenna connected to radio							
DEVIATIONS FROM TEST STANDARD							
None							

Average Data - vs - Average Limit

RESULTS - Run #1

Q	Quasi Peak Data - vs - Quasi Peak Limit							
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)			
0.150	28.8	20.5	49.3	66.0	-16.7			
0.411	20.3	20.0	40.3	57.6	-17.3			
0.174	25.2	20.3	45.5	64.7	-19.2			
1.470	16.3	20.1	36.4	56.0	-19.6			
0.184	24.2	20.3	44.5	64.3	-19.8			
0.223	22.7	20.2	42.9	62.7	-19.8			
0.374	18.0	20.0	38.0	58.4	-20.4			
0.274	20.2	20.1	40.3	61.0	-20.7			
13.357	18.2	21.0	39.2	60.0	-20.8			
7.248	18.2	20.5	38.7	60.0	-21.3			
7.924	18.1	20.6	38.7	60.0	-21.3			
0.490	14.7	20.0	34.7	56.2	-21.5			
11.162	17.5	20.8	38.3	60.0	-21.7			
0.734	14.0	20.1	34.1	56.0	-21.9			
1.082	13.8	20.1	33.9	56.0	-22.1			
0.725	13.7	20.1	33.8	56.0	-22.2			
1.072	13.7	20.1	33.8	56.0	-22.2			
6.296	17.1	20.4	37.5	60.0	-22.5			
4.181	12.6	20.3	32.9	56.0	-23.1			
1.598	12.5	20.1	32.6	56.0	-23.4			
2.221	11.9	20.2	32.1	56.0	-23.9			
3.499	11.5	20.3	31.8	56.0	-24.2			
2.399	11.5	20.2	31.7	56.0	-24.3			
5.182	14.6	20.3	34.9	60.0	-25.1			
23.129	11.2	22.0	33.2	60.0	-26.8			

Average Data - vs - Average Limit								
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)			
0.415	11.9	20.0	31.9	47.5	-15.6			
1.470	9.2	20.1	29.3	46.0	-16.7			
13.420	10.2	21.0	31.2	50.0	-18.8			
0.374	9.4	20.0	29.4	48.4	-19.0			
0.150	16.2	20.5	36.7	56.0	-19.3			
23.129	8.6	22.0	30.6	50.0	-19.4			
7.924	9.6	20.6	30.2	50.0	-19.8			
7.375	9.6	20.5	30.1	50.0	-19.9			
11.333	9.3	20.8	30.1	50.0	-19.9			
16.229	7.9	21.3	29.2	50.0	-20.8			
6.316	8.7	20.4	29.1	50.0	-20.9			
0.223	11.3	20.2	31.5	52.7	-21.2			
4.256	4.3	20.3	24.6	46.0	-21.4			
0.574	4.4	20.0	24.4	46.0	-21.6			
1.082	4.3	20.1	24.4	46.0	-21.6			
0.922	4.2	20.1	24.3	46.0	-21.7			
0.730	4.0	20.1	24.1	46.0	-21.9			
0.184	11.9	20.3	32.2	54.3	-22.1			
0.176	12.3	20.3	32.6	54.7	-22.1			
0.725	3.8	20.1	23.9	46.0	-22.1			
18.243	6.1	21.5	27.6	50.0	-22.4			
1.600	3.4	20.1	23.5	46.0	-22.5			
0.277	8.2	20.1	28.3	50.9	-22.6			
3.408	3.1	20.3	23.4	46.0	-22.6			
2.034	3.1	20.1	23.2	46.0	-22.8			

CONCLUSION

Pass

Tested By

EUT:	MTCDT-L4G	1			Work Order:	MLTI0319		
Serial Number:	22728636				Date:	2023-07-20		
Customer:	Multi-Tech S	ystems, Inc			Temperature:	23.1°C		
Attendees:	Brent Nielser	Brent Nielsen			Relative Humidity:	49.7%		
Customer Project:	None	None			Bar. Pressure (PMSL):	1016 mb		
Tested By:	Marcelo Agu	ayo			Job Site:	MN03		
Power:	110VAC/60H	z			Configuration:	MLTI0319-1		
TEST SPECIFIC	TEST SPECIFICATIONS							
Specification: Method:								
FCC 15.207:2023 ANSI C63.				10:2013				
RSS-Gen Issue 5:2018+A1:2019+A2:2021 ANSI C63.				10:2013				
TEST PARAME	TEST PARAMETERS							
Run #: 2		Line:	Neutral		Add. Ext. Attenuation (dB)): 0		
COMMENTS	COMMENTS							
./test_loragw_nal_t		/1.0 -1 925.	1 -1 1250 -111 CVV -11 10	JU -S TU -D	125 - 2 255 pwid 15 pa 3			
EUT OPERATING MODES								
Radio transmitting Middle channel 925.1 MHz, whip antenna connected to radio								
DEVIATIONS F	DEVIATIONS FROM TEST STANDARD							
None	None							

Average Data - vs - Average Limit

RESULTS - Run #2

Quasi Peak Data - vs - Quasi Peak Limit							
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)		
0.150	28.8	20.5	49.3	66.0	-16.7		
0.415	19.6	20.0	39.6	57.5	-17.9		
1.471	17.8	20.1	37.9	56.0	-18.1		
0.492	17.2	20.0	37.2	56.1	-18.9		
0.223	23.2	20.2	43.4	62.7	-19.3		
0.184	24.0	20.3	44.3	64.3	-20.0		
0.170	24.5	20.4	44.9	65.0	-20.1		
13.420	18.4	21.0	39.4	60.0	-20.6		
7.228	18.5	20.5	39.0	60.0	-21.0		
7.922	18.4	20.6	39.0	60.0	-21.0		
0.831	14.7	20.1	34.8	56.0	-21.2		
10.973	17.9	20.8	38.7	60.0	-21.3		
0.272	19.7	20.1	39.8	61.1	-21.3		
0.379	16.7	20.0	36.7	58.3	-21.6		
6.226	17.4	20.4	37.8	60.0	-22.2		
0.917	13.5	20.1	33.6	56.0	-22.4		
4.236	13.0	20.3	33.3	56.0	-22.7		
1.143	13.1	20.1	33.2	56.0	-22.8		
1.638	12.6	20.1	32.7	56.0	-23.3		
0.612	12.5	20.0	32.5	56.0	-23.5		
3.432	12.0	20.3	32.3	56.0	-23.7		
2.085	12.1	20.1	32.2	56.0	-23.8		
2.379	11.8	20.2	32.0	56.0	-24.0		
5.164	15.1	20.3	35.4	60.0	-24.6		
23.129	10.4	22.0	32.4	60.0	-27.6		

Average Data - vs - Average Limit							
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)		
1.471	12.2	20.1	32.3	46.0	-13.7		
0.415	11.9	20.0	31.9	47.5	-15.6		
0.831	8.5	20.1	28.6	46.0	-17.4		
0.150	17.1	20.5	37.6	56.0	-18.4		
0.374	9.0	20.0	29.0	48.4	-19.4		
13.357	9.1	21.0	30.1	50.0	-19.9		
0.223	12.2	20.2	32.4	52.7	-20.3		
7.312	9.1	20.5	29.6	50.0	-20.4		
7.922	9.0	20.6	29.6	50.0	-20.4		
10.794	8.6	20.8	29.4	50.0	-20.6		
0.184	12.9	20.3	33.2	54.3	-21.1		
0.490	5.1	20.0	25.1	46.2	-21.1		
0.174	13.2	20.3	33.5	54.7	-21.2		
6.267	8.2	20.4	28.6	50.0	-21.4		
4.270	3.9	20.3	24.2	46.0	-21.8		
0.272	8.9	20.1	29.0	51.1	-22.1		
0.946	3.8	20.1	23.9	46.0	-22.1		
1.290	3.6	20.1	23.7	46.0	-22.3		
1.625	3.0	20.1	23.1	46.0	-22.9		
3.485	2.8	20.3	23.1	46.0	-22.9		
0.597	2.7	20.0	22.7	46.0	-23.3		
1.952	2.6	20.1	22.7	46.0	-23.3		
23.129	4.6	22.0	26.6	50.0	-23.4		
2.420	2.4	20.2	22.6	46.0	-23.4		
5.184	5.9	20.3	26.2	50.0	-23.8		

CONCLUSION

Pass

Tested By

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Keysight	N5171B (EXG)	TEY	2019-12-31	2022-12-31
Attenuator	Fairview Microwave	SA18S5W-20	RFX	2021-06-02	2022-06-02
Block - DC	Fairview Microwave	SD3379	AMI	2021-08-13	2022-08-13
Cable	Micro-Coax	UFD150A-1-0720-200200	MNL	2021-09-12	2022-09-12
Analyzer - Spectrum Analyzer	Agilent	E4440A	AFG	2022-05-18	2023-05-18
Attenuator	S.M. Electronics	SA26B-20	RFW	2022-02-08	2023-02-08

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer.

The spurious RF conducted emissions were measured with the EUT set to low, medium and high transmit frequencies. The EUT was transmitting at the data rate(s) listed in the datasheet. For each transmit frequency, the fundamental was measured with a 100 kHz resolution bandwidth and the highest value was recorded. The rest of the spectrum was then measured with a 100 kHz resolution bandwidth and the highest value was found. The difference between the value found on the fundamental and the rest of the spectrum was compared against the limit to determine compliance.

						TbtTx 2022.05.02.0	XMit 2022.02.07.0	
EUT:	MTAC-003U00				Work Order:	MLT10249		
Serial Number:	21679377				Date:	26-May-22		
Customer:	Multi-Tech Systems, Inc.			Temperature: 21.9 °C				
Attendees:	Dylan Rosenfeldt			Humidity: 42% RH				
Project:	None				Barometric Pres.:	1013 mbar		
Tested by:	Christopher Heintzelmar	1	Power: 120VAC/60Hz		Job Site:	MN08		
TEST SPECIFICAT	IONS		Test Method					
FCC 15.247:2022			ANSI C63.10:2013					
RSS-247 Issue 2:20	17		ANSI C63.10:2013					
COMMENTS								
Power level: PA3, F	WID15, spreading factor	10.						
DEVIATIONS FROM	I TEST STANDARD							
None								
Configuration #	7	Signature	Clithe Hauften					
		olghataro	Frequency	Measured	Max Value	l imit		
			Range	Freq (MHz)	(dBc)	≤ (dBc)	Result	
LoRa CSS 500 kHz	Bandwidth							
	Low Channel, 923.3 MHz		Fundamental	923.25	N/A	N/A	N/A	
	Low Channel, 923.3 MHz		30 MHz - 10 GHz	6940	-82.58	-30	Pass	
	Mid Channel, 925.1 MHz		Fundamental	925.26	N/A	N/A	N/A	
	Mid Channel, 925.1 MHz		30 MHz - 10 GHz	6806.1	-81.83	-30	Pass	
	High Channel, 927.5 MHz		Fundamental	927.26	N/A	N/A	N/A	
	High Channel, 927.5 MHz		30 MHz - 10 GHz	929.5	-79	-30	Pass	

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Agilent	N5182A	TIF	2020-08-29	2023-08-29
Block - DC	Fairview Microwave	SD3379	AMZ	2021-11-05	2022-11-05
Cable	ESM Cable Corp.	TTBJ141 KMKM-72	MNO	2021-08-04	2022-08-04
Filter - Band Pass/Notch	K&L Microwave	3TNF-500/1000-N/N	HGS	2022-06-22	2023-06-22
Filter - High Pass	Micro-Tronics	HPM50108	LFM	2021-09-09	2022-09-09
Filter - Low Pass	Micro-Tronics	LPM50003	LFJ	2021-09-09	2022-09-09
Analyzer - Spectrum Analyzer	Agilent	E4446A	AAQ	2022-06-10	2023-06-10

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer.

The spurious RF conducted emissions were measured with the EUT set to low, medium and high transmit frequencies. The EUT was transmitting at the data rate(s) listed in the datasheet. For each transmit frequency, the spectrum was measured with a 100 kHz RBW for frequencies between 30 MHz and 1 GHz and a 1 MHz RBW for frequencies above 1 GHz. The VBW was set to be 3 times as large as the RBW.

The conducted output power at each frequency within a restricted band was measured. Notch filters, low pass filters, and high pass filters were used to achieve sufficient measurement sensitivity. Initially, peak measurements were performed across the spectrum. If a peak measurement complies with a peak, average, or a quasi-peak limit, the peak value is sufficient to demonstrate compliance.

The detector was set to peak, the sweep time was set to auto, and the trace was set to max-hold until the trace stabilized. If the peak value exceeded the quasi-peak or the average limit, another measurement would then need to be performed. For this test, this was not necessary.

The conducted output power was then adjusted for the cable loss of the calibrated cable used at that frequency. The appropriate maximum ground reflection factor was also added based on the frequency range. The maximum ground reflection factor is: 6 dB at or below 30 MHz, 4.7 dB above 30 MHz and below 1000 MHz, inclusive, and 0 dB when above 1000 MHz. The adjusted output power then had the maximum antenna gain (in dBi) added to calculate the EIRP. From the EIRP, the electric field was calculated by the following formula:

E = EIRP - 20log(d) + 104.8

Where E is the electric field strength in dBuV/m, EIRP is the equivalent isotropically radiated power in dBm, and d is the specified measurement distance in m.

									XMit 2022.02.07.0	
EUT	T: MTAC-003U00						Work Order:	MLTI0266		
Serial Number	r: 21679377						Date:	20-Jul-22		
Customer	r: Multi-Tech Systems, Inc.					Temperature: 21.4 °C				
Attendees	s: Dylan Rosenfield, Jim Asp						Humidity:	53.9% RH		
Project	t: None						Barometric Pres.:	1007 mbar		
Tested by	y: Kyle McMullan		Power:	110VAC/60Hz			Job Site:	MN05		
TEST SPECIFICA	TIONS			Test Method						
FCC 15.247:2022				ANSI C63.10:2013						
RSS-247 Issue 2:2	2017			ANSI C63.10:2013						
COMMENTS										
Corrected value in	ncludes cable loss factor for cabl	e MNO and the appropriate grou	nd reflection facto	or for the EIRP. See	the test descripti	on for a more detail	ed look at the EIR	P. The second harm	onic of this	
radio does not fal	Il into a restricted band. All of the	e first 10 harmonics that fall into	a restricted band I	have been measured	I. QP limits appl	y for measurements	below 1 GHz, wh	ile both peak and ave	erage limits	
apply above 1 GH	z.							-	-	
DEVIATIONS FRO	OM TEST STANDARD									
None										
		7		. 11 00						
Configuration #	2	K.	yla 1	ameta						
		Signature	0							
			Measured	Corrected	Antenna	Peak E-Field	Peak Limit	QP/Avg Limit	_	
			Peak OP (dBm)	Peak OP (dBm)	Gain (dBi)	(dBµV/m)	(dBµV/m)	(dBµV/m)	Result	
Low Chonnel 022										
Low Channel - 923	3.3 MHz									
Low Channel - 923	3.3 MHz 30 - 425 MHz		-72.3	-67.1	5.1	33.2	N/A	46	Pass	
Low Channel - 923	3.3 MHz 30 - 425 MHz 425 - 1000 MHz		-72.3 -70.1	-67.1 -64.6	5.1 5.1	33.2 35.7	N/A N/A	46 46	Pass Pass	
Low Channel - 923	3.3 MHz 30 - 425 MHz 425 - 1000 MHz 1 - 1.2 GHz		-72.3 -70.1 -62.5	-67.1 -64.6 -61.5	5.1 5.1 5.1	33.2 35.7 38.8	N/A N/A 74	46 46 54	Pass Pass Pass	
Low Channel - 923	3.3 MHz 30 - 425 MHz 425 - 1000 MHz 1 - 1.2 GHz 1.2 - 5.5 GHz		-72.3 -70.1 -62.5 -50.9	-67.1 -64.6 -61.5 -49.2	5.1 5.1 5.1 5.1	33.2 35.7 38.8 51.1	N/A N/A 74 74	46 46 54 54	Pass Pass Pass Pass	
Low Channel - 923	33 MHz 30 - 425 MHz 425 - 1000 MHz 1 - 1.2 GHz 1.2 - 5.5 GHz 5.5 - 10 GHz		-72.3 -70.1 -62.5 -50.9 -68.4	-67.1 -64.6 -61.5 -49.2 -64.0	5.1 5.1 5.1 5.1 5.1 5.1	33.2 35.7 38.8 51.1 36.3	N/A N/A 74 74 74 74	46 46 54 54 54 54	Pass Pass Pass Pass Pass	
Mid Channel - 925.	33 MHz 30 - 425 MHz 425 - 1000 MHz 1 - 1.2 GHz 1.2 - 5.5 GHz 5.5 - 10 GHz .1 MHz		-72.3 -70.1 -62.5 -50.9 -68.4	-67.1 -64.6 -61.5 -49.2 -64.0	5.1 5.1 5.1 5.1 5.1 5.1	33.2 35.7 38.8 51.1 36.3	N/A N/A 74 74 74	46 46 54 54 54	Pass Pass Pass Pass Pass	
Mid Channel - 925.	33 MHz 30 - 425 MHz 425 - 1000 MHz 1 - 1.2 GHz 1.2 - 5.5 GHz 5.5 - 10 GHz .1 MHz 30 - 425 MHz		-72.3 -70.1 -62.5 -50.9 -68.4 -73.8	-67.1 -64.6 -61.5 -49.2 -64.0 -68.6	5.1 5.1 5.1 5.1 5.1 5.1	33.2 35.7 38.8 51.1 36.3 31.7	N/A N/A 74 74 74 74 N/A	46 46 54 54 54 54	Pass Pass Pass Pass Pass Pass	
Mid Channel - 925.	33 MHz 30 - 425 MHz 425 - 1000 MHz 1 - 1.2 GHz 1.2 - 5.5 GHz 5.5 - 10 GHz 1.1 MHz 30 - 425 MHz 425 - 1000 MHz		-72.3 -70.1 -62.5 -50.9 -68.4 -73.8 -69.1	-67.1 -64.6 -61.5 -49.2 -64.0 -68.6 -63.6	5.1 5.1 5.1 5.1 5.1 5.1 5.1	33.2 35.7 38.8 51.1 36.3 31.7 36.7	N/A N/A 74 74 74 74 N/A N/A	46 46 54 54 54 54 46 46	Pass Pass Pass Pass Pass Pass Pass	
Mid Channel - 925.	33 MHz 30 - 425 MHz 425 - 1000 MHz 1 - 1.2 GHz 1.2 - 5.5 GHz 5.5 - 10 GHz 30 - 425 MHz 425 - 1000 MHz 1 - 1.2 GHz		-72.3 -70.1 -62.5 -50.9 -68.4 -73.8 -69.1 -63.1	-67.1 -64.6 -61.5 -49.2 -64.0 -68.6 -63.6 -62.1	5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1	33.2 35.7 38.8 51.1 36.3 31.7 36.7 38.2	N/A N/A 74 74 74 74 N/A N/A N/A 74	46 46 54 54 54 46 46 54	Pass Pass Pass Pass Pass Pass Pass Pass	
Mid Channel - 925.	33 MHz 30 - 425 MHz 425 - 1000 MHz 1 - 1.2 GHz 1.2 - 5.5 GHz 5.5 - 10 GHz 1 MHz 30 - 425 MHz 425 - 1000 MHz 1 - 1.2 GHz 1.2 - 5.5 GHz		-72.3 -70.1 -62.5 -50.9 -68.4 -73.8 -69.1 -63.1 -51.0	-67.1 -64.6 -61.5 -49.2 -64.0 -68.6 -63.6 -63.6 -62.1 -49.3	5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1	33.2 35.7 38.8 51.1 36.3 31.7 36.7 38.2 51.0	N/A N/A 74 74 74 N/A N/A N/A N/A 74	46 54 54 54 54 46 46 54 54 54	Pass Pass Pass Pass Pass Pass Pass Pass	
Mid Channel - 925.	33 MHz 30 - 425 MHz 425 - 1000 MHz 1 - 1.2 GHz 1.2 - 5.5 GHz 5.5 - 10 GHz 1.1 MHz 30 - 425 MHz 425 - 1000 MHz 1 - 1.2 GHz 1.2 - 5.5 GHz 5.5 - 10 GHz		-72.3 -70.1 -62.5 -50.9 -68.4 -73.8 -69.1 -63.1 -63.1 -69.3	-67.1 -64.6 -61.5 -49.2 -64.0 -63.6 -63.6 -62.1 -49.3 -65.9	5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1	33.2 35.7 38.8 51.1 36.3 31.7 38.7 38.2 51.0 34.4	N/A N/A 74 74 74 74 N/A N/A N/A 74 74	46 46 54 54 54 46 46 54 54	Pass Pass Pass Pass Pass Pass Pass Pass	
Mid Channel - 925.	33 MHz 30 - 425 MHz 425 - 1000 MHz 1 - 1.2 GHz 1.2 - 5.5 GHz 5.5 - 10 GHz .1 MHz 30 - 425 MHz 425 - 1000 MHz 1 1.2 GHz 1 1.2 GHz 5.5 - 10 GHz .5.5 - 10 GHz .5.5 - 10 GHz .7 MHz		-72.3 -70.1 -62.5 -60.9 -68.4 -73.8 -69.1 -63.1 -63.1 -61.0 -69.3	-67.1 -64.6 -61.5 -49.2 -64.0 -68.6 -63.6 -63.6 -62.1 -49.3 -65.9	5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1	33.2 35.7 38.8 51.1 36.3 31.7 36.7 38.2 51.0 34.4	N/A N/A 74 74 74 N/A N/A 74 74 74 74	46 46 54 54 54 46 46 54 54 54 54 54	Pass Pass Pass Pass Pass Pass Pass Pass	
Mid Channel - 925	33 MHz 30 - 425 MHz 425 - 1000 MHz 1 - 1.2 GHz 1.2 - 5.5 GHz 5.5 - 10 GHz 1.1 MHz 30 - 425 MHz 425 - 1000 MHz 1 - 1.2 GHz 1.2 - 5.5 GHz 5.5 - 10 GHz 5.5 - 10 GHz 7.5 MHz 30 - 425 MHz		-72.3 -70.1 -62.5 -50.9 -68.4 -73.8 -69.1 -63.1 -61.0 -69.3 -73.4	-67.1 -64.6 -61.5 -49.2 -64.0 -68.6 -63.6 -62.1 -49.3 -65.9 -68.2	5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1	33.2 35.7 38.8 51.1 36.3 31.7 36.7 38.2 51.0 34.4 32.1	N/A N/A 74 74 74 N/A N/A 74 74 74 74	46 46 54 54 54 46 46 54 54 54 54 54	Pass Pass Pass Pass Pass Pass Pass Pass	
Mid Channel - 925	33 MHz 30 - 425 MHz 425 - 1000 MHz 1 - 1.2 GHz 1.2 - 5.5 GHz 5.5 - 10 GHz 1.1 MHz 30 - 425 MHz 425 - 1000 MHz 1 - 1.2 GHz 1.2 - 5.5 GHz 5.5 - 10 GHz 7.5 MHz 30 - 425 MHz 425 - 1000 MHz		-72.3 -70.1 -62.5 -50.9 -68.4 -73.8 -69.1 -63.1 -63.1 -69.3 -73.4 -68.3	-67.1 -64.6 -61.5 -49.2 -64.0 -68.6 -63.6 -62.1 -49.3 -65.9 -65.9 -68.2 -62.8	5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1	33.2 35.7 38.8 51.1 36.3 31.7 38.2 51.0 34.4 32.1 37.5	N/A N/A 74 74 74 N/A N/A 74 74 74 74 N/A	46 46 54 54 54 46 46 54 54 54 54 46	Pass Pass Pass Pass Pass Pass Pass Pass	
Mid Channel - 925. High Channel - 927	33 MHz 30 - 425 MHz 425 - 1000 MHz 1 - 1.2 GHz 1.2 - 5.5 GHz 5.5 - 10 GHz .1 MHz 30 - 425 MHz 425 - 1000 MHz 1 - 1.2 GHz 5.5 - 10 GHz 5.5 - 10 GHz 30 - 425 MHz 425 - 1000 MHz 1 - 1.2 GHz		-72.3 -70.1 -62.5 -50.9 -68.4 -73.8 -68.1 -63.1 -61.0 -69.3 -73.4 -68.3 -68.3 -68.8	-67.1 -64.6 -61.5 -49.2 -64.0 -68.6 -63.6 -63.6 -62.1 -49.3 -65.9 -65.9 -68.2 -62.8 -59.8	5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1	33.2 36.7 38.8 51.1 36.3 31.7 36.7 38.2 51.0 34.4 32.1 37.5 40.5	N/A N/A 74 74 74 N/A 74 74 74 74 74 N/A N/A 74	46 46 54 54 54 46 46 54 54 54 54 46 46 46 54	Pass Pass Pass Pass Pass Pass Pass Pass	
Mid Channel - 925	33 MHz 30 - 425 MHz 425 - 1000 MHz 1 - 1.2 GHz 1.2 - 5.5 GHz 5.5 - 10 GHz 1.1 MHz 30 - 425 MHz 425 - 1000 MHz 1 - 1.2 GHz 5.5 - 10 GHz 5.5 - 10 GHz 5.5 - 10 GHz 7.5 MHz 30 - 425 MHz 425 - 1000 MHz 1 - 1.2 GHz 1.2 - 5.5 GHz 1.2 - 5.5 GHz		-72.3 -70.1 -62.5 -50.9 -68.4 -73.8 -69.1 -63.1 -61.0 -69.3 -73.4 -68.3 -60.8 -62.8	-67.1 -64.6 -61.5 -49.2 -64.0 -68.6 -63.6 -62.1 -49.3 -65.9 -66.2 -62.8 -59.8 -59.8 -51.1	5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1	33.2 35.7 38.8 51.1 36.3 31.7 36.7 38.2 51.0 34.4 32.1 37.5 40.5 40.2	N/A N/A 74 74 74 N/A N/A 74 74 74 N/A N/A 74 74	46 46 54 54 54 46 46 54 54 54 46 46 46 54	Pass Pass Pass Pass Pass Pass Pass Pass	
Mid Channel - 925	33 MHz 30 - 425 MHz 425 - 1000 MHz 1 - 1.2 GHz 1.2 - 5.5 GHz 5.5 - 10 GHz 1.1 MHz 30 - 425 MHz 425 - 1000 MHz 1 - 1.2 GHz 5.5 - 10 GHz 7.5 MHz 30 - 425 MHz 425 - 1000 MHz 1 - 1.2 GHz 1.2 - 5.5 GHz 5.5 - 10 GHz 1.2 - 5.5 GHz 5.5 - 10 GHz		-72.3 -70.1 -62.5 -50.9 -68.4 -73.8 -69.1 -63.1 -69.3 -73.4 -68.3 -60.8 -52.8 -70.6	-67.1 -64.6 -61.5 -49.2 -64.0 -68.6 -63.6 -62.1 -49.3 -65.9 -65.9 -68.2 -62.8 -59.8 -59.8 -51.1 -66.2	5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1	33.2 35.7 38.8 51.1 36.3 31.7 38.2 51.0 34.4 32.1 37.5 40.5 40.5 49.2 34.1	N/A N/A 74 74 74 74 74 74 74 74 N/A N/A N/A 74 74	46 46 54 54 54 46 46 54 54 54 46 46 54 54	Pass Pass Pass Pass Pass Pass Pass Pass	

Low Channel - 923.3 MHz, 1.2 - 5.5 GHz									
			Lon ondain.	01 02010 111112, 11					
	Moncurod	Corrected	Antonna	Dook E Eigld	Dook Limit	OB/Ava Limit			
	weasureu	Conecteu	Antenna	Feak E-Field	Feak Linnit				
	Deals OD (JDm)	Deals OD (dDm)		(-ID: -)//)	(-ID)//)	(-ID)(/ma)	Desult		
	Реак ОР (авт)	Реак ОР (авт)	Gain (dBl)	(abµv/m)	(abµv/m)	(abµv/m)	Result		
	=	10.0	=				-		
	-50.9	-49.2	5.07	51.1	(4	54	Pass		
	50.5	-J.Z	5.07	31.1	17	34	1 833		

		Low Channel	- 923.3 MHz, 42	5 - 1000 MHz		
Measured	Corrected	Antenna	Peak E-Field	Peak Limit	QP/Avg Limit	
Peak OP (dBm)	Peak OP (dBm)	Gain (dBi)	(dBµV/m)	(dBµV/m)	(dBµV/m)	Result
-70.1	-64.6	5.07	35.7	N/A	46	Pass

Mid Channel - 925.1 MHz, 30 - 425 MHz							
Measured	Corrected	Antenna	Peak E-Field	Peak Limit	QP/Avg Limit		
Peak OP (dBm)	Peak OP (dBm)	Gain (dBi)	(dBµV/m)	(dBµV/m)	(dBµV/m)	Result	
-73.8	-68.6	5.07	31.7	N/A	46	Pass	

Mid Channel - 925.1 MHz, 1 - 1.2 GHz							
Measured	Corrected	Antenna	Peak E-Field	Peak Limit	QP/Avg Limit		
Peak OP (dBm)	Peak OP (dBm)	Gain (dBi)	(dBµV/m)	(dBµV/m)	(dBµV/m)	Result	
-63.1	-62.1	5.07	38.2	74	54	Pass	1

Mid Channel - 925.1 MHz, 5.5 - 10 GHz							
Measured	Corrected	Antenna	Peak E-Field	Peak Limit	QP/Avg Limit		
Peak OP (dBm)	Peak OP (dBm)	Gain (dBi)	(dBµV/m)	(dBµV/m)	(dBµV/m)	Result	
-69.3	-65.9	5.07	34.4	74	54	Pass	

High Channel - 927.5 MHz, 425 - 1000 MHz								
Measured	Corrected	Antenna	Peak E-Field	Peak Limit	QP/Avg Limit			
Peak OP (dBm)	Peak OP (dBm)	Gain (dBi)	(dBµV/m)	(dBµV/m)	(dBµV/m)	Result		
-68.3	-62.8	5.07	37.5	N/A	46	Pass		

High Channel - 927.5 MHz, 1.2 - 5.5 GHz								
Measured	Corrected	Antenna	Peak E-Field	Peak Limit	QP/Avg Limit			
Peak OP (dBm)	Peak OP (dBm)	Gain (dBi)	(dBµV/m)	(dBµV/m)	(dBµV/m)	Result		
-52.8	-51.1	5.07	49.2	74	54	Pass		

TEST DESCRIPTION

The highest gain antenna of each type to be used with the EUT was tested. The EUT was configured for the required transmit frequencies and the modes as showed in the data sheets.

For each configuration, the spectrum was scanned throughout the specified range as part of the exploratory investigation of the emissions. These "pre-scans" are not included in the report. Final measurements on individual emissions were then made and included in this test report.

The individual emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis if required, and adjusting the measurement antenna height and polarization (per ANSI C63.10). A preamp and high pass filter (and notch filter) were used for this test in order to provide sufficient measurement sensitivity.

Measurements were made with the required detectors and annotated on the data for each individual point using the following annotation:

QP = Quasi-Peak Detector PK = Peak Detector AV = RMS Detector

Measurements were made to satisfy the specific requirements of the test specification for out of band emissions as well as the restricted band requirements.

If there are no detectable emissions above the noise floor, the data included may show noise floor measurements for reference only.

Measurements within 2 MHz of the allowable band may have been taken using the integration method from ANSI C63.10 clause 11.13.3. This procedure uses the channel power feature of the spectrum analyzer to integrate the power of the emission within a 1 MHz bandwidth.

Where the radio test software does not provide for a duty cycle at continuous transmit conditions (> 98%) and the RMS (power average) measurements were made across the on and off times of the EUT transmissions, a duty cycle correction is added to the measurements using the formula of 10*log(1/dc).

Description Manufacturer Model ID Last Cal. Cal. Due Antenna - Double Ridge **ETS** Lindgren 3115 AIP 2022-07-20 2024-07-20 Double Ridge Guide Horn MNI 2023-01-14 Cable ESM Cable Corp. 2024-01-14 Cables AMF-3D-00100800-32-13P AVT Amplifier - Pre-Amplifier 2023-01-14 2024-01-14 Miteq Filter - High Pass LFM 2022-08-27 2023-08-27 Micro-Tronics HPM50108 Analyzer - Spectrum Analyzer 2023-02-06 2024-02-06 Agilent E4446A AAQ Antenna - Standard Gain AXP ETS Lindgren 3160-07 NCR NCR Cable ESM Cable Corp. Standard Gain Horn Cables MNJ 2023-01-14 2024-01-14 Amplifier - Pre-Amplifier Miteq AMF-6F-08001200-30-10P AVV 2023-01-14 2024-01-14 Antenna - Biconilog ETS Lindgren 3142D 2021-09-14 2023-09-14 AXO Cable ESM Cable Corp. **Bilog Cables** MNH 2022-10-08 2023-10-08 Amplifier - Pre-Amplifier AM-1616-1000 AVO 2022-10-08 2023-10-08 Miteq LPM50004 LFK 2022-08-27 2023-08-27 Filter - Low Pass **Micro-Tronics** Analyzer - Spectrum Analyzer* Agilent N9010A AFL 2022-03-22 2023-03-22

TEST EQUIPMENT

*Spectrum analyzer was used for pre-scan data only taken on 2022-12-08 which was in calibration during the testing.

MEASUREMENT UNCERTAINTY

Description

Expanded k=2

5.2 dB

-5.2 dB

FREQUENCY RANGE INVESTIGATED

30 MHz TO 12400 GHz

POWER INVESTIGATED

110VAC/60Hz

CONFIGURATIONS INVESTIGATED

MLTI0319-1 MLTI0319-2 MLTI0249-18

MODES INVESTIGATED

Transmitting LoRa Low, Mid and High Chs (923.3, 925.1 and 927.5 MHz) 500Hz BW modulated

EUT:	MTAC-003U00	Work Order:	MLTI0319
Serial Number:	See Configurations	Date:	2023-07-21
Customer:	Multi-Tech Systems, Inc.	Temperature:	22.7°C
Attendees:	Brent Nielsen	Relative Humidity:	54%
Customer Project:	None	Bar. Pressure (PMSL):	1018 mb
Tested By:	Marcelo Aguayo	Job Site:	MN05
Power:	110VAC/60Hz	Configuration:	MLTI0319-1

TEST SPECIFICATIONS

Specification:	Method:
FCC 15.247:2023	ANSI C63.10:2013
RSS-247 Issue 2:2017	ANSI C63.10:2013

TEST PARAMETERS

	Run #:	12	Test Distance (m):	3	Ant. Height(s) (m):	1 to 4(m)
--	--------	----	--------------------	---	---------------------	-----------

COMMENTS

Command used : ./test_loragw_hal_tx -d /dev/spidev1.0 --pa 3 --pwid 15 -r 1250 -t 40500 -n 10000 -m LORA -z 255 -s 10 -f 923.3 -b 500. Setup on the "module-like" computer peripheral was according to ANSI C63.10:2013 section 5.10.3. 98% Duty Cycle.

MTCDT-L4G1 integrated into MTAC-003U00.

EUT OPERATING MODES

Transmitting LoRa Low, Mid and High Chs (923.3, 925.1 and 927.5 MHz) 500Hz BW modulated

DEVIATIONS FROM TEST STANDARD

None

RESULTS - Run #12

Freq (MHz)	Amplitude (dBuV)	Factor (dB/m)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
7402.800	29.4	11.9	1.5	300.9	3.0	0.0	Horz	AV	0.0	41.3	54.0	-12.7	EUT Horz, Mid Ch
7402.550	29.4	11.9	1.5	145.0	3.0	0.0	Vert	AV	0.0	41.3	54.0	-12.7	EUT Horz, Mid Ch
7384.017	29.5	11.8	1.5	170.0	3.0	0.0	Horz	AV	0.0	41.3	54.0	-12.7	EUT Horz, Low Ch
7384.442	29.5	11.8	1.5	319.9	3.0	0.0	Vert	AV	0.0	41.3	54.0	-12.7	EUT Horz, Low Ch
7418.158	29.3	11.9	1.5	276.9	3.0	0.0	Horz	AV	0.0	41.2	54.0	-12.8	EUT Horz, High Ch
7419.192	29.3	11.9	1.5	148.0	3.0	0.0	Vert	AV	0.0	41.2	54.0	-12.8	EUT Horz, High Ch
2782.308	36.8	-3.4	3.87	69.0	3.0	0.0	Vert	AV	0.0	33.4	54.0	-20.6	EUT Horz, High Ch
7385.050	40.6	11.8	1.5	170.0	3.0	0.0	Horz	PK	0.0	52.4	74.0	-21.6	EUT Horz, Low Ch
7386.958	40.3	11.9	1.5	319.9	3.0	0.0	Vert	PK	0.0	52.2	74.0	-21.8	EUT Horz, Low Ch
7419.025	40.2	11.9	1.5	148.0	3.0	0.0	Vert	PK	0.0	52.1	74.0	-21.9	EUT Horz, High Ch
2782.533	35.4	-3.4	3.29	279.9	3.0	0.0	Horz	AV	0.0	32.0	54.0	-22.0	EUT Horz, High Ch
7402.017	39.4	11.9	1.5	300.9	3.0	0.0	Horz	PK	0.0	51.3	74.0	-22.7	EUT Horz, Mid Ch
7400.417	39.4	11.9	1.5	145.0	3.0	0.0	Vert	PK	0.0	51.3	74.0	-22.7	EUT Horz, Mid Ch
7420.442	39.0	11.9	1.5	276.9	3.0	0.0	Horz	PK	0.0	50.9	74.0	-23.1	EUT Horz, High Ch
3709.567	30.8	-1.0	2.52	232.0	3.0	0.0	Vert	AV	0.0	29.8	54.0	-24.2	EUT Horz, High Ch
3701.625	31.0	-1.2	1.5	343.0	3.0	0.0	Vert	AV	0.0	29.8	54.0	-24.2	EUT Horz, Mid Ch
3712.217	30.7	-1.0	2.88	77.0	3.0	0.0	Horz	AV	0.0	29.7	54.0	-24.3	EUT Horz, High Ch
3700.767	30.9	-1.2	1.5	288.0	3.0	0.0	Horz	AV	0.0	29.7	54.0	-24.3	EUT Horz, Mid Ch
3694.433	30.8	-1.2	1.5	145.0	3.0	0.0	Vert	AV	0.0	29.6	54.0	-24.4	EUT Horz, Low Ch
3695.267	30.7	-1.2	3.52	184.0	3.0	0.0	Horz	AV	0.0	29.5	54.0	-24.5	EUT Horz, Low Ch
2783.408	32.1	-3.4	1.47	303.0	3.0	0.0	Horz	AV	0.0	28.7	54.0	-25.3	EUT On Side, High Ch
2782.700	32.1	-3.4	1.5	265.9	3.0	0.0	Vert	AV	0.0	28.7	54.0	-25.3	EUT On Side, High Ch
2783.133	32.1	-3.4	2.76	52.0	3.0	0.0	Vert	AV	0.0	28.7	54.0	-25.3	EUT Vert, High Ch
2781.833	32.1	-3.5	1.1	293.0	3.0	0.0	Horz	AV	0.0	28.6	54.0	-25.4	EUT Vert, High Ch
2777.600	31.6	-3.5	1.5	130.0	3.0	0.0	Horz	AV	0.0	28.1	54.0	-25.9	EUT Horz, Mid Ch
2767.600	31.6	-3.5	1.5	166.0	3.0	0.0	Vert	AV	0.0	28.1	54.0	-25.9	EUT Horz, Low Ch
2777.775	31.5	-3.5	1.5	177.0	3.0	0.0	Vert	AV	0.0	28.0	54.0	-26.0	EUT Horz, Mid Ch
2767.725	31.5	-3.5	1.11	91.0	3.0	0.0	Horz	AV	0.0	28.0	54.0	-26.0	EUT Horz, Low Ch
2782.242	44.4	-3.4	1.47	303.0	3.0	0.0	Horz	PK	0.0	41.0	74.0	-33.0	EUT On Side, High Ch
3691.892	41.9	-1.2	3.52	184.0	3.0	0.0	Horz	PK	0.0	40.7	74.0	-33.3	EUT Horz, Low Ch
3712.092	41.5	-1.0	2.88	77.0	3.0	0.0	Horz	PK	0.0	40.5	74.0	-33.5	EUT Horz, High Ch
3712.183	41.2	-1.0	2.52	232.0	3.0	0.0	Vert	PK	0.0	40.2	74.0	-33.8	EUT Horz, High Ch
3698.258	41.4	-1.2	1.5	343.0	3.0	0.0	Vert	PK	0.0	40.2	74.0	-33.8	EUT Horz, Mid Ch
3695.375	41.4	-1.2	1.5	145.0	3.0	0.0	Vert	PK	0.0	40.2	74.0	-33.8	EUT Horz, Low Ch
2782.258	43.5	-3.4	1.5	265.9	3.0	0.0	Vert	PK	0.0	40.1	74.0	-33.9	EUT On Side, High Ch
3699.233	41.2	-1.2	1.5	288.0	3.0	0.0	Horz	PK	0.0	40.0	74.0	-34.0	EUT Horz, Mid Ch
2780.658	43.2	-3.5	3.87	69.0	3.0	0.0	Vert	PK	0.0	39.7	74.0	-34.3	EUT Horz, High Ch
2781.075	43.1	-3.5	1.1	293.0	3.0	0.0	Horz	PK	0.0	39.6	74.0	-34.4	EUT Vert, High Ch
2780.275	43.0	-3.5	2.76	52.0	3.0	0.0	Vert	PK	0.0	39.5	74.0	-34.5	EUT Vert, High Ch
2781.108	42.9	-3.5	3.29	279.9	3.0	0.0	Horz	PK	0.0	39.4	74.0	-34.6	EUT Horz, High Ch

Freq (MHz)	Amplitude (dBuV)	Factor (dB/m)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
2768.492	42.7	-3.5	1.5	166.0	3.0	0.0	Vert	PK	0.0	39.2	74.0	-34.8	EUT Horz, Low Ch
2775.600	42.6	-3.5	1.5	130.0	3.0	0.0	Horz	PK	0.0	39.1	74.0	-34.9	EUT Horz, Mid Ch
2777.142	42.6	-3.5	1.5	177.0	3.0	0.0	Vert	PK	0.0	39.1	74.0	-34.9	EUT Horz, Mid Ch
2769.917	42.4	-3.5	1.11	91.0	3.0	0.0	Horz	PK	0.0	38.9	74.0	-35.1	EUT Horz, Low Ch

CONCLUSION

Pass

Tested By

EUT:	MTAC-003U00	Work Order:	MLTI0319
Serial Number:	See Configurations	Date:	2023-07-21
Customer:	Multi-Tech Systems, Inc.	Temperature:	22.7°C
Attendees:	Brent Nielsen	Relative Humidity:	54%
Customer Project:	None	Bar. Pressure (PMSL):	1018 mb
Tested By:	Marcelo Aguayo	Job Site:	MN05
Power:	110VAC/60Hz	Configuration:	MLTI0319-2

TEST SPECIFICATIONS

Specification:	Method:
FCC 15.247:2023	ANSI C63.10:2013
RSS-247 Issue 2:2017	ANSI C63.10:2013

TEST PARAMETERS

	Run #:	20	Test Distance (m):	3	Ant. Height(s) (m):	1 to 4(m)
--	--------	----	--------------------	---	---------------------	-----------

COMMENTS

Command used: ./test_loragw_hal_tx -d /dev/spidev0.0 --pa 3 --pwid 15 -r 1250 -t 40500 -n 10000 -m LORA -z 255 -s 10 -f 923.3 -b 500. Setup on the "module-like" computer peripheral was according to ANSI C63.10:2013 section 5.10.3. The long antenna will only ever be used with the IP67 host. 98% Duty Cycle.

MTCDTIP-L4G1 integrated into MTAC-003U00.

EUT OPERATING MODES

Transmitting LoRa Low, Mid and High Chs (923.3, 925.1 and 927.5 MHz) 500Hz BW modulated

DEVIATIONS FROM TEST STANDARD

None

RESULTS - Run #20

Freq (MHz)	Amplitude (dBuV)	Factor (dB/m)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
7402.842	29.4	11.9	2.64	300.9	3.0	0.0	Horz	AV	0.0	41.3	54.0	-12.7	EUT Horz, Mid Ch
7401.450	29.4	11.9	1.5	91.0	3.0	0.0	Vert	AV	0.0	41.3	54.0	-12.7	EUT Horz, Mid Ch
7384.933	29.5	11.8	3.39	207.9	3.0	0.0	Horz	AV	0.0	41.3	54.0	-12.7	EUT Horz, Low Ch
7385.500	29.5	11.8	1.5	135.0	3.0	0.0	Vert	AV	0.0	41.3	54.0	-12.7	EUT Horz, Low Ch
7417.717	29.3	11.9	1.5	74.9	3.0	0.0	Horz	AV	0.0	41.2	54.0	-12.8	EUT Horz, High Ch
7418.200	29.3	11.9	1.5	276.9	3.0	0.0	Vert	AV	0.0	41.2	54.0	-12.8	EUT Horz, High Ch
2775.650	35.9	-3.5	1.5	236.9	3.0	0.0	Horz	AV	0.0	32.4	54.0	-21.6	EUT Horz, Mid Ch
7387.583	40.4	11.9	3.39	207.9	3.0	0.0	Horz	PK	0.0	52.3	74.0	-21.7	EUT Horz, Low Ch
7401.575	40.0	11.9	2.64	300.9	3.0	0.0	Horz	PK	0.0	51.9	74.0	-22.1	EUT Horz, Mid Ch
7387.275	39.7	11.9	1.5	135.0	3.0	0.0	Vert	PK	0.0	51.6	74.0	-22.4	EUT Horz, Low Ch
7398.650	39.6	11.9	1.5	91.0	3.0	0.0	Vert	PK	0.0	51.5	74.0	-22.5	EUT Horz, Mid Ch
7420.242	39.6	11.9	1.5	74.9	3.0	0.0	Horz	PK	0.0	51.5	74.0	-22.5	EUT Horz, High Ch
7421.583	39.5	11.9	1.5	276.9	3.0	0.0	Vert	PK	0.0	51.4	74.0	-22.6	EUT Horz, High Ch
2775.817	34.6	-3.5	2.25	265.9	3.0	0.0	Vert	AV	0.0	31.1	54.0	-22.9	EUT Horz, Mid Ch
3702.342	30.9	-1.2	1.5	44.0	3.0	0.0	Horz	AV	0.0	29.7	54.0	-24.3	EUT Horz, Mid Ch
3701.917	30.9	-1.2	1.5	307.0	3.0	0.0	Vert	AV	0.0	29.7	54.0	-24.3	EUT Horz, Mid Ch
2777.667	31.7	-3.5	1.5	99.9	3.0	0.0	Vert	AV	0.0	28.2	54.0	-25.8	EUT On Side. Mid Ch
2777.008	31.7	-3.5	2.2	116.0	3.0	0.0	Horz	AV	0.0	28.2	54.0	-25.8	EUT On Side. Mid Ch
2777.625	31.6	-3.5	1.5	170.0	3.0	0.0	Horz	AV	0.0	28.1	54.0	-25.9	EUT Vert, Mid Ch
2777.242	31.6	-3.5	1.5	96.9	3.0	0.0	Vert	AV	0.0	28.1	54.0	-25.9	EUT Vert, Mid Ch
3702.567	41.6	-1.2	1.5	44.0	3.0	0.0	Horz	PK	0.0	40.4	74.0	-33.6	EUT Horz, Mid Ch
2774.175	43.6	-3.5	2.25	265.9	3.0	0.0	Vert	PK	0.0	40.1	74.0	-33.9	EUT On Side. Mid Ch
3700.542	41.2	-1.2	1.5	307.0	3.0	0.0	Vert	PK	0.0	40.0	74.0	-34.0	EUT Horz, Mid Ch
2775.183	42.7	-3.5	1.5	170.0	3.0	0.0	Horz	PK	0.0	39.2	74.0	-34.8	EUT Vert, Mid Ch
2776.458	42.7	-3.5	1.5	96.9	3.0	0.0	Vert	PK	0.0	39.2	74.0	-34.8	EUT Vert, Mid Ch
2774.458	42.5	-3.5	1.5	99.9	3.0	0.0	Vert	PK	0.0	39.0	74.0	-35.0	EUT Horz, Mid Ch
2774.567	42.4	-3.5	1.5	236.9	3.0	0.0	Horz	PK	0.0	38.9	74.0	-35.1	EUT Horz, Mid Ch
2777.750	42.4	-3.5	2.2	116.0	3.0	0.0	Horz	PK	0.0	38.9	74.0	-35.1	EUT On Side. Mid Ch

CONCLUSION Pass

Tested By

End of Test Report