

Multi-Tech Systems, Inc. MTCAP-LSP3

FCC 15. 247:2018 902 – 928 Other Wideband DTS Transceiver

Report # MLTI0092.1

CERTIFICATE OF TEST

Last Date of Test: November 1, 2018 Multi-Tech Systems, Inc. Model: MTCAP-LSP3

Radio Equipment Testing

 Standards
 Method

 Specification
 Method

 FCC 15.207:2018
 ANSI C63.10:2013

Results

Method Clause	Test Description	Applied	Results	Comments
6.2	Powerline Conducted Emissions	Yes	Pass	
6.5, 6.6, 11.12.1, 11.13.2	Spurious Radiated Emissions	Yes	Pass	
11.6	Duty Cycle	Yes	N/A	Characterization of radio operation.
7.8.2	Carrier Frequency Separation	No	N/A	Not required for DTS devices.
7.8.3	Number of Hopping Frequencies	No	N/A	Not required for DTS devices.
7.8.4	Dwell Time	No	N/A	Not required for DTS devices.
11.9.1.1	Output Power	Yes	Pass	
11.9.1.1	Equivalent Isotropic Radiated Power	Yes	Pass	
11.11	Band Edge Compliance	Yes	Pass	
7.8.6	Band Edge Compliance - Hopping Mode	No	N/A	Not required for DTS devices.
11.8.2	Occupied Bandwidth	Yes	Pass	
11.11	Spurious Conducted Emissions	Yes	Pass	
11.10.2	Power Spectral Density	Yes	Pass	

Deviations From Test Standards

None

Approved By:

Matt Nuernberg, Operations Manager

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information. As indicated in the Statement of Work sent with the quotation, Element's standard process is to always use the latest published version of the test methods even when earlier versions are cited in the test specification. Issuance of a purchase order was de facto acceptance of this approach. Otherwise, the client would have advised Element in writing of the specific version of the test methods they wanted applied to the subject testing.

REVISION HISTORY

Revision Number	Description	Date (yyyy-mm-dd)	Page Number
00	None		

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Accredited by A2LA to ISO / IEC 17065 as a product certifier. This allows Element to certify transmitters to FCC and IC specifications.

NVLAP - Each laboratory is accredited by NVLAP to ISO 17025

Canada

ISED - Recognized by Innovation, Science and Economic Development Canada as a Certification Body (CB). Certification chambers and Open Area Test Sites are filed with ISED.

European Union

European Commission - Within Element, we have a EU Notified Body validated for the EMCD and RED Directives.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIT / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA – Recognized by IDA as a CAB for the acceptance of test data.

Israel

MOC – Recognized by MOC as a CAB for the acceptance of test data.

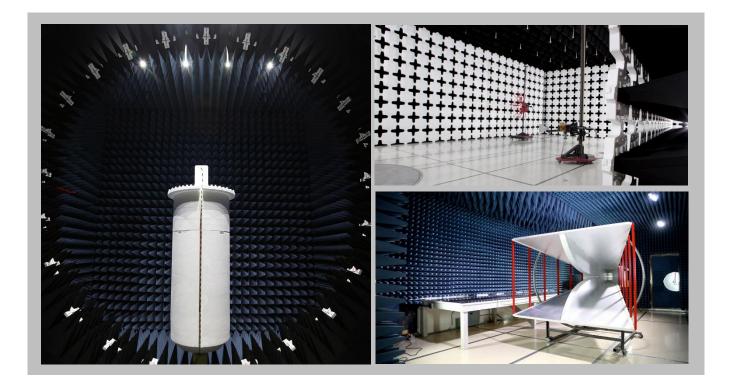
Hong Kong

OFCA – Recognized by OFCA as a CAB for the acceptance of test data.

Vietnam

MIC – Recognized by MIC as a CAB for the acceptance of test data.

SCOPE


For details on the Scopes of our Accreditations, please visit: https://www.nwemc.com/emc-testing-accreditations

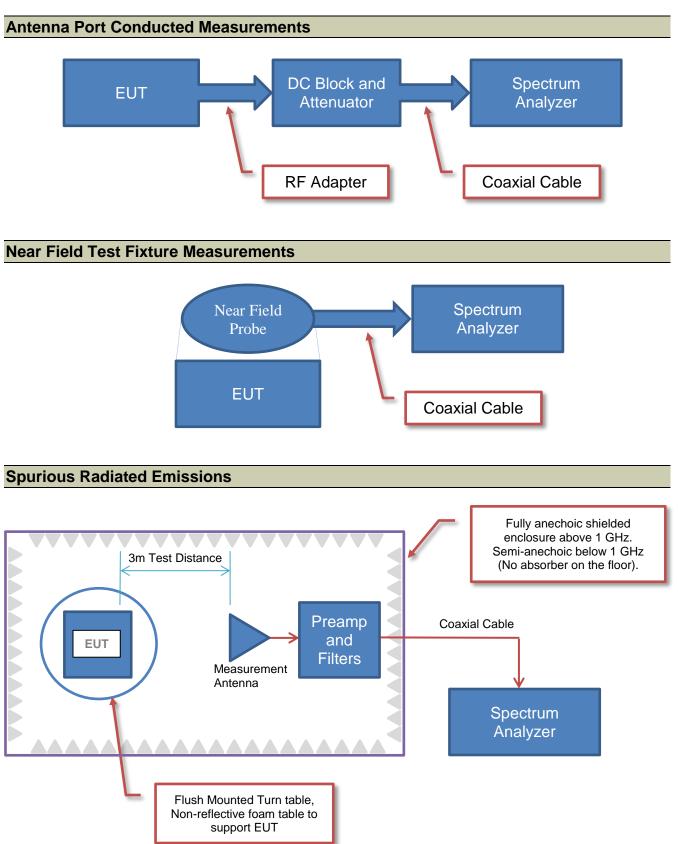
FACILITIES

California Labs OC01-17 41 Tesla Irvine, CA 92618 (949) 861-8918	Minnesota Labs MN01-10 9349 W Broadway Ave. Brooklyn Park, MN 55445 (612)-638-5136	New York Labs NY01-04 4939 Jordan Rd. Elbridge, NY 13060 (315) 554-8214	Oregon Labs EV01-12 6775 NE Evergreen Pkwy #400 Hillsboro, OR 97124 (503) 844-4066	Texas Labs TX01-09 3801 E Plano Pkwy Plano, TX 75074 (469) 304-5255	Washington Labs NC01-05 19201 120 th Ave NE Bothell, WA 98011 (425)984-6600
		NV	LAP		
NVLAP Lab Code: 200676-0	NVLAP Lab Code: 200881-0	NVLAP Lab Code: 200761-0	NVLAP Lab Code: 200630-0	NVLAP Lab Code:201049-0	NVLAP Lab Code: 200629-0
Innovation, Science and Economic Development Canada					
2834B-1, 2834B-3	2834E-1, 2834E-3	N/A	2834D-1, 2834D-2	2834G-1	2834F-1
		BS	МІ		
SL2-IN-E-1154R	SL2-IN-E-1152R	N/A	SL2-IN-E-1017	SL2-IN-E-1158R	SL2-IN-E-1153R
		VC	CI		
A-0029	A-0109	N/A	A-0108	A-0201	A-0110
	Recognized Phase I CAB for ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA				
US0158	US0175	N/A	US0017	US0191	US0157

MEASUREMENT UNCERTAINTY

Measurement Uncertainty

When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.


A measurement uncertainty estimation has been performed for each test per our internal quality document QM205.4.6. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) can be found included as part of the applicable test description page. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request.

The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.

Test	+ MU	- MU
Frequency Accuracy (Hz)	0.0007%	-0.0007%
Amplitude Accuracy (dB)	1.2 dB	-1.2 dB
Conducted Power (dB)	0.3 dB	-0.3 dB
Radiated Power via Substitution (dB)	0.7 dB	-0.7 dB
Temperature (degrees C)	0.7°C	-0.7°C
Humidity (% RH)	2.5% RH	-2.5% RH
Voltage (AC)	1.0%	-1.0%
Voltage (DC)	0.7%	-0.7%
Field Strength (dB)	5.2 dB	-5.2 dB
AC Powerline Conducted Emissions (dB)	2.4 dB	-2.4 dB

Test Setup Block Diagrams

PRODUCT DESCRIPTION

Client and Equipment Under Test (EUT) Information

Company Name:	Multi-Tech Systems, Inc.
Address:	2205 Woodale Drive
City, State, Zip:	Mounds View, MN 55112
Test Requested By:	Marcus Glass
Model:	MTCAP-LSP3
First Date of Test:	October 31, 2018
Last Date of Test:	November 1, 2018
Receipt Date of Samples:	October 31, 2018
Equipment Design Stage:	Production
Equipment Condition:	No Damage
Purchase Authorization:	Verified

Information Provided by the Party Requesting the Test

Functional Description of the EUT:

Device containing cellular and LoRa radios

Testing Objective:

Seeking to demonstrate compliance under FCC 15.247:2018 for operation in the 902 - 928 MHz Band.

POWER SETTINGS

The EUT was tested using the power settings provided by the manufacturer:

SETTINGS FOR ALL TESTS IN THIS REPORT

Modulation Types / Data Rates	Туре	Channel	Frequency (MHz)	Power Setting
		0	923.3	3.2.15 Util_Tx_Cont
LoRa	DTS	3	925.1	3.2.15 Util_Tx_Cont
		7	927.5	3.2.15 Util_Tx_Cont

CONFIGURATIONS

Configuration MLTI0092-1

Software/Firmware Running during test		
Description	Version	
M Linux	4.0.1	

EUT				
Description	Manufacturer	Model/Part Number	Serial Number	
MTCAP-LSP3	Multi-Tech Systems, Inc.	MTCAP-LSP3	359868070098618	

Peripherals in test setup boundary			
Description	Manufacturer	Model/Part Number	Serial Number
AC Adapter	Mega Electronics Inc.	FJ-SW1260502500DN	MJSW1260502500DN

Remote Equipment Outside of Test Setup Boundary				
Description	Manufacturer	Model/Part Number	Serial Number	
Laptop	Dell	PP41L	38RNBH1	
Mouse	Logitech	M-BJ58	LNA24020904	
AC Adapter (Laptop)	Dell	LA65NS2-00	CN-ONXO61-71615-961-2184	

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
Ethernet Cable	No	>3.0 m	No	MTCAP-LSP3	Laptop
DC Power	No	1.4 m	No	MTCAP-LSP3	AC Adapter
USB Cable	Yes	1.7 m	No	Laptop	Mouse
AC Power (Laptop)	No	0.8 m	No	AC Mains	AC Adapter (Laptop)
DC Power (Laptop)	No	1.7 m	Yes	AC Adapter (Laptop)	Laptop

CONFIGURATIONS

Configuration MLTI0092-2

Software/Firmware Running during test		
Description	Version	
M Linux	4.0.1	

EUT						
Description	Manufacturer	Model/Part Number	Serial Number			
MTCAP-LSP3	Multi-Tech Systems, Inc.	MTCAP-LSP3	359868070098451			

Peripherals in test setup boundary							
Description	Manufacturer	Model/Part Number	Serial Number				
AC Adapter	Mega Electronics Inc.	FJ-SW1260502500DN	MJSW1260502500DN				
Laptop	Dell	PP41L	38RNBH1				
Mouse	Logitech	M-BJ58	LNA24020904				
AC Adapter (Laptop)	Dell	LA65NS2-00	CN-ONXO61-71615-961-2184				

Cables							
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2		
Ethernet Cable	No	2.1 m	No	MTCAP-LSP3	Laptop		
DC Power	No	1.4 m	No	MTCAP-LSP3	AC Adapter		
USB Cable	Yes	1.7 m	No	Laptop	Mouse		
AC Power (Laptop)	No	0.8 m	No	AC Mains	AC Adapter (Laptop)		
DC Power (Laptop)	No	1.7 m	Yes	AC Adapter (Laptop)	Laptop		

MODIFICATIONS

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT
1	2018-10-31	Output Power	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
2	2018-10-31	Equivalent Isotropic Radiated Power	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
3	2018-10-31	Band Edge Compliance	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
4	2018-10-31	Occupied Bandwidth	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
5	2018-10-31	Spurious Conducted Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
6	2018-10-31	Power Spectral Density	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
7	2018-10-31	Spurious Radiated Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
8	2018-11-01	Powerline Conducted Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.

TEST DESCRIPTION

Using the mode of operation and configuration noted within this report, conducted emissions tests were performed. The frequency range investigated (scanned), is also noted in this report. Conducted power line measurements are made, unless otherwise specified, over the frequency range from 150 kHz to 30 MHz to determine the line-to-ground radio-noise voltage that is conducted from the EUT power-input terminals that are directly (or indirectly via separate transformer or power supplies) connected to a public power network. Per the standard, an insulating material was also added to ground plane between the EUT's power and remote I/O cables. Equipment is tested with power cords that are normally used or that have electrical or shielding characteristics that are the same as those cords normally used. Typically those measurements are made using a LISN (Line Impedance Stabilization Network), the 500hm measuring port is terminated by a 500hm EMI meter or a 500hm resistive load. All 500hm measuring ports of the LISN are terminated by 500hm. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

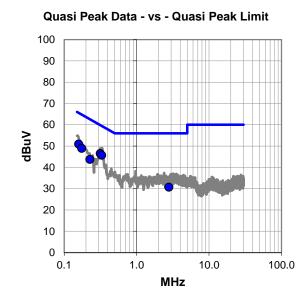
TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Receiver	Rohde & Schwarz	ESR7	ARI	6/26/2018	6/26/2019
Cable - Conducted Cable Assembly	Northwest EMC	MNC, HGN, TYK	MNCA	3/14/2018	3/14/2019
LISN	Solar Electronics	9252-50-R-24-BNC	LIY	3/15/2018	3/15/2019
LISN	Solar Electronics	9252-50-R-24-BNC	LIO	10/4/2018	10/4/2019

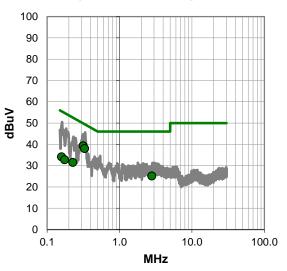
MEASUREMENT UNCERTAINTY

Description		
Expanded k=2	2.4 dB	-2.4 dB

CONFIGURATIONS INVESTIGATED


MLTI0092-1

MODES INVESTIGATED


Tx LoRa modulated Mid Ch at 925.1 MHz. 3.2.15 Util_Tx_Cont power setting used.

EUT:	MTCAP-LSP	3			Work Order:	MLTI0092	
Serial Number:	3598680700	98451			Date:	11/01/2018	
Customer:	Multi-Tech S	ystems, Inc) .		Temperature:	22.4°C	
Attendees:	Marcus Glas	S			Relative Humidity:	31.4%	
Customer Project:	None				Bar. Pressure:	1015 mb	
Tested By:	Kyle McMulla	an			Job Site:	MN03	
Power:	110VAC/60H	z			Configuration:	MLTI0092-1	
TEST SPECIFI	CATIONS						
Specification:				Method:			
FCC 15.207:2018				ANSI C63.10	:2013		
TEST PARAMETERS							
IESI PARAMI	EIERS						
Run #:2	ETERS	Line:	High Line	A	dd. Ext. Attenuation (dB): 0	
Run #: 2 COMMENTS	TERS	Line:	High Line	A	dd. Ext. Attenuation (dB): 0	
Run #: 2		Line:	High Line	Ad	dd. Ext. Attenuation (dB): 0	
Run #: 2 COMMENTS		Line:	High Line	A	dd. Ext. Attenuation (dB): 0	
Run #:2COMMENTSNoneEUT OPERATI	NG MODES		High Line	I): 0	
Run #:2COMMENTSNoneEUT OPERATI	NG MODES	5.1 MHz. 3	.2.15 Util_Tx_Cont pow	I): 0	

Average Data - vs - Average Limit

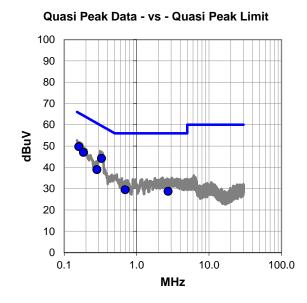
RESULTS - Run #2

Quasi Peak Data - vs - Quasi Peak Limit							
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)		
0.315	26.1	20.4	46.5	59.8	-13.3		
0.330	25.3	20.4	45.7	59.5	-13.8		
0.159	30.2	20.7	50.9	65.5	-14.6		
0.175	28.2	20.7	48.9	64.7	-15.8		
0.226	23.1	20.6	43.7	62.6	-18.9		
2.794	10.2	20.5	30.7	56.0	-25.3		

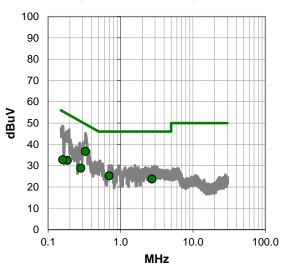
			11010190		
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
0.315	18.9	20.4	39.3	49.8	-10.5
0.330	17.6	20.4	38.0	49.5	-11.5
2.794	4.6	20.5	25.1	46.0	-20.9
0.226	10.9	20.6	31.5	52.6	-21.1
0.159	13.4	20.7	34.1	55.5	-21.4
0.175	12.1	20.7	32.8	54.7	-21.9

Average Data - vs - Average Limit

CONCLUSION


Pass

Hyle Ma Mulla


Tested By

EUT:	MTCAP-LSF	3			Work Order:	MLTI0092
Serial Number:	3598680700	98451			Date:	11/01/2018
Customer:	Multi-Tech S	ystems, Inc).		Temperature:	22.4°C
Attendees:	Marcus Glas	s			Relative Humidity:	31.4%
Customer Projec	:: None				Bar. Pressure:	1015 mb
Tested By:	Kyle McMulla	an			Job Site:	MN03
Power:	110VAC/60H	lz			Configuration:	MLTI0092-1
TEST SPECIE	ICATIONS					
Specification:				Method:		
FCC 15.207:201	3			ANSI C63.1	0:2013	
TEST PARAM	IETERS					
Run #: 3		Line:	Neutral		Add. Ext. Attenuation (dB): 0
COMMENTS						
None						
EUT OPERATING MODES						
Tx LoRa modulat	ed Mid Ch at 928	5.1 MHz. 3	.2.15 Util_Tx_Cont pov	er setting us	ed.	
DEVIATIONS FROM TEST STANDARD						
None						

Average Data - vs - Average Limit

RESULTS - Run #3

Quasi Peak Data - vs - Quasi Peak Limit							
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)		
0.328	23.8	20.4	44.2	59.5	-15.3		
0.159	29.0	20.7	49.7	65.5	-15.8		
0.185	26.3	20.7	47.0	64.3	-17.3		
0.282	18.5	20.4	38.9	60.7	-21.8		
0.696	9.0	20.5	29.5	56.0	-26.5		
2.719	8.2	20.5	28.7	56.0	-27.3		

Average Data - vs - Average Limit

Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)		
0.328	16.3	20.4	36.7	49.5	-12.8		
0.696	4.7	20.5	25.2	46.0	-20.8		
0.185	11.8	20.7	32.5	54.3	-21.8		
0.282	8.4	20.4	28.8	50.7	-21.9		
2.719	3.2	20.5	23.7	46.0	-22.3		
0.159	12.1	20.7	32.8	55.5	-22.7		

CONCLUSION

Pass

Hyle Mathella

Tested By

SPURIOUS RADIATED EMISSIONS

PSA-ESCI 2018.07.27

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Tx LoRa modulated Low, Mid, or High Ch at 923.3, 925.1, or 927.5 MHz. 3.2.15 Util_Tx_Cont power setting used.

POWER SETTINGS INVESTIGATED

110VAC/60Hz

CONFIGURATIONS INVESTIGATED

MLTI0092 - 1

FREQUENCY RANGE INVESTIGATED

Start Frequency 30 MHz

Stop Frequency 10 GHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Filter - Band Pass/Notch	K&L Microwave	3TNF-500/1000-N/N	HGS	31-Jul-2018	12 mo
Cable	ESM Cable Corp.	Standard Gain Horn Cables	MNJ	12-Jul-2018	12 mo
Cable	ESM Cable Corp.	Double Ridge Guide Horn Cables	MNI	24-Sep-2018	12 mo
Cable	ESM Cable Corp.	Bilog Cables	MNH	9-Nov-2017	12 mo
Filter - High Pass	Micro-Tronics	HPM50108	LFM	24-Sep-2018	12 mo
Antenna - Biconilog	Teseq	CBL 6141B	AYD	25-Jan-2018	24 mo
Antenna - Standard Gain	ETS Lindgren	3160-07	AXP	NCR	0 mo
Amplifier - Pre-Amplifier	Miteq	AMF-6F-08001200-30-10P	AVV	13-Feb-2018	12 mo
Amplifier - Pre-Amplifier	Miteq	AMF-3D-00100800-32-13P	AVT	13-Feb-2018	12 mo
Amplifier - Pre-Amplifier	Miteq	AM-1616-1000	AVO	9-Nov-2017	12 mo
Antenna - Double Ridge	ETS Lindgren	3115	AJA	27-Jun-2018	24 mo
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFN	27-Apr-2018	12 mo

MEASUREMENT BANDWIDTHS

Frequency Range	Peak Data	Quasi-Peak Data	Average Data
(MHz)	(kHz)	(kHz)	(kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

TEST DESCRIPTION

The highest gain antenna of each type to be used with the EUT was tested. The EUT was configured for the required transmit frequencies and the modes as showed in the data sheets.

For each configuration, the spectrum was scanned throughout the specified range as part of the exploratory investigation of the emissions. These "pre-scans" are not included in the report. Final measurements on individual emissions were then made and included in this test report.

The individual emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis if required, and adjusting the measurement antenna height and polarization (per ANSI C63.10). A preamp and high pass filter (and notch filter) were used for this test in order to provide sufficient measurement sensitivity.

Measurements were made with the required detectors and annotated on the data for each individual point using the following annotation:

QP = Quasi-Peak Detector PK = Peak Detector AV = RMS Detector

Measurements were made to satisfy the specific requirements of the test specification for out of band emissions as well as the restricted band requirements.

If there are no detectable emissions above the noise floor, the data included may show noise floor measurements for reference only.

Measurements at the edges of the allowable band may be presented in an alternative method as provided for in the ANSI C63.10 Marker-Delta method. This method involves performing an in-band fundamental measurement followed by a screen capture of the fundamental and out-of-band emission using reduced measurement instrumentation bandwidths. The amplitude delta measured on this screen capture is applied to the fundamental emission value to show the out-of-band emission level as applied to the limit.

Where the radio test software does not provide for a duty cycle at continuous transmit conditions (> 98%) and the RMS (power average) measurements were made across the on and off times of the EUT transmissions, a duty cycle correction is added to the measurements using the formula of 10*LOG(dc).

SPURIOUS RADIATED EMISSIONS

				_			1	EmiR5 2018.09.26	PSA-ESCI 20
Wor	k Order:		T .	Date:	31-Oct		~~	" ma	hella
	Project: Job Site:	None MN05	Ie	mperature: Humidity:	21.7 34%		Kye	a start	necn
	Number:		Baram	etric Pres.:	1017		Tasta	h huu laha MaMulla	2
Serial		MTCAP-LSP3	Darom	etric Pres.:	1017	mpar	Teste	d by: Kyle McMulla	1
Confid	guration:								
Connig	juration:	Multi-Tech Systems,	Inc						
		Marcus Glass	INC.						
		110VAC/60Hz	Laura Matalaa		00 0 005	4			
Operatir	ng Mode:	Tx LoRa modulated	Low, Iviid, o	r High Ch at 9	23.3, 925	.1, or 927.3	5 MHZ. 3.2.15 Ut	II_TX_Cont power se	etting used.
		None							
De	viations:	None							
		None							
60	mments:	None							
0	mments.								
st Specif						Test Meth			
C 15.247	:2018					ANSI C63	.10:2013		
Run #	19	Test Distance (m) 3	Antenna H	loight(c)		1 to 4(m)	Results	Pass
Kull #	19	Test Distance (in] 3	Antenna	leight(s)		1 to 4(iii)	Results	F d 5 5
80 -									
70 +									
60 -									
e 50 +								_	
5 40									
-									
30									
20 -									
10 +									
0 +									
10			100				1000		1000
					MHz				
								PK 4	AV 🔍 Q

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Duty Cycle Correction Factor (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
8309.742	53.5	-6.6	1.0	322.0	0.0	0.0	Horz	AV	0.0	46.9	54.0	-7.1	Low Ch, EUT Vert
8324.408	48.4	-6.6	1.0	330.9	0.0	0.0	Horz	AV	0.0	40.9	54.0	-12.2	Mid Ch, EUT Vert
8309.550	49.2	-6.6	2.2	282.9	0.0	0.0	Vert	AV	0.0	42.6	54.0	-11.4	Low Ch, EUT On Side
8309.500	49.5	-6.6	2.2	286.9	0.0	0.0	Vert	AV	0.0	42.9	54.0	-11.1	Low Ch, EUT Horz
4625.650	39.6	3.6	3.2	275.0	0.0	0.0	Vert	AV	0.0	43.2	54.0	-10.8	Mid Ch, EUT On Side
8347.000	49.8	-6.6	1.5	329.0	0.0	0.0	Horz	AV	0.0	43.2	54.0	-10.8	High Ch, EUT Vert
8309.742	49.1	-6.6	1.6	275.9	0.0	0.0	Vert	AV	0.0	42.5	54.0	-11.5	Low Ch, EUT Vert
4625.475	38.2	3.6	1.7	315.9	0.0	0.0	Horz	AV	0.0	41.8	54.0	-12.2	Mid Ch, EUT Vert
4616.408	39.1	3.5	1.0	232.0	0.0	0.0	Horz	AV	0.0	42.6	54.0	-11.4	Low Ch, EUT Vert
4616.542	38.7	3.5	1.0	304.9	0.0	0.0	Vert	AV	0.0	42.2	54.0	-11.8	Low Ch, EUT On Side
8324.433	46.0	-6.6	2.3	285.0	0.0	0.0	Vert	AV	0.0	39.4	54.0	-14.6	Mid Ch, EUT On Side
8346.867	47.4	-6.6	2.2	265.9	0.0	0.0	Vert	AV	0.0	40.8	54.0	-13.2	High Ch, EUT On Side
8309.592	46.5	-6.6	1.0	285.0	0.0	0.0	Horz	AV	0.0	39.9	54.0	-14.1	Low Ch, EUT On Side
4637.717	35.8	3.8	1.0	292.0	0.0	0.0	Vert	AV	0.0	39.6	54.0	-14.4	High Ch, EUT On Side
8309.775	43.7	-6.6	1.0	61.0	0.0	0.0	Horz	AV	0.0	37.1	54.0	-16.9	Low Ch, EUT Horz
2769.842	42.7	-3.2	1.0	264.9	0.0	0.0	Vert	AV	0.0	39.5	54.0	-14.5	Low Ch, EUT On Side
4637.508	35.3	3.8	1.0	335.0	0.0	0.0	Horz	AV	0.0	39.1	54.0	-14.9	High Ch, EUT Vert

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Duty Cycle Correction Factor (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
2775.275	42.0	-3.1	1.0	271.0	0.0	0.0	Vert	AV	0.0	38.9	54.0	-15.1	Mid Ch, EUT On Side
2769.833	40.6	-3.2	1.0	351.0	0.0	0.0	Horz	AV	0.0	37.4	54.0	-16.6	Low Ch, EUT Vert
2782.458	39.0	-3.1	1.0	275.9	0.0	0.0	Vert	AV	0.0	35.9	54.0	-18.1	High Ch, EUT On Side
2782.483	37.9	-3.1	1.0	224.1	0.0	0.0	Horz	AV	0.0	34.8	54.0	-19.2	High Ch, EUT Vert
2775.275	37.6	-3.1	1.0	216.0	0.0	0.0	Horz	AV	0.0	34.5	54.0	-19.5	Mid Ch, EUT Vert
8309.200	62.2	-6.6	1.0	322.0		0.0	Horz	PK	0.0	55.6	74.0	-18.4	Low Ch, EUT Vert
8309.342	58.8	-6.6	2.2	282.9		0.0	Vert	PK	0.0	52.2	74.0	-21.8	Low Ch, EUT On Side
8309.175	58.7	-6.6	2.2	286.9		0.0	Vert	PK	0.0	52.1	74.0	-21.9	Low Ch, EUT Horz
4625.892	48.4	3.6	3.2	275.0		0.0	Vert	PK	0.0	52.0	74.0	-22.0	Mid Ch, EUT On Side
8346.450	58.4	-6.6	1.5	329.0		0.0	Horz	PK	0.0	51.8	74.0	-22.2	High Ch, EUT Vert
8309.342	58.3	-6.6	1.6	275.9		0.0	Vert	PK	0.0	51.7	74.0	-22.3	Low Ch, EUT Vert
4616.725	48.2	3.5	1.0	232.0		0.0	Horz	PK	0.0	51.7	74.0	-22.3	Low Ch, EUT Vert
4637.408	47.8	3.8	1.0	292.0		0.0	Vert	PK	0.0	51.6	74.0	-22.4	High Ch, EUT On Side
8324.183	58.1	-6.6	1.0	330.9		0.0	Horz	PK	0.0	51.5	74.0	-22.5	Mid Ch, EUT Vert
4616.892	47.9	3.5	1.0	304.9		0.0	Vert	PK	0.0	51.4	74.0	-22.6	Low Ch, EUT On Side
4625.917	47.4	3.6	1.7	315.9		0.0	Horz	PK	0.0	51.0	74.0	-23.0	Mid Ch, EUT Vert
4637.233	46.3	3.8	1.0	335.0		0.0	Horz	PK	0.0	50.1	74.0	-23.9	High Ch, EUT Vert
8309.175	56.3	-6.6	1.0	285.0		0.0	Horz	PK	0.0	49.7	74.0	-24.3	Low Ch, EUT On Side
8346.550	56.2	-6.6	2.2	265.9		0.0	Vert	PK	0.0	49.6	74.0	-24.4	High Ch, EUT On Side
8324.208	56.0	-6.6	2.3	285.0		0.0	Vert	PK	0.0	49.4	74.0	-24.6	Mid Ch, EUT On Side
8309.133	54.1	-6.6	1.0	61.0		0.0	Horz	PK	0.0	47.5	74.0	-26.5	Low Ch, EUT Horz
2770.067	49.5	-3.2	1.0	264.9		0.0	Vert	PK	0.0	46.3	74.0	-27.7	Low Ch, EUT On Side
2775.108	49.3	-3.1	1.0	271.0		0.0	Vert	PK	0.0	46.2	74.0	-27.8	Mid Ch, EUT On Side
2776.050	48.9	-3.1	1.0	216.0		0.0	Horz	PK	0.0	45.8	74.0	-28.2	Mid Ch, EUT Vert
2782.908	48.1	-3.1	1.0	275.9		0.0	Vert	PK	0.0	45.0	74.0	-29.0	High Ch, EUT On Side
2770.083	48.2	-3.2	1.0	351.0		0.0	Horz	PK	0.0	45.0	74.0	-29.0	Low Ch, EUT Vert
2782.800	46.5	-3.1	1.0	224.1		0.0	Horz	PK	0.0	43.4	74.0	-30.6	High Ch, EUT Vert

DUTY CYCLE

TEST DESCRIPTION

The Duty Cycle (x) were measured for each of the EUT operating modes. The measurements were made using a zero span on the spectrum analyzer to see the pulses in the time domain. The transmit power was set to its default maximum. A direct connection was made between the RF output of the EUT and a spectrum analyzer. Attenuation and a DC block were used

The duty cycle was calculated by dividing the transmission pulse duration (T) by the total period of a single on and total off time.

The EUT operates at 100% Duty Cycle.

XMit 2017.12.13

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Block - DC	Fairview Microwave	SD3379	AMI	7-Sep-18	7-Sep-19
Attenuator	Fairview Microwave	SA4014-20	AQI	7-Sep-18	7-Sep-19
Attenuator	S.M. Electronics	SA26B-20	RFW	13-Feb-18	13-Feb-19
Cable	ESM Cable Corp.	TTBJ141 KMKM-72	MNU	15-Mar-18	15-Mar-19
Generator - Signal	Keysight	N5182B-506	TEU	23-Apr-18	23-Apr-21
Analyzer - Spectrum Analyzer	Keysight	N9010A (EXA)	AFQ	19-Dec-17	19-Dec-18

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The transmit frequency was set to the required channels in each band. The transmit power was set to its default maximum.

Prior to measuring peak transmit power the DTS bandwidth (B) was measured.

The method found in ANSI C63.10:2013 Section 11.9.1.1 was used because the RBW on the analyzer was greater than the DTS Bandwidth of the radio.

EUT: MT	CAP-LSP3						Work Order:	MLTI0092	
Serial Number: 359	868070098451							1-Nov-18	
Customer: Mul	ti-Tech Systems, Inc.						Temperature:	22.7 °C	
Attendees: Mar	rcus Glass						Humidity:	31.9% RH	
Project: Nor							Barometric Pres.:		
Tested by: Kyl	e McMullan			Po	ower: 110VAC/60H	z	Job Site:	MN08	
TEST SPECIFICATIONS	3				Test Method				
FCC 15.247:2018					ANSI C63.10:	:2013			
COMMENTS									
None									
None	ST STANDARD								
None DEVIATIONS FROM TE	ST STANDARD								
None	ST STANDARD								
None DEVIATIONS FROM TE None			76-		Mathali	la			
None DEVIATIONS FROM TE	ST STANDARD	Signature	K	yla	mahali	m			
None DEVIATIONS FROM TE None		Signature	Zh	zh	mathala	la		Limit	
None DEVIATIONS FROM TE None		Signature	Ka	yli	mathill	h	Value	Limit	Result
None DEVIATIONS FROM TE None Configuration #	2	Signature	The	yla	Ma Mall	h	Value 202 20 mW	(<)	Result
None DEVIATIONS FROM TE None Configuration #	2 3 MHz	Signature	Zn	ryla	Mr.M.S.C	la	292.29 mW	(<) 1 W	Pass
None DEVIATIONS FROM TE None	2 3 MHz I MHz	Signature	Ka	yli	Mathali	lm		(<)	

XMit 2017.12.13

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

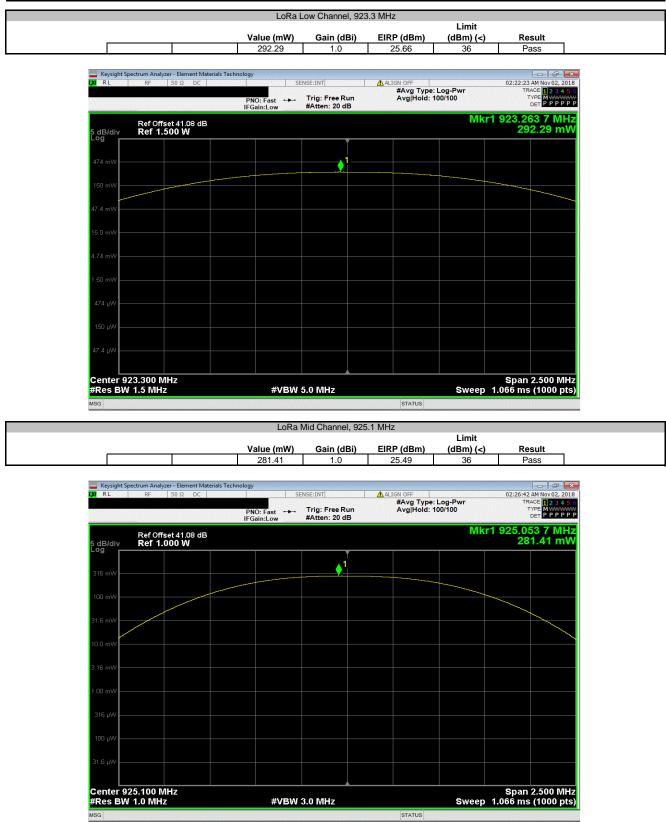
TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Block - DC	Fairview Microwave	SD3379	AMI	7-Sep-18	7-Sep-19
Attenuator	Fairview Microwave	SA4014-20	AQI	7-Sep-18	7-Sep-19
Attenuator	S.M. Electronics	SA26B-20	RFW	13-Feb-18	13-Feb-19
Cable	ESM Cable Corp.	TTBJ141 KMKM-72	MNU	15-Mar-18	15-Mar-19
Generator - Signal	Keysight	N5182B-506	TEU	23-Apr-18	23-Apr-21
Analyzer - Spectrum Analyzer	Keysight	N9010A (EXA)	AFQ	19-Dec-17	19-Dec-18

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The transmit frequency was set to the required channels in each band. The transmit power was set to its default maximum.

Prior to measuring peak transmit power the DTS bandwidth (B) was measured.


The method found in ANSI C63.10:2013 Section 11.9.1.1 was used because the RBW on the analyzer was greater than the DTS Bandwidth of the radio.

The declared antenna gain was added to the output power of the EUT. This was compared to the 4 Watt=36 dBm limit to determine compliance.

							TbtTx 2018.09.13	XMit 2017.12.13
	MTCAP-LSP3					Work Order:	MLT10092	
	359868070098451						1-Nov-18	
	Multi-Tech Systems, Inc.					Temperature:		
	Marcus Glass					Humidity:		
Project:						Barometric Pres.:		
	Kyle McMullan		Power: 110VAC/6			Job Site:	MN08	
TEST SPECIFICATI	ONS		Test Meth					
FCC 15.247:2018			ANSI C63.	10:2013				
COMMENTS								
None								
DEVIATIONS FROM	I TEST STANDARD							
None								
Configuration #	2	Signature	nyla Matthe	ela				
	•						Limit	
				Value (mW)	Gain (dBi)	EIRP (dBm)	(dBm) (<)	Result
LoRa Low Channel, 9	923.3 MHz			292.29	1.0	25.66	36	Pass
LoRa Mid Channel, 9	925.1 MHz			281.41	1.0	25.49	36	Pass
LoRa High Channel,	927.5 MHz			265.72	1.0	25.24	36	Pass

BAND EDGE COMPLIANCE

XMit 2017.12.13

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

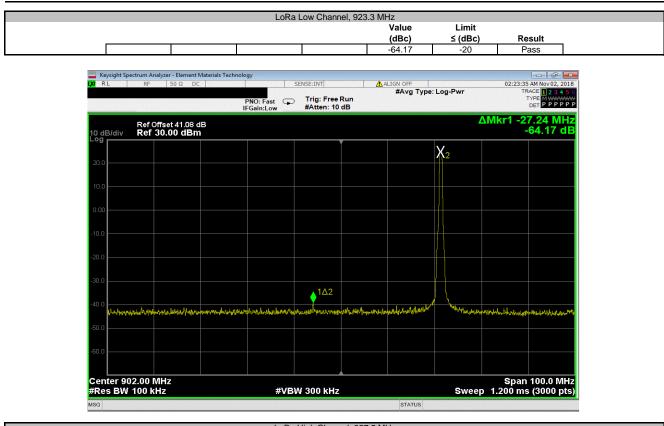
Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Attenuator	Fairview Microwave	SA4014-20	AQI	7-Sep-18	7-Sep-19
Attenuator	S.M. Electronics	SA26B-20	RFW	13-Feb-18	13-Feb-19
Block - DC	Fairview Microwave	SD3379	AMI	7-Sep-18	7-Sep-19
Generator - Signal	Keysight	N5182B-506	TEU	23-Apr-18	23-Apr-21
Cable	ESM Cable Corp.	TTBJ141 KMKM-72	MNU	15-Mar-18	15-Mar-19
Analyzer - Spectrum Analyzer	Keysight	N9010A (EXA)	AFQ	19-Dec-17	19-Dec-18

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The spurious RF conducted emissions at the edges of the authorized bands were measured with the EUT set to low and high transmit frequencies in each available band. The channels closest to the band edges were selected. The EUT was transmitting at the data rate(s) listed in the datasheet.

The spectrum was scanned below the lower band edge and above the higher band edge.

BAND EDGE COMPLIANCE



						TbtTx 2018.09.13	XMit 2017.12.13
EUT: MTCA	P-LSP3				Work Ord	er: MLTI0092	
Serial Number: 359868	3070098451					te: 1-Nov-18	
Customer: Multi-	Fech Systems, Inc.				Temperatu	re: 22.6 °C	
Attendees: Marcu	s Glass					ity: 31.9% RH	
Project: None					Barometric Pro		
Tested by: Kyle N	lcMullan		Pow	er: 110VAC/60Hz	Job S	ite: MN08	
TEST SPECIFICATIONS				Test Method			
FCC 15.247:2018				ANSI C63.10:2013			
COMMENTS							
None							
DEVIATIONS FROM TEST	STANDARD						
None							
			74	m. 11 20			
Configuration #	2		Knyla	mathela			
		Signature	0				
					Value	Limit	
					(dBc)	≤ (dBc)	Result
LoRa Low Channel, 923.3 M					-64.17	-20	Pass
LoRa High Channel, 927.5	ЛНz				-33.38	-20	Pass

Report No. MLTI0092.1

BAND EDGE COMPLIANCE

	LoRa H	ligh Channel, 927	'.5 MHz		
			Value	Limit	
			(dBc)	≤ (dBc)	Result
			-33.38	-20	Pass

XMit 2017.12.13

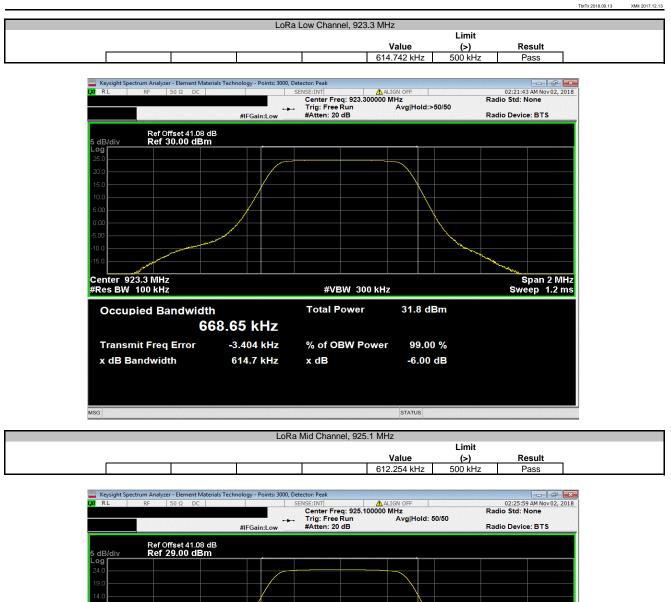
Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

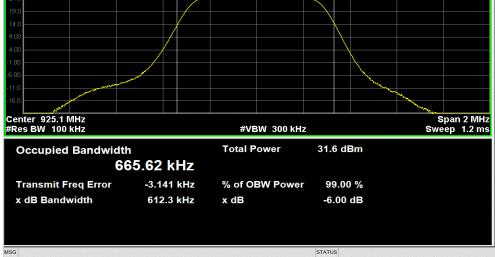
TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Keysight	N5182B-506	TEU	23-Apr-18	23-Apr-21
Block - DC	Fairview Microwave	SD3379	AMI	7-Sep-18	7-Sep-19
Attenuator	Fairview Microwave	SA4014-20	AQI	7-Sep-18	7-Sep-19
Attenuator	S.M. Electronics	SA26B-20	RFW	13-Feb-18	13-Feb-19
Cable	ESM Cable Corp.	TTBJ141 KMKM-72	MNU	15-Mar-18	15-Mar-19
Analyzer - Spectrum Analyzer	Keysight	N9010A (EXA)	AFQ	19-Dec-17	19-Dec-18

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The EUT was set to the channels and modes listed in the datasheet.


The 6dB occupied bandwidth was measured using 100 kHz resolution bandwidth and 300 kHz video bandwidth. The 99.0% occupied bandwidth was also measured at the same time which can be needed during Output Power depending on the applicable method.



					TbtTx 2018.09.13	XMit 2017.12
	CAP-LSP3			Work Order:		
Serial Number: 359	9868070098451			Date:	1-Nov-18	
Customer: Mu	Iti-Tech Systems, Inc.			Temperature:	22.6 °C	
Attendees: Ma					31.8% RH	
Project: No				Barometric Pres.:		
Tested by: Ky			Power: 110VAC/60Hz	Job Site:	MN08	
TEST SPECIFICATIONS	S		Test Method			
FCC 15.247:2018			ANSI C63.10:2013			
COMMENTS						
None						
1						
I						
DEVIATIONS FROM TE	ST STANDARD					
DEVIATIONS FROM TE None	ST STANDARD					
	ST STANDARD					
None	EST STANDARD	72	myto Matthella			
None		Signature	ryle Mathella			
		Signature	ngh Mathalla		Limit	
None		Signature	nyto Mathalla	Value	Limit (>)	Result
None Configuration #	2	Signature	ngh Mathalla	Value 614.742 kHz		Result Pass
None	2 .3 MHz	Signature	ngle Mithella		(>)	

Report No. MLTI0092.1

XMit 2017.12.13

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Block - DC	Fairview Microwave	SD3379	AMI	7-Sep-18	7-Sep-19
Attenuator	Fairview Microwave	SA4014-20	AQI	7-Sep-18	7-Sep-19
Attenuator	S.M. Electronics	SA26B-20	RFW	13-Feb-18	13-Feb-19
Cable	ESM Cable Corp.	TTBJ141 KMKM-72	MNU	15-Mar-18	15-Mar-19
Generator - Signal	Keysight	N5182B-506	TEU	23-Apr-18	23-Apr-21
Analyzer - Spectrum Analyzer	Keysight	N9010A (EXA)	AFQ	19-Dec-17	19-Dec-18

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The spurious RF conducted emissions were measured with the EUT set to low, medium and high transmit frequencies. The EUT was transmitting at the data rate(s) listed in the datasheet. For each transmit frequency, the spectrum was scanned throughout the specified frequency range.

EUT: MTC	CAP-LSP3					Work Order:	MLT10092	
Serial Number: 3598						Date:	1-Nov-18	
Customer: Mul	Iti-Tech Systems, Inc.					Temperature:	22.7 °C	
Attendees: Mar	rcus Glass					Humidity:	31.9% RH	
Project: Non						Barometric Pres.:	1016 mbar	
Tested by: Kyle	le McMullan			Power: 110VAC/60Hz		Job Site:	MN08	
TEST SPECIFICATIONS	S			Test Method				
CC 15.247:2018				ANSI C63.10:2013				
COMMENTS				• •				
None								
None DEVIATIONS FROM TES None	ST STANDARD							
DEVIATIONS FROM TES	EST STANDARD	Signature	Kryli	mittablen				
DEVIATIONS FROM TES		Signature	Vryte	Frequency Range	Measured Freq (MHz)	Max Value (dBc)	Limit ≤ (dBc)	Result
DEVIATIONS FROM TES	2	Signature	Kryla	Frequency				Result N/A
DEVIATIONS FROM TES None Configuration #	2 .3 MHz	Signature	Virgle	Frequency Range	Freq (MHz)	(dBc)	≤ (dBc)	
DEVIATIONS FROM TEST Tone Configuration #	2 .3 MHz .3 MHz	Signature	Viryta	Frequency Range Fundamental	Freq (MHz) 923.26	(dBc) N/A	≤ (dBc) N/A	N/A
DEVIATIONS FROM TES None Configuration #	2 .3 MHz .3 MHz 1 MHz	Signature	Thyli	Frequency Range Fundamental 30 MHz - 12 GHz	Freq (MHz) 923.26 3968.37	(dBc) N/A -58.56	<mark>≤ (dBc)</mark> N/A -20	N/A Pass
DEVIATIONS FROM TES	2 .3 MHz .3 MHz 1 MHz 1 MHz	Signature	Virgle	Frequency Range Fundamental 30 MHz - 12 GHz Fundamental	Freq (MHz) 923.26 3968.37 925.06	(dBc) N/A -58.56 N/A	<mark>≤ (dBc)</mark> N/A -20 N/A	N/A Pass N/A

	Frequency	20110	Low Channel, 923 Measured	Max Value	Limit	
	Range		Freq (MHz)	(dBc)	≤ (dBc)	Result
	Fundamental		923.26	N/A	N/A	N/A
	1 dilddillollidi		020.20	14/7	14/73	14/7
	r - Element Materials Technolog 50 Ω DC		INSE:INT	ALIGN OFF		02:22:53 AM Nov 02, 2018
	50 H DC			#Avg Type	: Log-Pwr	TRACE 1 2 3 4 5
	Р	NO: Wide 😱 Gain:Low	Trig: Free Run #Atten: 10 dB			TRACE 1 2 3 4 5 TYPE M WWWW DET P P P P P
		Gain:Low	#Atten: To ub		Mice4	923.261 73 MHz
Ref Offs	et 41.08 dB				IVINT I	24.584 dBm
10 dB/div Ref 30.	00 dBm					24.004 001
			<u> </u>			
20.0						
10.0						
10.0						
0.00						
0.00						
-10.0						- me
-10.0						
-20.0						
-30.0						
10.0						
-40.0						
59.0						
-50.0						
-60.0						
Center 923.3000 N						Span 1.000 MH;
#Res BW 100 kHz		#VBW	/ 300 kHz		Sweep	1.092 ms (8192 pts
MSG				STATUS		

LORAL	ow Channel, 923	5.3 MHZ		
Frequency	Measured	Max Value	Limit	
Range	Freq (MHz)	(dBc)	≤ (dBc)	Result
30 MHz - 12 GHz	3968.37	-58.56	-20	Pass

RL	RF	50 Ω	DC		S	ENSE:INT	<u>∧</u> A	LIGN OFF		02:23:1	5 AM Nov 02, 20
				PNO: Fast IFGain:Low	Ģ	Trig: Free I #Atten: 10	Run	#Avg Type:	Log-Pwr	т	RACE 1 2 3 4 5 TYPE MWWW DET PPPP
dB/div	Ref Of Ref 3	fset 41.08 0.00 dB	3 dB Sm						ľ	/lkr1 3.9 -3	68 4 GF 3.98 dB
D.0											
).0											
00											
).0											
.0											
.0			و باستنامین		ليلتلبني	والمستقبل المستعم		والمتعادية والمتعدد والمتعدد	(A.S.). All a second state	أواد والاربيا	alas ind Briefer
).0											
art 30 M	AH7									Ston	12.000 GH
tes BW		z		#	VBV	V 300 kHz			Sweep	39.32 m	s (8192 pi

	Frequency		Mid Channel, 925 Measured	Max Value	Limit	
	Range		Freq (MHz)	(dBc)	≤ (dBc)	Result
	Fundamental		925.06	N/A	N/A	N/A
Keysight Spectrum Analyzer	- Element Materials Technology					
	0Ω DC		NSE:INT	ALIGN OFF		02:27:08 AM Nov 02, 201
	PN IFG	0:Wide 🖵 ain:Low	Trig: Free Run #Atten: 10 dB	#Avg Type		TRACE 1 2 3 4 5 TYPE M WWW DET P P P P P
Ref Offset 10 dB/div Ref 29.0	41.08 dB 0 dBm				Mkr1	925.060 51 MH 24.417 dBn
			<u>, </u> ∮1 Y			
19.0						
9.00						
-1.00						
-11.0						
-21.0						
-31.0						
-41.0						
-51.0						
-61.0						
Center 925.1000 MI #Res BW 100 kHz		#VBW	300 kHz		Sweep	Span 1.000 MH 1.092 ms (8192 pts
MSG				STATUS		

LUKAT	vilu Channel, 925			
Frequency	Measured	Max Value	Limit	
Range	Freq (MHz)	(dBc)	≤ (dBc)	Result
30 MHz - 12 GHz	5441.42	-58.02	-20	Pass

RL	RF	50 Ω	DC		S	ENSE:INT		LIGN OFF		02:27:4	1 AM Nov 02, 20
				PNO: Fast IFGain:Low		Trig: Free R #Atten: 10 c	Run	#Avg Type:	Log-Pwr		RACE 1234 TYPE MWWW DET PPPP
dB/div	Ref Of Ref 2	fset 41.08 9.00 dB	dB m							Mkr1 5.4 -3	41 4 GH 3.60 dB
.0											
.0											
.0				1 1. July							
	, and the second second		an a	*****			وبالإياة بيكافين		a an in the second second	المليفاتين والدراطم	
.0											
.0											
art 30 M tes BW		7		#	VB¥	V 300 kHz			Sweet	Stop 39.32 m	12.000 Gi s (8192 ni

	Frequency		High Channel, 927 Measured	Max Value	Limit	
	Range		Freq (MHz)	(dBc)	≤ (dBc)	Result
	Fundamental		927.46	N/A	N/A	N/A
	r - Element Materials Technol 50 Ω DC		INSE:INT	ALIGN OFF		02:31:17 AM Nov 02, 2018
	000			#Avg Type	: Log-Pwr	TRACE 1 2 3 4 5
		PNO: Wide 😱 IFGain:Low	Trig: Free Run #Atten: 10 dB			TRACE 1 2 3 4 5 (TYPE M WWWW DET P P P P P
Ref Offse 10 dB/div Ref 29.0	et 41.08 dB 00 dBm				Mkr1	927.457 21 MHz 24.17 dBm
Log			<u> 1</u>			
19.0						
9.00	/					
-1.00						
and the second se						and the second sec
-11.0						
-21.0						
-31.0						
-41.0						
-51.0						
-61.0						
Center 927.5000 N #Res BW 100 kHz	IHz	#VBW	/ 300 kHz		Sweep	Span 1.000 MHz 1.092 ms (8192 pts
MSG				STATUS		

Eonta	ngn onannon, ozr			
Frequency	Measured	Max Value	Limit	
Range	Freq (MHz)	(dBc)	≤ (dBc)	Result
30 MHz - 12 GHz	928.74	-35.17	-20	Pass

RL	RF	50 Ω DC			S	ENSE:INT		ALIGN OFF			02:31:44 AM Nov 02, 201	
	- 1 10 1 5532 DC				Trig: Free F #Atten: 10 c		Run	#Avg Type: Log-Pwr In		Log-Pwr	TRACE 2 3 4 TYPE DET P P P P	
dB/div	Ref Offs Ref 29	et 41.08 c .00 dBm	iB 1								Mkr1 9 -1	28.7 MH 0.99 dB
.0												
0	1											
.0	\											
.0												
.0												
		المنصلية أرزرر	in the second	Marrie A	وبالملاج		الم	an para da		ومقاورته أول وأقريته أور	وماطروه ويتادمونها	tible office the set
		and a daried										
.0												
.0												
art 30 M											Stop	12.000 GH
les BW	100 kHz			#	VBV	V 300 kHz				Sweep	- 39.32 m	s (8192 pt

XMit 2017.12.13

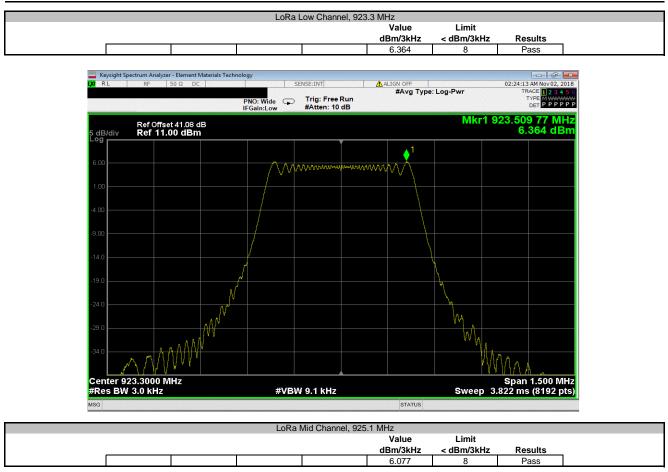
Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Keysight	N5182B-506	TEU	23-Apr-18	23-Apr-21
Block - DC	Fairview Microwave	SD3379	AMI	7-Sep-18	7-Sep-19
Attenuator	Fairview Microwave	SA4014-20	AQI	7-Sep-18	7-Sep-19
Attenuator	S.M. Electronics	SA26B-20	RFW	13-Feb-18	13-Feb-19
Cable	ESM Cable Corp.	TTBJ141 KMKM-72	MNU	15-Mar-18	15-Mar-19
Analyzer - Spectrum Analyzer	Keysight	N9010A (EXA)	AFQ	19-Dec-17	19-Dec-18

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The maximum power spectral density measurements was measured using the channels and modes as called out on the following data sheets.


Per the procedure outlined in ANSI C63.10 the peak power spectral density was measured in a 3 kHz RBW.

						TbtTx 2018.09.13	XMit 2017.1
EUT: M	TCAP-LSP3				Work Order:	MLTI0092	
Serial Number: 35	59868070098451				Date:	1-Nov-18	
Customer: Mu	ulti-Tech Systems, Inc.				Temperature:	22.7 °C	
Attendees: Ma	arcus Glass				Humidity:	31.9% RH	
Project: No	one				Barometric Pres.:	1016 mbar	
Tested by: Ky	yle McMullan		F	ower: 110VAC/60Hz	Job Site:	MN08	
TEST SPECIFICATION	NS			Test Method			
FCC 15.247:2018							
COMMENTS							
None							
DEVIATIONS FROM TI	EST STANDARD						
None							
Configuration #	2		V- 1	mathela			
configuration #	2	Signature	paya				
		Signature					
					Value	l imit	
					Value dBm/3kHz	Limit < dBm/3kHz	Results
oRa Low Channel, 923	3.3 MHz						Results Pass
LoRa Low Channel, 923					dBm/3kHz	< dBm/3kHz	

Report No. MLTI0092.1

