

Multi-Tech Systems, Inc.

MTAC-LORA-H-915

FCC 15.247:2017

902 – 928 MHz Transceiver

Report # MLTI0063.1

NVLAP Lab Code: 200881-0

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America. This Report shall not be reproduced, except in full without written approval of the laboratory.

CERTIFICATE OF TEST

Last Date of Test: January 12, 2017 Multi-Tech Systems, Inc. Model: MTAC-LORA-H-915

Radio Equipment Testing

Standards

Specification	Method
FCC 15.207:2017	ANSI C63.10:2013
FCC 15.247:2017	ANOI 003.10.2013

Results

Method Clause	Test Description	Applied	Results	Comments
6.2	Powerline Conducted Emissions	Yes	Pass	
6.5, 6.6, 11.12.1, 11.13.2	Spurious Radiated Emissions	Yes	Pass	
7.8.2	Carrier Frequency Separation	No	N/A	Not required for DTS devices.
7.8.3	Number of Hopping Frequencies	No	N/A	Not required for DTS devices.
7.8.4	Dwell Time	No	N/A	Not required for DTS devices.
7.8.6	Band Edge Compliance - Hopping Mode	No	N/A	Not required for DTS devices.
11.6	Duty Cycle	Yes	N/A	Characterization of radio.
11.8.2	Occupied Bandwidth	Yes	Pass	
11.9.1.1	Output Power	Yes	Pass	
11.10.2	Power Spectral Density	Yes	Pass	
11.11	Spurious Conducted Emissions	Yes	Pass	
11.11	Band Edge Compliance	Yes	Pass	

Deviations From Test Standards

None

Approved By:

Groce

Dean Ghizzone, General Manager

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information.

REVISION HISTORY

Revision Number	Description	Date	Page Number
00	None		

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Accredited by A2LA to ISO / IEC 17065 as a product certifier. This allows Northwest EMC to certify transmitters to FCC and IC specifications.

NVLAP - Each laboratory is accredited by NVLAP to ISO 17025

Canada

ISED - Recognized by Innovation, Science and Economic Development Canada as a Certification Body (CB). Certification chambers and Open Area Test Sites are filed with ISED.

European Union

European Commission - Validated by the European Commission as a Notified Body under the R&TTE Directive.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIP / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA – Recognized by IDA as a CAB for the acceptance of test data.

Israel

MOC – Recognized by MOC as a CAB for the acceptance of test data.

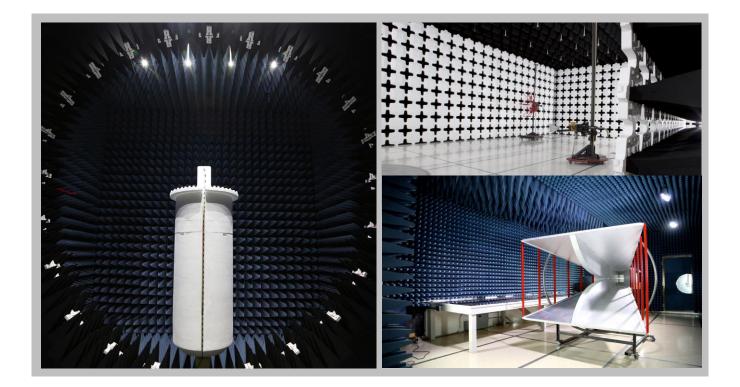
Hong Kong

OFCA – Recognized by OFCA as a CAB for the acceptance of test data.

Vietnam

MIC – Recognized by MIC as a CAB for the acceptance of test data.

SCOPE


For details on the Scopes of our Accreditations, please visit: <u>http://www.nwemc.com/accreditations/</u> http://gsi.nist.gov/global/docs/cabs/designations.html

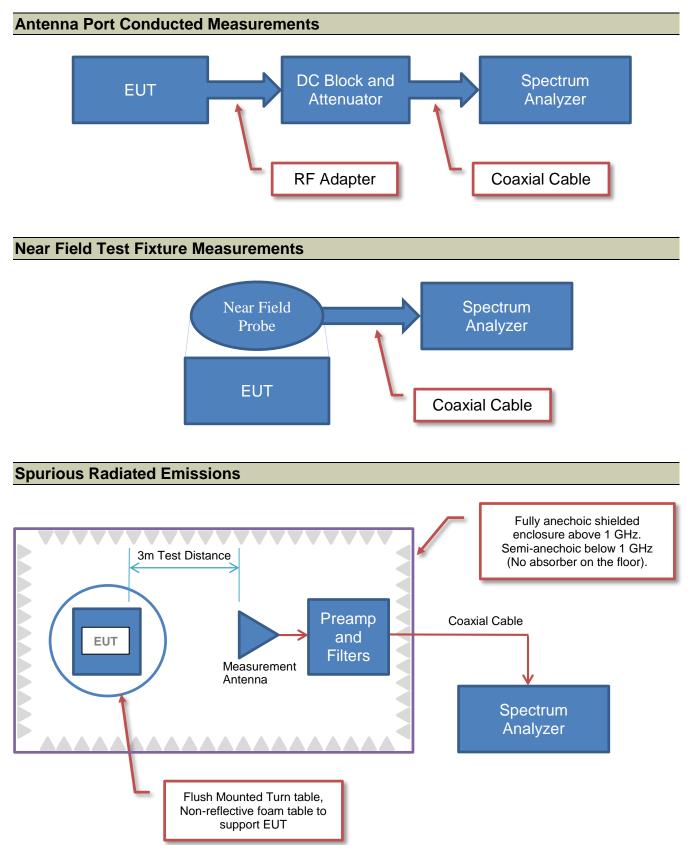
FACILITIES

NVLAP	California Labs OC01-13 41 Tesla Irvine, CA 92618 (949) 861-8918	Minnesota Labs MN01-08, MN10 9349 W Broadway Ave. Brooklyn Park, MN 55445 (612)-638-5136	New York Labs NY01-04 4939 Jordan Rd. Elbridge, NY 13060 (315) 554-8214	Oregon Labs EV01-12 22975 NW Evergreen Pkwy Hillsboro, OR 97124 (503) 844-4066	Texas Labs TX01-09 3801 E Plano Pkwy Plano, TX 75074 (469) 304-5255	Washington Labs NC01-05 19201 120 th Ave NE Bothell, WA 98011 (425)984-6600
NVLAP Lab Code: 200676-0 NVLAP Lab Code: 200881-0 NVLAP Lab Code: 200761-0 NVLAP Lab Code: 200630-0 NVLAP Lab Code: 201049-0 NVLAP Lab Code: 200629-0 Innovation, Science and Economic Development Canada 2834B-1, 2834B-3 2834E-1 N/A 2834D-1, 2834D-2 2834G-1 2834F-1 SL2-IN-E-1152R N/A 282-IN-E-1017 SL2-IN-E-1158R SL2-IN-E-1153R VCCI A-0029 A-0109 N/A A-0108 A-0201 A-0110 Recognized Phase I CAB for ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA						
Innovation, Science and Economic Development Canada 2834B-1, 2834B-3 2834E-1 N/A 2834D-1, 2834D-2 2834G-1 2834F-1 BSMI SL2-IN-E-1152R N/A SL2-IN-E-1017 SL2-IN-E-1158R SL2-IN-E-1153R VCCI A-0029 A-0109 N/A A-0108 A-0201 A-0110 Recognized Phase I CAB for ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA			IN V	LAP		
2834B-1, 2834B-3 2834E-1 N/A 2834D-1, 2834D-2 2834G-1 2834F-1 BSMI SL2-IN-E-1154R SL2-IN-E-1152R N/A SL2-IN-E-1017 SL2-IN-E-1158R SL2-IN-E-1153R VCCI VCCI A-0029 A-0109 N/A A-0108 A-0201 A-0110 Recognized Phase I CAB for ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA IDA ID	NVLAP Lab Code: 200676-0	NVLAP Lab Code: 200881-0	NVLAP Lab Code: 200761-0	NVLAP Lab Code: 200630-0	NVLAP Lab Code:201049-0	NVLAP Lab Code: 200629-0
BSMI SL2-IN-E-1154R SL2-IN-E-1152R N/A SL2-IN-E-1017 SL2-IN-E-1158R SL2-IN-E-1153R VCCI VCCI A-0029 A-0109 N/A A-0108 A-0201 A-0110 Recognized Phase I CAB for ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA IDA IDA <td></td> <td>Innov</td> <td>ation, Science and Eco</td> <td>nomic Development Can</td> <td>ada</td> <td></td>		Innov	ation, Science and Eco	nomic Development Can	ada	
SL2-IN-E-1154R SL2-IN-E-1152R N/A SL2-IN-E-1017 SL2-IN-E-1158R SL2-IN-E-1153R VCCI VCCI VCCI A-0029 A-0109 N/A A-0108 A-0201 A-0110 Recognized Phase I CAB for ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA IDA	2834B-1, 2834B-3	2834E-1	N/A	2834D-1, 2834D-2	2834G-1	2834F-1
VCCI A-0029 A-0109 N/A A-0108 A-0201 A-0110 Recognized Phase I CAB for ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA			BS	МІ		
A-0029 A-0109 N/A A-0108 A-0201 A-0110 Recognized Phase I CAB for ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA	SL2-IN-E-1154R	SL2-IN-E-1152R	N/A	SL2-IN-E-1017	SL2-IN-E-1158R	SL2-IN-E-1153R
Recognized Phase I CAB for ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA			VC	CI		
	A-0029	A-0109	N/A	A-0108	A-0201	A-0110
US0158 US0175 N/A US0017 US0191 US0157		Recognized Phase	e I CAB for ACMA, BSM	I, IDA, KCC/RRA, MIC, M	OC, NCC, OFCA	
	US0158	US0175	N/A	US0017	US0191	US0157

MEASUREMENT UNCERTAINTY

Measurement Uncertainty

When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.


A measurement uncertainty estimation has been performed for each test per our internal quality document QM205.4.6. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) can be found included as part of the applicable test description page. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request.

The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.

Test	+ MU	<u>- MU</u>
Frequency Accuracy (Hz)	0.0007%	-0.0007%
Amplitude Accuracy (dB)	1.2 dB	-1.2 dB
Conducted Power (dB)	0.3 dB	-0.3 dB
Radiated Power via Substitution (dB)	0.7 dB	-0.7 dB
Temperature (degrees C)	0.7°C	-0.7°C
Humidity (% RH)	2.5% RH	-2.5% RH
Voltage (AC)	1.0%	-1.0%
Voltage (DC)	0.7%	-0.7%
Field Strength (dB)	5.2 dB	-5.2 dB
AC Powerline Conducted Emissions (dB)	2.4 dB	-2.4 dB

Test Setup Block Diagrams

PRODUCT DESCRIPTION

Client and Equipment Under Test (EUT) Information

Company Name:	Multi-Tech Systems, Inc.
Address:	2205 Woodale Drive
City, State, Zip:	Mounds View, MN 55112
Test Requested By:	Mike Lynch
Model:	MTAC-LORA-H-915
First Date of Test:	December 08, 2016
Last Date of Test:	January 12, 2017
Receipt Date of Samples:	December 08, 2016
Equipment Design Stage:	Production
Equipment Condition:	No Damage
Purchase Authorization:	Verified

Information Provided by the Party Requesting the Test

Functional Description of the EUT:

ISM Transceiver

Testing Objective:

Seeking to demonstrate compliance under FCC 15.247:2016 for operation in the 902 - 928 MHz Band.

CONFIGURATIONS

Configuration MLTI0063- 1										
Software/Firmware Running during test										
Description Version										
M Linux v3.2.3										
EUT										
Description			Manufactu	rer		Μ	Iodel/Part N	umbe	er	Serial Number
Transmitter Modu	ile (US)	Multi-Tech	Systems,	Inc.	N	ITAC-LORA-	H-91	5	63090838930012
External Antenna	(US)		Laird			F	G9026			03011609
Peripherals in te	st set	up bo	oundary							
Description			nufacturer		Model	/Pa	art Number	Ser	ial N	umber
Development Boa	ard	Mul	ti-Tech Syste	ms, Inc.	70001	174	4L	623	5081	5240020
AC Adapter		Glo	bTek, Inc.		GT-41	052	2-1509	010	0661	0L
Host Laptop		Len	0V0		T61			765	819L	J
Laptop Power Ad	apter	Len	ονο		42T44	81		11S	42T4	418ZIZGWG2985Y8
Mouse		Log	itech		RX250)		M-E	BAD5	8B
Cables										
Cable Type	Shi	eld	Length (m)	Ferrite	Con	nec	ction 1		Conr	nection 2
USB Cable	Ye	s	.5m	No			oment Board			Laptop
DC Cable	N	-	1.6m	No		_	oment Board			dapter (AC Mains)
RF Cable	Ye	s	.25m	No			I Antenna			smitter Module
DC Cable	Ye		1.6m	Yes	Host					op Power Adapter
AC Cable	N		1.8m	No	Laptop Power Adapter AC Mains					
USB Cable	Ye	s	1.7m	No	Host Laptop Mouse			se		
Configuration MLTI0063- 4										
Software/Firmwa	are Ru	nnin	g during tes	t						
Description							Version			
M Linux							v3.2.3			

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
Transmitter Module (US)	Multi-Tech Systems, Inc.	MTAC-LORA-H-915	63090838930012

Peripherals in test setup boundary								
Description	Manufacturer	Model/Part Number	Serial Number					
Development Board	Multi-Tech Systems, Inc.	70001174L	62350815240020					
Host Laptop	Lenovo	T61	765819U					
Laptop Power Adapter	Lenovo	42T4481	11S42T4418ZIZGWG2985Y8					
Mouse	Logitech	RX250	M-BAD58B					

Cables							
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2		
USB Cable	Yes	.5m	No	Development Board	Host Laptop		
RF Cable	Yes	.25m	No	External Antenna	Transmitter Module		
DC Cable	Yes	1.6m	Yes	Host Laptop	Laptop Power Adapter		
AC Cable	No	1.8m	No	Laptop Power Adapter	AC Mains		
USB Cable	Yes	1.7m	No	Host Laptop	Mouse		

CONFIGURATIONS

Configuration MLTI0063-7

Software/Firmware Running during test				
Description	Version			
M Linux	v3.2.3			

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
Transmitter Module (US)	Multi-Tech Systems, Inc.	MTAC-LORA-H-915	6390838930004

Peripherals in test set	up boundary		
Description	Manufacturer	Model/Part Number	Serial Number
Development Board	Multi-Tech Systems, Inc.	70001174L	62350815240020
External Antenna (US)	Laird	FG9026	03011609
AC Adapter	GlobTek, Inc.	GT-41052-1509	01006610L
Host Laptop	Lenovo	T61	765819U
Laptop Power Adapter	Lenovo	42T4481	11S42T4418ZIZGWG2985Y8
Mouse	Logitech	RX250	M-BAD58B
DC Power Supply	Rigol	DP1116A	DP1C152600080
DC Power Supply	Agilent	U8002A	MY50490005

Cables									
Cable Type	Shield	d Length Ferrite Connection 1		Connection 1	Connection 2				
RF Cable	Yes	.25m	No	External Antenna	Transmitter Module				
DC Cable	Yes	1.6m	Yes	Host Laptop	Laptop Power Adapter				
AC Cable	No	1.8m	No	Laptop Power Adapter	AC Mains				
USB Cable	Yes	1.7m	No	Host Laptop	Mouse				
DC Power	No	1.7m	No	DC Power Supply	Transmitter Module				
DC Power	No	1.7m	No	DC Power Supply	Transmitter Module				
Data Cable	No	.5m	No	Development Board	Transmitter Module				
AC Power	No	1.8m	No	AC Mains	DC Power Supply				
AC Power	No	1.8m	No	AC Mains	DC Power Supply				

MODIFICATIONS

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT	
		Spurious	Tested as	No EMI suppression	EUT remained at	
1	12/8/2016	Radiated	delivered to	devices were added or	Northwest EMC	
		Emissions	Test Station.	modified during this test.	following the test.	
		Output	Tested as	No EMI suppression	EUT remained at	
2	12/13/2016	Power	delivered to	devices were added or	Northwest EMC	
		FOWEI	Test Station.	modified during this test.	following the test.	
		Power	Tested as	No EMI suppression	EUT remained at	
3	3 12/13/2016	12/13/2016	Spectral	delivered to	devices were added or	Northwest EMC
		Density	Test Station.	modified during this test.	following the test.	
		Spurious	Tested as	No EMI suppression	EUT remained at	
4	12/13/2016	16 Conducted	delivered to	devices were added or	Northwest EMC	
		Emissions	Test Station.	modified during this test.	following the test.	
		Band Edge	Tested as	No EMI suppression	EUT remained at	
5	12/13/2016	Compliance	delivered to	devices were added or	Northwest EMC	
		Compliance	Test Station.	modified during this test.	following the test.	
		Powerline	Tested as	No EMI suppression	EUT remained at	
6	12/29/2016	Conducted	delivered to	devices were added or	Northwest EMC	
		Emissions	Test Station.	modified during this test.	following the test.	
		Occupied	Tested as	No EMI suppression	Scheduled testing	
7	01/12/2017	Bandwidth	delivered to	devices were added or	was completed.	
		Danawidin	Test Station.	modified during this test.	was completed.	

TEST DESCRIPTION

Using the mode of operation and configuration noted within this report, conducted emissions tests were performed. The frequency range investigated (scanned), is also noted in this report. Conducted power line measurements are made, unless otherwise specified, over the frequency range from 150 kHz to 30 MHz to determine the line-to-ground radio-noise voltage that is conducted from the EUT power-input terminals that are directly (or indirectly via separate transformer or power supplies) connected to a public power network. Per the standard, an insulating material was also added to ground plane between the EUT's power and remote I/O cables. Equipment is tested with power cords that are normally used or that have electrical or shielding characteristics that are the same as those cords normally used. Typically those measurements are made using a LISN (Line Impedance Stabilization Network), the 500hm measuring port is terminated by a 500hm EMI meter or a 500hm resistive load. All 500hm measuring ports of the LISN are terminated by 500hm. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

TEST EQUIPMENT

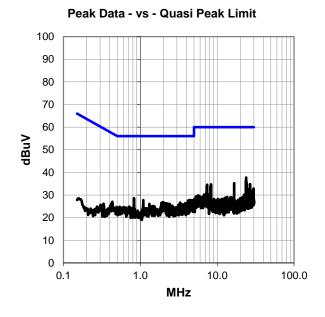
Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Receiver	Rohde & Schwarz	ESR7	ARI	6/14/2016	6/14/2017
Cable - Conducted Cable Assembly	Northwest EMC	MNC, HGN, TYK	MNCA	1/29/2016	1/29/2017
LISN	Solar Electronics	9252-50-R-24-BNC	LIY	3/21/2016	3/21/2017

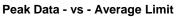
MEASUREMENT UNCERTAINTY

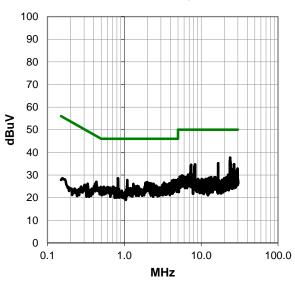
Description		
Expanded k=2	2.4 dB	-2.4 dB

CONFIGURATIONS INVESTIGATED

MLTI0063-7


MODES INVESTIGATED


Transmitting mid channel 925.1 MHz



EUT:	MTAC-LORA-H-915		Work Order:	MLTI0063							
Serial Number:	6390838930004		Date:	12/29/2016							
Customer:	Multi-Tech Systems, Inc.		Temperature:	22.1°C							
Attendees:	Marcus Glass		Relative Humidity:	23.2%							
Customer Project:	None		Bar. Pressure:	1013 mb							
Tested By:	Cole Ghizzone		Job Site:	MN03							
Power:	5VDC		Configuration:	MLTI0063-7							
TEST SPECIFIC	TEST SPECIFICATIONS										
Specification:		Method:									
FCC 15.207:2016		ANSI C63.10:2013									
TEST PARAME	TERS										
Run #: 33	Line: Neutral	Ac	d. Ext. Attenuation (dB	b): 0							
COMMENTS											
Measuring the 120	AC/60Hz input to the Rigol linear DC supply.										
EUT OPERATING MODES Transmitting mid channel 925.1 MHz											
DEVIATIONS F	ROM TEST STANDARD										

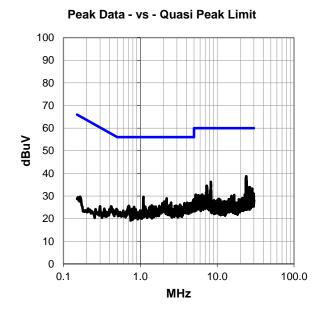
None

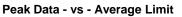
RESULTS - Run #33

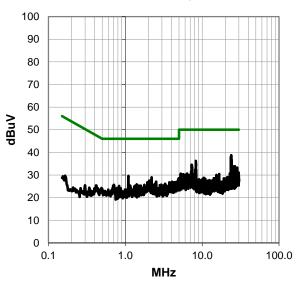
	Peak Da	ita - vs - C	Quasi Peal	< Limit		Peak Data - vs - Average Limit					
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)	Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
23.893	15.8	21.9	37.7	60.0	-22.3	23.893	15.8	21.9	37.7	50.0	-12.3
23.870	14.7	21.9	36.6	60.0	-23.4	23.870	14.7	21.9	36.6	50.0	-13.4
23.979	14.3	22.0	36.3	60.0	-23.7	23.979	14.3	22.0	36.3	50.0	-13.7
23.952	13.6	21.9	35.5	60.0	-24.5	23.952	13.6	21.9	35.5	50.0	-14.5
16.666	14.0	21.2	35.2	60.0	-24.8	16.666	14.0	21.2	35.2	50.0	-14.8
26.717	12.6	22.2	34.8	60.0	-25.2	26.717	12.6	22.2	34.8	50.0	-15.2
8.328	14.1	20.6	34.7	60.0	-25.3	8.328	14.1	20.6	34.7	50.0	-15.3
7.410	14.1	20.4	34.5	60.0	-25.5	7.410	14.1	20.4	34.5	50.0	-15.5
23.826	12.3	21.9	34.2	60.0	-25.8	23.826	12.3	21.9	34.2	50.0	-15.8
23.855	12.2	21.9	34.1	60.0	-25.9	23.855	12.2	21.9	34.1	50.0	-15.9
8.264	13.4	20.6	34.0	60.0	-26.0	8.264	13.4	20.6	34.0	50.0	-16.0
23.807	12.1	21.9	34.0	60.0	-26.0	23.807	12.1	21.9	34.0	50.0	-16.0
8.197	13.3	20.6	33.9	60.0	-26.1	8.197	13.3	20.6	33.9	50.0	-16.1
7.324	13.4	20.4	33.8	60.0	-26.2	7.324	13.4	20.4	33.8	50.0	-16.2
23.788	11.7	21.9	33.6	60.0	-26.4	23.788	11.7	21.9	33.6	50.0	-16.4
23.941	11.5	21.9	33.4	60.0	-26.6	23.941	11.5	21.9	33.4	50.0	-16.6
26.676	11.1	22.2	33.3	60.0	-26.7	26.676	11.1	22.2	33.3	50.0	-16.7
26.773	11.0	22.2	33.2	60.0	-26.8	26.773	11.0	22.2	33.2	50.0	-16.8
29.679	10.3	22.6	32.9	60.0	-27.1	29.679	10.3	22.6	32.9	50.0	-17.1
7.365	12.4	20.4	32.8	60.0	-27.2	7.365	12.4	20.4	32.8	50.0	-17.2
23.964	10.9	21.9	32.8	60.0	-27.2	23.964	10.9	21.9	32.8	50.0	-17.2
24.833	10.7	22.0	32.7	60.0	-27.3	24.833	10.7	22.0	32.7	50.0	-17.3
0.825	8.5	20.1	28.6	56.0	-27.4	0.825	8.5	20.1	28.6	46.0	-17.4
8.302	11.9	20.6	32.5	60.0	-27.5	8.302	11.9	20.6	32.5	50.0	-17.5
8.287	11.8	20.6	32.4	60.0	-27.6	8.287	11.8	20.6	32.4	50.0	-17.6
7.347	11.6	20.4	32.0	60.0	-28.0	7.347	11.6	20.4	32.0	50.0	-18.0

CONCLUSION

Pass


Can Shy


Tested By



EUT:	MTAC-LORA-H-915		Work Order:	MLTI0063							
Serial Number:	6390838930004		Date:	12/29/2016							
Customer:	Multi-Tech Systems, Inc.		Temperature:	22.1°C							
Attendees:	Marcus Glass		Relative Humidity:	23.2%							
Customer Project:	None		Bar. Pressure:	1013 mb							
Tested By:	Cole Ghizzone		Job Site:	MN03							
Power:	5VDC		Configuration:	MLTI0063-7							
	TEST SPECIFICATIONS										
Specification:		Method:									
FCC 15.207:2016		ANSI C63.10:2013									
TEST PARAME	TERS										
Run #: 34	Line: High Line	Ad	ld. Ext. Attenuation (dB	b): 0							
COMMENTS											
Measuring the 120	AC/60Hz input to the Rigol linear DC supply.										
EUT OPERATING MODES Transmitting mid channel 925.1 MHz											
	DEVIATIONS FROM TEST STANDARD										

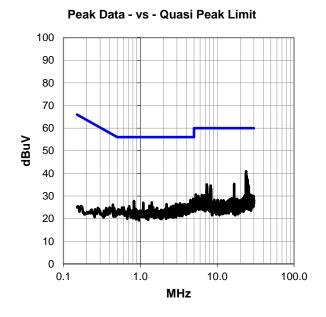
None

RESULTS - Run #34

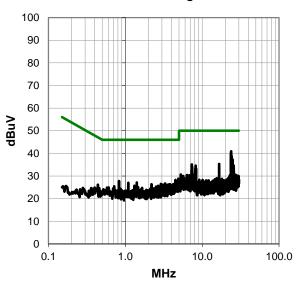
	Peak Da	ta - vs - C	Quasi Peał	< Limit		Peak Data - vs - Average Limit					
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)	Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
23.952	16.8	21.9	38.7	60.0	-21.3	23.952	16.8	21.9	38.7	50.0	-11.3
23.919	16.6	21.9	38.5	60.0	-21.5	23.919	16.6	21.9	38.5	50.0	-11.5
23.840	16.2	21.9	38.1	60.0	-21.9	23.840	16.2	21.9	38.1	50.0	-11.9
23.867	15.9	21.9	37.8	60.0	-22.2	23.867	15.9	21.9	37.8	50.0	-12.2
23.822	15.6	21.9	37.5	60.0	-22.5	23.822	15.6	21.9	37.5	50.0	-12.5
23.982	14.9	22.0	36.9	60.0	-23.1	23.982	14.9	22.0	36.9	50.0	-13.1
8.264	15.6	20.6	36.2	60.0	-23.8	8.264	15.6	20.6	36.2	50.0	-13.8
7.313	14.1	20.4	34.5	60.0	-25.5	7.313	14.1	20.4	34.5	50.0	-15.5
7.339	14.0	20.4	34.4	60.0	-25.6	7.339	14.0	20.4	34.4	50.0	-15.6
24.781	12.0	22.0	34.0	60.0	-26.0	24.781	12.0	22.0	34.0	50.0	-16.0
26.590	11.7	22.2	33.9	60.0	-26.1	26.590	11.7	22.2	33.9	50.0	-16.1
1.098	9.5	20.1	29.6	56.0	-26.4	1.098	9.5	20.1	29.6	46.0	-16.4
23.688	11.7	21.9	33.6	60.0	-26.4	23.688	11.7	21.9	33.6	50.0	-16.4
7.414	13.1	20.4	33.5	60.0	-26.5	7.414	13.1	20.4	33.5	50.0	-16.5
26.676	11.2	22.2	33.4	60.0	-26.6	26.676	11.2	22.2	33.4	50.0	-16.6
26.777	11.2	22.2	33.4	60.0	-26.6	26.777	11.2	22.2	33.4	50.0	-16.6
25.766	11.2	22.1	33.3	60.0	-26.7	25.766	11.2	22.1	33.3	50.0	-16.7
26.698	11.1	22.2	33.3	60.0	-26.7	26.698	11.1	22.2	33.3	50.0	-16.7
24.837	11.2	22.0	33.2	60.0	-26.8	24.837	11.2	22.0	33.2	50.0	-16.8
28.459	10.8	22.4	33.2	60.0	-26.8	28.459	10.8	22.4	33.2	50.0	-16.8
7.373	12.7	20.4	33.1	60.0	-26.9	7.373	12.7	20.4	33.1	50.0	-16.9
23.777	11.2	21.9	33.1	60.0	-26.9	23.777	11.2	21.9	33.1	50.0	-16.9
2.198	8.8	20.2	29.0	56.0	-27.0	2.198	8.8	20.2	29.0	46.0	-17.0
24.818	10.9	22.0	32.9	60.0	-27.1	24.818	10.9	22.0	32.9	50.0	-17.1
26.747	10.6	22.2	32.8	60.0	-27.2	26.747	10.6	22.2	32.8	50.0	-17.2
7.362	12.3	20.4	32.7	60.0	-27.3	7.362	12.3	20.4	32.7	50.0	-17.3

CONCLUSION

Pass


Can Sign

Tested By



EUT:	MTAC-LORA-H-915		Work Order:	MLTI0063							
Serial Number:	6390838930004		Date:	12/29/2016							
Customer:	Multi-Tech Systems, Inc.		Temperature:	22.1°C							
Attendees:	Marcus Glass		Relative Humidity:	23.2%							
Customer Project:	None		Bar. Pressure:	1013 mb							
Tested By:	Cole Ghizzone		Job Site:	MN03							
Power:	3.3VDC		Configuration:	MLTI0063-7							
	TEST SPECIFICATIONS										
Specification:		Method:									
FCC 15.207:2016		ANSI C63.10:2013									
TEST PARAME	TERS										
Run #: 37	Line: Neutral	Ac	ld. Ext. Attenuation (dB	s): 0							
COMMENTS											
Measuring the 120	AC/60Hz input to the Rigol linear DC supply.										
EUT OPERATING MODES Transmitting mid channel 925.1 MHz											
	DEVIATIONS FROM TEST STANDARD										

None

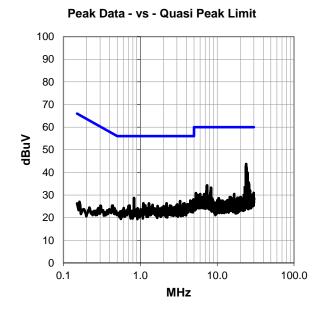
Peak Data - vs - Average Limit

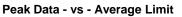
RESULTS - Run #37

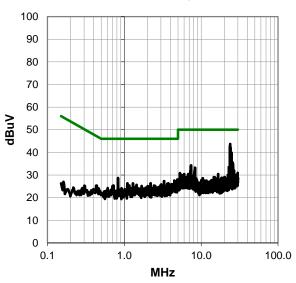
	Peak Da	ta - vs - C	Quasi Peak	(Limit		Peak Data - vs - Average Limit					
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)	Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
23.915	19.0	21.9	40.9	60.0	-19.1	23.915	19.0	21.9	40.9	50.0	-9.1
23.874	18.8	21.9	40.7	60.0	-19.3	23.874	18.8	21.9	40.7	50.0	-9.3
23.900	18.0	21.9	39.9	60.0	-20.1	23.900	18.0	21.9	39.9	50.0	-10.1
23.960	17.4	21.9	39.3	60.0	-20.7	23.960	17.4	21.9	39.3	50.0	-10.7
23.818	15.6	21.9	37.5	60.0	-22.5	23.818	15.6	21.9	37.5	50.0	-12.5
24.837	15.3	22.0	37.3	60.0	-22.7	24.837	15.3	22.0	37.3	50.0	-12.7
23.979	15.1	22.0	37.1	60.0	-22.9	23.979	15.1	22.0	37.1	50.0	-12.9
23.993	14.6	22.0	36.6	60.0	-23.4	23.993	14.6	22.0	36.6	50.0	-13.4
24.885	14.5	22.0	36.5	60.0	-23.5	24.885	14.5	22.0	36.5	50.0	-13.5
24.810	14.4	22.0	36.4	60.0	-23.6	24.810	14.4	22.0	36.4	50.0	-13.6
23.799	14.2	21.9	36.1	60.0	-23.9	23.799	14.2	21.9	36.1	50.0	-13.9
24.863	14.0	22.0	36.0	60.0	-24.0	24.863	14.0	22.0	36.0	50.0	-14.0
23.844	13.7	21.9	35.6	60.0	-24.4	23.844	13.7	21.9	35.6	50.0	-14.4
24.769	13.5	22.0	35.5	60.0	-24.5	24.769	13.5	22.0	35.5	50.0	-14.5
16.666	14.1	21.2	35.3	60.0	-24.7	16.666	14.1	21.2	35.3	50.0	-14.7
24.023	13.2	22.0	35.2	60.0	-24.8	24.023	13.2	22.0	35.2	50.0	-14.8
24.784	13.2	22.0	35.2	60.0	-24.8	24.784	13.2	22.0	35.2	50.0	-14.8
7.324	14.7	20.4	35.1	60.0	-24.9	7.324	14.7	20.4	35.1	50.0	-14.9
8.238	14.0	20.6	34.6	60.0	-25.4	8.238	14.0	20.6	34.6	50.0	-15.4
25.754	12.5	22.1	34.6	60.0	-25.4	25.754	12.5	22.1	34.6	50.0	-15.4
7.384	13.6	20.4	34.0	60.0	-26.0	7.384	13.6	20.4	34.0	50.0	-16.0
24.038	11.8	22.0	33.8	60.0	-26.2	24.038	11.8	22.0	33.8	50.0	-16.2
25.710	11.7	22.1	33.8	60.0	-26.2	25.710	11.7	22.1	33.8	50.0	-16.2
8.261	12.9	20.6	33.5	60.0	-26.5	8.261	12.9	20.6	33.5	50.0	-16.5
8.220	12.8	20.6	33.4	60.0	-26.6	8.220	12.8	20.6	33.4	50.0	-16.6
8.294	12.7	20.6	33.3	60.0	-26.7	8.294	12.7	20.6	33.3	50.0	-16.7

CONCLUSION

Pass


Can Sign


Tested By



EUT:	MTAC-LORA	\-H-915			Work Order:	MLTI0063						
Serial Number:	6390838930	004			Date:	12/29/2016						
Customer:	Multi-Tech S	ystems, Ind	C.		Temperature:	22.1°C						
Attendees:	Marcus Glas	S			Relative Humidity:	23.2%						
Customer Project:	None				Bar. Pressure:	1013 mb						
Tested By:	Cole Ghizzo	ne			Job Site:	MN03						
Power:	3.3VDC				Configuration:	MLTI0063-7						
	TEST SPECIFICATIONS											
Specification:				Method:	Method:							
FCC 15.207:2016				ANSI C63	ANSI C63.10:2013							
TEST PARAME	TERS											
Run #: 38		Line:	High Line		Add. Ext. Attenuation (dB	dd. Ext. Attenuation (dB): 0						
COMMENTS												
Measuring the 120	/AC/60Hz inpu	it to the Rig	ol linear DC supply.									
EUT OPERATING MODES												
—	Transmitting mid channel 925.1 MHz DEVIATIONS FROM TEST STANDARD											

None

RESULTS - Run #38

	Peak Da	ita - vs - C	Quasi Peal	< Limit		Peak Data - vs - Average Limit					
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)	Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
23.900	21.8	21.9	43.7	60.0	-16.3	23.900	21.8	21.9	43.7	50.0	-6.3
23.870	20.9	21.9	42.8	60.0	-17.2	23.870	20.9	21.9	42.8	50.0	-7.2
23.919	20.9	21.9	42.8	60.0	-17.2	23.919	20.9	21.9	42.8	50.0	-7.2
23.956	20.5	21.9	42.4	60.0	-17.6	23.956	20.5	21.9	42.4	50.0	-7.6
23.937	18.8	21.9	40.7	60.0	-19.3	23.937	18.8	21.9	40.7	50.0	-9.3
23.818	18.7	21.9	40.6	60.0	-19.4	23.818	18.7	21.9	40.6	50.0	-9.4
23.993	18.5	22.0	40.5	60.0	-19.5	23.993	18.5	22.0	40.5	50.0	-9.5
23.792	18.0	21.9	39.9	60.0	-20.1	23.792	18.0	21.9	39.9	50.0	-10.1
24.840	17.9	22.0	39.9	60.0	-20.1	24.840	17.9	22.0	39.9	50.0	-10.1
24.814	17.5	22.0	39.5	60.0	-20.5	24.814	17.5	22.0	39.5	50.0	-10.5
24.911	16.8	22.0	38.8	60.0	-21.2	24.911	16.8	22.0	38.8	50.0	-11.2
24.792	15.8	22.0	37.8	60.0	-22.2	24.792	15.8	22.0	37.8	50.0	-12.2
24.893	15.8	22.0	37.8	60.0	-22.2	24.893	15.8	22.0	37.8	50.0	-12.2
23.762	14.7	21.9	36.6	60.0	-23.4	23.762	14.7	21.9	36.6	50.0	-13.4
24.751	13.9	22.0	35.9	60.0	-24.1	24.751	13.9	22.0	35.9	50.0	-14.1
25.747	13.4	22.1	35.5	60.0	-24.5	25.747	13.4	22.1	35.5	50.0	-14.5
24.922	13.1	22.0	35.1	60.0	-24.9	24.922	13.1	22.0	35.1	50.0	-14.9
25.829	13.0	22.1	35.1	60.0	-24.9	25.829	13.0	22.1	35.1	50.0	-14.9
25.695	12.9	22.1	35.0	60.0	-25.0	25.695	12.9	22.1	35.0	50.0	-15.0
25.784	12.8	22.1	34.9	60.0	-25.1	25.784	12.8	22.1	34.9	50.0	-15.1
23.635	12.9	21.9	34.8	60.0	-25.2	23.635	12.9	21.9	34.8	50.0	-15.2
24.046	12.7	22.0	34.7	60.0	-25.3	24.046	12.7	22.0	34.7	50.0	-15.3
24.937	12.7	22.0	34.7	60.0	-25.3	24.937	12.7	22.0	34.7	50.0	-15.3
24.736	12.5	22.0	34.5	60.0	-25.5	24.736	12.5	22.0	34.5	50.0	-15.5
7.403	13.8	20.4	34.2	60.0	-25.8	7.403	13.8	20.4	34.2	50.0	-15.8
25.739	12.1	22.1	34.2	60.0	-25.8	25.739	12.1	22.1	34.2	50.0	-15.8

CONCLUSION

Pass

Can Sig

Tested By

SPURIOUS RADIATED EMISSIONS

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Transmit Mode: Low Ch (923.3 MHz), Mid Ch (925.1 MHz), High Ch (927.5 MHz)

POWER SETTINGS INVESTIGATED

110VAC/60Hz

CONFIGURATIONS INVESTIGATED

MLTI0063 - 1

FREQUENCY RANGE INVESTIGATED

Start Frequency 30 MHz

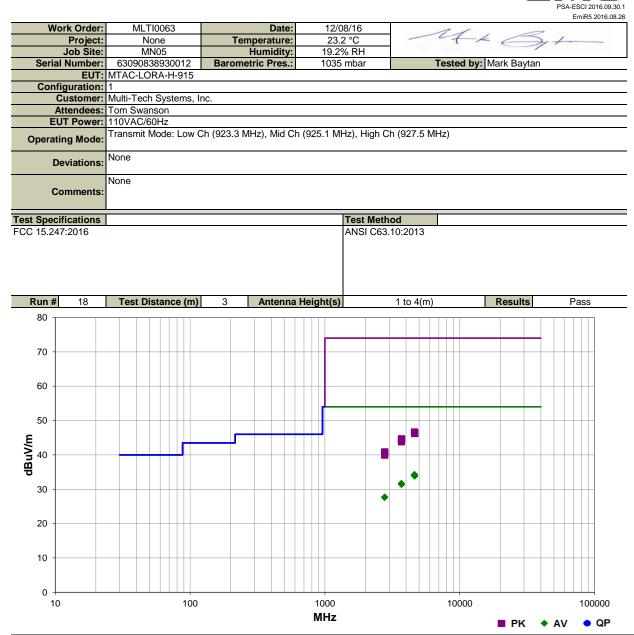
Stop Frequency 18 GHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Attenuator	Fairview Microwave	SA18E-10	TYA	9/23/2016	12 mo
Attenuator	Fairview Microwave	SA18E-20	TWZ	9/23/2016	12 mo
Cable	ESM Cable Corp.	Standard Gain Horn Cables	MNJ	7/29/2016	12 mo
Cable	ESM Cable Corp.	Double Ridge Guide Horn Cables	MNI	12/1/2016	12 mo
Cable	ESM Cable Corp.	Bilog Cables	MNH	12/1/2016	12 mo
Filter - High Pass	Micro-Tronics	HPM50108	LFM	9/22/2016	12 mo
Antenna - Biconilog	Teseq	CBL 6141B	AYD	1/6/2016	24 mo
Antenna - Standard Gain	ETS Lindgren	3160-07	AXP	NCR	0 mo
Amplifier - Pre-Amplifier	Miteq	AMF-6F-12001800-30-10P	AVW	3/1/2016	12 mo
Amplifier - Pre-Amplifier	Miteq	AMF-6F-08001200-30-10P	AVV	3/1/2016	12 mo
Amplifier - Pre-Amplifier	Miteq	AMF-3D-00100800-32-13P	AVT	3/1/2016	12 mo
Amplifier - Pre-Amplifier	Miteq	AM-1616-1000	AVO	12/1/2016	12 mo
Antenna - Double Ridge	ETS Lindgren	3115	AJA	6/23/2016	24 mo
Antenna - Standard Gain	ETS Lindgren	3160-08	AIQ	NCR	0 mo
Analyzer - Spectrum Analyzer	Agilent	N9010A	AFI	1/27/2016	12 mo


MEASUREMENT BANDWIDTHS

Frequency Range	Peak Data	Quasi-Peak Data	Average Data
(MHz)	(kHz)	(kHz)	(kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

TEST DESCRIPTION

The antennas to be used with the EUT were tested. The EUT was transmitting and receiving while set at the lowest channel, a middle channel, and the highest channel available. While scanning, emissions from the EUT were maximized by rotating the EUT, adjusting the measurement antenna height and polarization, and manipulating the EUT antenna in horizontal and vertical position. A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.

SPURIOUS RADIATED EMISSIONS

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
4625.023	28.7	5.6	1.0	103.0	3.0	0.0	Horz	AV	0.0	34.3	54.0	-19.7	Mid Ch, EUT Vert
4625.020	28.6	5.6	4.0	265.9	3.0	0.0	Vert	AV	0.0	34.2	54.0	-19.8	Mid Ch, EUT Vert
4616.983	28.6	5.5	4.0	322.9	3.0	0.0	Horz	AV	0.0	34.1	54.0	-19.9	Low Ch, EUT Vert
4617.000	28.6	5.5	1.0	257.9	3.0	0.0	Vert	AV	0.0	34.1	54.0	-19.9	Low Ch, EUT Vert
4637.077	28.3	5.6	1.0	0.0	3.0	0.0	Horz	AV	0.0	33.9	54.0	-20.1	High Ch, EUT Vert
4637.268	28.3	5.6	1.0	14.0	3.0	0.0	Vert	AV	0.0	33.9	54.0	-20.1	High Ch, EUT Vert
4637.003	28.2	5.6	1.0	351.0	3.0	0.0	Horz	AV	0.0	33.8	54.0	-20.2	High Ch, EUT Horz
4637.108	28.2	5.6	1.0	18.0	3.0	0.0	Vert	AV	0.0	33.8	54.0	-20.2	High Ch, EUT Horz
3693.687	29.4	2.3	4.0	307.9	3.0	0.0	Horz	AV	0.0	31.7	54.0	-22.3	Low Ch, EUT Vert
3693.665	29.3	2.3	3.0	330.9	3.0	0.0	Vert	AV	0.0	31.6	54.0	-22.4	Low Ch, EUT Vert
3710.448	29.1	2.4	1.0	31.0	3.0	0.0	Vert	AV	0.0	31.5	54.0	-22.5	High Ch, EUT Vert
3710.395	29.0	2.4	3.8	206.1	3.0	0.0	Horz	AV	0.0	31.4	54.0	-22.6	High Ch, EUT Vert
3700.572	29.0	2.4	1.6	81.0	3.0	0.0	Horz	AV	0.0	31.4	54.0	-22.6	Mid Ch, EUT Vert
3700.837	29.0	2.4	1.0	275.9	3.0	0.0	Vert	AV	0.0	31.4	54.0	-22.6	Mid Ch, EUT Vert
2782.917	29.1	-1.4	1.0	134.1	3.0	0.0	Horz	AV	0.0	27.7	54.0	-26.3	High Ch, EUT Vert
2782.885	29.1	-1.4	1.0	60.0	3.0	0.0	Vert	AV	0.0	27.7	54.0	-26.3	High Ch, EUT Vert
2769.543	29.4	-1.7	3.8	57.0	3.0	0.0	Horz	AV	0.0	27.7	54.0	-26.3	Low Ch, EUT Vert
2769.400	29.3	-1.7	1.0	232.0	3.0	0.0	Vert	AV	0.0	27.6	54.0	-26.4	Low Ch, EUT Vert

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
2775.730	29.1	-1.5	2.6	314.0	3.0	0.0	Horz	AV	0.0	27.6	54.0	-26.4	Mid Ch, EUT Vert
2775.600	29.1	-1.5	1.0	322.0	3.0	0.0	Vert	AV	0.0	27.6	54.0	-26.4	Mid Ch, EUT Vert
4625.585	41.1	5.6	1.0	103.0	3.0	0.0	Horz	PK	0.0	46.7	74.0	-27.3	Mid Ch, EUT Vert
4637.467	41.0	5.6	1.0	351.0	3.0	0.0	Horz	PK	0.0	46.6	74.0	-27.4	High Ch, EUT Horz
4616.022	41.1	5.5	4.0	322.9	3.0	0.0	Horz	PK	0.0	46.6	74.0	-27.4	Low Ch, EUT Vert
4616.657	41.0	5.5	1.0	257.9	3.0	0.0	Vert	PK	0.0	46.5	74.0	-27.5	Low Ch, EUT Vert
4637.163	40.8	5.6	1.0	18.0	3.0	0.0	Vert	PK	0.0	46.4	74.0	-27.6	High Ch, EUT Horz
4625.085	40.8	5.6	4.0	265.9	3.0	0.0	Vert	PK	0.0	46.4	74.0	-27.6	Mid Ch, EUT Vert
4637.252	40.7	5.6	1.0	14.0	3.0	0.0	Vert	PK	0.0	46.3	74.0	-27.7	High Ch, EUT Vert
4637.607	40.6	5.6	1.0	0.0	3.0	0.0	Horz	PK	0.0	46.2	74.0	-27.8	High Ch, EUT Vert
3693.345	42.4	2.3	3.0	330.9	3.0	0.0	Vert	PK	0.0	44.7	74.0	-29.3	Low Ch, EUT Vert
3710.347	42.2	2.4	3.8	206.1	3.0	0.0	Horz	PK	0.0	44.6	74.0	-29.4	High Ch, EUT Vert
3709.910	42.0	2.4	1.0	31.0	3.0	0.0	Vert	PK	0.0	44.4	74.0	-29.6	High Ch, EUT Vert
3692.987	41.9	2.3	4.0	307.9	3.0	0.0	Horz	PK	0.0	44.2	74.0	-29.8	Low Ch, EUT Vert
3700.300	41.6	2.4	1.0	275.9	3.0	0.0	Vert	PK	0.0	44.0	74.0	-30.0	Mid Ch, EUT Vert
3700.798	41.4	2.4	1.6	81.0	3.0	0.0	Horz	PK	0.0	43.8	74.0	-30.2	Mid Ch, EUT Vert
2782.538	42.3	-1.4	1.0	134.1	3.0	0.0	Horz	PK	0.0	40.9	74.0	-33.1	High Ch, EUT Vert
2769.953	42.4	-1.7	3.8	57.0	3.0	0.0	Horz	PK	0.0	40.7	74.0	-33.3	Low Ch, EUT Vert
2775.713	42.1	-1.5	1.0	322.0	3.0	0.0	Vert	PK	0.0	40.6	74.0	-33.4	Mid Ch, EUT Vert
2769.605	42.2	-1.7	1.0	232.0	3.0	0.0	Vert	PK	0.0	40.5	74.0	-33.5	Low Ch, EUT Vert
2782.073	41.8	-1.4	1.0	60.0	3.0	0.0	Vert	PK	0.0	40.4	74.0	-33.6	High Ch, EUT Vert
2774.898	41.5	-1.6	2.6	314.0	3.0	0.0	Horz	PK	0.0	39.9	74.0	-34.1	Mid Ch, EUT Vert

DUTY CYCLE

TEST DESCRIPTION

The Duty Cycle (x) were measured for each of the EUT operating modes. The measurements were made using a zero span on the spectrum analyzer to see the pulses in the time domain. The transmit power was set to its default maximum.

The duty cycle was calculated by dividing the transmission pulse duration (T) by the total period of a single on and total off time.

The EUT operates at 100% Duty Cycle.

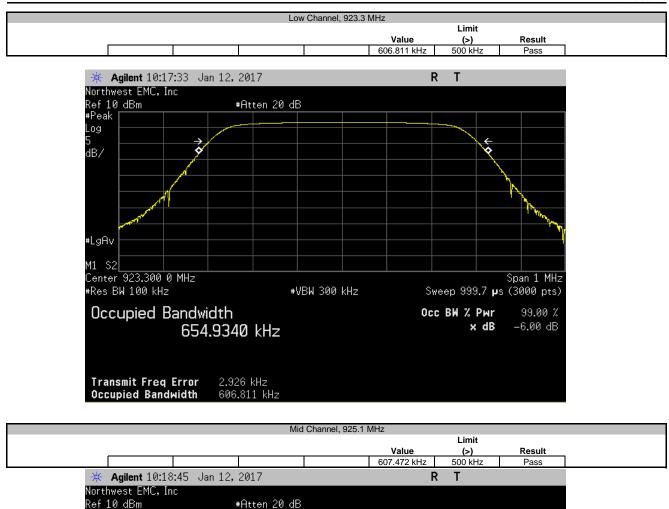
Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

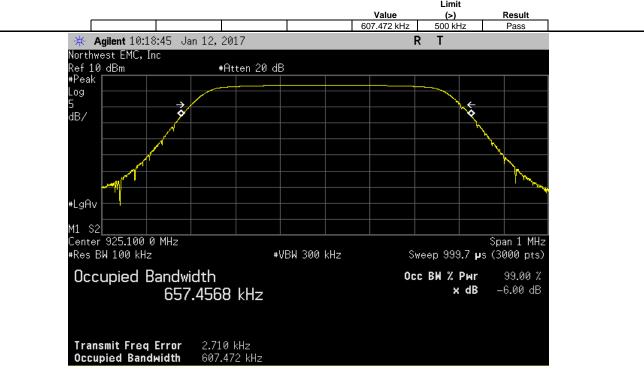
TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Analyzer - Spectrum Analyzer	Agilent	E4443A	AAS	3/8/2016	3/8/2017
Cable	ESM Cable Corp.	TTBJ141 KMKM-72	MNU	9/15/2016	9/15/2017
Attenuator	S.M. Electronics	SA26B-20	RFW	2/26/2016	2/26/2017
Block - DC	Fairview Microwave	SD3379	AMI	9/15/2016	9/15/2017

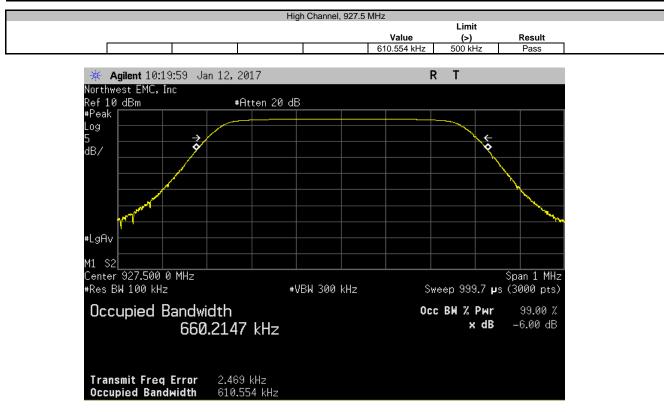
TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The EUT was set to the channels and modes listed in the datasheet.


The 6dB occupied bandwidth was measured using 100 kHz resolution bandwidth and 300 kHz video bandwidth. The 99.0% occupied bandwidth was also measured at the same time which can be needed during Output Power depending on the applicable method.



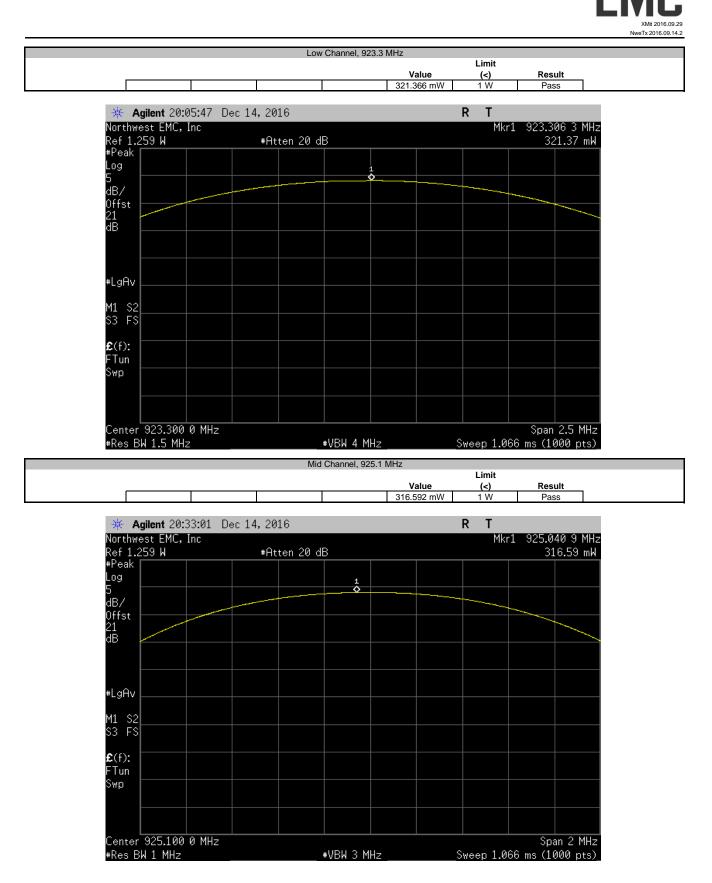
		Work Order:	MLTI0063	
		Date:	01/12/17	
nc.		Temperature:	22.5 °C	
		Humidity:	14.8% RH	
		Barometric Pres.:	1025 mbar	
	Power: 110VAC/60Hz	Job Site:	MN02	
	Test Method			
	ANSI C63.10:2013			
	- 2 1			
	100 mg Buls			
Signature				
			Limit	
		Value	(>)	Result
		606.811 kHz	500 kHz	Pass
		607.472 kHz	500 kHz	Pass
		610.554 kHz	500 kHz	Pass
	T	Power: 110VAC/60Hz Test Method ANSI C63.10:2013	nc. Temperature nc. Temperature Humidity: Barometric Pres. Power: 110VAC/60Hz Job Site: Test Method ANSI C63.10:2013 Signature Value 606.8111 kHz 607.472 kHz	Humidity: 14.8% RH Barometric Pres.: 1025 mbar Test Method ANSI C63.10:2013 Signature Limit Value Limit (>) 606.811 kHz 600.811 kHz 600 kHz 607.472 kHz 500 kHz


Report No. MLTI0063.1

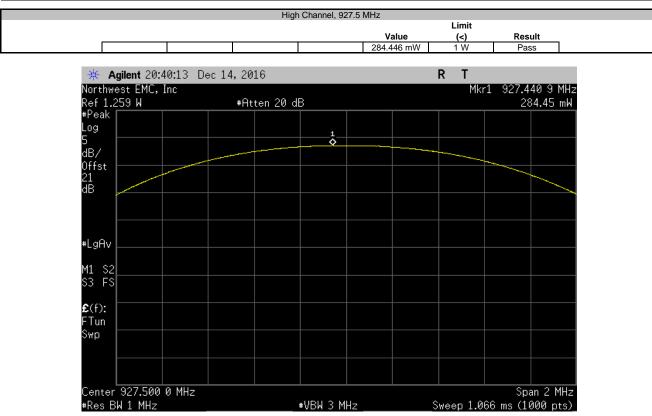
Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Agilent	N5183A	TIK	10/17/2014	10/17/2017
Power Supply - DC	EZ Digital Co., Ltd.	GP-4030D	TQK	NCR	NCR
Cable	ESM Cable Corp.	Double Ridge Guide Horn Cables	MNI	12/1/2016	12/1/2017
Attenuator	S.M. Electronics	SA26B-20	RFW	2/26/2016	2/26/2017
Block - DC	Fairview Microwave	SD3379	AMI	9/15/2016	9/15/2017
Analyzer - Spectrum Analyzer	Agilent	E4440A	AAX	3/24/2016	3/24/2017


TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The transmit frequency was set to the required channels in each band. The transmit power was set to its default maximum.


De Facto EIRP Limit: The EUT meets the de facto EIRP limit of +36dBm.

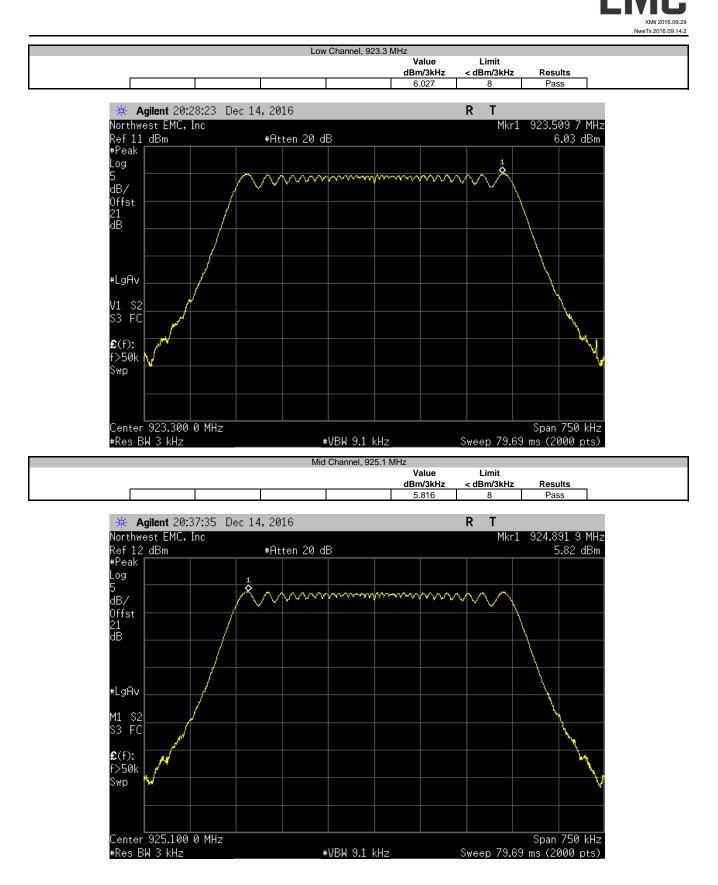
EUT:	MTAC-LORA-H-915		Work Order:	MLTI0063					
Serial Number:	63090838950012		Date:	12/13/16					
Customer:	Multi-Tech Systems, Inc.		Temperature:	21.8 °C					
Attendees:	Marcus Glass		Humidity:	16.2% RH					
Project:	None		Barometric Pres.:	1019 mbar					
Tested by:	Mark Baytan	Power: 9 VDC	Job Site:	MN08					
TEST SPECIFICAT	ONS	Test Method							
FCC 15.247:2016		ANSI C63.10:2013							
COMMENTS									
Total reference leve	Total reference level offset (DC Block + 20dB attenuator + SMA Cable) = 21dB								
DEVIATIONS FROM	I TEST STANDARD								
None									
Configuration #	4 Signature	Ut+ Gt-							
				Limit					
			Value	(<)	Result				
Low Channel, 923.3	MHz		321.366 mW	1 W	Pass				
Mid Channel, 925.1	MHz		316.592 mW	1 W	Pass				
High Channel, 927.5	MHz		284.446 mW	1 W	Pass				

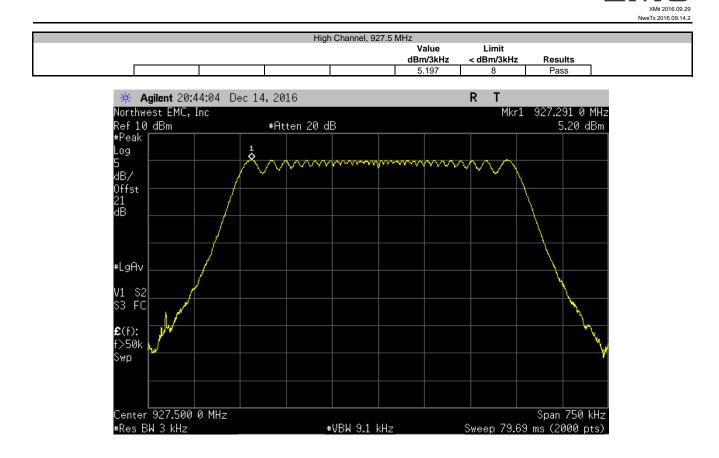
Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Agilent	N5183A	TIK	10/17/2014	10/17/2017
Power Supply - DC	EZ Digital Co., Ltd.	GP-4030D	TQK	NCR	NCR
Cable	ESM Cable Corp.	Double Ridge Guide Horn Cables	MNI	12/1/2016	12/1/2017
Attenuator	S.M. Electronics	SA26B-20	RFW	2/26/2016	2/26/2017
Block - DC	Fairview Microwave	SD3379	AMI	9/15/2016	9/15/2017
Analyzer - Spectrum Analyzer	Agilent	E4440A	AAX	3/24/2016	3/24/2017

TEST DESCRIPTION


The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The maximum power spectral density measurements was measured using the channels and modes as called out on the following data sheets.

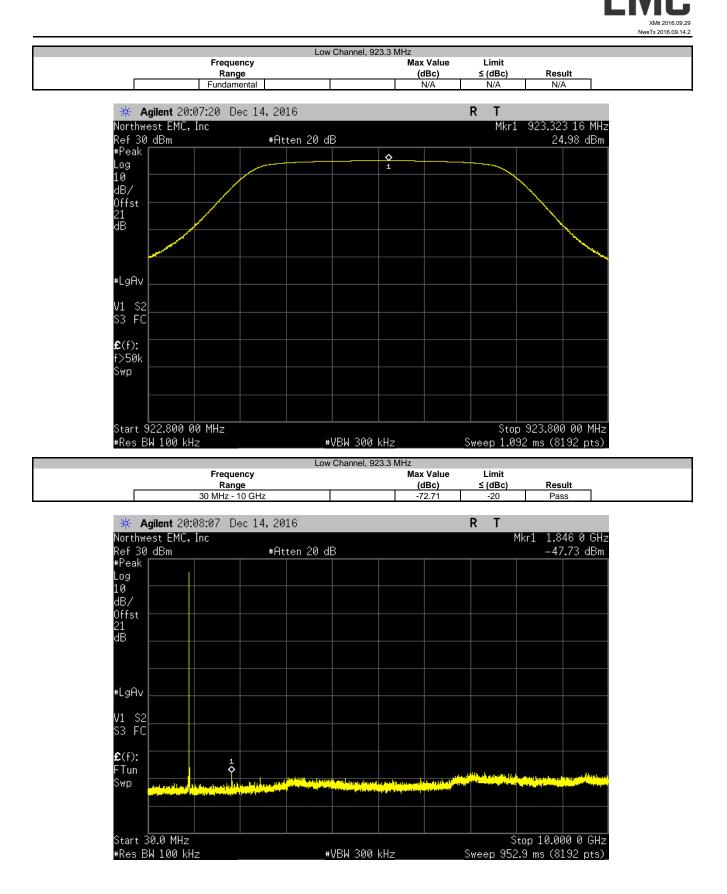

Per the procedure outlined in ANSI C63.10 the peak power spectral density was measured in a 3 kHz RBW.

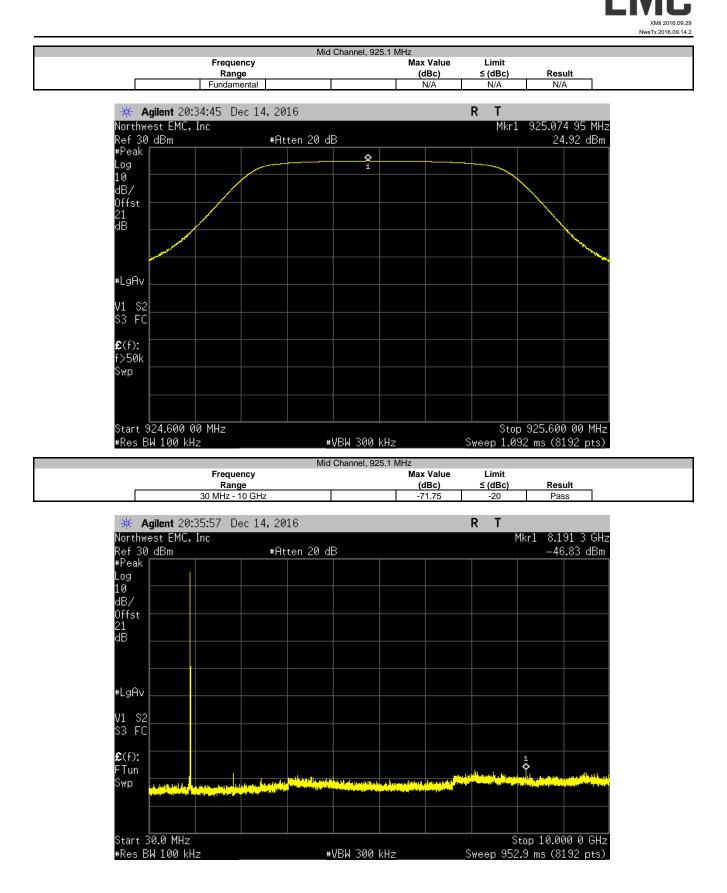
				NW01X 2016.09.14.2
EUT: MTAC-LORA-H-915		Work Order:	MLTI0063	
Serial Number: 63090838950012		Date:	12/13/16	
Customer: Multi-Tech Systems, Inc.		Temperature:	21.8 °C	
Attendees: Marcus Glass		Humidity:	16.2% RH	
Project: None		Barometric Pres.:	1019 mbar	
Tested by: Mark Baytan	Power: 9 VDC	Job Site:	MN08	
TEST SPECIFICATIONS	Test Method			
FCC 15.247:2016	ANSI C63.10:2013			
COMMENTS				
Total reference level offset (DC Block + 20dB attenuator + SMA Cable) = 21dB				
None				
None				
Configuration # 4 Signature	M+ B+-			
		Value	Limit	
		dBm/3kHz	< dBm/3kHz	Results
Low Channel, 923.3 MHz		6.027	8	Pass
Mid Channel, 925.1 MHz		5.816	8	Pass
High Channel, 927.5 MHz		5.197	8	Pass

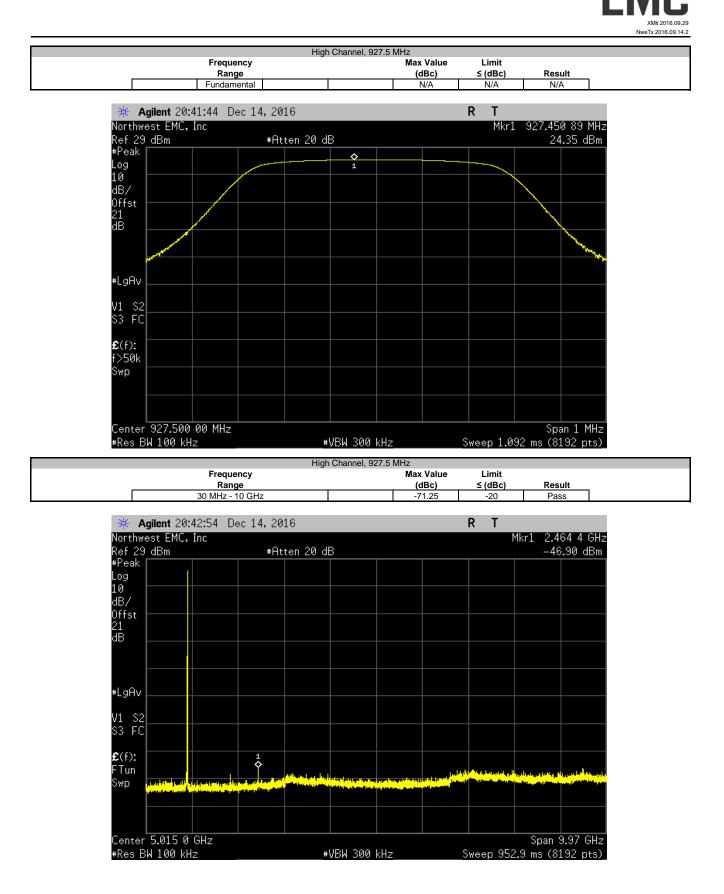
Report No. MLTI0063.1

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT


Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Agilent	N5183A	TIK	10/17/2014	10/17/2017
Power Supply - DC	EZ Digital Co., Ltd.	GP-4030D	TQK	NCR	NCR
Cable	ESM Cable Corp.	Double Ridge Guide Horn Cables	MNI	12/1/2016	12/1/2017
Attenuator	S.M. Electronics	SA26B-20	RFW	2/26/2016	2/26/2017
Block - DC	Fairview Microwave	SD3379	AMI	9/15/2016	9/15/2017
Analyzer - Spectrum Analyzer	Agilent	E4440A	AAX	3/24/2016	3/24/2017


TEST DESCRIPTION


The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The spurious RF conducted emissions were measured with the EUT set to low, medium and high transmit frequencies. The EUT was transmitting at the data rate(s) listed in the datasheet. For each transmit frequency, the spectrum was scanned throughout the specified frequency range.

EUT: MTA	AC-LORA-H-915		Work Order:			
Serial Number: 6309	90838950012			12/13/16		
Customer: Mult	ti-Tech Systems, Inc.		Temperature:	21.8 °C		
Attendees: Marc	cus Glass		Humidity:	16.2% RH		
Project: Non				Barometric Pres.:		
Tested by: Mark			Power: 9 VDC	Job Site:	MN08	
TEST SPECIFICATIONS	1		Test Method			
FCC 15.247:2016			ANSI C63.10:2013			
COMMENTS						
		ttenuator + SMA Cable) = 21dB				
		,				
DEVIATIONS FROM TES	ST STANDARD					
	ST STANDARD					
DEVIATIONS FROM TES	ST STANDARD		M-1 B ,			
DEVIATIONS FROM TES	ST STANDARD		14+ 67+			
DEVIATIONS FROM TES	ST STANDARD	Signature		Max Value	Limit	
DEVIATIONS FROM TES	ST STANDARD		Frequency Range	Max Value (dBc)	Limit ≤(dBc)	Result
EVIATIONS FROM TES	4		Frequency			Result N/A
DEVIATIONS FROM TES lone Configuration #	4		Frequency Range	(dBc)	≤ (dBc)	
DEVIATIONS FROM TES None Configuration #	4		Frequency Range Fundamental	(dBc) N/A	≤ (dBc) N/A	N/A
DEVIATIONS FROM TES None Configuration # Low Channel, 923.3 MHz did Channel, 925.1 MHz	4		Frequency Range Fundamental 30 MHz - 10 GHz	(dBc) N/A -72.71	<mark>≤ (dBc)</mark> N/A -20	N/A Pass
DEVIATIONS FROM TES	4		Frequency Range Fundamental 30 MHz - 10 GHz Fundamental	(dBc) N/A -72.71 N/A	<mark>≤ (dBc)</mark> N/A -20 N/A	N/A Pass N/A

BAND EDGE COMPLIANCE

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

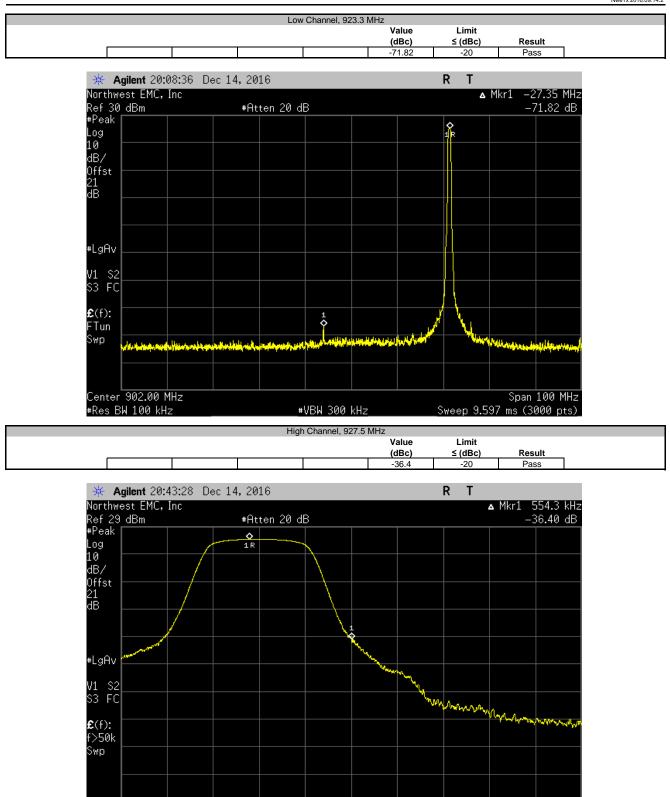
Description	Manufacturer	Model	ID	Last Cal.	Cal. Due		
Generator - Signal	Agilent	N5183A	TIK	10/17/2014	10/17/2017		
Power Supply - DC	EZ Digital Co., Ltd.	GP-4030D	TQK	NCR	NCR		
Cable	ESM Cable Corp.	Double Ridge Guide Horn Cables	MNI	12/1/2016	12/1/2017		
Attenuator	S.M. Electronics	SA26B-20	RFW	2/26/2016	2/26/2017		
Block - DC	Fairview Microwave	SD3379	AMI	9/15/2016	9/15/2017		
Analyzer - Spectrum Analyzer	Agilent	E4440A	AAX	3/24/2016	3/24/2017		

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The spurious RF conducted emissions at the edges of the authorized bands were measured with the EUT set to low and high transmit frequencies in each available band. The channels closest to the band edges were selected. The EUT was transmitting at the data rate(s) listed in the datasheet.

The spectrum was scanned below the lower band edge and above the higher band edge.

BAND EDGE COMPLIANCE



					INWEIX 2010.09.14.2		
EUT:	MTAC-LORA-H-915		Work Order:	MLTI0063			
Serial Number:	63090838950012	Date:	12/13/16				
Customer:	Multi-Tech Systems, Inc.	Temperature:	21.8 °C				
Attendees:	Marcus Glass		Humidity:	16.2% RH			
Project:	None		Barometric Pres.:	1019 mbar			
Tested by:	Mark Baytan	Power: 9 VDC	Job Site:	MN08			
TEST SPECIFICATIONS Test Method							
FCC 15.247:2016		ANSI C63.10:2013					
COMMENTS							
Total reference leve	el offset (DC Block + 20dB attenuator + SMA Cable) = 21dB						
DEVIATIONS FROM	I TEST STANDARD						
None							
Configuration #	4 Signature	14+ G+-					
			Value	Limit			
			(dBc)	≤ (dBc)	Result		
Low Channel, 923.3	MHz		-71.82	-20	Pass		
High Channel, 927.5	MHz		-36.4	-20	Pass		

Report No. MLTI0063.1

BAND EDGE COMPLIANCE

#VBW 300 kHz

Center 928.000 0 MHz

#Res BW 100 kHz

Span 2.5 MHz

Sweep 999.7 µs (3000 pts)