Page 1 of 26

EMC Technologies Pty. Ltd. ABN 82 057 105 549

Melbourne 176 Harrick Road Keilor Park, Vic 3042

Sydney Unit 3/87 Station Road Seven Hills, NSW 2147 Tel: +61 3 9365 1000 Tel: +61 2 9624 2777

Email: emc-general@emctech.com.au Web: www.emctech.com.au

RADIO TEST REPORT

REPORT NUMBER: M2306030-7

TEST STANDARD: (PARTIAL)

> FCC PART 15 SUBPART C **SECTION 15.247**

CLIENT: MESHED PTY LTD

DEVICE: N-COUNTER

MODEL: --

FCC ID: AU792U13A16858

DATE OF ISSUE: 18 OCTOBER 2023

EMC Technologies Pty Ltd reports apply only to the specific samples tested under stated test conditions. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. EMC Technologies Pty Ltd shall have no liability for any deductions, inferences or generalisations drawn by the client or others from EMC Technologies Pty Ltd issued reports. This report shall not be used to claim, constitute or imply product endorsement by EMC Technologies Pty Ltd.

Accredited for compliance with ISO/IEC 17025 - Testing. The results of tests, calibration and/or measurements included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration and inspection reports.

REVISION TABLE

Version	Sec/Para Changed	Change Made	Date
1		Initial issue of document	18/10/2023

CONTENTS

Test	Summary	6
Test	Facility	6
2.1	General	6
2.2	Test Laboratory/Accreditations	6
Test	Equipment Calibration	7
Meas	surement Uncertainty	7
Devi	ce Details	8
5.1	EUT (Transmitter) Details	8
5.2	EUT (Host) Details	8
5.3	Test Configuration	8
5.4	Modifications	8
5.5	Deviations from the Standard	8
Resu	ılts	9
6.1	§15.203 Antenna Requirement	9
6.2	§15.209 Radiated Emission Limits; General Requirements	9
6.3	§15.247(b)(3) Peak Output Power	9
6.3.1	Test Procedure	9
6.3.2	Limits	9
6.3.3	Results	9
6.4	§15.247(d) Out-of-Band/Spurious Emissions 1	1
6.4.1	Test procedure1	1
6.4.2	2 Test setup 1	2
6.4.3	Evaluation of field strength 1	3
6.4.4	Limits 1	3
6.4.5	Transmitter Spurious Emissions: 9 kHz to 30 MHz 1	4
6.4.6	Transmitter Spurious Emissions: 30 - 1000 MHz 1	6
6.4.7	Transmitter Spurious Emissions: 1 - 10 GHz 1	9
6.5	§15.247(d) Band Edge Emission Measurements 2	5
	Test 2.1 2.2 Test Meas 5.1 5.2 5.3 5.4 5.5 Resu 6.1 6.2 6.3 6.3.1 6.3.2 6.3.3 6.4 6.4.1 6.4.2 6.4.3 6.4.4 6.4.5 6.4.6 6.4.7	2.1 General 2.2 Test Laboratory/Accreditations Test Equipment Calibration Measurement Uncertainty Device Details 51 5.1 EUT (Transmitter) Details 5.2 EUT (Host) Details 5.3 Test Configuration 5.4 Modifications 5.5 Deviations from the Standard Results 61 §15.203 Antenna Requirement 6.2 §15.203 Antenna Requirement 6.3 §15.247(b)(3) Peak Output Power 6.3.1 Test Procedure 6.3.2 Limits 6.4 §15.247(d) Out-of-Band/Spurious Emissions 6.4 §15.247(d) Out-of-Band/Spurious Emissions 1 6.4.2 7 Test setup 1 6.4.2 1 6.4.3 Evaluation of field strength 1 6.4.4 Limits 1 6.4.4 1 6.4.3 Evaluation of field strength 1 6.4.4 Limits 1 6.4.5 1 6.4.6 <

GRAPHS

Graph 6-1: Maximum EIRP, 902.3 MHz	10
Graph 6-2: Maximum EIRP, 908.5 MHz	10
Graph 6-3: Maximum EIRP, 914.9 MHz	11
Graph 6-4: Transmitter Spurious Emissions, 9 kHz – 30 MHz, 902.3 MHz	14
Graph 6-5: Transmitter Spurious Emissions, 9 kHz – 30 MHz, 908.5 MHz	14
Graph 6-6: Transmitter Spurious Emissions, 9 kHz – 30 MHz, 914.9 MHz	15
Graph 6-7: Transmitter Spurious Emissions, 30 – 1000 MHz, 902.3 MHz	16
Graph 6-8: Transmitter Spurious Emissions, 30 – 1000 MHz, 908.5 MHz	17
Graph 6-9: Transmitter Spurious Emissions, 30 – 1000 MHz, 914.9 MHz	18
Graph 6-10: Transmitter Spurious Emissions, 1 – 10 GHz, 902.3 MHz, Peak	19
Graph 6-11: Transmitter Spurious Emissions, 1 – 10 GHz, 908.5 MHz, Peak	20
Graph 6-12: Transmitter Spurious Emissions, 1 – 10 GHz, 914.9 MHz, Peak	21
Graph 6-13: Transmitter Spurious Emissions, 1 – 10 GHz, 902.3 MHz, Average	22
Graph 6-14: Transmitter Spurious Emissions, 1 – 10 GHz, 908.5 MHz, Average	23
Graph 6-15: Transmitter Spurious Emissions, 1 – 10 GHz, 914.9 MHz, Average	24
Graph 6-16: Band Edge Emission, Lower Band-edge, 902 MHz	25
Graph 6-17: Band Edge Emission, Upper Band-edge, 928 MHz	26

TABLES

Table 6-1: Maximum peak power	9
Table 6-2: 100 kHz reference level measurement	13
Table 6-3: Transmitter Spurious Emissions, 30 – 1000 MHz, 902.3 MHz	16
Table 6-4: Transmitter Spurious Emissions, 30 – 1000 MHz, 908.5 MHz	17
Table 6-5: Transmitter Spurious Emissions, 30 – 1000 MHz, 914.9 MHz	18
Table 6-6: Transmitter Spurious Emissions, 1 – 10 GHz, 902.3 MHz, Peak	19
Table 6-7: Transmitter Spurious Emissions, 1 – 10 GHz, 908.5 MHz, Peak	20
Table 6-8: Transmitter Spurious Emissions, 1 – 10 GHz, 914.9 MHz, Peak	21
Table 6-9: Transmitter Spurious Emissions, 1 – 10 GHz, 902.3 MHz, Average	22
Table 6-10: Transmitter Spurious Emissions, 1 – 10 GHz, 908.5 MHz, Average	23
Table 6-11: Transmitter Spurious Emissions, 1 – 10 GHz, 914.9 MHz, Average	24
Table 6-12: Band Edge Emission, Lower Band-edge, 902 MHz	25
Table 6-13: Band Edge Emission, Upper Band-edge, 928 MHz	26

	TEST CERTIFIC	ATE
Device: Model: Serial Number:	n-Counter 03F271	
PCB Version: Firmware Version:	nCounter V3 Rev 1.2 Firmware: 4.1.6-debug-mbed6 Library: 4.1.4-debug-mbed608 MTS-Lora: 4.1.4-debug-mbed6	00
Radio Module: FCC ID:	902.3 – 914.9 MHz LoRa (Mult AU792U13A16858	ti-Tech Systems, Inc., MTXDOT-NA1)
Tested for: Address: Contact: Phone: Email:	Meshed Pty Ltd 4/655 Pacific Hwy, St Leonard Ashay Dhamdhere +61 410 986 697 ashay@meshed.com.au	s, NSW 2065, Australia
Standard:		tion 15.247 Operation within the bands Hz, and 5725-5850 MHz – Partial, & (d)
Result:	The n-Counter complied with t standards. Refer to Report M2	he applicable requirements of the above 306030-7 for full details.
Test Date(s):	9-10 October 2023; 12-13 Octo	ober 2023
Issue Date:	18 October 2023	
Test Engineer(s):	Ashish Nath	lan Paul Ng
Attestation:		(s) described herein were tested as at the data included is that which was
Authorised Signatory:	Shabbir Ahmed Technical Director	
176	Issued by: EMC Technologies Harrick Road, Keilor Park, VIC, Phone: +61 3 9365 10	3042, Australia.
E-mail: <u>emc-c</u>	eneral@emctech.com.au	Web: www.emctech.com.au

RADIO TEST REPORT

Page 6 of 26

1 TEST SUMMARY

Sec.	Description	FCC	Result(s)
6.1	Antenna Requirement	§15.203	Complied
6.2	Peak Output Power	§15.247(b)(3)	Complied
6.3	Radiated emission limits; general requirements	§15.209	Complied
6.4	Out-of-Band/Spurious Emissions	§15.247(d)	Complied
6.5	Band-Edge Emission Measurements	§15.247(d)	Complied

2 TEST FACILITY

2.1 General

EMC Technologies Pty Ltd is accredited by the FCC as a test laboratory able to perform compliance testing for the public. EMC Technologies Pty Ltd has also been designated as a Conformity Assessment Body (CAB) by Australian Communications and Media Authority (ACMA) under the APECTEL MRA and is designated to perform compliance testing on equipment subject to Declaration of Conformity (DoC) and Certification under Parts 15 and 18 of the FCC Commission's rules – **Registration Number 494713 & Designation number AU0001**.

EMC Technologies Pty Ltd is also an ISED Canada recognized testing laboratory – **ISED** company number: 3569B and CAB identifier number: AU0001.

2.2 Test Laboratory/Accreditations

NATA is the Australian National laboratory accreditation body and has accredited EMC Technologies to operate to the IEC/ISO17025 requirements. A major requirement for accreditation is the assessment of the company and its personnel as being technically competent in testing to the standards. This requires fully documented test procedures, continued calibration of all equipment to the National Standard at the National Measurements Institute (NMI) and an internal quality system similar to ISO 9002. NATA has mutual recognition agreements with the National Voluntary Laboratory Accreditation Program (NVLAP) and the American Association for Laboratory Accreditation (A²LA).

All testing in this report has been conducted in accordance with EMC Technologies' scope of NATA accreditation to ISO 17025 for both testing and calibration and ISO 17020 for Inspection – **Accreditation Number 5292**.

The current full scope of accreditation can be found on the NATA website: www.nata.com.au

3 TEST EQUIPMENT CALIBRATION

Measurement instrumentation and transducers were calibrated in accordance with the applicable standards by an independent NATA registered laboratory such as Keysight Technologies (Australia) Pty Ltd or the National Measurement Institute (NMI) or in-house. All equipment calibration is traceable to Australian national standards at the National Measurements Institute.

Equipment Type	Make/Model/Serial Number	Last Cal. dd/mm/yyyy	Due Date dd/mm/yyyy	Cal. Interval
Chamber	Frankonia SAC-3-2 (R-144)	01/09/2023	01/09/2026	3 Year*1
EMI Receiver	R&S ESW26 Sn: 101306 (R-143)	02/08/2023	02/08/2024	1 Year ^{*2}
	EMCO 6502 Active Loop Antenna Sn: 2021 (A-310)	20/09/2022	20/09/2024	2 Year ^{*2}
Antennas	SUNOL JB6 Sn. A061917 (A-434)	14/03/2023	14/03/2025	2 Year ^{*2}
	EMCO 3115 Horn Antenna Sn: 9501-4398 (A-406)	10/01/2022	10/01/2025	3 Year*1
Cables* ³	Huber & Suhner Sucoflex 104A Sn: 503061/4A (CL131123)	25/11/2022	25/11/2023	1 Year ^{*1}

Note *1. Internal NATA calibration.

Note *2. External NATA / A2LA calibration.

Note *3. Cables are verified before measurements are taken.

4 MEASUREMENT UNCERTAINTY

EMC Technologies has evaluated the equipment and the methods used to perform the emissions testing. The estimated measurement uncertainties for emissions tests shown within this report are as follows:

Radiated Emissions:	9 kHz to 30 MHz	±4.1 dB
	30 MHz to 300 MHz	±5.1 dB
	300 MHz to 1000 MHz	±4.7 dB
	1 GHz to 18 GHz	±4.6 dB
	18 GHz to 40 GHz	±4.6 dB
Peak Output Power:		±1.5 dB

The above expanded uncertainties are based on standard uncertainties multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.

Application of measurement uncertainty for this report:

The referenced uncertainty standard specifies that determination of compliance shall be based on measurements <u>without</u> considering measurement instrumentation uncertainty. However, the measurement uncertainty shall appear in the test report.

5 Device Details

(Information supplied by the Client)

The device is a Wi-Fi hotspot smart phone counting device with LoRa transceiver.

5.1 EUT (Transmitter) Details

Radio:	Multi-Tech Systems, Inc., MTXDOT-NA1
FCC ID:	AU792U13A16858
Frequency band:	902.3 – 914.9 MHz
Number of Channels:	8
Operating Frequency:	Low Channel: 902.3 MHz Mid Channel: 908.5 MHz High Channel: 914.9 MHz
Modulation:	LoRa
Nominal Bandwidth:	125 kHz
Data Rate:	LoRa
Antenna:	Linx Technologies, ANT-916-HETH
	1/4-wave Monopole
Antenna Peak Gain:	6.4 dBi

5.2 EUT (Host) Details

Test Sample:	n-Counter
Model:	
Serial Number:	03F271
PCB Version:	nCounter V3 Rev 1.2
Firmware Version:	Firmware: 4.1.6-debug-mbed60800
	Library: 4.1.4-debug-mbed60800
	MTS-Lora: 4.1.4-debug-mbed60800
Supply Rating:	Powered via laptop USB
	DC Input: 5VDC, 1A, 5.0W

5.3 Test Configuration

Testing was performed with the EUT's Transceiver set to transmit continuously at Low Channel (902.3 MHz), Mid Channel (908.5 MHz) and High Channel (914.9 MHz).

5.4 Modifications

No modifications were required to achieve compliance.

5.5 Deviations from the Standard

No deviation from the standard.

6 **RESULTS**

6.1 §15.203 Antenna Requirement

The test sample's LoRa Transceiver incorporates a surface mount Antenna and cannot be replaced by another type.

Antenna Brand: Linx Technologies Antenna Type: ANT-916-HETH, ¹/₄-wave Monopole Antenna Peak Gain: 6.4 dBi Connector: Not Applicable

The above installation will prevent any unauthorised switching of antennas.

6.2 §15.209 Radiated Emission Limits; General Requirements

The provisions of the §15.205 restricted bands of operation and §15.209 radiated emissions limits have been met, refer to section 6.4.

6.3 §15.247(b)(3) Peak Output Power

6.3.1 Test Procedure

The maximum peak conducted output power was measured in accordance with ANSI C63.10: 2013 clause 11.9.1.1.

6.3.2 Limits

The maximum peak conducted output power at 902 - 928 MHz is 1 Watt or 30 dBm.

6.3.3 Results

Freq. (MHz)	E-Field @ 3 m (dBμV/m)	EIRP (dBm)	Antenna Gain (dBi)	Equivalent Conducted Output Power (dBm)	Limit (dBm)	Results
902.3	119.21	23.98	6.4*	17.58	29.6*	Complied
908.5	119.37	24.14	6.4*	17.74	29.6*	Complied
914.9	119.57	24.34	6.4*	17.94	29.6*	Complied

Table 6-1: Maximum peak power

The measured radiated field strength is converted to equivalent conducted output power for checking compliance (KDB 558074 D01 Section 3).

*Note: As per §15.247(b)(4), if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Page 10 of 26

14:08:30 09.10.2023

14:10:24 09.10.2023

Graph 6-2: Maximum EIRP, 908.5 MHz

1ultiView ≕ Spectr RefLevel 101.00 dBµV/m		RBW 200 kHz						
Att 0 dB	SWT 1.01 ms PS Off	VBW 500 kHz Notch Off	Mode Sweep			Frequ	ency 914.9 0	00000 MH
Frequency Sweep								1ax o2Pk Clrw
								119.57 dBµV/ 14.956900 MH
	iBuV/m							
dBµV/m							to the	*
dBuV/m							North Contraction	Market and a second sec
Mar Mar Mar							March 1	White
							, y	"MMM Mund
914.9 MHz		1001 pt		10	0.0 kHz/			Span 1.0 MH

14:12:16 09.10.2023

6.4 §15.247(d) Out-of-Band/Spurious Emissions

6.4.1 Test procedure

Radiated spurious emissions measurements were performed in a semi-anechoic chamber compliant with ANSI C63.4: 2014.

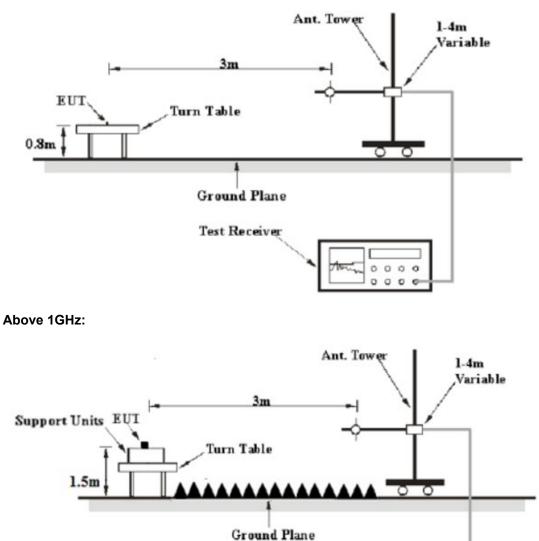
The test frequency range was sub-divided into smaller bands with the defined resolution bandwidths to permit reliable display and identification of emissions.

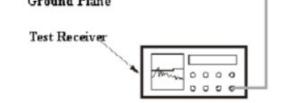
Frequency range (MHz)	Measurement Bandwidth (kHz)	Measurement Distance (m)	Antenna
0.009 to 0.150	0.2	3	0.6 metre loop antenna
0.150 to 30	9	3	0.0 metre loop antenna
30 to 1000	120	3	Biconilog hybrid
1000 to 18 000	1000	3	Standard gain or broadband
18 000 to 40 000	1000	1	horn

EUT was set at a height of 0.8 m for measurements below 1000 MHz and set at a height of 1.5 m for measurements above 1000 MHz.

The sample was slowly rotated with the spectrum analyser set to Max-Hold. This was performed for at least two antenna heights. When an emission was located, it was positively identified, and its maximum level was found by rotating the automated turntable and by varying the antenna height. For below 1000 MHz the emissions were measured with a Quasi-Peak detector, and for above 1000 MHz the emissions were measured with Peak and Average detectors.

Measurements on the worst axis are presented.





The measurement data for each frequency range was corrected for cable losses, antenna factors and preamplifier gain. This process was performed for both horizontal and vertical polarisations of the measurement antenna.

6.4.2 Test setup

Below 1 GHz:

6.4.3 Evaluation of field strength

Field strengths were calculated automatically by the software using pre-stored calibration data. The method of calculation is shown below:

$$E = V + AF - G + L$$

Where: E = Radiated Field Strength in dB μ V/m.

V = EMI Receiver Voltage in dB μ V.

AF = Antenna Factor in dB/m (stored as a data array).

G = Preamplifier Gain in dB (stored as a data array).

L = Cable loss in dB (stored as a data array of Insertion Loss versus frequency).

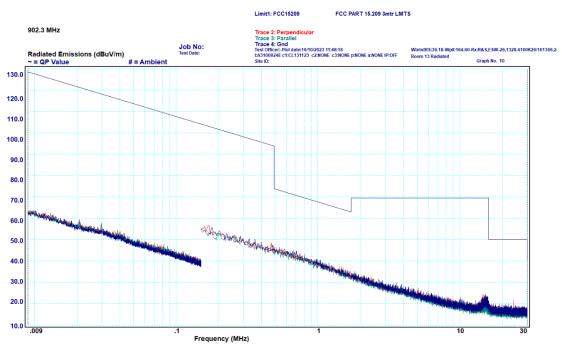
6.4.4 Limits

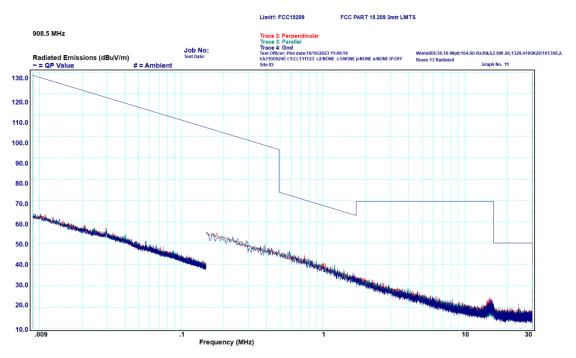
The limit applied is in accordance with the out-of-band/spurious emissions limit defined in §15.247(d).

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power.

The in-band peak PSD in 100 kHz bandwidth were measured on all three channels. The maximum PSD level was used to establish the limit. However, the general limits of §15.209 apply for the restricted bands of operation defined in §15.205.

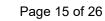
Table 6-2: 100 kHz reference level measurement

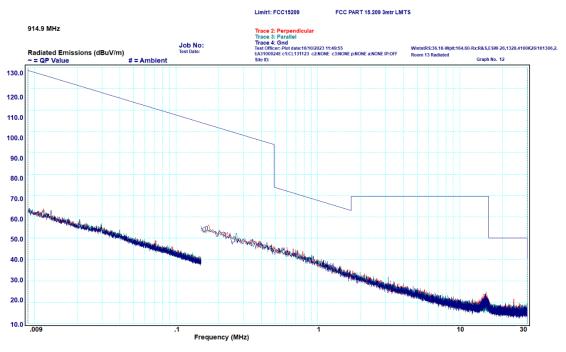

Freq.	Peak at 3 m	Established Limit @ 3 m
(MHz)	(dBµV/m)	(dBµV/m)
914.9	119.58	99.58


6.4.5 Transmitter Spurious Emissions: 9 kHz to 30 MHz

All emissions measured in the frequency band 9kHz - 30MHz complied with the requirements of the standard.

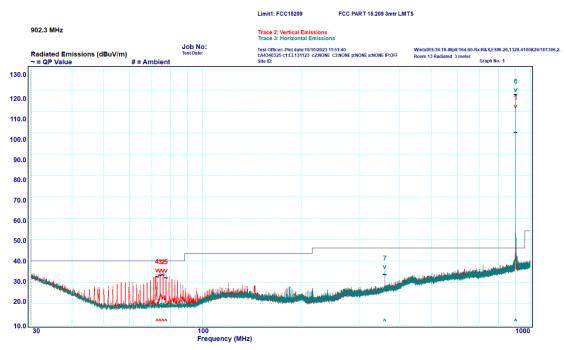
Graph 6-4: Transmitter Spurious Emissions, 9 kHz – 30 MHz, 902.3 MHz


No peaks were measured within 10 dB of the limit.


Graph 6-5: Transmitter Spurious Emissions, 9 kHz – 30 MHz, 908.5 MHz

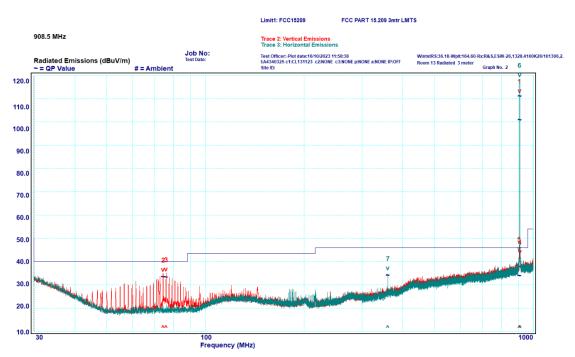
No peaks were measured within 10 dB of the limit.

Graph 6-6: Transmitter Spurious Emissions, 9 kHz – 30 MHz, 914.9 MHz


No peaks were measured within 10 dB of the limit.

6.4.6 Transmitter Spurious Emissions: 30 - 1000 MHz

All emissions measured in the frequency band 30 - 1000 MHz complied with the requirements of the standard.


Table 6-3: Transmitter Spurious Emissions, 30 – 1000 MHz, 902.3 MHz						
	Quasi-Peak					
Peak	Frequency (MHz)		Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	
1*	902.34	Vertical	N/A	N/A	N/A	
2	75.93	Vertical	33.8	40	-6.2	
3	74.34	Vertical	33.6	40	-6.4	
4	72.7	Vertical	33	40	-7	
5	77.54	Vertical	32.4	40	-7.6	
6*	902.31	Horizontal	N/A	N/A	N/A	
7	360	Vertical	34	46	-12	

Graph 6-7: Transmitter Spurious Emissions, 30 – 1000 MHz, 902.3 MHz

*Note: Fundamental transmissions

Graph 6-8: Transmitter Spurious Emissions, 30 – 1000 MHz, 908.5 MHz

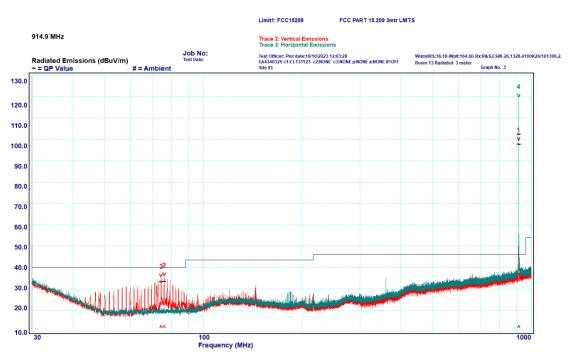

	Frequency		Quasi-Peak		
Peak	Frequency (MHz)	Polarisation	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)
1*	908.45	Vertical	N/A	N/A	N/A
2	74.32	Vertical	33.9	40	-6.1
3	75.92	Vertical	33.8	40	-6.2
4	910.67	Vertical	38.3	46	-7.7
5	905.06	Vertical	34.4	46	-11.6
6*	908.55	Horizontal	N/A	N/A	N/A
7	360.04	Horizontal	34.6	46	-11.4

Table 6-4: Transmitter Spurious Emissions, 30 – 1000 MHz, 908.5 MHz

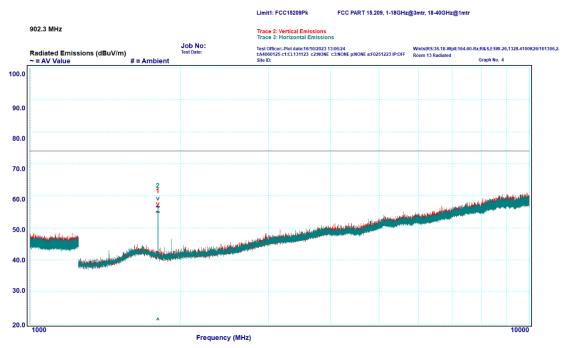
*Note: Fundamental transmissions

Graph 6-9: Transmitter Spurious Emissions, 30 – 1000 MHz, 914.9 MHz

Table 6-5: Transmitter Spurious Emissions,	30 – 1000 MHz, 914.9 MHz
--	--------------------------

	Eroguanou		Quasi-Peak		
Peak	Frequency (MHz)	Polarisation	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)
1*	914.85	Vertical	N/A	N/A	N/A
2	75.98	Vertical	33.8	40	-6.2
3	74.34	Vertical	33.6	40	-6.4
4*	914.95	Horizontal	N/A	N/A	N/A

*Note: Fundamental transmissions

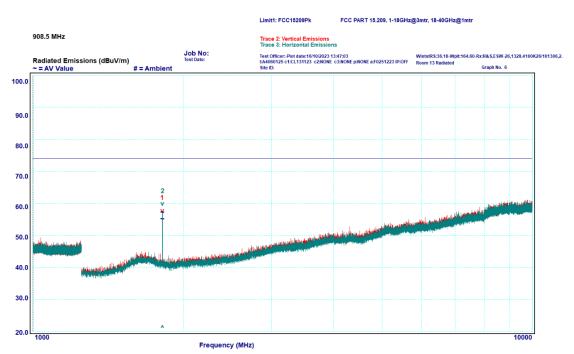


6.4.7 Transmitter Spurious Emissions: 1 - 10 GHz

All emissions measured in the frequency band 1 - 10 GHz complied with the requirements of the standard.

Peak Measurement:

Graph 6-10: Transmitter Spurious Emissions, 1 – 10 GHz, 902.3 MHz, Peak


Table 6-6: Transmitter Spurious Emissions, 1 – 10 GHz, 902.3 MHz, Peak

	Eroguopoy	Fraguanay		Peak		
Peak	k Frequency (MHz)	Polarisation	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	
1*	1804.63	Vertical	55.4	99.58	-43.85	
2*	1804.42	Horizontal	57.0	99.58	-42.25	

*Note: -20 dBc Peak limit applied for nonrestricted bands.

Graph 6-11: Transmitter Spurious Emissions, 1 – 10 GHz, 908.5 MHz, Peak

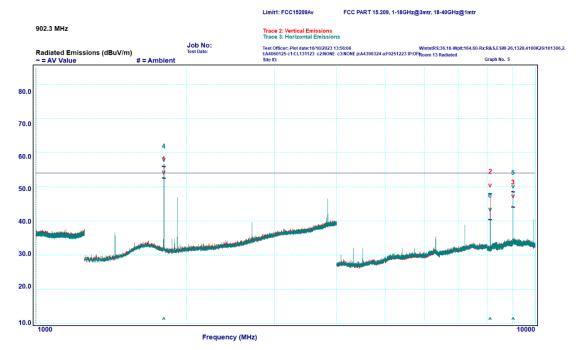
Table 6-7: Transmitter	^r Spurious Emissions	. 1 – 10 GHz	. 908.5 MHz. Peak
	opunious Ennosions	, , , , , , , , , , , , , , , , , , , ,	, 000.0 min i2, i 00.0

	Frequency			Peak	
Peak	Frequency (MHz)	Polarisation	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)
1*	1816.91	Vertical	55.6	99.58	-43.98
2*	1817.13	Horizontal	57.7	99.58	-41.88

*Note: -20 dBc Peak limit applied for nonrestricted bands.

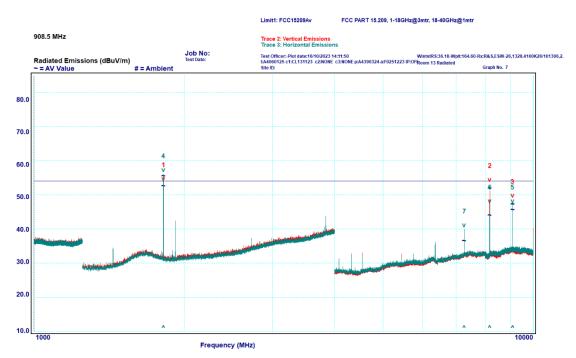
Graph 6-12: Transmitter Spurious Emissions, 1 – 10 GHz, 914.9 MHz, Peak

Table 6-8: Transmitter	r Spurious Emissions	. 1 – 10 GHz	. 914.9 MHz. Pe	ak
1 4,510 0 0. 11 4,101111110	opanioao Ennooiona	, , , , , , , , , , , , , , , , , , , ,	, 011.01.01.12, 1.0	0111


	Frequency			Peak	
Peak	Frequency (MHz)	Polarisation	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)
1*	1829.87	Vertical	56.0	99.58	-43.58
2*	1830.00	Horizontal	57.9	99.58	-41.68

*Note: -20 dBc Peak limit applied for nonrestricted bands.

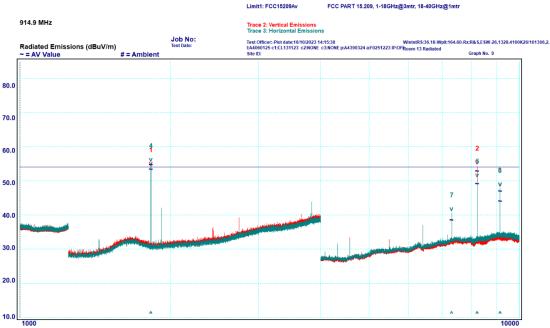
Average Measurement:


Graph 6-13: Transmitter Spurious Emissions, 1 – 10 GHz, 902.3 MHz, Average Table 6-9: Transmitter Spurious Emissions, 1 – 10 GHz, 902.3 MHz, Average

	Frequency		Average		
Peak	Frequency (MHz)	Polarisation	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)
1*	1804.68	Vertical	N/A	N/A	N/A
2	8120.52	Vertical	48.4	54	-5.6
3	9022.36	Vertical	44.5	54	-9.5
4*	1804.57	Horizontal	N/A	N/A	N/A
5	9023.17	Horizontal	48.9	54	-5.1
6	8120.07	Horizontal	40.8	54	-13.2

*Note: -20 dBc Peak limit applied for nonrestricted bands as per 15.247(d)

Graph 6-14: Transmitter Spurious Emissions, 1 – 10 GHz, 908.5 MHz, Average


Table 6-10: Transmitter Spurious Emissions	, 1 – 10 GHz, 908.5 MHz, Average
--	----------------------------------

	Frequency		Average				
Peak	Frequency (MHz)	Polarisation	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)		
1*	1817.14	Vertical	N/A	N/A	N/A		
2	8176.58	Vertical	52.4	54	-1.6		
3	9085.13	Vertical	47.8	54	-6.2		
4*	1816.86	Horizontal	N/A	N/A	N/A		
5	9084.44	Horizontal	46.1	54	-7.9		
6	8175.9	Horizontal	44.5	54	-9.5		
7	7267.57	Horizontal	37	54	-17		

*Note: -20 dBc Peak limit applied for nonrestricted bands as per 15.247(d)

Frequency (MHz)

Graph 6-15: Transmitter Spurious Emissions, 1 – 10 GHz, 914.9 MHz, Average

Table 6-11: Transmitter Spurious Emissions	, 1 – 10 GHz, 914.9 MHz, Average
--	----------------------------------

	Frequency		Average					
Peak	Frequency (MHz)	Polarisation	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)			
1*	1829.73	Vertical	N/A	N/A	N/A			
2	8233.72	Vertical	53.3	54	-0.7			
3	9149.4	Vertical	47.4	54	-6.6			
4*	1829.72	Horizontal	N/A	N/A	N/A			
5	8233.72	Horizontal	49.6	54	-4.4			
6	9148.93	Horizontal	44.6	54	-9.4			
7	7319.37	Horizontal	39	54	-15			

*Note: -20 dBc Peak limit applied for nonrestricted bands as per 15.247(d)

6.5 §15.247(d) Band Edge Emission Measurements

Band-edge radiated measurements were done in accordance with ANSI C63.10 clause 6.10. All emissions measured near the lower and higher band edge complied with the requirements of §15.247.

14:31:52 09.10.2023

G

ranh	6-16	Rand	Edae	Emission	Lower	Band-edge,	002 MH7
napri	0-70.	Dana	Luge	LIIII331011,	LOWCI	Dana-cuyc,	302 1011 12

Table 6-12.	Rand Edge	Emission	Lower Band-edge,	902 MH7
Table 0-12.	Danu Luye	LIIIISSI011,	Lower Danu-euge,	902 IVII IZ

Marker	Measurement Type	Freq (MHz)	Measurement (dBμV/m)	Limit (dBµV/m)	Result
M2	Peak	902	73.95	99.58	Complied

MultiViev	w == :	Spectru	n											-
Ref Level Att Input TDF Input1		0 dB 1 AC	SWT 1.0 PS	9 ms ۱	RBW 100 VBW 300 Notch		Mode Sweep				Free	quency	921.9	500000 MHz
1 Frequen													●1Pk Vi	ew o 2Pk Clrw
130 dBµV/m—													M3[1]	57.55 dBµV/m 916.7230 MHz
M1													M1[1]	910.7230 MHz 119.58 dBµV/m 914.9530 MHz
110 dBµV/m-														91419886 Mill2
TTO OBDAM														
100 dBµ%/m														
90 dBµVYm—														
80 dBµV/m—														
70 dBµ//m—	M2													
60 dBuy/m-	h.	mint												
BDId®µ∨/m—	••••	MAA	MAN	.A.,		hanne A	A	~~~~ ^	mmm	A A A	·····	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
40 dBµV/m- 913.9 MH;	- 4 *P	41.4	0.1 M	فالمثالية لأ					եռետեր	I MILL WAY	مد ا الم مم ما	لا اما للـال	الـ الممالا لا	
2 Marker T					10	01 pts				.61 MHz/				930.0 MHz
		Trc	X-1	/alue			Y-Value			Function		Fu	nction R	esult
M1 M2 M3		1 1 1	914.9 915.5 916.7	53 MH 67 MH 23 MH	Z Z	65 57	.58 dBµV/ .12 dBµV/ .55 dBµV/	m m		- raneton			Heaton III	esur -
M4		1 Ire deviatio		alignmer			.66 dBµV/ additional leve		Measuring]		0.2023 :39:11	Ref Leve	RBW O

14:39:11 09.10.2023

Graph 6-17: Band Edge Emission, Upper Band-edge, 928 MHz

Table 6-13: Band Edge Emission, Upper Band-edge, 928 MHz

Marker	Measurement Type	Freq (MHz)	Measurement (dBμV/m)	Limit (dBµV/m)	Result	
M4	Peak	928	48.66	99.58	Complied	

END OF REPORT

