

Multi-Tech Systems

MTAC-Lora-915 FCC 15.247:2015

Report # MLTI0043

NVLAP Lab Code: 201049-0

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America. This Report may only be duplicated in its entirety

CERTIFICATE OF TEST

Last Date of Test: May 18, 2015 Multi-Tech Systems Model: MTAC-Lora-915

Radio Equipment Testing

Standards

Specification	Method
FCC 15.247:2015	ANSI C63.10:2009

Results

Method Clause	Test Description	Applied	Results	Comments
7.5	Duty Cycle	No	N/A	Not required for class 2 permissive change
6.9.1	Occupied Bandwidth	No	N/A	Not required for class 2 permissive change
6.10.2	Output Power	Yes	Pass	
6.11.2	Power Spectral Density	Yes	Pass	
6.7	Band Edge Compliance	Yes	Pass	
6.7	Spurious Conducted Emissions	Yes	Pass	
6.5, 6.6	Spurious Radiated Emissions	Yes	Pass	
6.2	Powerline Conducted Emissions	No	N/A	Not required for class 2 permissive change

Deviations From Test Standards

None

Approved By:

Jeremiah Darden, Operations Manager

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test.

REVISION HISTORY

Revision Number	Description	Date	Page Number
00	None		

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Accredited by A2LA to ISO / IEC 17065 as a product certifier. This allows Northwest EMC to certify transmitters to FCC and IC specifications.

NVLAP - Each laboratory is accredited by NVLAP to ISO 17025

Canada

IC - Recognized by Industry Canada as a Certification Body (CB). Certification chambers and Open Area Test Sites are filed with IC.

European Union

European Commission – Validated by the European Commission as a Conformity Assessment Body (CAB) under the EMC directive and as a Notified Body under the R&TTE Directive.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIP / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA – Recognized by IDA as a CAB for the acceptance of test data.

Israel

MOC – Recognized by MOC as a CAB for the acceptance of test data.

Hong Kong

OFCA – Recognized by OFCA as a CAB for the acceptance of test data.

Vietnam

MIC – Recognized by MIC as a CAB for the acceptance of test data.

SCOPE

For details on the Scopes of our Accreditations, please visit: <u>http://www.nwemc.com/accreditations/</u> http://gsi.nist.gov/global/docs/cabs/designations.html

MEASUREMENT UNCERTAINTY

Measurement Uncertainty

When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) for each test is on each data sheet. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request.

The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.

Test	+ MU	- MU
Frequency Accuracy (Hz)	0.0007%	-0.0007%
Amplitude Accuracy (dB)	1.2 dB	-1.2 dB
Conducted Power (dB)	0.3 dB	-0.3 dB
Radiated Power via Substitution (dB)	0.7 dB	-0.7 dB
Temperature (degrees C)	0.7°C	-0.7°C
Humidity (% RH)	2.5% RH	-2.5% RH
Voltage (AC)	1.0%	-1.0%
Voltage (DC)	0.7%	-0.7%
Field Strength (dB)	4.7 dB	-4.7 dB
AC Powerline Conducted Emissions (dB)	2.9 dB	-2.9 dB

FACILITIES

California Labs OC01-13 41 Tesla Irvine, CA 92618 (949) 861-8918	Minnesota Labs MN01-08, MN10 9349 W Broadway Ave. Brooklyn Park, MN 55445 (612)-638-5136	New York Labs NY01-04 4939 Jordan Rd. Elbridge, NY 13060 (315) 554-8214	Oregon Labs EV01-12 22975 NW Evergreen Pkwy Hillsboro, OR 97124 (503) 844-4066	Texas Labs TX01-09 3801 E Plano Pkwy Plano, TX 75074 (469) 304-5255	Washington Labs NC01-05 19201 120 th Ave NE Bothell, WA 9801 (425)984-6600
		NV	LAP		
NVLAP Lab Code: 200676-0	NVLAP Lab Code: 200881-0	NVLAP Lab Code: 200761-0	NVLAP Lab Code: 200630-0	NVLAP Lab Code:201049-0	NVLAP Lab Code: 200629-0
		Industry	Canada		
2834B-1, 2834B-3	2834E-1	N/A	2834D-1, 2834D-2	2834G-1	2834F-1
		BS	мі		
SL2-IN-E-1154R	SL2-IN-E-1152R	N/A	SL2-IN-E-1017	SL2-IN-E-1158R	SL2-IN-E-1153R
VCCI					
A-0029	A-0109	N/A	A-0108	A-0201	A-0110
Recognized Phase I CAB for ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA					
US0158	US0175	N/A	US0017	US0191	US0157

PRODUCT DESCRIPTION

Client and Equipment Under Test (EUT) Information

Company Name:	Multi-Tech Systems
Address:	2205 Woodale Drive
City, State, Zip:	Mounds View, MN 55112
Test Requested By:	Bud Sundeen
Model:	MTAC-Lora-915
First Date of Test:	May 18, 2015
Last Date of Test:	May 18, 2015
Receipt Date of Samples:	May 18, 2015
Equipment Design Stage:	Prototype
Equipment Condition:	No Damage

Information Provided by the Party Requesting the Test

Functional Description of the EUT:

Lora Gateway Accessory Card

Testing Objective:

To demonstrate compliance of the change of the high channel and show compliance to FCC 15.247 requirements for a Class II Permissive change on FCC ID: AU792U13A16856.

CONFIGURATIONS

Configuration MLTI0043-1

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
MTAC-Lora	Multi-Tech Systems	MTAC-LORA-915	None

Peripherals in test setup boundary						
Description	Manufacturer	Model/Part Number	Serial Number			
Laptop Computer	Hewlett Packard	Bres2-29-02XT	CNU72602XT			
AC Power Adapter (for laptop)	Hewlett Packard	PPP014S	3892A300			
AC Power Adapter (for controller)	GobTek	01006610L	None			
Controller	Multi-Tech Systems	MTCDT-H5	18062244			

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
AC Power	Unknown	0.8 m	No	AC Power Adapter (for laptop)	AC Mains
DC Power	Unknown	1.1 m	Yes	AC Power Adapter (for laptop)	Laptop Computer
USB Cable	Unknown	1.8 m	Yes	Controller	MTAC-Lora
Ethernet Cable	Unknown	1.95 m	No	Controller	Laptop Computer
DC Power	Unknown	3 m	Yes	MTAC-Lora FCC	AC Power Adapter (for controller)

Configuration MLTI0043-2

EUT						
Description	Manufacturer	Model/Part Number	Serial Number			
MTAC-Lora	Multi-Tech Systems	MTAC-LORA-915	None			

Peripherals in test setup boundary							
Description	Manufacturer	Model/Part Number	Serial Number				
Laptop Computer	Hewlett Packard	Bres2-29-02XT	CNU72602XT				
AC Power Adapter (for laptop)	Hewlett Packard	PPP014S	3892A300				
AC Power Adapter (for controller)	GobTek	01006610L	None				
Controller	Multi-Tech Systems	MTCDT-H5	18062244				
Wireless External Antenna	Pulse	W1063	None				

Cables						
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2	
AC Power	Unknown	0.8 m	No	AC Power Adapter (for laptop)	AC Mains	
DC Power	Unknown	1.1 m	Yes	AC Power Adapter (for laptop)	Laptop Computer	
USB Cable	Unknown	1.8 m	Yes	Controller	MTAC-Lora	
Ethernet Cable	Unknown	1.95 m	No	Controller	Laptop Computer	
DC Power	Unknown	3 m	Yes	MTAC-Lora FCC	AC Power Adapter (for controller)	

MODIFICATIONS

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT
		Power	Tested as	No EMI suppression	EUT remained at
1	5/18/2015	Spectral	delivered to	devices were added or	Northwest EMC
		Density	Test Station.	modified during this test.	following the test.
		Rand Edgo	Tested as	No EMI suppression	EUT remained at
2	5/18/2015	Compliance	delivered to	devices were added or	Northwest EMC
		Compliance	Test Station.	modified during this test.	following the test.
		Spurious	Tested as	No EMI suppression	EUT remained at
3	5/18/2015	Conducted	delivered to	devices were added or	Northwest EMC
		Emissions	Test Station.	modified during this test.	following the test.
		Spurious	Tested as	No EMI suppression	EUT remained at
4	5/18/2015	Radiated	delivered to	devices were added or	Northwest EMC
		Emissions	Test Station.	modified during this test.	following the test.
		Output	Tested as	No EMI suppression	Schodulod testing
5	5/18/2015	Dowor	delivered to	devices were added or	was completed
		FOWEI	Test Station.	modified during this test.	was completed.

SPURIOUS RADIATED EMISSIONS

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Transmitting Lora at High Channel @ 927.5 MHz.

POWER SETTINGS INVESTIGATED

USB via 110VAC/60Hz

CONFIGURATIONS INVESTIGATED

MLTI0043-2

FREQUENCY RANGE INVESTIGATED

Start Frequency 30 MHz

Stop Frequency 10000 MHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
High Pass Filter, 2.8-18 GHz	Micro-Tronics	HPM50111	HHX	8/18/2014	12 mo
Low Pass Filter, 0-1000 MHz	Micro-Tronics	LPM50004	HHV	8/18/2014	12 mo
Pre-Amplifier	Miteq	AMF-6F-08001200-30-10P	PAK	10/27/2014	12 mo
Pre-Amplifier	Miteq	AMF-6F-12001800-30-10P	PAL	10/27/2014	12 mo
TX02 Cable	Northwest EMC	8-18GHz	TXD	10/27/2014	12 mo
Pre-Amplifier	Miteq	JSDQK42-18004000-60-5P	PAM	11/21/2014	12 mo
Cable	Northwest EMC	18-40GHz	TXE	11/21/2014	12 mo
Antenna, Double Ridge Guide Horn	A.H. Systems, Inc.	SAS-574	AXW	4/23/2014	24 mo
Antenna, Horn	ETS Lindgren	3160-08	AJG	NCR	0 mo
Antenna, Horn	ETS Lindgren	3160-07	AJF	NCR	0 mo
Pre-Amplifier	Miteq	AMF-3D-00100800-32-13P	PAJ	9/22/2014	12 mo
TX02 Cable	Northwest EMC	1-8.2 GHz	TXC	9/22/2014	12 mo
Antenna, Horn	ETS Lindgren	3115	AJL	9/15/2014	24 mo
Pre-Amplifier	Miteq	AM-1551	PAH	9/13/2014	12 mo
TX02 Cable	Northwest EMC	RE 9kHz - 1GHz	TXB	9/22/2014	12 mo
Attenuator	Fairview Microwave	SA4018-20	TQY	2/27/2015	12 mo
Antenna, Biconilog	ETS Lindgren	3143B	AYF	4/7/2014	24 mo
Spectrum Analyzer	Agilent	N9010A	AFL	6/20/2014	12 mo

TEST DESCRIPTION

The highest gain of each type of antenna to be used with the EUT was tested. The EUT was configured for the high transmit frequency. For each configuration, the spectrum was scanned throughout the specified range. In addition, measurements were made in the restricted bands to verify compliance.

While scanning, emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and the EUT antenna in three orthogonal axis, and adjusting measurement antenna height and polarization. A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.

ENC

SPURIOUS RADIATED EMISSIONS

Wor	k Order:	MLT10043		Date:	05/18/	15		F-	
	Project:	None	Ten	nperature:	24.6 °	С	yung -	Da	
J	lob Site:	TX02		Humidity:	50.6%	RH	0/		
Serial N	Number:	None	Barome	etric Pres.:	1021 m	bar	Tested	by: Jonathan Kiefer	
	EUT:	MTAC-Lora							
Config	uration:	2							
Cu	stomer:	Multi-Tech Systems							
Δtt	endees.	None							
	Dowor:		17						
201	FOWEI.				1_				
Operating	g Mode:	Transmitting Lora at	High Chan	nei @ 927.5 Mir	ΠZ.				
Dev	viations:	None							
Con	nments:	None							
Test Specifi	ications				T	est Metho	bd		
ECC 15 247	2015				Δ	NSI C63 1	0.2009		
Run #	10	Test Distance (m)	3	Antenna Hei	ight(s)		1 to 4(m)	Results	Pass
<u> </u>			•						
70 60 50 W/Ngp 30 20 10									
0			100				1000		10000
10			100		MHz		1000	■ РК 🔶	

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	
													Comments
4640.467	28.3	7.3	1.4	220.9	3.0	0.0	Vert	AV	0.0	35.6	54.0	-18.4	High Ch, EUT Horizontal
4640.342	28.3	7.3	1.0	211.0	3.0	0.0	Horz	AV	0.0	35.6	54.0	-18.4	High Ch, EUT Vertical
3709.967	30.7	4.2	2.1	220.9	3.0	0.0	Vert	AV	0.0	34.9	54.0	-19.1	High Ch, EUT Horizontal
3709.958	29.8	4.2	1.0	338.0	3.0	0.0	Horz	AV	0.0	34.0	54.0	-20.0	High Ch, EUT Vertical
4635.600	40.6	7.3	1.0	211.0	3.0	0.0	Horz	PK	0.0	47.9	74.0	-26.1	High Ch, EUT Vertical
4639.567	39.4	7.3	1.4	220.9	3.0	0.0	Vert	PK	0.0	46.7	74.0	-27.3	High Ch, EUT Horizontal
3709.717	41.3	4.2	1.0	338.0	3.0	0.0	Horz	PK	0.0	45.5	74.0	-28.5	High Ch, EUT Vertical
3710.633	41.0	4.2	2.1	220.9	3.0	0.0	Vert	PK	0.0	45.2	74.0	-28.8	High Ch, EUT Horizontal
2782.442	22.1	-3.0	1.0	165.0	3.0	0.0	Vert	AV	0.0	19.1	54.0	-34.9	High Ch, EUT Horizontal
2782.242	22.0	-3.0	1.0	118.9	3.0	0.0	Horz	AV	0.0	19.0	54.0	-35.0	High Ch, EUT Vertical
2781.533	33.9	-3.0	1.0	118.9	3.0	0.0	Horz	PK	0.0	30.9	74.0	-43.1	High Ch, EUT Vertical
2784.842	33.8	-3.0	1.0	165.0	3.0	0.0	Vert	PK	0.0	30.8	74.0	-43.2	High Ch, EUT Horizontal

SPURIOUS CONDUCTED EMISSIONS

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

					Interval
Description	Manufacturer	Model	ID	Last Cal.	(mo)
Signal Generator, 40 GHz	Agilent	N5173B	TIW	7/15/2014	36
DC Block, 40 GHz	Fairview Microwave	SD4018-20	AMM	2/27/2015	12
Attenuator, 20dB, 40 GHz	Fairview Microwave	SA4018-20	TQY	2/27/2015	12
Signal Analyzer	Agilent	N9010A	AFL	6/20/2014	12

TEST DESCRIPTION

The spurious RF conducted emissions were measured with the EUT set the high transmit frequency. The measurements were made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at the data rate(s) listed in the datasheet. For each transmit frequency, the spectrum was scanned throughout the specified frequency range.

Report No. MLTI0043

SPURIOUS CONDUCTED EMISSIONS

EUT	MTAC-Lora			Work Order:	MLT 10043						
Serial Number	None			Date:	05/18/15						
Customer	: Multi-Tech Systems			Temperature:	24.0°C						
Attendees	: None			Humidity:	51%						
Project	None			Barometric Pres.:	1019 mbar						
Tested by	: Jonathan Kiefer		Power: USB via 110VAC/60Hz	Job Site:	TX09						
TEST SPECIFICAT	TIONS		Test Method								
FCC 15.247:2015			ANSI C63.10:2009								
COMMENTS	MMENTS										
	at High Channel @ 927.5 MHz	Z.									
DEVIATIONS FRO	MIESISIANDARD										
None											
Configuration #	1	Signature	ing Da								
			Frequency		Limit	Decult					
			ĸange	(авс)	≥ (dBC)	Result					
Lora											
	High Channel, 927.5 MHz		30 MHz - 12.5 GHz	-66.48	-20	Pass					
	High Channel, 927.5 MHz		12.5 GHz - 25 GHz	-67.57	-20	Pass					

SPURIOUS CONDUCTED EMISSIONS

Lora, High Channel, 927.5 MHz								
	Frequency		Value	Limit				
	Range		(dBc)	≤ (dBc)	Result	_		
	30 MHz - 12.5 GHz		-66.48	-20	Pass			

🦉 Agilent Spec	trum Analyzer - Northwest	EMC, Inc		SCHOL MIT				00.17.5	
KL	K- 50 SZ DC	· 	PNO: Fast 🖵 FGain:Low	Trig: Free R #Atten: 20 c	Run dB	#Avg Type: Avg Hold: 4	Log-Pwr 17/100	09:17:54 TF	AM May 18, 201 ACE 1 2 3 4 5 TYPE M WWWM DET P P P P P
0 dB/div	Ref Offset 20.5 dE Ref 30.50 dBm	3 1						ΔMkr1 -6	1.5 MH 4.484 dE
20.5	X ₂								
0.5									
500									
.50									
9.5									
9.5	1Δ2								
9.5			the second states and a state of a second	ellen ander ander and	lettine etimoneticket	a in the state of the	and here a set the stability of		
9.5									
tart 30 M	1Hz							Stop 1	2.500 GH
Res BW	100 kHz		#VB	W 300 kHz		STATUS	Swee	ep 1.192 s	s (8192 pts

Lora, High Channel, 927.5 MHz									
	Frequency		Value	Limit					
	Range		(dBc)	≤ (dBc)	Result				
	12.5 GHz - 25 GHz		-67.57	-20	Pass				

🎉 Agilent Spec	ctrum Analyzer - Northwe	est EMC, Inc							
L <mark>XI</mark> RL	RF 50 Ω	DC		SENSE:INT	<u> </u>	#Avg Type:	Log-Pwr	09:19:42 TR	2 AM May 18, 201 ACE 1 2 3 4 5
		1	PNO: Fast 🕞 FGain:Low	Trig: Free I #Atten: 20	Run dB	Avg Hold: 7	70/100	1	
10 dB/div	Ref Offset 20.5 Ref 5.50 dBn	dB n					N	lkr1 23.7 -42.	83 7 GH: 923 dBn
-4.50									
-14.5									
14.0									
-24.5									
-34.5									
									1
-44.5									in the second
-54.5									
-64.5									
-74.5									
-84.5									
Start 12.5	00 GHz		<u> </u>					Stop 2	5.000 GH
#Res BW	100 kHz		#VB	W 300 kHz			Swe	ep 1.195 s	; (8192 pts
MSG						STATUS			

BAND EDGE COMPLIANCE

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

					Interval
Description	Manufacturer	Model	ID	Last Cal.	(mo)
Signal Generator, 40 GHz	Agilent	N5173B	TIW	7/15/2014	36
DC Block, 40 GHz	Fairview Microwave	SD4018-20	AMM	2/27/2015	12
Attenuator, 20dB, 40 GHz	Fairview Microwave	SA4018-20	TQY	2/27/2015	12
Signal Analyzer	Agilent	N9010A	AFL	6/20/2014	12

TEST DESCRIPTION

The spurious RF conducted emissions at the edges of the authorized bands were measured with the EUT set to high transmit frequency. The channels closest to the band edges were selected. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at the data rate(s) listed in the datasheet.

The spectrum was scanned below the lower band edge and above the higher band edge.

Report No. MLTI0043

BAND EDGE COMPLIANCE

EUT: MTAC-Lora		Work Order:	MLT 10043			
Serial Number: None		Date:	05/18/15			
Customer: Multi-Tech Systems		Temperature: 24.0°C				
Attendees: None		Humidity: 51%				
Project: None		Barometric Pres.: 1019 mbar				
Tested by: Jonathan Kiefer	Power: USB via 110VAC/60Hz	Job Site:	ТХ09			
TEST SPECIFICATIONS	Test Method					
FCC 15.247:2015	ANSI C63.10:2009					
COMMENTS						
Transmitting Lora at High Channel @ 927.5 MHz.						
DEVIATIONS FROM TEST STANDARD						
None						
Configuration # 1 Signature	y Da					
		Value	Limit			
		(dBc)	≤ (dBc)	Result		
Lora						
High Channel, 927.5 MHz		-33.31	-20	Pass		

BAND EDGE COMPLIANCE

Lora, High Channel, 927.5 MHz							
Value Limit							
_				(dBc)	≤ (dBc)	Result	
				-33.31	-20	Pass	

OUTPUT POWER

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

					Interval
Description	Manufacturer	Model	ID	Last Cal.	(mo)
Signal Generator, 40 GHz	Agilent	N5173B	TIW	7/15/2014	36
DC Block, 40 GHz	Fairview Microwave	SD4018-20	AMM	2/27/2015	12
Attenuator, 20dB, 40 GHz	Fairview Microwave	SA4018-20	TQY	2/27/2015	12
Signal Analyzer	Agilent	N9010A	AFL	6/20/2014	12

TEST DESCRIPTION

The transmit frequency was set to the required channels in each band. The transmit power was set to its default maximum. A direct connection was made between the RF output of the EUT and a spectrum analyzer. Attenuation and a DC block were used. The reference level offset on the spectrum analyzer was adjusted to compensate for cable loss and the external attenuation used between the RF output and the spectrum analyzer input.

Prior to measuring peak transmit power the DTS bandwidth (B) and the transmission pulse duration (T) were measured. Both are required to determine the method of measuring Maximum Conducted Output Power. The transmission pulse duration (T) was measured using a zero span on the spectrum analyzer to see the pulses in the time domain.

The method found in KDB 558074 DTS D01 Measurement Section 9.1.1 was used because the RBW on the analyzer was greater than the DTS Bandwidth of the radio.

De Facto EIRP Limit: Per 47 CFR 15.247 (b)(1-3), the EUT meets the de facto EIRP limit of +36 dBm.

OUTPUT POWER

EUT: MTAC-Lora		Work Order: MI	_T 10043	
Serial Number: None		Date: 05	/18/15	
Customer: Multi-Tech Systems		Temperature: 24	.0°C	
Attendees: None		Humidity: 51	%	
Project: None		Barometric Pres.: 10	19 mbar	
Tested by: Jonathan Kiefer	Power: USB via 110VAC/60Hz	Job Site: T)	(09	
TEST SPECIFICATIONS	Test Method			
FCC 15.247:2015	ANSI C63.10:2009			
COMMENTS				
Transmitting Lora at High Channel @ 927.5 MHz.				
DEVIATIONS FROM TEST STANDARD				
None				
Configuration # 1 Signature	Da			
			Limit	
		Value	(<)	Result
Lora				
High Channel, 927.5 MHz		278.56 mW	1 W	Pass

OUTPUT POWER

Lora, High Channel, 927.5 MHz								
Limit								
Value (<) Result								
					278.5 <mark>6</mark> mW	1 W	Pass	

Agilent Spectrum Analyzer - Northwest EMC, Inc				08/52/00 AM May 18, 2015
	PNO: Fast ↔ IFGain:Low	Trig: Free Run #Atten: 20 dB	#Avg Type: Log-P Avg Hold: 100/100	Wr TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P P P P P P
Ref Offset 20.5 dB 5 dB/div Ref 1.000 W				Mkr1 926.824 MHz 278.56 mW
316 mW		♦ ¹		
100 mW				
31.6 mW				
10.0 mW				
3.16 mW				
316 µW				
100 μVV				
31.6 µW				
Center 927.500 MHz #Res BW 8 MHz	#VBW	50 MHz		Span 10.00 MHz Sweep 1.066 ms (1000 pts)
MSG			STATUS	

POWER SPECTRAL DENSITY

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

					Interval
Description	Manufacturer	Model	ID	Last Cal.	(mo)
Signal Analyzer	Agilent	N9010A	AFL	6/20/2014	12
Attenuator, 20dB, 40 GHz	Fairview Microwave	SA4018-20	TQY	2/27/2015	12
DC Block, 40 GHz	Fairview Microwave	SD4018-20	AMM	2/27/2015	12
Signal Generator, 40 GHz	Agilent	N5173B	TIW	7/15/2014	36

TEST DESCRIPTION

The maximum power spectral density measurements were measured with the EUT set to the high frequency. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at the lowest, middle, and maximum data rate for each modulation type available. A duty cycle of >98% was used.

Per the procedure outlined in section 10.3 in the KDB 558074 D01 v03r02 document, a power spectral density measurment using the AVGPSD-1 method was used on each channel.

- b) Set span to at least 1.5 times the OBW.
- c) Set RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- d) Set VBW ≥3 x RBW.
- e) Detector = power averaging (RMS)
- f) Ensure that the number of measurement points in the sweep $\ge 2 \times \text{span/RBW}$.
- g) Sweep time = auto couple.
- h) Employ trace averaging (RMS) mode over a minimum of 100 traces.
- i) Use the peak marker function to determine the maximum amplitude level.

Report No. MLTI0043

POWER SPECTRAL DENSITY

EUT: M	TAC-Lora			Work Order: MLTI0043
Serial Number: No	one			Date: 05/18/15
Customer: Mu	ulti-Tech Systems			Temperature: 24.0°C
Attendees: No	one			Humidity: 51%
Project: No	one			Barometric Pres.: 1019 mbar
Tested by: Jo	onathan Kiefer	Power: USB via 110VAC	60Hz	Job Site: TX09
TEST SPECIFICATION	NS	Test Method		
FCC 15.247:2015		ANSI C63.10:200	9	
COMMENTS				
Transmitting Lora at H	High Channel @ 927.5 MHz.			
DEVIATIONS FROM T	EST STANDARD			
None				
Configuration #	1 Signature	ng Da		
			Value	Limit
			dBm/3kHz	dBm/3kHz Results
Lora				
Hi	igh Channel, 927.5 MHz		2.879	8 Pass

POWER SPECTRAL DENSITY

	Lora, High Channel, 927.5 MHz							
Value Limit								
	dBm/3kHz				dBm/3kHz	Results		
	2.879					8	Pass	

