

Embedded Data/Fax/Voice Wireless Modem

MTMMC-G-F1 MTMMC-G-F2

Developer's Guide

ModemModule Developer's Guide MTMMC-G-F1 and MTMMC-G-F2 PN S000295A. Version A 07/15/03

Copyright

This publication may not be reproduced, in whole or in part, without prior expressed written permission from Multi-Tech Systems, Inc. All rights reserved. Copyright © 2003, by Multi-Tech Systems, Inc.

Multi-Tech Systems, Inc. makes no representations or warranties with respect to the contents hereof and specifically disclaims any implied warranties of merchantability or fitness for any particular purpose. Furthermore, Multi-Tech Systems, Inc. reserves the right to revise this publication and to make changes from time to time in the content hereof without obligation of Multi-Tech Systems, Inc. to notify any person or organization of such revisions or changes.

Revisions

Revision Level Date Description 07/15/03 First release. Α

Patents

This device is covered by patent number 5,673,268.

Trademarks

Trademarks of Multi-Tech Systems, Inc. are Modem Module and the Multi-Tech logo. MNP and Microcom Network Protocol are registered trademarks of Microcom, Inc. Microsoft, Windows, Windows 95, and Windows NT are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

World Headquarters

Multi-Tech Systems, Inc. 2205 Woodale Drive Mounds View, Minnesota 55112 Phone: 763-785-3500 or 800-328-9717 Fax: 763-785-9874

Technical Support

Country	By Email	By Phone
France:	support@multitech.fr	(33) 1-64 61
India:	support@multitechindia.com	91 (124) 634
U.K.:	support@multitech.co.uk	(44) 118 959
U.S. and Canada:	oemsales@multitech.com	(800) 972-24
Rest of the World:	oemsales@multitech.com	(763) 717-58

Internet Address: http://www.multitech.com

09 81 10778 9 7774 439 863

Table of Contents

CHAPTER 1 – PRODUCT DESCRIPTION AND SPECIFICATIONS	5
INTRODUCTION	5
Scope of the Developer Guide	
General Characteristics	
General	
Electrical	
Mechanical	
FEATURE DETAILS	
Telephony	
Short Message Service (GSM and GPRS mode)	
GSM Circuit Data Features	7
GPRS Packet Data Features	7
GSM Supplementary Services	7
Other Features	7
Interfaces	7
FEATURE DESCRIPTIONS	
APPLICATIONS	
MECHANICAL DESIGN OVERVIEW	10
CHAPTER 2 – MECHANICAL SPECIFICATIONS	11
MECHANICAL DIMENSIONS	
CLIMATIC AND MECHANICAL ENVIRONMENT TESTING COMPLIANCE	
CHAPTER 3 – ELECTRICAL CHARACTERISTICS	13
INTRODUCTION	13
50-PIN CONNECTOR INTERFACES	
50-Pin Connector Description	
Power Supply	
Serial Link	
ON / ~OFF Interface	
BOOT	
Reset Signal (~RST)	
Flashing LED	
General Purpose Input/Output	24
Analog to Digital Converter	24
Audio Interface	
SIM interface	
SPI Bus	
Keypad Interface	
CHAPTER 4 – INTERFACES	32
FLASHING LED	32
SIM INTERFACE	
RF INTERFACE.	
RF Connector	
RF Performances	
DTE/DCE INTERFACE RATES	
CHAPTER 5 – TEST BOARD	34
SERIAL TEST/DEMO BOARD COMPONENTS	
SERIAL TEST/DEMO BOARD BLOCK DIAGRAM	
SIM Schematic (5V)	
CHAPTER 6 – APPLICATION CONSIDERATIONS	

GENERAL GUIDELINES FOR THE USE OF THE MODEMMODULE	
Hardware and RF	
The Antenna	
Firmware Upgrade	
Initial Configuration Using Mobile PhoneTools	
Getting Started	
REFERENCE DOCUMENTS	
RELATED MANUALS	
ADDITIONAL INFORMATION	40
APPENDIX A – SAFETY PRECAUTIONS & REGULATORY STANDARDS COMPLIANCE	41
SAFETY PRECAUTIONS	41
RF Safety	41
General Safety	
Safety Standards	
RF Exposures	
Instructions to OEMs	
REGULATORY STANDARDS COMPLIANCE	44
GSM compliance	
FTA Compliance	
APPENDIX B – SOURCING GUIDE FOR CONNECTORS AND PERIPHERAL DEVICES	46
WHERE TO FIND SMD CONNECTORS	46
GSM ANTENNA	47
SIM CARD HOLDER	47
APPENDIX C – AT COMMAND LIST	48
APPENDIX D – ACRONYMS AND ABBREVIATIONS	53
INDEX	54
LIST OF TABLES	57

Chapter 1 – Product Description and Specifications

Introduction

ModemModule GSM/GPRS integrated wireless modems provide a quick and easy way to insert GSM and GPRS functionality into systems and terminals. Available in dual-band configurations, this fully type approved integrated modem constitutes a self-contained, fully integrated implementation of the GSM/GPRS standard. Thanks to standard interfaces, it can be integrated into any system. It is ready for voice, SMS, data and fax. ModemModule GSM/GPRS is a product with a single connector, which puts together all interface signals in order to facilitate its integration. It has an integrated SIM connector as well as a standard RF connector type MMCX. For system integrators, ModemModule GSM/GPRS is the fast track to the wireless world.

Figure 1-1: MultiTech's Wireless ModemModule GSM/GPRS

Product	Description	Region
MTMMC-G-F1	GSM/GPRS Class 10, 900/1800 MHz	Global
MTMMC-G-F2	GSM/GPRS Class 10, 850/1900 MHz	Global

The MTMMC-G-F1 and MTMMC-G-F2 Modem*Modules* are used to integrate wireless data and fax communications in numerous embedded applications.

Scope of the Developer Guide

This document describes the hardware interface and the technical specifications of the ModemModule GSM/GPRS wireless modems. The integrated modem is referred to as ModemModule GSM/GPRS according to the GSM/GPRS 900 standard, the GSM/GPRS 1800 standard and the GSM/GPRS 1900 standard. This product is based on a Dual Band RF module: every integrated modem referenced ModemModule GSM/GPRS-G900/1800 includes a GSM 900/1800 MHz module and every integrated modem referenced ModemModule GSM/GPRS-G850/1900 includes a GSM 850/1900 MHz module. These two dual-band modems have the same specifications unless otherwise specified.

General Characteristics

General

- GPRS Class 10
- Dual Band GSM/GPRS modem E-GSM 900/1800 or GSM 850/1900
- 2W at 850MHz
- 1W at 1800/1900 MHz
- GSM Class 1 and Class 2 Group 3 FAX
- Small size and low power consumption
- Voice and Short Message Services (SMS)
- Fax and data transmission without extra hardware
- Serial interface supports DTE speeds up to 115.2K
- MMCX connector and SIM socket
- 14.4K GSM circuit-switched data
- Tricodec (FR/EFR/HR)
- Internal 3V SIM interface
- Easy remote control by AT commands for dedicated applications
- Fully Type Approved according to GSM Phase 2+ specifications
- Board-to-board or board-to-cable mounting
- Fully shielded and ready-to-use

Electrical

Power supply: 5 VDC +/- 5% 1A

Mechanical

- Absolute maximum dimension: 46 x 64 x 12 mm
- Weight: 79 g
- Casing: Complete shielding-stainless steel/zinc
- Mounting: 4 screw holes
- Operating temperature range: -30°C to + 60°C
- Storage temperature: -35°C to +85°C

Feature Details

Telephony

- Telephony (TCH/FS) & Emergency calls
- Full Rate, Enhanced Full Rate and Half Rate
- Dual Tone Multi Frequency function (DTMF)

Short Message Service (GSM and GPRS mode)

- Text and PDU
- Point to point MT & MO
- SMS Cell Broadcast

GSM Circuit Data Features

- Data circuit asynchronous, transparent and non transparent up to 14,400
- bits/s
- Automatic fax group 3 (Class 1 & 2)
- Alternate speech and fax
- MNP2, V.42bis data compression

GPRS Packet Data Features

- GPRS Class 10
- Coding Schemes: C1S1 to CS4

GSM Supplementary Services

- Call Forwarding
- Call Barring
- Multiparty
- Call Waiting and Call Hold
- Calling Line Identity
- Advice of Charge
- USSD
- Closed User Group
- Explicit Call Transfer

Other Features

- ME+SIM phone book management
- Fixed Dialing Number
- SIM Toolkit Class 2
- SIM, network and service provider locks
- Real Time Clock
- Alarm management
- Software upgrade through Xmodem protocol
- UCS2 character set management

Interfaces

Single antenna interface	
Internal SIM interface:	3V only
External SIM interface:	3V or 5V

For Data Operation:

Serial link Remote control by AT commands (GSM 07.07 and 07.05) Baud rate from 300 to 115,200 bits/s From 300 up to 38400 bits/s with autobauding

The integrated modem has a sole 50-pin connector, which gathers all the interface signals in order to facilitate its integration. It has an integrated SIM card holder as well as a standard RF connector type MMCX. The concept of the integrated modem has been defined to integrate on a sole device:

- a single connector has been used that is standard and easy to find (it is supplied worldwide); this connector includes all of the modem's analog and digital connections
- One standard easy to find RF connector. See RF connector section in *Chapter 3: Electrical* Characteristics:
- One SIM card holder. See SIM section in Chapter 3: Electrical Characteristics.

Feature Descriptions

Integration Reduces Space, Power and Cost. The ModemModule GSM/GPRS integrates the controller, RF transceiver, and antenna interface in one compact unit. This integration requires low power, occupies very little space, and provides an overall reduction in costs.

Reduces Development Time. The ModemModule GSM/GPRS can make your existing and next generation device, machine, or system, communication-ready without requiring significant hardware changes to its design. It actually provides faster time-to-market because it relieves the burden and expense of obtaining network and RF approvals. This complete, ready-to-integrate wireless module allows you to enhance your product while you focus on developing its core features.

Voice Features. The ModemModule GSM/GPRS provides telephony and Dual Tone Multi Frequency (DTMF) functionality. It also allows for emergency calls as well as full rate, enhanced Full Rate and Half Rate (FR/EFR/HR).

Short Message Services. The ModemModule GSM/ GPRS offers SMS features such as text and PDU, point-to-point (MT/MO) and cell broadcast.

Compatible Supplementary Services. The ModemModule GSM/GPRS is compatible with supplementary services such as call forwarding, call barring, multiparty, call waiting and call hold, calling line identification, advice of charge, USSD, closed user group and explicit call transfer.

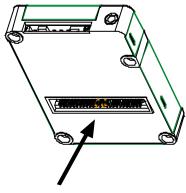
Management Features. The ModemModule GSM/ GPRS provides advanced management features including phone book management, fixed dialing number, real time clock and alarm management.

Industry-standard Modem Commands. The ModemModule GSM/GPRS provides industry-standard AT-style commands for ease of integration into your existing software application.

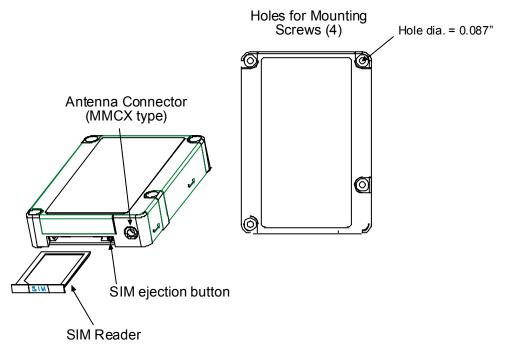
ModemModule Pin-Out. The ModemModule GSM/ GPRS interfaces easily with existing products through a standard serial communication channel. The complete on-board RF transceiver interfaces with an antenna for direct connection to wireless SMS, circuit-switched dial-up, or packet data networks. The ModemModule is a Data Terminal Equipment (DTE) device with serial asynchronous protocol support. The serial DTE channel is capable of transfer speeds to 115.2K bps and can be interfaced directly to a UART or microcontroller. It can be board-to-board or board-to-cable mounted.

Network and RF Approved. The ModemModule GSM/ GPRS has been tested and certified with wireless telecom network providers worldwide. In addition, it has successfully completed worldwide compliance

Developer's Kit. The ModemModule GSM/GPRS Developer's Kit allows you to plug in the ModemModule and use it for testing, programming and resolving application issues.


Applications

With circuit switched data rates up to 14.4K bps, the MultiModem GSM/GPRS is targeted at applications that periodically need to send or receive data over a wireless network. It is an ideal device for:


Appliances	Remote Diagnostics
ATM Terminals	Remote Metering
Automotive	Security Systems
Data Collection	Vending/Gaming Machines
Gas Pumps	Other devices requiring wireless connectivity.
Industrial and Medical Remote Monitoring Systems	Note : The Wireless MultiModem must be mounted with at least 8 inches (20 cm) of clearance from the human body.

Mechanical Design Overview

The ModemModule is encased as shown in the figure below. It includes a RF module, a 50-pin connector, a SIM holder and a RF connector.

Interface Connector Figure 1-2: Mechanical Description A

Four screw holes allow the Modem*Module* to be fixed on the mother PCB. The Modem*Module* can be mounted indifferently on both sides (top or bottom). For further details see *Chapter 2: Mechanical Specifications*.

Chapter 2 – Mechanical Specifications

Mechanical Dimensions

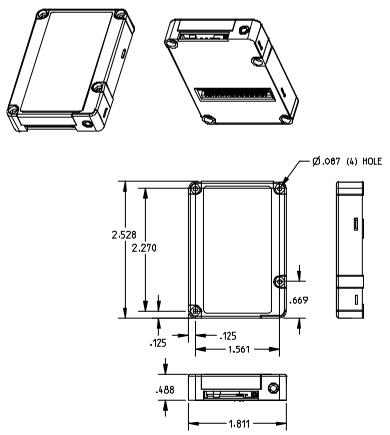


Figure 2-1: ModemModule Dimensions

Climatic and Mechanical Environment Testing Compliance

G900/G1800		Environmental		
Type of Test	Standards	Storage Class 1.2	Transportation Class 2.3	Operating (Port Use) Class 7.3
Cold	IEC 68-2.1 Ab test	-25 ⁰ C; 72 hours	-40 ⁰ C; 72 hours	-20 ⁰ C (GSM); 16 hours -10 ⁰ C (DCS) 16 hours
Dry Heat	IEC 68-2.2 Bb test	+70 ⁰ C; 72 hours	+70 ⁰ C; 72 hours	+55 ⁰ C; 16 hours
Change of Temperature	IEC 68-2.14; Na/Nb test		-40 ^{°/} +30 [°] C; 5 cycles t1 = 3 hours	$^{-20^{\circ}/+30^{\circ}}$ C (GSM); 3 cycles - $^{10^{\circ}/+30^{\circ}}$ C (DCS); 3 cycles t1 = 3 hours
Damp Heat Cyclic	IEC 68-2.30; Db test	+30 ⁰ C; 2 cycles 90% - 100% RH variant 1	+40 ⁰ C; 2 cycles 90% - 100% RH variant 1	+40 ⁰ C; 2 cycles 90% - 100% RH variant 1
Damp Heat	IEC 68-2.56 Cb test	+30 ⁰ C; 4 days	+40 [°] C; 4 days	+40 ⁰ C; 4 days
Sinusoidal Vibration	IEC 68-2.6 Fc test	5 - 62 Hz : 5 mm/s 62 – 200 Hz: 2 m/s ² 3 x 5 sweep cycles		
Random Vibration	IEC 68-3.36 Fdb test		5 – 20 Hz: 0.96 m ² /s ³ 20 – 500 Hz: -3 dB/ oct 3 x 10 min	10 – 12 Hz: 0.96 m ² /s ³ 12 – 150 Hz: -3 dB/ oct 3 x 30 min

Table 2-1 : Climatic and Mechanical Environment Testing Compliance

Chapter 3 – Electrical Characteristics

Introduction

This chapter describes the ModemModule's electrical interfaces. These are:

- interfaces on the 50-pin general purpose connector (power and data/signaling)
- RF interface
- SIM interface

50-Pin Connector Interfaces

50-Pin Connector Description

Table 3-1. 50-pin Connector Description

Pin #	Name	I/O	I/O Туре	Description	Comment
1	GND			GROUND	High current
2	GND			GROUND	High current
3	+5V		Supply		High current
4	+5V		Supply		High current
5	CT109/DCD	0	CMOS/2X	Data Carrier Detect	
6	GND			GROUND	High current
7	GPI04	I/O	CMOS/2X	General Purpose I/O	
8	SPK2N	0	Analog	Speaker 2 negative output	
9	CT125/RI	0	CMOS/2X	Ring Indicator	
10	SPK2P	0	Analog	Speaker 2 positive output	
11	Flashing LED	I/O	CMOS/2X	Working mode indication LED	Driven by module
12	SPK1P	0	Analog	Speaker 1 positive output	
13	CT106/CTS	0	1X	Clear to Send	
14	SPK1N	0	Analog	Speaker 1 negative output	
15	ON/~OFF	1		Power ON/OFF control	ON = Vcc
16	MIC2P	1	Analog	Microphone 2 positive input	
17	AUXV0	1	Analog	Auxiliary ADC input	
18	MIC2N	1	Analog	Microphone 2 negative input	
19	~RST	1		Reset active low	Open Collector
20	MIC1P	1	Analog	Microphone 1 positive input	
21	GND	1		Ground	
22	MIC1N	1	Analog	Microphone 1 negative input	
23	BOOT	I		BOOT	Open Collector
24	GND			GROUND	High Current
25	CT103/TX	I		Transmit Data	Pull up with 100K-ohm when not used

Pin #	Name	<i>I/O</i>	I/O Туре	Description	Comment
26	GPIO0	I/O	CMOS/2X	General Purpose I/O	
27	CT107/DSR	0	1X	Data Set Ready	
28	CT104/RX	0	1X	Receive Data	
29	CT108-2/DTR	1		Data Terminal Ready	Pull up with 100K-ohm when not used
30	CT105/RTS	1		Request to Send	Pull up with 100K-ohm when not used
31	COL3	I/O	1X	Keypad column	
32	COL4	I/O	1X	Keypad column	
33	COL1	I/O	1X	Keypad column	
34	COL2	I/O	1X	Keypad column	
35	ROW4	I/O	1X	Keypad row	
36	COL0	I/O	1X	Keypad column	
37	ROW2	I/O	1X	Keypad row	
38	ROW3	I/O	1X	Keypad row	
39	ROW0	I/O	1X	Keypad row	
40	ROW1	I/O	1X	Keypad row	
41	NC			Not Connected	
42	SPI_EN	0	1X	SPI enable	
43	SPI_IO	I/O	1X	I ² C Data or SPI Data	
44	SPI_CLK	0	2X	I ² C Clock or SPI Clock	
45	SIMCLK	0	2X	Clock for SIM interface	3V mode
46	SIMRST	0	2X	Reset for SIM interface	3V mode
47	SIMVCC	0		SIM card supply	3V mode 6mA max.
48	SIMPRES	1		SIM card detect	Connected to SIM connector pin 8. Pin 4 of SIM connector must be pulled down to GND with 1 K-Ohm*
49	SIMDATA	I/O	3X	I/O for SIM interface	3V mode
50	GPO0			General purpose I/O	

Table 3-1. 50-Pin Connector Description (Continued)

* See SIM socket diagram in SIM interface section

** GPO0 is a general purpose output for selection of external SIM, 3V or 5V.

Parameter	I/O Туре	Min	Max	Condition
Vinput low	CMOS	-0.5V	0.8V	
Vinput high	CMOS	2.1V	3.0V	
Voutput low	1X		0.2V	I _{OL} = -1mA
	2X		0.2V	I _{OL} = -2mA
	3X		0.2V	I _{OL} = -3mA
Voutput high	1X	2.6V		I _{OH} = 1mA
	2X	2.6V		I _{OH} = 2mA
	3X	2.6V		I _{OH} = 3mA

 Table 3-2.
 Operating Conditions

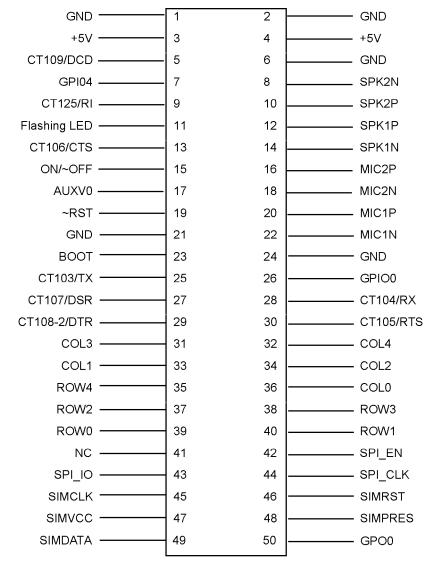


Figure 3-1: 50-Pin Connector

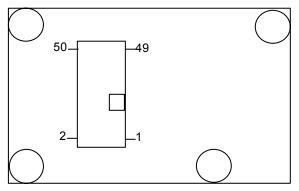


Figure 3-2: Pin Numbering – Bottom View

Power Supply

The main power supply is provided through a double connection. These connections are respectively pins 3 and 4 for the +5V and the pins 1 and 2 for the ground (GND). The pins 6, 21, and 24 are also ground connection in order to produce a proper ground plane.

A 5V +/-5% - 1A power is strictly required to supply the modem. Otherwise, serious dysfunctions may appear. However, the modem does not have to constantly deliver 1A current at 5V on this power supply.

This power supply is internally regulated to a nominal value VBATT.

Pin Number	Name	Description	Comment
1	GND	Ground	High Current
2	GND	Ground	High Current
3	+5V	Ground	High Current
4	+5V	Ground	High Current
6	GND	Ground	High Current
21	GND	Ground	High Current
24	GND	Ground	High Current

Table 3-3: Power Supply Pin Description

Table 3-4: Power Consumption in EGSM-on	ly mode @25 degrees C
---	-----------------------

	Conditions	I _{NOM}	I _{MAX}
+5V	During TX bursts @2W	810 mA	1 A
+5V	Average @ 2W	310 mA	370 mA
+5V	Average @).5W	185 mA	200 mA
+5V	Average idle mode	22 mA	25 mA

	Conditions	I _{NOM}	I _{MAX}
+5V	During TX bursts @1W	635 mA	800 mA
+5V	Average @1W	260 mA	280 mA
+5V	Average @ 0.25W	150 mA	170 mA
+5V	Average idle mode	20 mA	22 mA

Table 3-5: Power Consumption in GSM-only 1800 & 1900 MHz modes @25 degrees C

Table 3-6: Power Consumption in EGSM/GPRS 900 MHz and GSM/GRPS 850 MHz Mode

Class 10

	Conditions	I _{NOM}	I _{MAX}
+5V	During TX bursts @Pcl5	1.7 A peak	2.0 A peak
+5V	During RX bursts	75 mA peak	80 mA peak
+5V	Average 1Rx/1Tx @Pcl5	270 mA	320 mA
+5V	Average 1Rx/1Tx@Pcl8	180 mA	200 mA
+5V	Average idle mode	100 μA	300 μA
+5V	Average GPRS CI 10 (3Rx/2Tx) @PcI5	540 mA	640 mA
+5V	Average GPRS CI 10 (3Rx/2Tx) @Pcl8	360 mA	400 ma
+5V	Average Idle mode	2,2 mA	3 Ma

Power Control Level: PcI5=2W typ.; PcI8=0,5W typ.

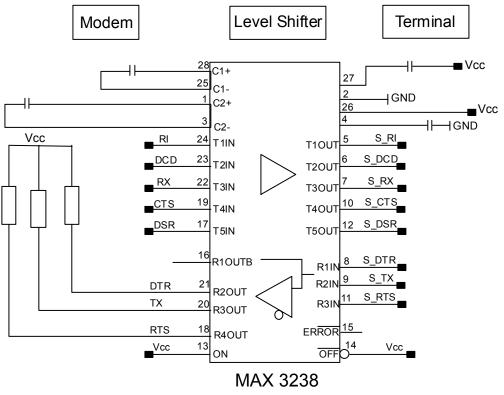
Table 3-7: Power Consumption in GSM/GRPS 1800 MHz and GSM/GRPS 1900 MHz

Class 10

	Conditions	I _{NOM}	I _{MAX}
+5V	During TX bursts @Pcl0	1.3 A peak	1.7 A peak
+5V	During RX bursts	75 mA peak	80 mA peak
+5V	Average 1Rx/1Tx @Pcl5	240 mA	270 mA
+5V	Average 1Rx/1Tx@Pcl8	150 mA	180 mA
+5V	Average idle mode	100 μA	300 μA
+5V	Average GPRS CI 10 (3Rx/2Tx) @PcI5	480 mA	540 mA
+5V	Average GPRS CI 10 (3Rx/2Tx) @Pcl8	300 mA	360 Ma
+5V	Average Idle mode	2,2 mA	3 Ma

Power Control Level: PcI0=1W typ; PcI3=0,25W typ

Serial Link


A serial link interface is available complying with V24 protocol signaling but not with V28 (electrical interface) due to a 2.8 Volts interface. TX, RTS and DTR can be either 5V or 3V.

The signals are Tx data (CT103/TX), Rx data (CT104/RX), Request To Send (CT105/RTS), Clear To Send (CT106/CTS), Data Terminal Ready (CT108-2/DTR) and Data Set Ready (CT107/DSR).

The set of RS232 signals can be required for GSM DATA services application. The 2 additional signals are Data Carrier Detect (CT109/DCD) and Ring Indicator (CT125/RI).

Signal	Pin Number	<i>I/O</i>	I/O Type*	Description
CT103 / TX	25	Ι	CMOS	Transmit serial data
CT104 / RX	28	0	1X	Receive serial data
CT105 / RTS	30	1	CMOS	Ready to send
CT106 / CTS	13	0	1X	Clear to send
CT107 / DSR	27	0	1X	Data set ready
CT108-2 / DTR	29	1	CMOS	Data terminal ready
CT109 / DCD	5	0	CMOS / 2X	Data carrier detect
CT125 / RI	9	0	CMOS / 2X	Ring indicator

Table 3-8: Serial Link Pin Description

*This application note is valid for Vcc≥ 3.0 Volt (see MAX 3238 specifications) Auto shut down mode is not used in this example.

Figure 3-3: Level Shifter Application Diagram for Serial Link

ON / ~OFF Interface

This input is used to switch ON or OFF the ModemModule. A high level signal has to be provided on the ON/~OFF pin to switch on the modem. The level of the voltage of this signal has to be maintained to VCC during a minimum time of 1 second. When powered off, the shutdown current is roughly 60 microAmperes.

Table 3-9: ON / OFF Pin Description

Signal	Pin Number	I/O	I/O Type*	Description
ON / ~OFF	15	Ι	CMOS	Module Power ON/OFF

Power OFF Procedure

In order to power OFF the ModemModule, switch it OFF both via software (AT+CPOF; see AT Command Manual for more details) and via hardware line. See the diagrams below.

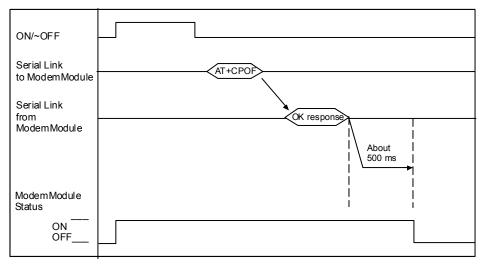


Figure 3-4: Power-Off Procedure 1

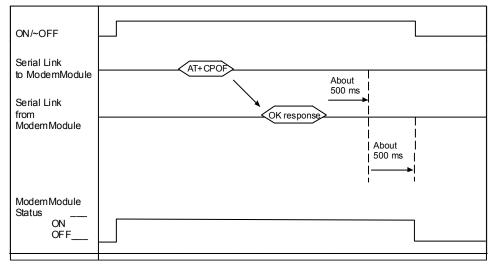
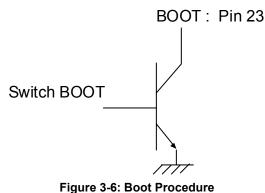



Figure 3-5: Power-Off Procedure 2

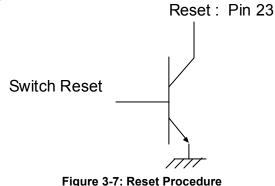
BOOT

This input is used to switch the ModemModule into download mode (backup procedure). The internal boot procedure is started when this pin is low during the power ON of the module. In normal mode, this pin has to be left open. If used, this input has to be driven by an open collector or an open drain. See below an example of application diagram. See also the "Firmware Upgrade" section of *Chapter 5: Application Considerations*.

rigule 3-0. Door Procedule

If Switch Boot = 1, Boot pin 23 = 0, to download mode If Switch Boot = 0, Boot pin 23 = 1, to normal mode

Table 3-10: BOOT Pin Description


Signal	Pin Number	I/O	I/O Type*	Description
BOOT	23	I	CMOS	SW downloading

* See "Table 3-2: Operating Conditions" in section on the 50-pin Connector Description.

Reset Signal (~RST)

This signal is used to force a reset of the ModemModule. It has to be used by providing low level during approximately 2ms. This signal has to be considered as an emergency reset only. A reset procedure is already driven by an internal hardware during the power-up sequence.

This signal can also be used to provide a reset to an external device. If no external reset is necessary this input can be left open. If used (emergency reset), it has to be driven by an open collector or an open drain. See below an example of application diagram.

If switch Reset = 1, Reset pin 19 = 0 If switch Reset = 0, Reset pin 19 = 1

Signal	Pin Number	I/O	I/O Type*	Description
~RST	19	I/O		Module reset

Table 3-11: Reset Signal Pin Description

* See "Table 3-2: Operating Conditions" in section on the 50-pin Connector Description.

Table 3-12: Reset Signal Electrical Characteristics

Parameter	Min	Мах	Unit
Input Impedance (R)	4.7		kilo-ohms
Input Impedance (C)		10	nanofarads

Table 3-13: Reset Signal Operating Conditions

Parameter	Min	Max	Condition
*V _{T-}	1.1 V	1.2 V	
*V _{T+}	1.7 V	1.9 V	
V _{OL}		0.4 V	I_{OL} = -50 microamperes
V _{OH}	2.0 V		I _{OH} = -50 microamperes

 V_{T-} , V_{T+} hysteresis level

Flashing LED

The flashing LED signal is used to indicate the working mode of the ModemModule.

Table 3-14 : Flashing LED Pin Description

Signal	Pin Number	<i>I/O</i>	I/O Type*	Description
Flashing LED	11	I/O	CMOS/2X	Working mode indication LED

* See "Table 3-2: Operating Conditions" in section on the 50-pin Connector Description.

Table 3-15 : LED and ModemModule Status

LED Indication	ModemModule Status		
OFF	Download mode or switched OFF.		
ON	Permanent Switched ON, not registered on the network.		
	Flash	Switched ON, registered on the network.	

General Purpose Input/Output

The ModemModule provides two General Purpose I/O connections. They can be used to control any external device.

Table 3-16 : General Purpose I/O Pin Description

Signal	Pin Number	<i>I/O</i>	I/O Type*	Description	Default Value
GPIO0	26	I/O	CMOS / 2X	General Purpose I/O	0
GPIO4	7	I/O	CMOS / 2X	General Purpose I/O	0

* See "Table 3-2: Operating Conditions" in section on the 50-pin Connector Description.

All digital I/O complies with 3Volts CMOS.

You can access (write or read) the GPIO value via AT+WIOW and AT+WIOR. See AT Command manual for more details.

Analog to Digital Converter

The ModemModule has an Analog to Digital converter (ADC) input. This converter is a 10 bits one, ranging from 0 to 2.5V. You can see the measurements via AT+ADC. See AT Command manual for more details.

Table 3-17: A/D Converter Pin Description

Signal	Pin Number	<i>I/O</i>	I/O Type*	Description
AUXV0	17	1	Analog	A/D converter

* See "Table 3-2: Operating Conditions" in section on the 50-pin Connector Description.

Table 3-18: A/D Converter Electrical Characteristics

Parameter	Min	Max	Unit
Resolution	10		bits
Sampling Rate	90.3		Ksps
Input Signal Range	0	2.5V	Volts
ADC Reference Accuracy	0.5		%
Integral Accuracy	+/- 1		LSB
Differential Accuracy	+/- 1		LSB
Input Impedance (R)	10		mega- Ohms
Input Impedance (C)		50	pico- Farads

Audio Interface

Two different microphone inputs and two different speaker outputs are supported. The connection can be either differential or single-ended but using a differential connection in order to reject common mode noise and TDMA noise is recommended.

Microphone 2 Inputs

The MIC2 inputs are differential ones. They already include the convenient biasing for an electret microphone (0,5 mA and 2 Volts). This electret microphone can be directly connected on these inputs. The impedance of the microphone 2 has to be around 2K. These inputs are the standard ones for a handset design while MIC1 inputs can be connected to an external headset or a hands-free kit.

The gain of MIC2 inputs is internally adjusted. The gain can be tuned from 30dB to 51dB. The connection to the microphone is direct. The gain can be tuned using the AT+VGR command. See *Appendix B: Sourcing Guide for Connectors and Peripheral Devices*.

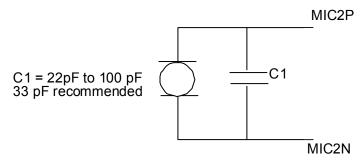


Figure 3-8: Microphone 2 Input

C1 has to be the nearest as possible to the microphone. Microphone manufacturers provide this capacitor directly soldered on the microphone.

Table 3-19: Microphone 2 Input Pin Description

Signal	Pin Number	<i>I/O</i>	I/O Type*	Description
MIC2P	16	I	Analog	Microphone 2 positive input
MIC2N	18	I	Analog	Microphone 2 negative input

Microphone 1 Inputs

The MIC1 inputs are differential and do not include internal bias. To use these inputs with an electret microphone, bias has to be generated outside the ModemModule according to the characteristic of this electret microphone. These inputs are the standard ones used for an external headset or a hands-free kit. When using a single-ended connection, be sure to have a very good ground plane, a very good filtering as well as shielding in order to avoid any disturbance on the audio path. The gain of MIC1 inputs is internally adjusted. The gain can be tuned from 30dB to 51dB.

The gain can be tuned using the AT+VGR command.

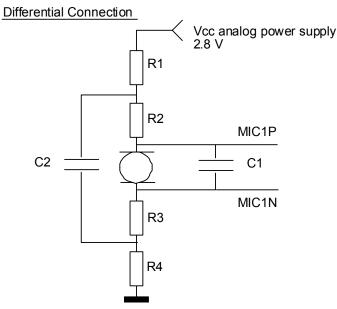


Figure 3-9: Microphone 1 Input

 $\begin{array}{l} \mathsf{R1}=\mathsf{R4}=\textit{from 100 to 330} \ .\\ \mathsf{R2}=\mathsf{R3}=\textit{usually between 1K and 3.3K as per the}\\ & \textit{microphone characteristics} \end{array}$ $\begin{array}{l} \mathsf{C1}=22\mathsf{pF} \textit{ to 100pF}\\ \mathsf{C2}=47\mathsf{\mu}\mathsf{F} \end{array}$

R1 and R4 are used as a voltage supply filter with C2.

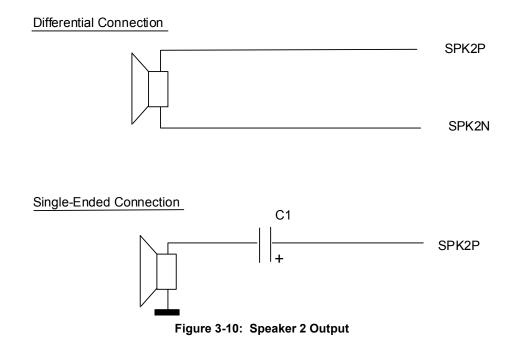

C1 has to be the nearest possible to the microphone. Microphone manufacturers provide this capacitor directly soldered on the microphone.

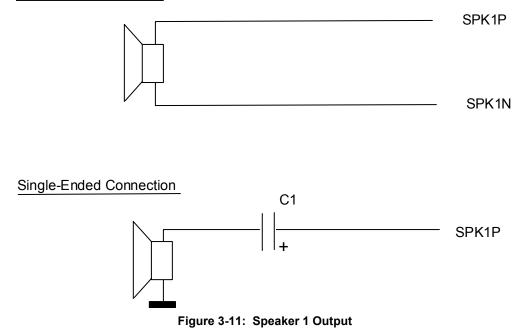
Table 3-20: Microphone 1 Input Pin Description

Signal	Pin Number	<i>I/O</i>	I/O Type*	Description
MIC1P	20	I	Analog	Microphone 1 positive input
MIC1N	22	I	Analog	Microphone 1 negative input

Speaker 2 Outputs

Speaker outputs SPK2 are push-pull amplifiers and can be loaded down to 50 Ohms and up to 1nF. These outputs are differential and the output power can be adjusted by step of 2dB. The output can be directly connected to a speaker. When using a single-ended connection, be sure to have a very good ground plane, a very good filtering as well as shielding in order to avoid any disturbance on the audio path.

C1 = from 100nF to 47μ F as per the speaker characteristics and the output power.


Using a single-ended connection also includes losing half of the output power compared to a differential connection.

Signal	Pin Number	<i>I/O</i>	I/O Type*	Description
SPK2P	10	0	Analog	Speaker 2 positive output
SPK2N	8	0	Analog	Speaker 2 negative output

Speaker 1 Outputs

Speaker outputs SPK1 are push-pull amplifiers and can be loaded down to 50 Ohms and up to 1nF. These outputs are differential and the output power can be adjusted by step of 2dB. The output can be directly connected to a speaker. When using a single-ended connection, be sure to have a very good ground plane, a very good filtering as well as a shielding in order to avoid any disturbance on the audio path.

Differential Connection

C1 = from 100nF to 47μ F as per the speaker characteristics. Using a single-ended connection also includes losing half of the output power compared to a differential connection.

Table 3-22: Speaker 1 Output Pin Description

Signal	Pin Number	<i>I/O</i>	I/O Type*	Description
SPK1P	12	0	Analog	Speaker 1 positive output
SPK1N	13	0	Analog	Speaker 1 negative output

SIM interface

The external SIM interface is available through the 50-pin connector in order to use a stand-alone SIM cardholder. 5V SIMs can be driven using an external level shifter.

SIM line must not exceed 15 cm. See also the "Hardware and RF" section of Chapter 5: Application Considerations.

Five signals are available: SIMVCC: SIM power supply. SIMRST: reset. SIMCLK: clock. SIMDATA: I/O port. SIMPRES1 SIM card detect. This signal is connected to the external SIM connector on pin 8. Pin 4 of SIM connector must be pulled down to GND with 1 K.

This interface is fully compliant with GSM 11.11 recommendations concerning the SIM functionality.

Transient Voltage Suppressor diodes are internally added on the signals connected to the SIM socket in order to prevent any Electro-Static Discharge. TVS diodes with low capacitance (less than 10pF) are connected on SIMCLK and SIMDATA to avoid any disturbance of the rising and falling edge.

Signal	Pin Number	<i>I/O</i>	I/O Type*	Description
SIMCLK	45	0	2X	SIM Clock
SIMRST	46	0	2X	SIM Reset
SIMDATA	49	I/O	CMOS/2X	SIM Data
SIMVCC	47	0		SIM Power Supply
SIMPRES1	48	I	CMOS	SIM Card Detect
GPO0	50	0	2X	SIM 3V or 5V

Table 3-23: SIM Interface Pin Description

* See "Table 3-2: Operating Conditions" in section on the 50-pin Connector Description.

The SIM schematic appears later in this chapter.

Parameter	Conditions	Min	Тур	Max	Unit
SIMDATA VIH	I _{IH} = +/- 20μA	0.7xSIMVCC			V
SIMDATA VIL	I _{IL} = 1 mA			0.3xSIMVCC	V
SIMRST, SIMDATA SIMCLK V _{OH}	Source current = 20µA	SIMVCC – 0.1V			V
SIMRST, SIMDATA SIMCLK V _{OL}	Sink current = -200µA			0.1	
SIMVCC Output Voltage	I _{SIMVCC} <= 6mA	2.70	2.80	2.85	V
SIMCLK Rise/Fall Time	Loaded with 30pF			50	ns
SIMRST, SIMDATA Rise/Fall Time	Loaded with 30pF			1	μs
SIMCLK Frequency	Loaded with 30pF			3.25	MHz

 Table 3-24:
 SIM Interface Electrical Characteristics

 Table 3-25:
 SIM Socket Pin Description

Signal	Pin Number	Description
Vcc	1	SIMVCC
RST	2	SIMRST
CLK	3	SIMCLK
CC4	4	R10 to Ground
GND	5	Ground
VPP	6	not connected
I/O	7	SIMDATA
CC8	8	SIMPRES1

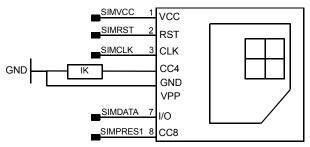


Figure 3-12: SIM Socket

SPI Bus

The SPI bus includes a CLK signal, an I/O signal and an EN signal complying with SPI bus standard. The maximum speed transfer is 3.25Mb/s.

Signal	Pin Number	<i>I/O</i>	I/O Type*	Description
SPI_CLK	44	0	1X	SPI Serial Clock
SPI_IO	43	I/O	CMOS/1X	SPI Data
SPI_EO	42	0	1X	SPI Enable

Table 3-26 : SPI Bus Pin Description

* See "Table 3-2: Operating Conditions" in section on the 50-pin Connector Description.

Keypad Interface

This interface provides 10 connections: 5 rows (R0 to R4) and 5 columns (C0 to C4).

The scanning is a digital one, and the de-bouncing is done in the integrated modem. No discrete components like R, C (Resistor, Capacitor) are needed. It is possible to scan the column and rows using the AT+CMER command. See AT Command manual for more details.

Signal	Pin Number	<i>I/O</i>	I/O Type*	Description
ROW0	39	I/O	CMOS / 1X	Row scan
ROW1	40	I/O	CMOS / 1X	Row scan
ROW2	37	I/O	CMOS / 1X	Row scan
ROW3	38	I/O	CMOS / 1X	Row scan
ROW4	35	I/O	CMOS / 1X	Row scan
COL0	36	I/O	CMOS / 1X	Column scan
COL1	33	I/O	CMOS / 1X	Column scan
COL2	34	I/O	CMOS / 1X	Column scan
COL3	31	I/O	CMOS / 1X	Column scan
COL4	32	I/O	CMOS / 1X	Column scan

Table 3-27: Keypad Interface Pin Description

Chapter 4 – Interfaces

This chapter describes the ModemModule interfaces.

- Flashing LED
- SIM Interface
- RF Interface
- DTE/DCE Interface Rates

Flashing LED

The flashing LED signal is used to indicate the working mode of the ModemModule.

LED and ModemModule Status

Signal	ModemModule St	ModemModule Status		
OFF	Download mode or	Download mode or switched OFF>		
ON	Continuously lit	Switched ON (not registered on the network)		
	Flashing	Switched ON (registered on the network)		

SIM Interface

The internal SIM interface of the SocketModule supports 3V SIMs only.

Note: This interface is fully compliant with GSM 11.11 recommendations concerning the SIM functionality.

Five Signals Are Available SIMVCC: SIM power supply. SIMRST: reset. SIMCLK: clock. SIMDATA: I/O port. SIMPRES1 SIM card detect.

RF Interface

The impedance is 50 Ohms nominal.

RF Connector

The RF connector is MMCX standard type. An antenna can be directly connected through the matting connector or using a small adapter.

RF Performances

RF performances are compliant with the ETSI recommendation 05.05 and 11.10. The main parameters are:

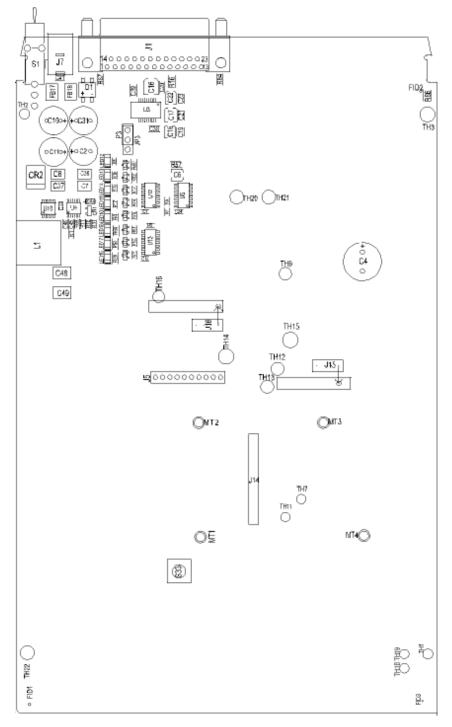
Receiver:

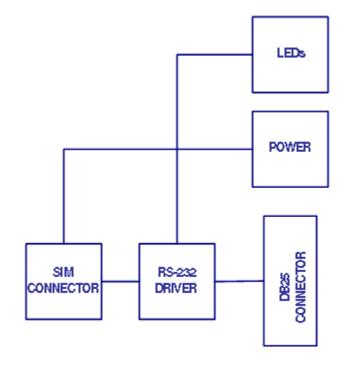
- EGSM Sensitivity : < -104 dBm
- GSM 1800/GSM 1900 Sensitivity : < -102 dBm
- Selectivity @ 200 kHz : > +9 dBc
- Selectivity @ 400 kHz : > +41 dBc
- Dynamic range : 62 dB
- Intermodulation : > -43 dBm
- Co-channel rejection : + 9 dBc

Transmitter:

- Maximum output power (EGSM) : 33 dBm +/- 2 dB
- Maximum output power (DCS/PCS) : 30 dBm +/- 2 dB
- Minimum output power (EGSM): 5 dBm +/- 5 dB
- Minimum output power (DCS/PCS): 0 dBm +/- 5 dB
- H2 level : < -30 dBm
- H3 level : < -30 dBm
- Noise in 925 935 MHz : < -67 dBm
- Noise in 935 960 MHz : < -79 dBm
- Noise in 1805 1880 MHz : < -71 dBm
- Phase error at peak power : < 5 ° RMS
- Frequency error : +/- 0.1 ppm max

DTE/DCE Interface Rates

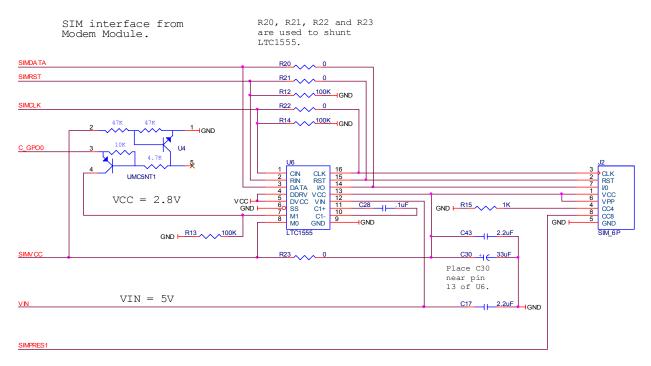

The table below indicates the anticipated modem-to-computer interface rates for both the 7.2 bits-per-sample rate and the 8 bits-per-sample rate.


Projected DTE/DCE Interface Rates for 7.2/8K Hz Sample Rates

	Projected DTE/DCE I/F	Projected DTE/DCE I/F	
Bits per Sample	Rate @ 7.2K Hz	Rate @ 8K Hz Sample Rate	
0.50	4800	9600	
1	9600	19200	
2	19200	19200	
3	38400	38400	
4	38400	57600	
5	57600	57600	
6	57600	115200	
7	115200	115200	
8	115200	115200	
9	115200	115200	
10	115200	115200	
11	115200	115200	
12	115200	Fast	
13	Fast	Fast	

Chapter 5 – Test Board

Serial Test/Demo Board Components



Serial Test/Demo Board Block Diagram

Block Diagram for the ModemModule GSM/GPRS

SIM Schematic (5V)

LTC1555 SIM 3V/5V Level shifter.

SIM Schematic

Chapter 6 – Application Considerations

General Guidelines for the Use of the ModemModule

Hardware and RF

- Ground plane: MultiTech recommends having a common ground plane for analog, digital and RF grounds.
- Length of the SIM interface lines (15 cm maximum)
- Bias of the Microphone inputs must be properly adjusted when using audio connectors (mic + speaker) 1.
- EMC protection on audio input/output (filters against 900 MHz)
- ESD protection on serial link, ...
- Possible spurious emission radiated by the application to the RF receiver in the receiver band

The Antenna

The antenna sub-system and integration in the application is a major issue. It is a major issue in the choice of the antenna cable (type, length, performances, thermal resistance, etc.)

These elements could affect GSM performances such as sensitivity and emitted power.

The antenna should be isolated as much as possible from the digital circuitry including the interface signals.

MultiTech recommends shielding the terminal. On terminals including the antenna, a poor shielding could dramatically affect the sensitivity of the terminal. Subsequently, the power emitted through the antenna could affect the application.

Firmware Upgrade

The ModemModule firmware is stored in flash memory, and it can easily be upgraded. Contact the factory for details.

Initial Configuration Using Mobile PhoneTools

For Initial configuration of your wireless device, Multi-Tech offers a Windows-based mobile PhoneTools application.

To load Mobile PhoneTools, click on the Mobile PhoneTools icon on the system CD and follow the on-screen prompts.

Getting Started

Minimum Hardware Interface Required To Get Started

At a minimum, it is necessary to connect the following signals too properly operate the ModemModule:

Pin Number	Name	Description
1	GND	Ground
2	GND	Ground
3	+5V	Power Supply
4	+5V	Power Supply
6	GND	Ground
13	CT106/CTS	Clear to Send
15	ON/OFF	Power On/Off *
21	GND	Ground
24	GND	Ground
25	CT103/TX	Transmit
28	CT104/RX	Receive
30	CT105/RTS	Request to Send

Table 5-1: Minimum Signals to Operate the ModemModule

* Connected to +5V for example

The serial link signals must be used through the implementation of the serial link level shifter. See "Figure 3-3: Level Shifter Application Diagram for Serial Link."

Terminal Emulator Setup

Here below is an example based on the Windows TM Hyperterminal application (terminal emulator program).

Setup:

- 1. Go to START PROGRAMS ACCESSORIES HYPERTERMINAL.
- 2. Start the Hyperterminal software.
- 3. Give the name of your choice, click on the icon of your choice, and click "OK."
- Choose these operating parameter values: Connect using: direct to COM1
 Description 445000 here 0 hits determine parity 4 step hits bandware flow
 - Properties: 115200 bps; 8 bits data; no parity; 1 stop bit; hardware flow control.
- 5. Click "OK."

Once Hyperterminal is open and configured, it can be used to send AT commands to the ModemModule.

For assistance in testing your ModemModule, see the examples in the AT Command manual for MultiTech's GSM/GPRS wireless modem products (*GSM/GPRS AT Commands Reference Guide*).

Reference Documents

Table 5-2: GSM ETSI Recommendations for Phase I and Phase II

Specification Reference	Title
GSM ph2 Radio	ETSI GSM 05.05 and GT 01 v4.2.1
DCS ph2 Radio	ETSI GSM05.05 and GT01 v4.2.1
GSM ph2 Link-Management	ETSI GSM 03.06, 04.08, 05.05, 05.08, 05.10, 07.01 an GT 01 v4.2.1
GSM ph2 Link-Management	ETSI GSM 03.06, 04.08, 05.05, 05.08, 05.10, 07.01 an GT 01 v4.2.1
GSM ph2 Layer 2	ETSI GSM 04.06 and GT 01 v4.2.1
GSM ph2 Layer 3	ETSI GSM 04.08 and GT 01 v4.2.1
DCS ph2 Layer 3	ETSI GSM 04.08 and GT 01 v4.2.1
GSM/DCS Multiband	ETSI GSM 02.07, 03.22, 04.08, 04.13, 05.05, 05.08 an GT 01 v4.2.1
GSM ph2 SIM	ETSI GSM 11.11 and GT 01 v4.2.1
GSM ph2 Teleservices	ETSI GSM 03.50 and GT 01 v4.2.1
GSM ph2 Miscellaneous	ETSI GSM 02.07, 03.40, 03.41, 04.08, 04.10, 04.11, 06.10, 06.11, 06.12, 06.31, 06.32, 07.01, 09.07 and G 01 v4.2.1
DCS ph2 Miscellaneous	ETSI GSM 02.07, 03.40, 03.41, 04.08, 04.10, 04.11, 06.10, 06.11, 06.12, 06.31, 06.32, 07.01, 09.07 and G 01 v4.2.1

You can find the documents on ETSI Contacts: ETSI Secretariat F-06921 Sophia Antipolis cedex, France 06921 Sophia Antipolis cedex, France 06921 Sophia Antipolis cedex, France e-mail: secretariat@etsi.fr http://www.etsi.org

Related Manuals

For information on Multi-Tech modem installation, AT commands, S-Registers, and testing; refer to the applicable user manual that came with your Multi-Tech modem. Multi-Tech manuals and other resources are on the Multi-Tech web page at http://www.multitech.com.

For additional Multi-Tech information, contact: <u>http://www.multitech.com</u> for News, Products, Solutions, Support, Documents and more. <u>ftp://ftp.multitech.com/</u> for Modem Firmware, Modem INFs, Manuals, Utilities, etc. email <u>oemsales@multitech.com</u> for email technical support.

Additional Information

European Telecommunications Standards Institute (ETSI) - Contact the ETSI at: 650, route des Lucioles 06921 Sophia-Antipolis Cedex France Tel: +33 (0)4 92 94 42 00 Fax: +33 (0)4 93 65 47 16

Global Engineering Documents manages a collection of more than one million documents from over 460 organizations worldwide: <u>http://global.ihs.com</u> Phone: 800-854-7179 Fax: 303-792-2192

The ITU is the leading publisher of telecommunication technology, regulatory and standard information, with over 4,000 titles in printed form, on CD-ROM and Online at http://www.itu.int/publications/.

Appendix A – Safety Precautions & Regulatory Standards Compliance

Safety Precautions

IMPORTANT!

FOR THE EFFICIENT AND SAFE OPERATION OF YOUR GSM INTEGRATED MODEM READ THIS INFORMATION BEFORE USE.

RF Safety

General

Your ModemModule is based on the GSM standard for cellular technology. The GSM standard is spread all over the world. It covers Europe, Asia and some parts of America and Africa. This is the most used telecommunication standard. Your modem is actually a low power radio transmitter and receiver. It sends out and receives radio frequency energy. When you use your ModemModule integrated modem, the cellular system that handles your calls controls both the radio frequency and the power level of your cellular modem.

Exposure to RF Energy

There has been some public concern about possible health effects of using GSM modems. Although research on health effects from RF energy has focused on the current RF technology for many years, scientists have begun research regarding newer radio technologies, such as GSM. After existing research had been reviewed, and after compliance to all applicable safety standards had been tested, it has been concluded that the product was fitted for use. If you are concerned about exposure to RF energy there are things you can do to minimize exposure. Obviously, limiting the duration of your calls will reduce your exposure to RF energy. In addition, you can reduce RF exposure by operating your cellular modem efficiently by following the below guidelines.

Efficient Modem Operation

For your modem to operate at the lowest power level, consistent with satisfactory call quality:

- If your modem has an extendible antenna, extend it fully. Some models allow you to place a call with the antenna retracted. However your modem operates more efficiently with the antenna fully extended.
- Do not hold the antenna when the modem is « IN USE ». Holding the antenna affects call quality and may cause the modem to operate at a higher power level than needed.

Antenna Care and Replacement

Do not use the modem with a damaged antenna. If a damaged antenna comes into contact with the skin, a minor burn may result. Replace a damaged antenna immediately. Consult your manual to see if you may change the antenna yourself. If so, use only a manufacturer-approved antenna. Otherwise, have your antenna repaired by a qualified technician. Use only the supplied or approved antenna. Unauthorized antennas, modifications or attachments could damage the modem and may contravene local RF emission regulations or invalidate type approval.

General Safety

Driving

Check the laws and the regulations regarding the use of cellular devices in the area where you have to drive as you always have to comply with them. When using your modem while driving, please: give full attention to driving, pull off the road and park before making or answering a call if driving conditions so require.

Electronic Devices

Most electronic equipment, for example in hospitals and motor vehicles is shielded from RF energy. However RF energy may affect some improperly shielded electronic equipment.

Vehicle Electronic Equipment

Check your vehicle manufacturer representative to determine if any on-board electronic equipment is adequately shielded from RF energy.

Medical Electronic Equipment

Consult the manufacturer of any personal medical devices (such as pacemakers, hearing aids, etc...) to determine if they are adequately shielded from external RF energy. Turn your modem OFF in health care facilities when any regulations posted in the area instruct you to do so. Hospitals or health care facilities may be using RF monitoring equipment.

Aircraft

Turn your modem OFF before boarding any aircraft.

- Use it on the ground only with crew permission.
- Do not use it in the air.

To prevent possible interference with aircraft systems, Federal Aviation Administration (FAA) regulations require you to have permission from a crewmember to use your modem while the aircraft is on the ground. To prevent interference with cellular systems, local RF regulations prohibit using your modem while airborne.

Children

Do not allow children to play with your modem. It is not a toy. Children could hurt themselves or others (by poking themselves or others in the eye with the antenna, for example). Children could damage the modem, or make calls that increase your modem bills.

Blasting Areas

To avoid interfering with blasting operations, turn your unit OFF when in a « blasting area » or in areas posted: « turn off two-way radio ». Construction crews often use remote control RF devices to set off explosives.

Potentially Explosive Atmospheres

Turn your modem OFF when in any area with a potentially explosive atmosphere. It is rare, but your modem or its accessories could generate sparks. Sparks in such areas could cause an explosion or fire resulting in bodily injuries or even death. Areas with a potentially explosive atmosphere are often, but not always, clearly marked. They include fueling areas such as petrol stations; below decks on boats; fuel or chemical transfer or storage facilities; and areas where the air contains chemicals or particles, such as grain, dust, or metal powders. Do not transport or store flammable gas, liquid, or explosives, in the compartment of your vehicle that contains your modem or accessories. Before using your modem in a vehicle powered by liquefied petroleum gas (such as propane or butane) ensure that the vehicle complies with the relevant fire and safety regulations of the country in which the vehicle is to be used.

Safety Standards

THIS WIRELESS MODEMMODULE COMPLIES WITH ALL APPLICABLE RF SAFETY STANDARDS. This cellular modem meets the standards and recommendations for the protection of public exposure to RF electromagnetic energy established by governmental bodies and other qualified organizations, such as the following:

- Directives of the European Community,
- Directorate General V in Matters of Radio Frequency Electromagnetic Energy

RF Exposures

Pursuant to 47 CFR § 24.52 of the FCC Rules and Regulations, personal communications services (PCS) equipment is subject to the radio frequency radiation exposure requirements specified in § 1.1307(b), § 2.1091 and § 2.1093 as appropriate.

The MultiTech ModemModule is a GSM (PCS 1900) terminal which operates in the US licensed PCS frequency spectrum. The device transmits over the 1850-1910 MHz band and receives over the 1930-1990 MHz Band. Mult-Tech Systems, Inc. certifies that it has determined that the Modem complies with the RF hazard requirements applicable to broadband PCS equipment operating under the authority of 47 CFR Part 24, Subpart E of the FCC Rules and Regulations. This determination is dependent upon installation, operation and use of the equipment in accordance with all instructions provided.

The Modem is designed for and intends to be used in fixed and mobile applications. "Fixed" means that the device is physically secured at one location and is not able to be easily moved to another location. "Mobile" means that the device is designed to be used in other than fixed locations and generally in such a way that a separation distance of at least 20cm is normally maintained between the transmitter's antenna and the body of the user or nearby persons. The Modem is not designed for or intends to be used in portable applications (within 20 cm of the body of the user) and such uses are strictly prohibited. To ensure that the unit complies with current FCC regulations limiting both maximum RF output power and human exposure to radio frequency radiation, a separation distance of at least 20cm must be maintained between the unit's antenna and the body of the user and any nearby persons at all times and in all applications and uses. Additionally, in mobile applications, maximum antenna gain must not exceed 3 dBi (to comply with Section 24.232(b) and is limited to 7 dBi for fixed applications. Finally, the tune-up procedure for the O9EM2113 ensures that the maximum RF output power of the device does not exceed 30.0 dBm within the variations that can be expected due to quantity production and testing on a statistical basis.

Instructions to OEMs

The MultiTech product manual includes specific warnings and cautions in order to ensure that OEMs are aware of their responsibilities, with regards to RF exposure compliance, for products into which the modem is integrated. With this guidance, the OEM will be able to incorporate into their documentation the necessary operating conditions and warnings.

OEMs need to provide a manual with the "final" product that clearly states the operating requirements and conditions and that these must be observed to ensure compliance with current FCC RF exposure requirements / MPE limits (see the "RF Exposures" section above). This will enable the OEM to generate (and provide the end-user with) the appropriate operating instructions, warnings and cautions, and/or markings for their product.

Regulatory Standards Compliance

GSM compliance

Reference regulations: TBR 19, TBR 20, TBR 31, TBR 32.

Table B-1: ModemModule Acceptance Test

Tests	Applied Standard	Acceptance Criteria
Performance	ETSI recommendation	Full conformity to the recommendation regarding the
Test	for GSM/DCS	main RF parameters.
	communication	
Cooking Test		The test continues even after the Cooking Test
		milestone has been reached.
Stress Test	Thermal shocks,	Full conformity to the recommendation regarding the
	IEC 68-2-14.	main parameters.
Vibration Test	Sinusoidal vibration,	No performance degradation or mechanical
	IEC 68-2-6.	degradation is allowed after test.
Vibration Test	Random vibration,	No performance degradation or mechanical
	IEC 68-2-36.	degradation is allowed after test.
Shock Test	IEC 68-2-27.	No performance degradation or mechanical
		degradation is allowed after test.
Bump Test	IEC 68-2-29.	No performance degradation or mechanical
		degradation is allowed after test.
Humidity Test	Corrosion test,	No visible degradation of the product, both visual and
	IEC68-2-3.	functional.
		The unit is tested at room temperature and must be
		fully operative for the main RF parameters.
Warehouse	Low temperature	Under normal conditions (room temperature) after the
Test	IEC 68-2-1.	test, the unit must behave in full conformity with the
		main RF parameters.
Warehouse	High temperature	Under normal conditions (room temperature) after the
Test	IEC 68-2-2.	test, the unit must behave in full conformity with the
		main RF parameters.
Dust Test	MIL-STD-810D,	No visible dust in the visible areas. No more than 50
	method 510-3.	dust particles in the cabinet of the product. The unit,
1.1.1.1.7		tested at room temperature, must be fully operative.
Light Test	UV radiation and	Visual inspection on the discoloration and other
	temperature EDF	degradation effects such as cracks I the material of
	HN60E03.	the unit after test.
Fall Test	IEC 68-2-32.	Only minor casing degradation is allowed, with a
		maximum dimension change of 1mm. The unit must
		remain fully operative and fully meet specifications for
Electro Static	IEC 100-4-2.	the main RF parameters. No performance degradation allowed after the test.
Discharge	160 100-4-2.	no performance degradation anowed after the test.
Test		
Salt Mist	IEC 68-2-11.	After the test, visual inspection on the unit.
Test		אונה נופ נפסו, אסטמו וווסףפטווטוו טוו נוופ עווונ.
Atmosphere	Flowing mixed gas	After the test, visual inspection on the unit and inside.
Test	corrosion. IEC 68-2-60.	
Marking Test	EN 60 950	After the test, visual inspection on the unit. No
Marking 1851		degradation is allowed on the marking.
	1	acyrauation is allowed on the marking.

FTA Compliance

The ModemModule has received a Full-Type Approval (according to normal MS requirements) in the configuration using the internal SIM interface.

IMEI Number

GSM 900/1800: TAC: 5 000 64 FAC: 11 Serial Numbers: 000000 to 999999

GSM 900/1900: TAC: 500 100 FAC: 11 Serial Number: 000000 to 999999

GSM/GPRS 900/1800: TAC: 500161 FAC: 11 Serial Numbers: 000000 to 999999

GSM/GPRS 900/1900: TAC: 500167 FAC: 11 Serial Number: 000000 to 999999

CE Label

The Wireless ModemModule is CE compliant which implies that the modem is in conformity with the European Community directives and it bears the CE label.

Carrying out tests: Electro-magnetic field immunity EN 61000-4-3 ETS 300-342—1

Radiated emission EN 55022 ETS 300-342

ESD immunity EN 61000-4-2 ETS 300-342-1

Appendix B – Sourcing Guide for Connectors and Peripheral Devices

Where to Find SMD Connectors

The ModemModule matting interface connector is made by SAMTEC France (http://www.samtec.com/). Many SAMTEC products are available via SAMTEC dealers throughout the world. Connector data sheets are presented later in this appendix.

Figure B-1: High- and Low-Profile Connectors

SAMTEC Reference Number for	SAMTEC Reference Number for	
High-Profile Connector:	Low-Profile Connector:	
FLE-125-01-G-DV	CLP-125-02-L-D	

Figure B-2: Flexible Flat Cable

Reference Number for Flexible Flat Cable: SD 25 01 N

 Figure B-3: Flexible Cable Receptacle

 SAMTEC Reference Number for Flex Cable Connector: FTS-125-01-L-DV-A

GSM Antenna

The integrated modem antenna connector is a MMCX connector. The MMCX connector incorporates a 'Snap On' latching action in order to make the connection easier with an excellent RF performance. An additional advantage is its small physical size which is 50% of the standard MCX connector.

This type of connector is suitable for the standard ranges of flexible and semi-rigid cables. The characteristic impedance of the MMCX coaxial connector is 50 ohm. The antenna manufacturer must guarantee that the antenna will be working according to the radio characteristics presented in the table below.

Table B-1: Radio C	haracteristics
--------------------	----------------

	GSM 850	EGSM 900	DCS 1800	PCS 1900
Frequency RX	869 to 894 MHz	925 to 960 MHz	1805 to 1880 MHz	1930 to 990 MHz
Frequency TX	824 to 849 MHz	880 to 915 MHz	1710 to 1875 MHz	1850 to 910 MHz
RF Power Stand	2W at 12.5% duty cycle	2W at 12.5% duty cycle	1W at 12.5% duty cycle	1W at 12.5% duty cycle
Impedance	50 ohms			
VSWR	<2			
Typical Radiated Gain	0 dBi on azimuth plane			

The ModemModule requires an MMCX plug to connect to an antenna.

Figure B-6: MMCX Connector Example (right angle type)

An antenna with matting connector can be ordered, for example, from : IMS Connectors Systems GMBH http://www.imscs.com/

A small MMCX / SMA adapter can be ordered, for example, from : Amphenol http://www.amphenol.com/ Order No: 908-31100

SIM Card Holder

The SIM card holder used in the integrated modem is a MOLEX connector. Part number connector: 99228. Part number holder : 91236. For more information about this connector: http://www.molex.com/ It is possible to use a stand-alone SIM cardholder through the 50-pin connector but the length of the SIM line must not exceed 15 cm.

Appendix C – AT Command List

For comprehensive information about AT Commands, please read the AT Command Manual.

General Commands		
+CGMI	Manufacturer Identification	
+CGMM	Request Model Identification	
+CGMR	Request Revision Identification	
+CGSN	Product Serial Number	
+CSCS	Select TE Character Set	
+CIMI	Request IMSI	
+CCID	Card Identification	
+GCAP	Capabilities List	
A/	Repeat Last Command	
+CPOF	Power Off	
+CFUN	Set Phone Functionality	
+CPAS	Phone Activity Status	
+CMEE	Report Mobile Equipment Errors	
+CKPD	Keypad Control	
+CCLK	Clock management	
+CALA	Alarm management	

Table C-1a : AT Command List

Call Control	Call Control Commands		
D	Dial command		
Н	Hang-up Command		
A	Answer a Call		
+CEER	Extended Error Report		
+VTD, +VTS	DTMF Signals		
ATDL	Redial Last Telephone Number		
AT%Dn	Automatic Dialing (or SMS send) with DTR		
ATSO	Automatic Answer		
+CICB	Incoming Call Bearer		
+VGR, +VGT	Gain Control		
+CMUT	Microphone Mute Control		
+SPEAKER	Speaker and Microphone Selection		
+ECHO	Echo Cancellation		
+SIDET	Side Tone Modification		
+VIP	Initialize Voice Parameters		
+CSNS	Single Numbering Scheme		
Network Serv	vice Commands		
+CSQ	Signal Quality		
+COPS	Operator Selection		
+CREG	Network Registration		
+WOPN	Read Operator Name		
+CPOL	Preferred Operator List		
Security Com	imands		
+CPIN	Enter PIN		
+CPIN2	Enter PIN2		
+CPINC	PIN Remaining Attempt Number		
+CLCK	Facility Lock		
+CPWD	Change Password		
Phone Book Commands			
+CPBS	Select Phone Book Memory Storage		
+CPBR	Read Phone Book Entries		
+CPBF	Find Phone Book Entries		
+CPBW	White Phone Book Entry		
+CPBP	Phone Book Phone Search		
+CPBN	Move Action in Phone Book		
+CNUM	Subscriber Number		
+WAIP	Avoid Phone Book Init		

Table C-1b : AT Command List (cont'd)

Short Message Commands		
+CSMS	Select Message Service	
+CNMA	New Message Acknowledgement	
	Preferred Message Storage	
+CPMS		
+CMGF	Preferred Message Format	
+CSAS	Save Settings	
+CRES	Restore Settings	
+CSDH	Show Text Mode parameters	
+CNMI	New Message Indication	
+CMGR	Read Message	
+CMGL	List Message	
+CMGS	Send Message	
+CMGW	Write Message to Memory	
+CMSS	Send Message from Storage	
+CSMP	Set Text Mode Parameters	
+CMGD	Delete Message	
+CSCA	Service Center Address	
+CSCB	Select Cell Broadcast Message Types	
+WCBM	Cell Broadcast Message Identifiers	
+WMSC	Message Status Modification	
+WMGO	Message Overwriting	
Supplementa	ry Services Commands	
+CCFC	Call Forwarding	
+CLCK	Call Barring	
+CPWD	Modify SS Password	
+CCWA	Call Waiting	
+CLIR	Calling Line Identification Restriction	
+CLIP	Calling Line Identification Presentation	
+COLP	Connected Line Identification Presentation	
+CAOC	Advice Of Charge	
+CACM	Accumulated Call Meter	
+CAMM	Accumulated Call Meter Maximum	
+CPUC	Price Per Unit and Currency Table	
+CHLD	Call Related Supplementary Services	
+CLCC	List Current Calls	
+CSSN	Supplementary Service Notifications	
+CUSD	Unstructured Supplementary Service Data	
+CCUG	Closed User Group	
Data Commands		
+CBST	Bearer Type Selection	
+FCLASS	Select Mode	
+CR	Service Reporting Control	
+CRC	Cellular Result Codes	
+ILRR	DTE-DCE Local Rate Reporting	
+CRLP	Radio Link Protocol Parameters	
+DOPT	Others Radio Link Parameters	
%C	Select Data Compression	
+DS	V42 bis Data Compression	
+DR	V42 bis Data Compression Report	
\N	Select Data Error Correcting Mode	
u N	Seleci Dala Entit Conecting Mode	

Table C-1c: AT Command List (cont'd)

Table C-1d: AT Command List (cont'd)

Fax Commands		
+FTM	Transmit Speed	
+FRM	Receive Speed	
+FTH	HDLC Transmit Speed	
+FRH	HDLC Receive Speed	
+FTS	Stop Transmission and Wait	
+FRS	Receive Silence	
Fax Class 2 C	ommands	
+FDT	Transmit Data	
+FDR	Receive Data	
+FET	Transmit Page Punctuation	
+FPTS	Page Transfer Status Parameters	
+FK	Terminate Session	
+FBOR	Page Transfer Bit Order	
+FBUF	Buffer Size Report	
+FCQ	Copy Quality Checking	
+FCR	Capability to Receive	
+FDIS	Current Sessions Parameters	
+FDCC	DCE Capabilities Parameters	
+FLID	Local ID String	
+FPHCTO	Page Transfer Timeout Parameter	
V24 - V25 Con	nmands	
+IPR	Fixed DTE Rate	
+ICF	DTE-DCE Character Framing	
+IFC	DTE-DCE Local Flow Control	
&C	Set DCD Signal	
&D	Set DTR Signal	
&S	Set DSR Signal	
0	Back to Online Mode	
Q	Result Code Suppression	
V	DCE Response Format	
Z	Default Configuration	
&W	Save Configuration	
&T	Auto-Tests	
E	Echo	
&F	Restore Factory Settings	
&V	Display Configuration	
	Request Identification Information	
SIM Toolkit Commands		
+STSF	SIM Toolkit Set Facilities	
+STIN	SIM Toolkit Indication	
+STGI	SIM Toolkit Get Information	
+STCR	SIM Toolkit Control Response	
+STGR	SIM Toolkit Give Response	

Specific AT Commands		
+CCED	Cell Environment Description	
+CCED	Automatic RxLev Indication	
+WIND	General Indications	
+ADC	Analog Digital Converters Measurements	
+CMER	Mobile Equipment Event Reporting	
+WLPR	Read Language Preference	
+WLPW	Write Language Preference	
+WIOR	Read GPIO Value	
+WIOW	Write GPIO Value	
+WAC	Abort Command	
+WTONE	Play Tone	
+WDTMF	Play DTMF Tone	
+WDWL	MultiTech Downloading	
+WVR	MultiTech Voice Rate	
+WDR	Data Rate	
+WHWV	Hardware Version	
+WDOP	Date Of Production	
+WSVG	MultiTech Select Voice Gain	
+WSTR	MultiTech Status Request	
+WSCAN	MultiTech Scan	
+WRIM	Ring Indicator Mode	
+W32K	Power saving mode	

Table C-1e: AT Command List (cont'd)

Appendix D – Acronyms and Abbreviations

ADC : Analog Digital Converter ASIC : Application Specific Integrated Circuit BCCH : Broadcast Control Channel CE : Communauté Européenne CLK : Clock CTS : Clear To send dB : decibel DCD : Data Carrier Detect DCE : Data Circuit Terminating Equipment DSR : Data Set Ready DTE : Data Terminal Equipment DTR : Data Terminated Ready EFR : Enhanced Full Rate E-GSM : Extended- GSM EMC : Electromagnetic Conformity EN : Enable ETSI : European Telecommunications Standards Institute FAC : Final Assembly Code FR : Full-Rate FTA : Full Type Approval GND : Ground GPIO : General Purpose Input Output **GPRS** : General Packet Radio Service GSM : Global System for Mobile Communication HR : Half-Rate IMEI : International Mobile Equipment Identity MO : Mobile Originated MT : Mobile Terminated OEM : Original Equipment Manufacturer PDA : Personal Digital Assistant PCB : Printed Circuit Board PRES : Presence RI : Ring Indicator RTS : Request To Send SIM : Subscriber Identity Module SMD : Surface Mounted Design SMS : Short Message Service TAC : Type Approval Code TDMA : Time Code Multiple Access TE : Terminal Equipment VSWR : Voltage Standing Wave Ratio WAP : Wireless Application Protoc

Index

1

1X	
2	
2X	
3	
3X	
A	

advice of charge	
Advice of Charge	7
analog	
	7, 8, 33, 37, 41, 42, 43, 47
antenna cable	
asynchronous	
AT command	
autobauding	7

B

baud rate	7
BOOT	14, 22
bursts	17, 18

С

Call Barring	7, 50
Call Forwarding	7, 50
Call Hold	
Call Waiting	7, 50
Calling Line Identity	
casing	
СЕ	
Cell Broadcast	6, 50
Class 1	5, 6, 7, 12
Class 10	5, 6
Closed User Group	7, 50
CMOS14, 15, 16, 19, 20, 22, 2	3, 24, 29, 31
column	15, 31
connector5, 6, 7, 10, 13, 15, 2	9, 33, 46, 47
converter	24

D

	5, 6, 7, 8, 9, 13, 19, 38, 46
Data Carrier Detect	
dB	
DCS	
digital	
DTE/DCE Interface Rates	
dual-band	5

E

EFR	
Electrical Characteristics	
EMC protection	
emergency calls	8
ESD protection	
ETSI	
Explicit Call Transfer	7

F

fax	
fixed dialing number	8
FR	

G

gain	
general purpose	
GND	14, 15, 17, 29, 30, 38, 53
GPIO	
GPRS	1, 5, 6, 7, 8, 9, 18, 45, 53
ground plane	
GSM1, 5, 6, 7, 8, 9, 12, 1	9, 29, 32, 33, 37, 39, 41, 43,
44, 45, 47, 53	

Η

handset	
hardware	5, 6, 8, 21, 22, 38
HR	

I

I/O14, 15, 16, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29,
30, 31, 32
idle17, 18
idle mode
interface 5, 6, 7, 8, 13, 15, 19, 29, 31, 32, 37, 45, 46

М

MIC1N	14, 26
MIC1P	14, 26
MIC2N	14, 25
MIC2P	14, 25
microphone	25, 26
MMCX (Miniature Micro Connector)6	6, 7, 33, 47
MNP2	
MO	6, 8, 42, 53
modem 5, 6, 7, 17, 20, 31, 39, 41, 42,	43, 45, 47
module	
mounting	6
MT	6, 8, 53
multiparty	

N

nominal value	17
0	

OFF	 23, 38, 42
ON/~OFF	 , ,
operating conditions	

Р

РСВ	
PCS	
phone book	7, 8
power6, 8, 13, 17, 21, 22, 27, 28, 29, 3	2, 33, 37, 41,
43	
power supply	17, 29, 32

R

radio41	42, 43, 47
real time clock	
RF5, 7, 8, 10, 13, 33, 37, 41, 42.	43, 44, 47
RST14	
KS114	, 22, 23, 30

S

serial link	7, 19, 37, 38
signal	20, 22, 23, 29, 31, 32
SIM5, 6, 7, 10, 13, 15, 29, 30), 31, 32, 36, 37, 39, 45,
47, 51, 53	
SIM Toolkit	7, 51
SIMCLK	
SIMDATA	

an (55 5 a	
SIMPRES	
SIMRST	
SIMVCC	
SMS	5, 6, 8, 49, 53
socket	
speaker	
Specifications	
technical	
SPI	
SPK1N	
SPK1P	
Т	
1	

Technical specifications	
telephony	
terminal	

U

7
8
7
0
5
3
7

LIST OF FIGURES	
Figure 1-1: MultiTech's Wireless ModemModule GSM/GPRS	5
Figure 1-2: Mechanical Description A	10
Figure 1-3: Mechanical Description B	10
Figure 2-1: ModemModule Dimensions	11
Figure 3-1: 50-Pin Connector	16
Figure 3-2: Pin Numbering – Bottom View	17
Figure 3-3: Level Shifter Application Diagram for Serial Link	20
Figure 3-4: Power-Off Procedure 1	21
Figure 3-5: Power-Off Procedure 2	21
Figure 3-6: Boot Procedure	22
Figure 3-7: Reset Procedure	22
Figure 3-8: Microphone 2 Input	25
Figure 3-9: Microphone 1 Input	26
Figure 3-10: Speaker 2 Output	27
Figure 3-11: Speaker 1 Output	28
Figure 3-12: SIM Socket	31
Figure 3-13: SIM Schematic	36
Figure 4-1: ModemModule Test SM Card Layout	Error! Bookmark not defined.
Figure 4-2: ModemModule Test SM Board Block Diagram	Error! Bookmark not defined.
Figure B-1: High- and Low-Profile Connectors	46
Figure B-2: Flexible Flat Cable	46
Figure B-3: Flexible Cable Receptacle	46
Figure B-4: Samtec Low-Profile Sockets	Error! Bookmark not defined.
Figure B-5: Samtec Cable Strips	Error! Bookmark not defined.
Figure B-6: MMCX Connector Example (right angle type)	47

LIST OF TABLES

Table 2-1 : Climatic and Mechanical Environment Testing Compliance	12
Table 3-1a. 50-pin Connector Description	14
Table 3-1b. 50-Pin Connector Description	15
Table 3-2. Operating Conditions	16
Table 3-3: Power Supply Pin Description	17
Table 3-4: Power Consumption in EGSM-only mode @25 degrees C	17
Table 3-5: Power Consumption in GSM-only 1800 & 1900 MHz modes @25 degrees C	18
Table 3-6: Power Consumption in EGSM/GPRS cl2 mode @25 degrees C	18
Table 3-7: Power Consumption in EGSM-only mode @25 degrees C	18
Table 3-8: Serial Link Pin Description	19
Table 3-9: ON / OFF Pin Description	20
Table 3-10: BOOT Pin Description	22
Table 3-11: Reset Signal Pin Description	23
Table 3-12: Reset Signal Electrical Characteristics	23
Table 3-13: Reset Signal Operating Conditions	23
Table 3-14 : Flashing LED Pin Description	23
Table 3-15 : LED and ModemModule Status	23
Table 3-16 : General Purpose I/O Pin Description	24
Table 3-17: A/D Converter Pin Description	24
Table 3-18: A/D Converter Electrical Characteristics	24
Table 3-19 : Microphone 2 Input Pin Description	25
Table 3-20 : Microphone 1 Input Pin Description	26
Table 3-21 : Speaker 2 Output Pin Description	27
Table 3-22 : Speaker 1 Output Pin Description	28
Table 3-23: SIM Interface Pin Description	29
Table 3-24: SIM Interface Electrical Characteristics	30
Table 3-25: SIM Socket Pin Description	30
Table 3-26 : SPI Bus Pin Description	31
Table 3-27 : Keypad Interface Pin Description	31
Table 5-1: Minimum Signals to Operate the ModemModule	38
Table 5-2: GSM ETSI Recommendations for Phase I and Phase II	39
Table B-1 : ModemModule Acceptance Test	44
Table B-1: Radio Characteristics	47
Table C-1a : AT Command List	48
Table C-1b : AT Command List (cont'd)	49
Table C-1c: AT Command List (cont'd)	50
Table C-1d: AT Command List (cont'd)	51
Table C-1e: AT Command List (cont'd)	52