Avnera

IRT & IRT AVMD7540 Radio Module

Report No. AVNE0071

Report Prepared By

www.nwemc.com 1-888-EMI-CERT

© 2010 Northwest EMC, Inc

Certificate of Test Last Date of Test: April 17, 2010 Avnera Model: IRT & IRT AVMD7540 Radio Module

Emissions				
Test Description	Specification	Test Method	Pass/Fail	
Spurious Radiated Emissions	FCC 15.247:2010	ANSI C63.10:2009	Pass	
Occupied Bandwidth	FCC 15.247:2010	ANSI C63.10:2009	Pass	
Output Power – Channel Power	FCC 15.247:2010	ANSI C63.10:2009	Pass	
Band Edge Compliance	FCC 15.247:2010	ANSI C63.10:2009	Pass	
Spurious Conducted Emissions	FCC 15.247:2010	ANSI C63.10:2009	Pass	
Power Spectral Density	FCC 15.247:2010	ANSI C63.10:2009	Pass	
AC Powerline Conducted Emissions	FCC 15.209:2010	ANSI C63.10:2009	Pass	

Modifications made to the product See the Modifications section of this report

Test Facility

The measurement facility used to collect the data is located at:

Northwest EMC, Inc. 22975 NW Evergreen Parkway, Suite 400 Hillsboro, OR 97124

Phone: (503) 844-4066 Fax: 844-3826

This site has been fully described in a report filed with and accepted by the FCC (Federal Communications Commission) and Industry Canada (Site filing #2834D-1).

Approved By:	
Donald Moniton	
Don Facteau, IS Manager	

NVLAP Lab Code: 200630-0

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America.

Product compliance is the responsibility of the client, therefore the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. This Report may only be duplicated in its entirety. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test.

Revision Number	Description	Date	Page Number
00	None		

Barometric Pressure

The recorded barometric pressure has been normalized to sea level.

Accreditations and Authorizations

FCC

Accredited by NVLAP for performance of FCC radio, digital, and ISM device testing. Our Open Area Test Sites, certification chambers, and conducted measurement facilities have been fully described in reports filed with the FCC and accepted by the FCC in letters maintained in our files. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by the FCC as a Telecommunications Certification Body (TCB). This allows Northwest EMC to certify transmitters to FCC specifications in accordance with 47 CFR 2.960 and 2.962.

NVLAP

Northwest EMC, Inc. is accredited under the United States Department of Commerce, National Institute of Standards and Technology, and National Voluntary Laboratory Accreditation Program for satisfactory compliance with the requirements of ISO/IEC 17025 for Testing Laboratories. The NVLAP accreditation encompasses Electromagnetic Compatibility Testing in accordance with the European Union EMC Directive 2004/108/EC, and ANSI C63.4. Additionally, Northwest EMC is accredited by NVLAP to perform radio testing in accordance with the European Union R&TTE Directive 1999/5/EEC, the requirements of FCC, and the RSS radio standards for Industry Canada.

Industry Canada

Accredited by NVLAP for performance of Industry Canada RSS and ICES testing. Our Open Area Test Sites and certification chambers comply with RSS-Gen, Issue 2 and have been filed with Industry Canada and accepted. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by NIST and recognized by Industry Canada as a Certification Body (CB) per the APEC Mutual Recognition Arrangement (MRA). This allows Northwest EMC to certify transmitters to Industry Canada technical requirements. (*Site Filing Numbers - Hillsboro: 2834D-1, 2834D-2, Sultan: 2834C-1, Irvine: 2834B-1, 2834B-2, Brooklyn Park: 2834E-1*)

CAB

Designated by NIST and validated by the European Commission as a Conformity Assessment Body (CAB) to conduct tests and approve products to the EMC directive and transmitters to the R&TTE directive, as described in the U.S. - EU Mutual Recognition Agreement.

NEMKO

Assessed and accredited by NEMKO (Norwegian testing and certification body) for European emissions and immunity testing. As a result of NEMKO's laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification (Authorization No. ELA 119).

NVLAP LAB CODE 200629-0 NVLAP LAB CODE 200630-0 NVLAP LAB CODE 200676-0 NVLAP LAB CODE 200761-0 NVLAP LAB CODE 200881-0

Accreditations and **Authorizations**

Australia/New Zealand

The National Association of Testing Authorities (NATA), Australia has been appointed by the ACA as an accreditation body to accredit test laboratories and competent bodies for EMC standards. Accredited test reports or assessments by competent bodies must carry the NATA logo. Test reports made by an overseas laboratory that has been accredited for the relevant standards by an overseas accreditation body that has a Mutual Recognition Agreement (MRA) with NATA are also accepted as technical grounds for product conformity. The report should be endorsed with the respective logo of the accreditation body (NVLAP).

VCCI

Accepted as an Associate Member to the VCCI, Acceptance No. 564. Conducted and radiated measurement facilities have been registered in accordance with Regulations for Voluntary Control Measures, Article 8. (Registration Numbers. - Hillsboro: C-1071, R-1025, G-84, C-2687, T-1658, and R-2318, Irvine: R-1943, G-85, C-2766, and T-1659, Sultan: R-871, G-83, C-1784, and T-1511, Brooklyn Park: R-3125, G-86, G-141, C-3464, and T-1634).

BSMI

Northwest EMC has been designated by NIST and validated by C-Taipei (BSMI) as a CAB to conduct tests as described in the APEC Mutual Recognition Agreement (US0017). License No.SL2-IN-E-1017.

GOST

Northwest EMC, Inc. has been assessed and accredited by the Russian Certification bodies Certinform VNIINMASH, CERTINFO, SAMTES, and Federal CHEC, to perform EMC and Hygienic testing for Information Technology Products. As a result of their laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification

KCC

Northwest EMC, Inc is a CAB designated by MRA partners and recognized by Korea. (Assigned Lab Numbers: Hillsboro: US0017, Irvine: US0158, Sultan: US0157)

VIETNAM

Vietnam MIC has approved Northwest EMC as an accredited test lab. Per Decision No. 194/QD-QLCL (dated December 15, 2009), Northwest EMC test reports can be used for Vietnam approval submissions.

> For details on the Scopes of our Accreditations, please visit: http://www.nwemc.com/accreditations/

BSMI

Northwest EMC Locations

Oregon Labs EV01-EV12 22975 NW Evergreen Pkwy Suite 400 Hillsboro, OR 97124 (503) 844-4066 California Labs OC01-OC13 41 Tesla Irvine, CA 92618 (949) 861-8918 Minnesota Labs MN01-MN08 9349 W Broadway Ave. Brooklyn Park, MN 55445 (763) 425-2281 Washington Labs SU01-SU07 14128 339th Ave. SE Sultan, WA 98294 (360) 793-8675 New York Labs WA01-WA04 4939 Jordan Rd. Elbridge, NY 13060 (315) 685-0796

Rev 11/17/06

Party Requesting the Test

Company Name:	Avnera
Address:	16505 NW Bethany Ct, Suite 100
City, State, Zip:	Beaverton, OR 97006
Test Requested By:	Fred Weiss
Model:	IRT & IRT AVMD7540 Radio Module
First Date of Test:	April 15, 2010
Last Date of Test:	April 17, 2010
Receipt Date of Samples:	April 15, 2010
Equipment Design Stage:	Preproduction
Equipment Condition:	No Damage

Information Provided by the Party Requesting the Test

Functional Description of the EUT (Equipment Under Test):

2.4 GHz ISM radio

Testing Objective:

Seeking approval by a TCB under FCC 15.247

Configurations

CONFIGURATION 1 AVNE0071

Software/Firmware Running during test			
Description	Version		
IRT_AV7540_PP	115.1		

EUT				
Description	Manufacturer	Model/Part Number	Serial Number	
EUT	Avnera	IRT	3	
IRT Radio Module	Avnera	AVMD7540 WNC Lot NBYZ	10	

Remote Equipment Outside of Test Setup Boundary					
Description	Description Manufacturer Model/Part Number Serial Number				
AVR	Insignia	NS-R5101AHD	2882DCPOO20600023		

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
AC Power Cable	No	2 meters	No	AVR	AC Mains
Subwoofer Cable	No	4 meters bundled to 1.2m No PRE on AVR EUT			EUT
Uport Cable No 1.2 meters No PORT on AVR EUT					
PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.					

CONFIGURATION 2 AVNE0071

Software/Firmware Running during test		
Description Version		
AV7540_Client_REL113_B	113.1	

EUT				
Description	Manufacturer	Model/Part Number	Serial Number	
IRT Radio Module	Avnera	AVMD7540 WNC Lot NBYZ	1	

Peripherals in test setup boundary					
Description Manufacturer Model/Part Number Serial Number					
Test Fixture	Avnera	AVTF-70	3		

Remote Equipment Outside of Test Setup Boundary					
Description Manufacturer Model/Part Number Serial Number					
USB-SPY convertor Avnera Anteater 74					
Control PC Dell Inspiron 6400 Unknown					

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
AC Power Cable	No	2 meters	No	AVTF-70	AC Mains
PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.					

Modifications

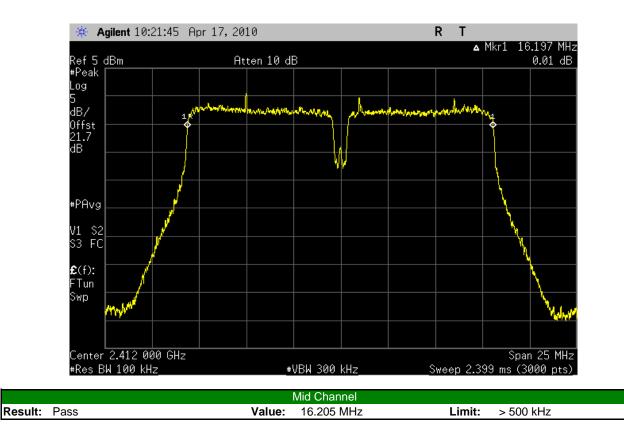
	Equipment modifications							
Item	Date	Test	Modification	Note	Disposition of EUT			
1	4/15/2010	Spurious Radiated Emissions	Modified from delivered configuration. Initial or No Modification	Transmit Power reduced to 143, Antenna Port 1 shunt inductor removed. Modification authorized by Fred Weiss of Avnera.	EUT remained at Northwest EMC following the test.			
2	4/17/2010	Output Power – Channel Power	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.			
3	4/17/2010	Power Spectral Density	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.			
4	4/17/2010	Band Edge Compliance	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.			
5	4/17/2010	Occupied Bandwidth	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.			
6	4/17/2010	Spurious Conducted Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.			
7	4/17/2010	AC Powerline Conducted Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.			

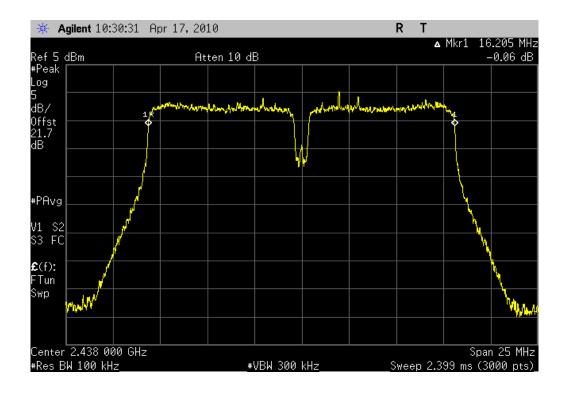
Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4440A	AFD	6/1/2009	24
EV06 Direct Connect Cable	ESM Cable Corp.	ТТ	ECA	NCR	0
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	7/21/2009	13
26 GHz DC Block, SMA	Pasternack	PE8210	AME	10/19/2009	13

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.


TEST DESCRIPTION

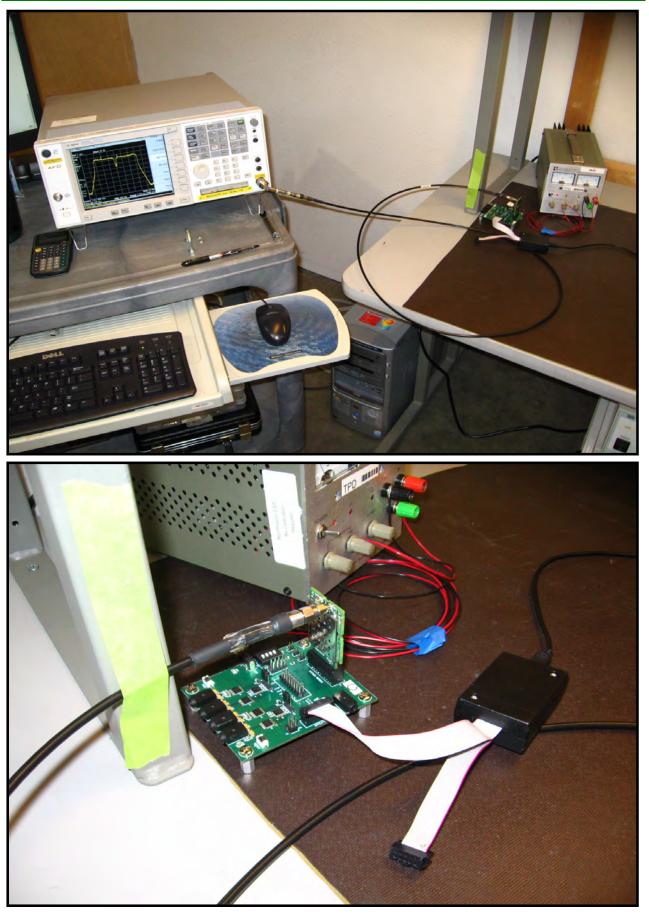

The occupied bandwidth was measured with the EUT set to low, medium, and high transmit frequencies. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at its maximum data rate with the typical modulation.

NORTHWEST EMC			WIDTH		XMit 2010.01.14
EUT:	IRT AVMD7540 Radio Module			Work Order:	AVNE0071
Serial Number:	1			Date:	04/17/10
Customer:	Avnera			Temperature:	22°C
Attendees:	Fred Weiss			Humidity	38%
Project:	None			Barometric Pres.:	29.95 in
	Rod Peloquin	Power:	5VDC	Job Site:	EV06
TEST SPECIFICATI	ONS		Test Method		
FCC 15.247:2010			ANSI C63.10:2009		
COMMENTS					
Target Power settin	ng 143. Antenna 1 (port 0)				
No Deviations	I TEST STANDARD				
Configuration #	2	Signature			
			Value	e Li	mit Results
Low Channel			16.197	//Hz > 50	0 kHz Pass
Mid Channel			16.205	/Hz > 50	0 kHz Pass
High Channel			16.214	/Hz > 50	0 kHz Pass

OCCUPIED BANDWIDTH


	Low Channel				
Result: Pas	ss Value:	16.197 MHz	Limit:	> 500 kHz	

OCCUPIED BANDWIDTH


		ŀ	High Channel			
Result:	Pass	Value:	16.214 MHz	Limit:	> 500 kHz	

> 500 kHz

OCCUPIED BANDWIDTH

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

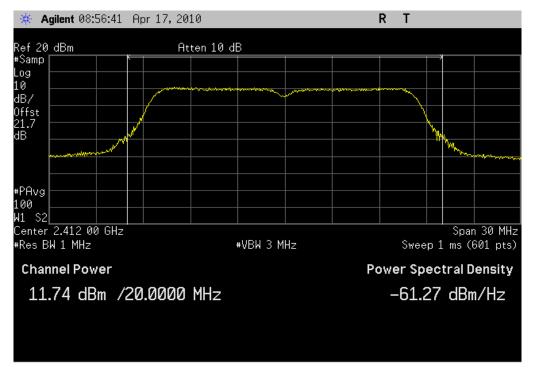
TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4440A	AFD	6/1/2009	24
EV06 Direct Connect Cable	ESM Cable Corp.	TT	ECA	NCR	0
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	7/21/2009	13
26 GHz DC Block, SMA	Pasternack	PE8210	AME	10/19/2009	13
Power Meter	Gigatronics	8651A	SPM	1/7/2010	13
Power Sensor	Gigatronics	80701A	SPL	1/7/2010	13
Signal Generator	Agilent	E8257D	TGX	12/10/2008	24

MEASUREMENT UNCERTAINTY

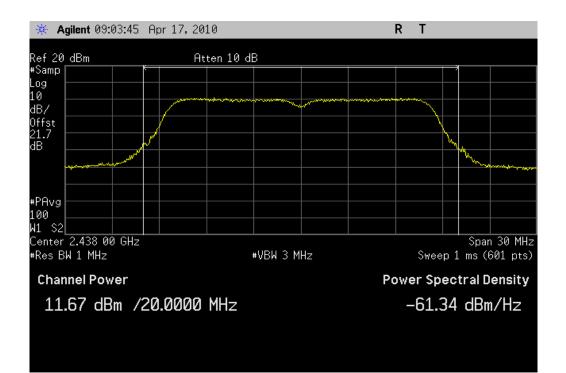
A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION

EMC

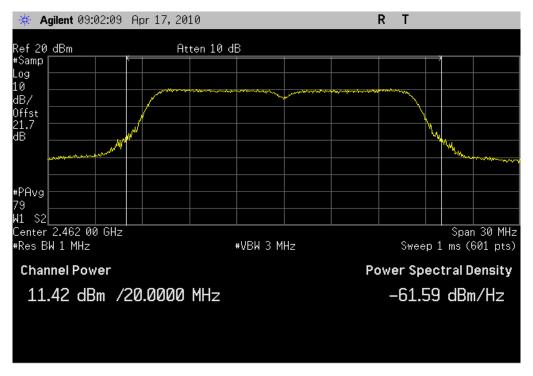

The transmit frequency was set to the required channels in each band. The transmit power was set to that shown on the data sheet. A direct connection was made between the RF output of the EUT and a spectrum analyzer. Attenuation and a DC block were used. The reference level offset on the spectrum analyzer was adjusted to compensate for cable loss and the external attenuation used between the RF output and the spectrum analyzer input. The amplitude accuracy of the spectrum analyzer was further enhanced by calibrating the setup using the power meter and synthesized signal generator.

- > Prior to measuring peak transmit power; the emission bandwidth (B) was measured.
- > Power was integrated across "B", by using the channel power function of the spectrum analyzer.
- The settings used were those called out in ANSI C63.10: 2009, Section 6.10.3.1. Method 1

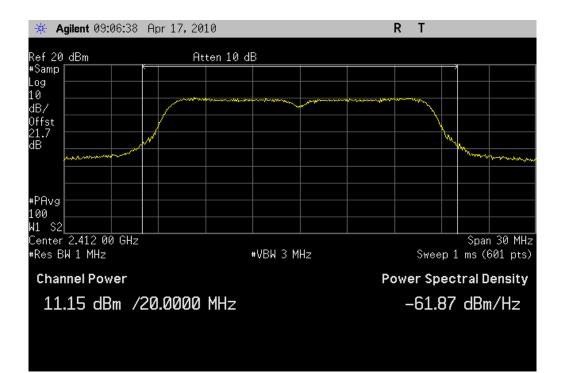

NORTHWEST						XMit 2010.01.14
EMC		OUTPUT POWER -	CHANNEL P	OWER		
EUT:	IRT AVMD7540 Radio M	lodule		V	Vork Order: AVNE007	1
Serial Number:	9				Date: 04/17/10	
Customer:	Avnera			Te	emperature: 22°C	
Attendees:	Fred Weiss				Humidity: 38%	
Project:	None			Barom	netric Pres.: 29.95 in	
Tested by:	Rod Peloquin		Power: 5VDC		Job Site: EV06	
TEST SPECIFICAT	IONS		Test Method			
FCC 15.247:2010			ANSI C63.10:	2009		
COMMENTS						
DEVIATIONS FROM	I TEST STANDARD					
Configuration #	2	Signature	Reling			
				Value	Limit	Results
Antenna 1 (port 0)						
	Low Channel			11.74 dBm	30 dBm	Pass
	Mid Channel			11.67 dBm	30 dBm	Pass
	High Channel			11.42 dBm	30 dBm	Pass
Antenna 2 (port 1)						
	Low Channel			11.15 dBm	30 dBm	Pass
	Mid Channel			11.00 dBm	30 dBm	Pass
	High Channel			11.24 dBm	30 dBm	Pass

OUTPUT POWER - CHANNEL POWER

Antenna Port 1, Low Channel				
Result: Pass	Value: 11.74 dBm	Limit:	30 dBm	



	Antenna Port 1, Mid Channel		
Result: Pass	Value: 11.67 dBm	Limit:	30 dBm



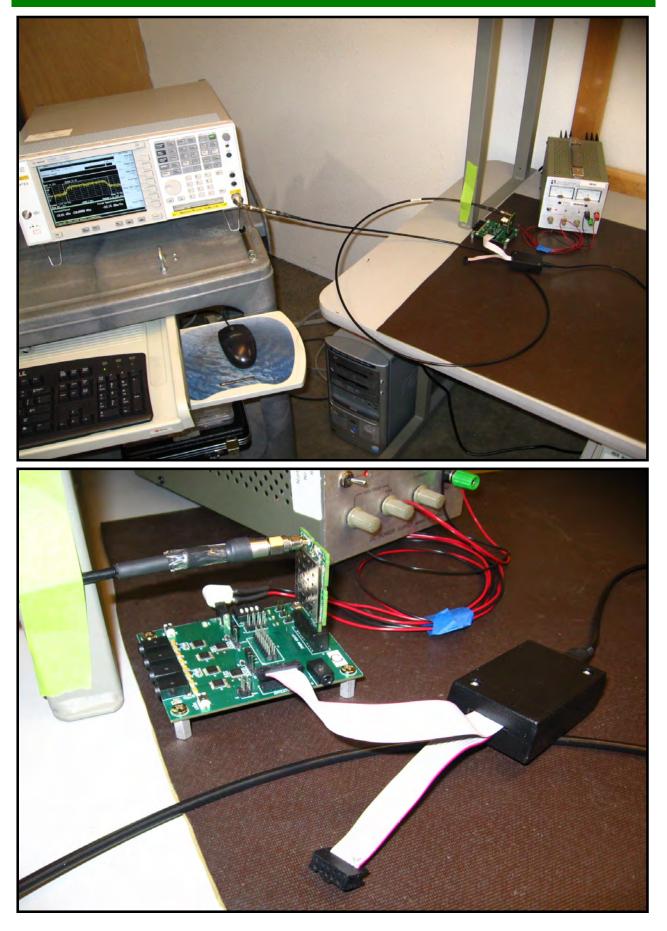
OUTPUT POWER - CHANNEL POWER

	Antenna Port 1, High Channel		
Result: Pass	Value: 11.42 dBm	Limit:	30 dBm

	Antenna	Port 2, Low Channel		
Result: Pass	Value:	11.15 dBm	Limit:	30 dBm

OUTPUT POWER - CHANNEL POWER

	Antenna Port 2, Mid Channel		
Result: Pass	Value: 11.00 dBm	Limit:	30 dBm


	Antenna Port 2, High Channel		
Result: Pass	Value: 11.24 dBm	Limit:	30 dBm

NORTHWEST

OUTPUT POWER - CHANNEL POWER

XMit 2010.01.14

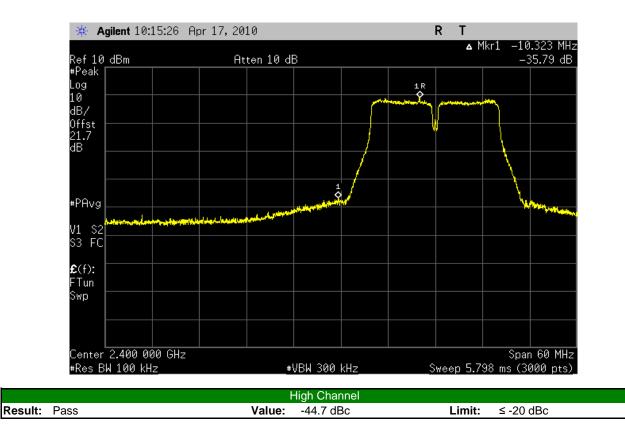
Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

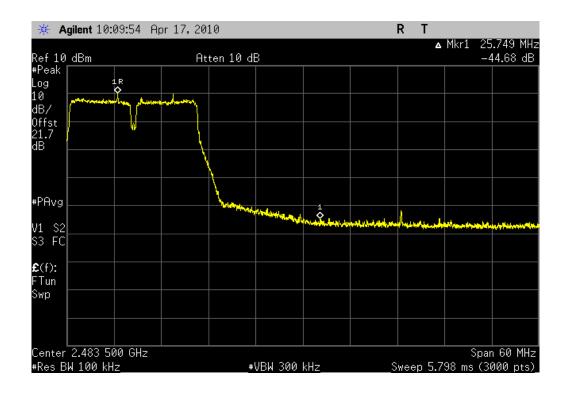
TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4440A	AFD	6/1/2009	24
EV06 Direct Connect Cable	ESM Cable Corp.	TT	ECA	NCR	0
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	7/21/2009	13
26 GHz DC Block, SMA	Pasternack	PE8210	AME	10/19/2009	13

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

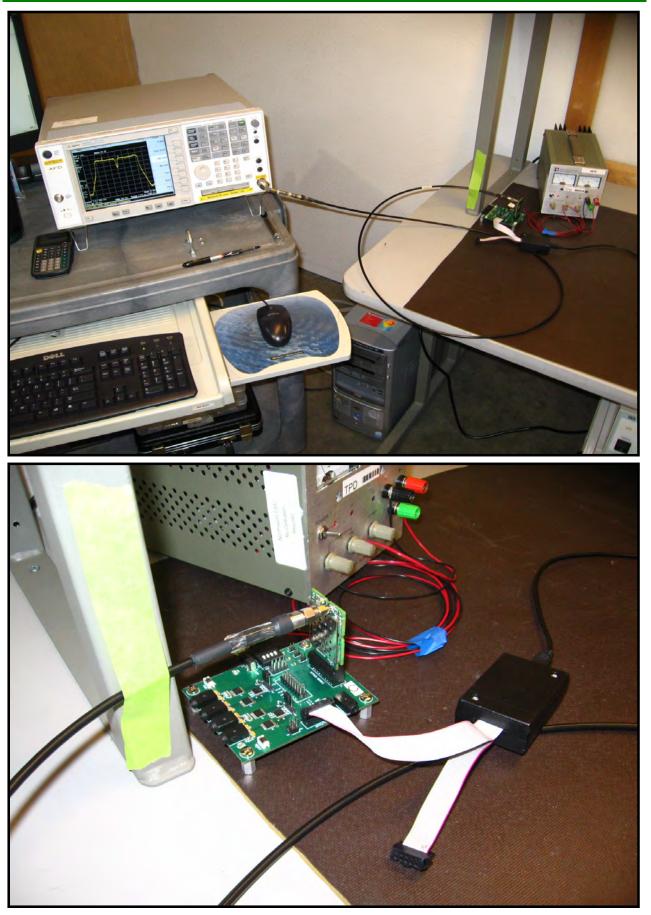
TEST DESCRIPTION


The spurious RF conducted emissions at the edges of the authorized bands were measured with the EUT set to low and high transmit frequencies in each available band. The channels closest to the band edges were selected. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at its only data rate available.


The spectrum was scanned across each band edge from at least 10 MHz below the band edge to 10 MHz above the band edge.

NORTHWEST EMC		BAND EDGE (LIANCE				XMit 2010.01.14
EUT:	IRT AVMD7540 Radio Module					Work Order:	AVNE0071	
Serial Number:	1						04/17/10	
Customer:						Temperature:		
	Fred Weiss					Humidity:		
Project:					Ba	rometric Pres.:		
	Rod Peloquin		Power:			Job Site:	EV06	
TEST SPECIFICATI	IONS			Test Method				
FCC 15.247:2010				ANSI C63.10:2009				
COMMENTS								
	ng 143. Antenna 1 (port 0)							
DEVIATIONS FROM	M TEST STANDARD							
No Deviations								
Configuration #	2	Signature Rocky to 3	Reling					
					Value	Liı	nit	Results
Low Channel					-35.8 dBc		dBc	Pass
High Channel					-44.7 dBc	≤ -20	dBc	Pass

BAND EDGE COMPLIANCE


		Low Channel		
Result:	Pass	Value: -35.8 dBc	Limit:	≤ -20 dBc

BAND EDGE COMPLIANCE

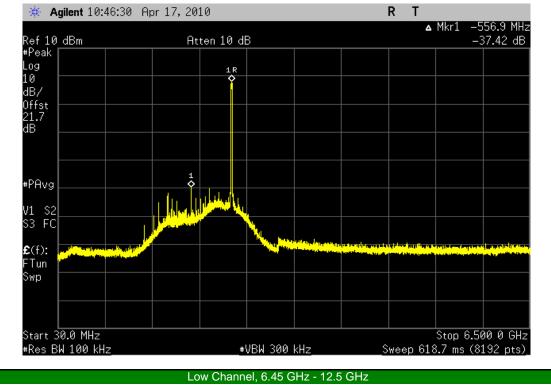
Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4440A	AFD	6/1/2009	24
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	7/21/2009	13
26 GHz DC Block, SMA	Pasternack	PE8210	AME	10/19/2009	13
EV06 Direct Connect Cable	ESM Cable Corp.	TT	ECA	NCR	0

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION

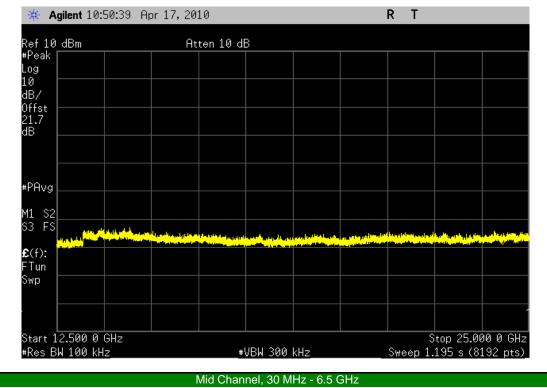

NORTHWEST

EMC

The spurious RF conducted emissions were measured with the EUT set to low, medium, and high transmit frequencies. The measurements were made using a direct connection between the RF output of the EUT and the spectrum analyzer. For each transmit frequency, the spectrum was scanned throughout the specified frequency range.

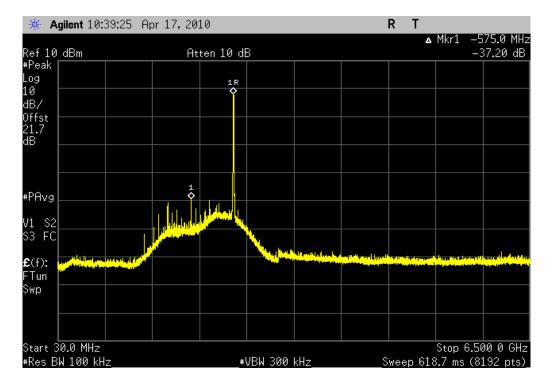
		SPURIOUS CON	IDUCTED	EMISSION	5		XMit 2010.01.14
	IRT AVMD7540 Radio Mo	odule				Work Order: AVNE0071	
Serial Number:						Date: 04/17/10	
Customer:						Temperature: 22°C	
	Fred Weiss					Humidity: 38%	
Project:					Barc	ometric Pres.: 29.95 in	
	Rod Peloquin		Power:			Job Site: EV06	
TEST SPECIFICAT	IONS			Test Method			
FCC 15.247:2010				ANSI C63.10:2009			
COMMENTS							
Target Power setti	ng 143. Antenna 1 (port 0)						
-							
DEVIATIONS FROM	M TEST STANDARD						
No Deviations							
Configuration #	2	Signature	y he Relengs				
		• •		v	alue	Limit	Results
Low Channel							
	30 MHz - 6.5 GHz			-37	.4 dBc	≤ -20 dBc	Pass
	6.45 GHz - 12.5 GHz			< -4	I0 dBc	≤ -20 dBc	Pass
	12.5 GHz - 25 GHz			< -4	I0 dBc	≤ -20 dBc	Pass
Mid Channel							
	30 MHz - 6.5 GHz			-37	.2 dBc	≤ -20 dBc	Pass
	6.45 GHz - 12.5 GHz			< -4	40 dBc	≤ -20 dBc	Pass
	12.5 GHz - 25 GHz			< -4	l0 dBc	≤ -20 dBc	Pass
High Channel							
	30 MHz - 6.5 GHz			-37	7 dBm	≤ -20 dBc	Pass
	6.45 GHz - 12.5 GHz			< -4	0 dBc	≤ -20 dBc	Pass
	12.5 GHz - 25 GHz				l0 dBc	≤ -20 dBc	Pass

	Low Chan	nel, 30 MHz - 6.5 GHz		
Result: Pa	ass Value:	-37.4 dBc	Limit:	≤ -20 dBc



Result: Pass	Value: < -40 dBc	Limit: ≤ -20 dBc

🔆 Agilent	10:48:19 Aµ	or 17, 20:	10				RT		
Ref 10 dBm		At	ten 10 di	В					
#Peak Log									
10 dB/									
0ffst									
dB									
#PAvg									
M1 S2									
S3 FC									
£(f):	a half <mark>illing albacki a ba</mark> l								
FTun									
Swp									
Start 6.450								top 12.50	
#Res BW 100	kHz		#	VBW 300	kHz	S	weep 578	8.3 ms (83	192 pts)_


XMit 2010.01.14

	Low Channel, 12.5 GHz - 25 GHz		
Result: Pass	Value: < -40 dBc	Limit:	≤ -20 dBc

Result: Pass Value: -37.2 dBc

Limit: ≤ -20 dBc

XMit 2010.01.14

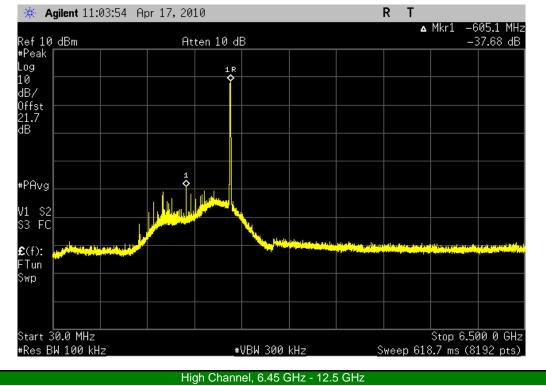
	Mid Channel, 6.45 GHz - 12.5 GI	Hz
Result: Pass	Value: < -40 dBc	Limit: ≤ -20 dBc

	0.	10-1	-					
Ref 10 dBm ≢Peak	Ht	ten 10 di	3					
-0g								
10								
dB/								
Offst								
21.7								
dB								
#PAvg								
M1 S2								
S3 FC								
				.1				يعاطران و
£ (f):								Contract of the second second
Tun								
Swp								
Start 6.450 0 GHz						S	top 12.50	00 0 GHz
ŧRes BW 100 kHz		#	VBW 300	kHz	S		3.3 ms (8)	

Result: Pass

Value: < -40 dBc

Limit:


≤ -20 dBc

🔆 Agilent 10	:43:33 Ap	or 17, 20	10			RT		
Ref 10 dBm		At	ten 10 di	3				
#Peak Log								
10								
dB/ Offst								
21.7								
dB								
#PAvg								
M1 S2 S3 FS								
life ster			iti dila patri		an ta Mahadila			a a she a
£ (f): FTun								
Swp								
Start 12.500 0							top 25.00	
#Res BW 100 kH	lz		#	VBW 300	kHz	Sweep 1.	195 s (81	192 pts)

Result

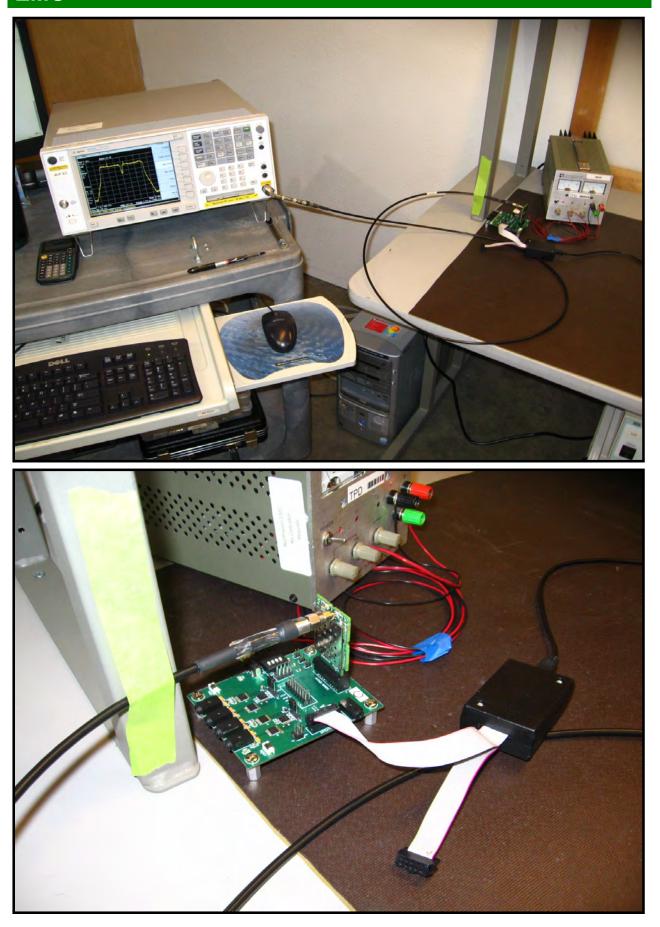
SPURIOUS CONDUCTED EMISSIONS

	High Ch	annel, 30 MHz - 6.5 GHz		
Result: P	Pass Value	: -37.7 dBm	Limit:	≤ -20 dBc

t: Pass	Value: < -40 dBc	Limit:	≤ -20 dBc

🔆 Agilent 11:05:52	Apr 17, 2010		RT	
Ref 10 dBm	Atten 10 c	IB		
#Peak Log				
10				
dB/ Offst				
21.7				
dB				
#PAvg				
M1 S2 S3 FC				
see the state of the	de traditional de cala de casa	والمراجع والمتعادية والمتعاومة والمتعادية والمتعادية	والمتروية والمتروية والمتعالية والمتعادرة	والمراجع والمحاولية أوموا الفقار ومرواط وعاطرهما
£(f): FTun	literat Militara Indiana in the second second		and the second	and the second
Swp				
Start 6.450 0 GHz				top 12.500 0 GHz
#Res BW 100 kHz	+	ŧVBW 300 kHz	Sweep 57	8.3 ms (8192 pts)_

XMit 2010.01.14


	High Channel, 12.5 GHz - 25 GHz		
Result: Pass	Value: < -40 dBc	Limit:	≤ -20 dBc

🔆 Agilent 11:09:0	05 Apr 17, 203	LO			RT		
Ref 10_dBm	At	ten 10 dE	3				
#Peak Log							
10 dB/							
Offst							
21.7 dB							
#PAvg							
M1 S2 S3 FS							
		hand a she		n <mark>het in het der seinen s</mark>		aldes here and the	
£(f): FTun							
Swp							
Start 12.500 0 GHz #Res BW 100 kHz		#!	/BW 300 I	kHz		top 25.00 195 s (81	

NORTHWEST

SPURIOUS CONDUCTED EMISSIONS

XMit 2010.01.14

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4440A	AFD	6/1/2009	24
EV06 Direct Connect Cable	ESM Cable Corp.	TT	ECA	NCR	0
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	7/21/2009	13
26 GHz DC Block, SMA	Pasternack	PE8210	AME	10/19/2009	13
Power Meter	Gigatronics	8651A	SPM	1/7/2010	13
Power Sensor	Gigatronics	80701A	SPL	1/7/2010	13
Signal Generator	Agilent	E8257D	TGX	12/10/2008	24

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION

The power spectral density measurements were measured with the EUT set to low, mid, and high transmit frequencies. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at its maximum data rate for each modulation type available. Since the average output power was measured as defined in section ANSI C63.10:2009, section 6.10.3.1, the procedure outlined in section 6.11.2.4 was used. The spectrum analyzer was set as follows:

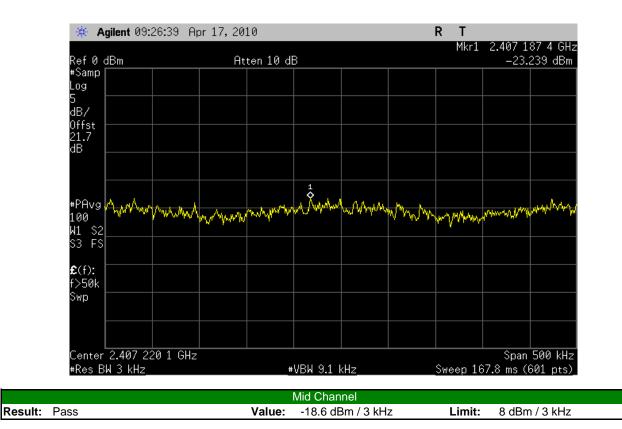
Locate and zoom in on emission peak(s) within the passband.

- a) Set RBW = 3 kHz
- b) Set VBW = 9 kHz
- c) Set Sweep time to Automatic

d) Use a peak detector. A sample detector mode can be used only if the following conditions can be achieved with automatic sweep time and adjusting the bin width.

1) Bin width (i.e., span/number of points in spectrum display) < 0.5 RBW.

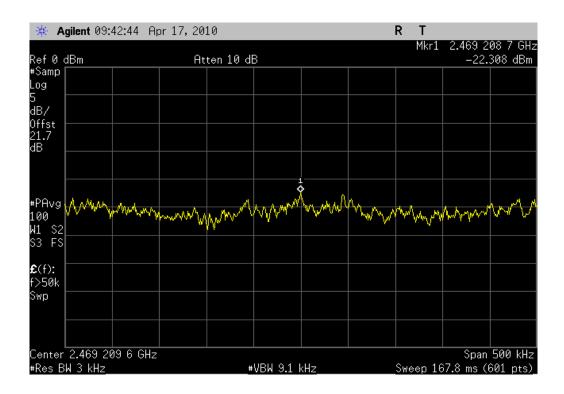
2) The transmission pulse or sequence of pulses remains at maximum transmit power throughout each of the 100 sweeps of averaging.


e) The device transmits continuously, with no off intervals or reduced power intervals, so the trigger may be set to "free run."

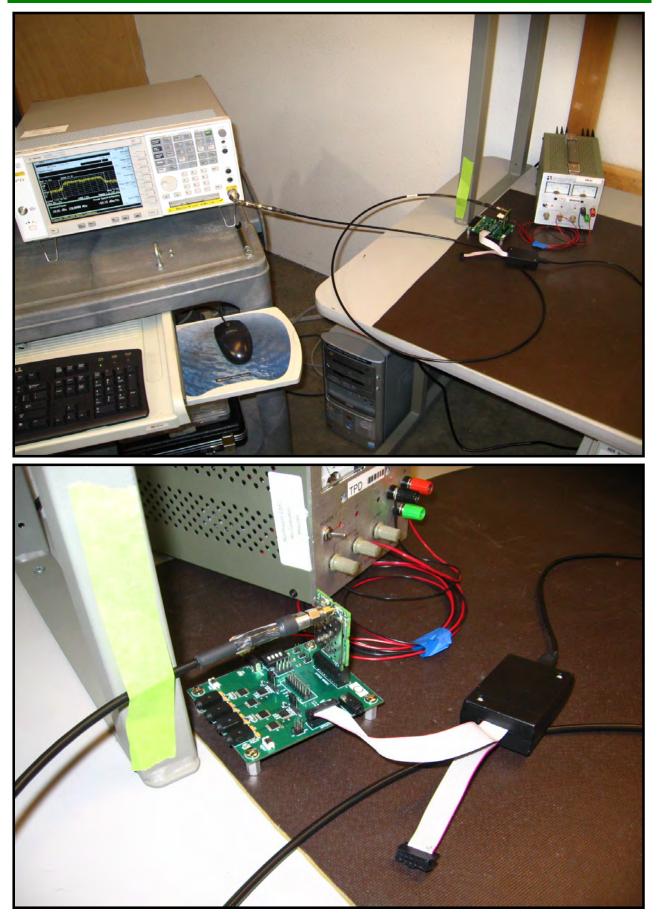
f) Trace average 100 traces in power averaging mode.

		POWER SPECTRAL	DENSITY			XMit 2010.01.14
-	IRT AVMD7540 Radio Module			Work Orde	er: AVNE0071	
Serial Number:					e: 04/17/10	
Customer:				Temperatur		
	Fred Weiss			Humidit		
Project:				Barometric Pres		
Tested by:	Rod Peloquin	Power	: 5VDC	Job Sit	e: EV06	
TEST SPECIFICATI			Test Method			
FCC 15.247:2010			ANSI C63.10:2009			
COMMENTS						
Target Power settir	ng 143. Antenna 1 (port 0)					
DEVIATIONS FROM	I TEST STANDARD					
No Deviations						
Configuration #	2	Signature Roley to Reling				
			V	/alue	Limit	Results
Low Channel			-23.2 d	Bm / 3 kHz 8 dB	m / 3 kHz	Pass
Mid Channel			-18.6 d	Bm / 3 kHz 8 dB	m / 3 kHz	Pass
High Channel			-22.3 d	Bm / 3 kHz 8 dB	m / 3 kHz	Pass

POWER SPECTRAL DENSITY


		Low Channel		
Result:	Pass	Value: -23.2 dBm / 3 kHz Limit:	8 dBm / 3 kHz	

		0 10 1	D.			Mkr1	2.437 9	
lef 0 dBm Samp		Atten 10 d	B			1	-18.	555 dBr
og								
B/								
ffst 1.7								
B								
				i >				
PAvg				ļ				
00								
1 S2 3 FS								
								ı t .
:(f): >50k	white white white	K. J. A. Mark	www.mw	William	Week wards	and water of the	physiology and the second	Manakawa
wp		www.www.en			ማ የአማ የአፈ	iting.		
Center 2.437 968 Res BW 3 kHz	9 GHz		VBW 9.1				Span 67.8 ms (6	500 kl


POWER SPECTRAL DENSITY

		Hig	h Channel		
Result: Pa	ass Va	lue: -	22.3 dBm / 3 kHz	Limit:	8 dBm / 3 kHz

POWER SPECTRAL DENSITY

SPURIOUS RADIATED EMISSIONS

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

Transmitting continous, antenna 0	MODES OF OPERATION		
0	Transmitting typical mode		
Transmitting continuus, antenna 1	Transmitting continous, antenna 0		
	Transmitting continous, antenna 1		

CHANNELS INVESTIGATED

NORTHWEST

EMC

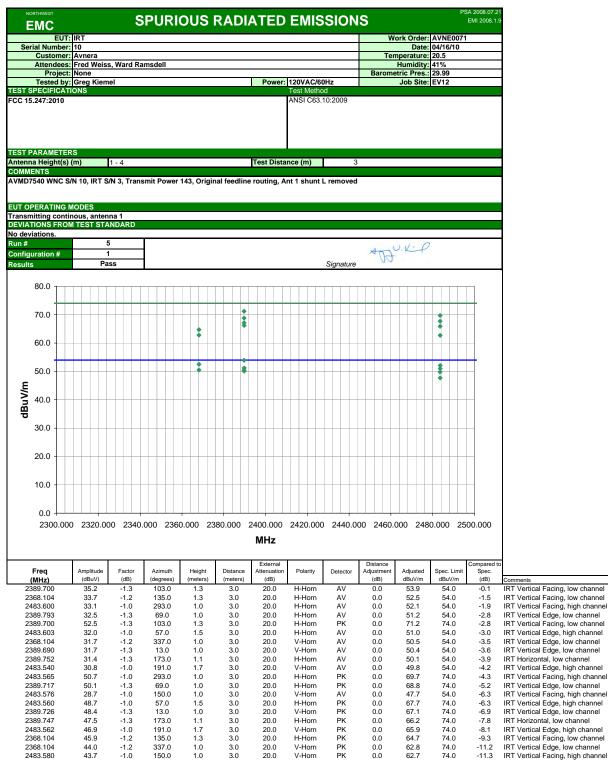
Low, Mid, and High channels

FREQUENCY RANGE IN	/ESTIGATED		
Start Frequency	30 MHz	Stop Frequency	26 GHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Attenuator	Pasternack	PE7005-20	AUN	6/25/2009	13
High Pass Filter	Micro-Tronics	50111	HGE	1/13/2010	13
Antenna, Horn	ETS Lindgren	3160-09	AIV	NCR	0
Cable	ESM Cable Corp.	KMKM-72	EVY	11/3/2009	13
Pre-Amplifier	Miteq	AMF-6F-18002650-25-10P	AVU	5/19/2009	13
Antenna, Horn	ETS	3160-08	AIA	NCR	0
EV12 Cables		Standard Gain Horn Cables	EVU	6/25/2009	13
Pre-Amplifier	Miteq	AMF-6F-12001800-30-10P	AVI	6/26/2009	13
Antenna, Horn	ETS	3160.07	AHZ	10/14/2008	24
EV12 Cables		Standard Gain Horn Cables	EVU	6/25/2009	13
Pre-Amplifier	Miteq	AMF-6F-08001200-30-10P	AVH	6/26/2009	13
Antenna, Horn	ETS	3115	AIB	8/25/2008	24
EV12 Cables		Double Ridge Horn Cables	EVT	10/23/2009	13
Pre-Amplifier	Miteq	AMF-3D00100800-32-13P	AVF	6/25/2009	13
Antenna, Biconilog	EMCO	3141	AXG	2/15/2010	13
EV12 Cables		Bilog Cables	EVS	6/25/2009	13
Pre-Amplifier	Miteq	AM-1616-1000	AVM	6/25/2009	13
Spectrum Analyzer	Agilent	E4440A	AFD	6/1/2009	24


Frequency Range	Peak Data	Quasi-Peak Data	Average Data
(MHz)	(kHz)	(kHz)	(kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. The measurement uncertainty estimation is available upon request.

TEST DESCRIPTION

The highest gain of each type of antenna to be used with the EUT was tested. The EUT was configured for low, mid, and high band transmit frequencies. For each configuration, the spectrum was scanned throughout the specified range. In addition, measurements were made in the restricted bands to verify compliance. While scanning, emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and the EUT antenna in three orthogonal axis, and adjusting measurement antenna height and polarization, and manipulating the EUT antenna in 3 orthogonal planes (per ANSI C63.10:2009). A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.

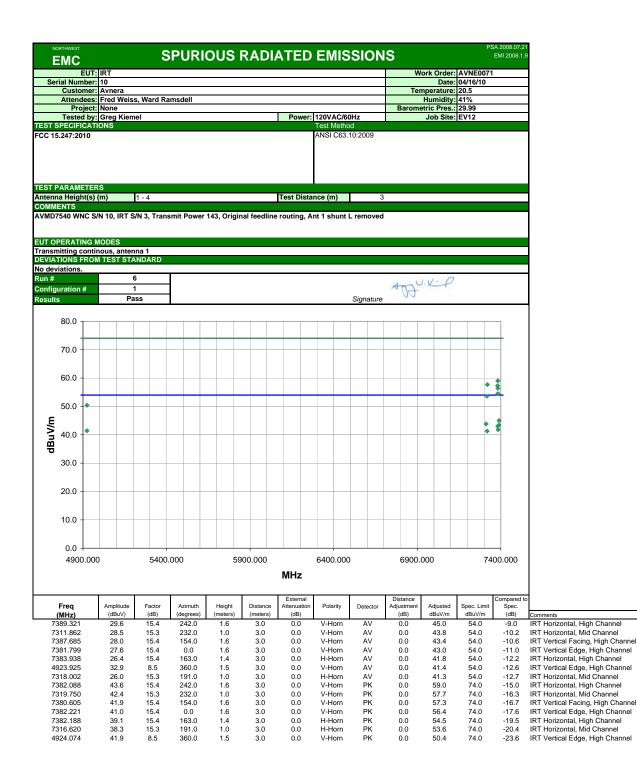
2483.580

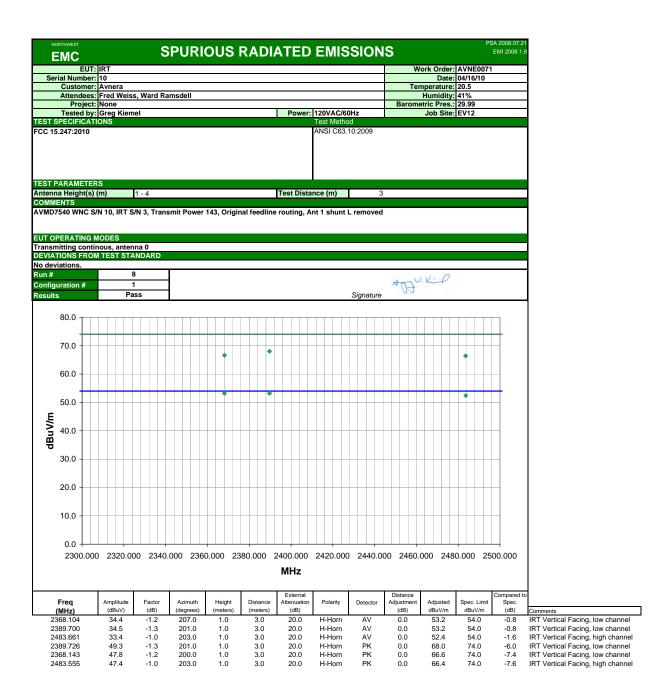
43.7

-1.0

150.0

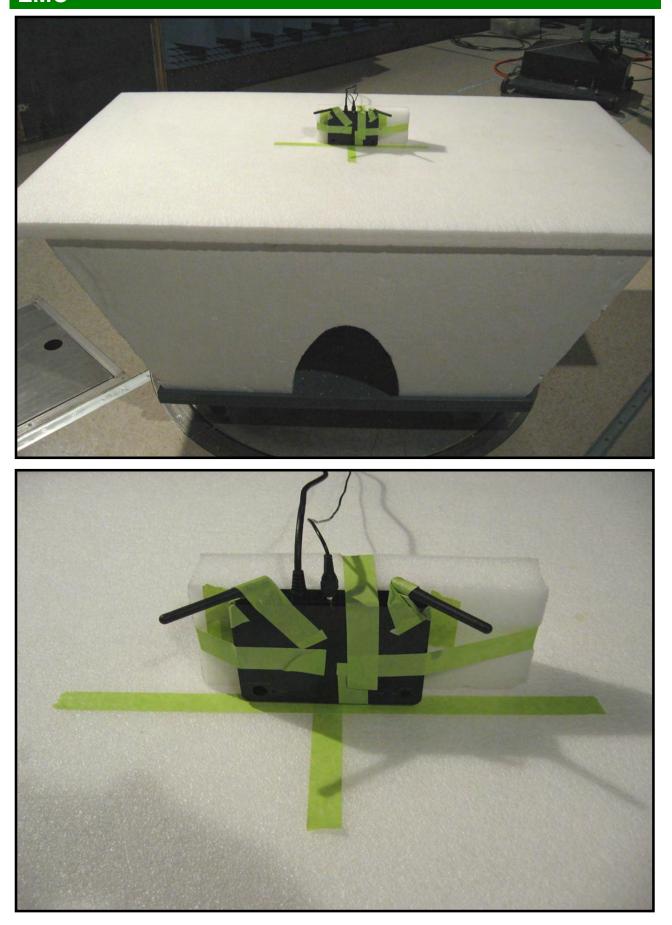
3.0

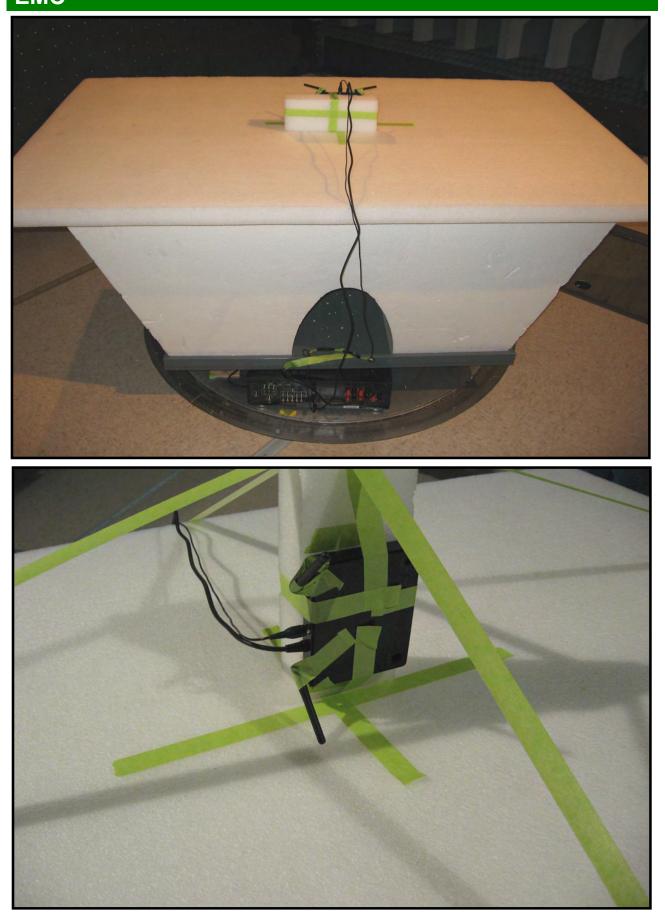

20.0


V-Horn

0.0

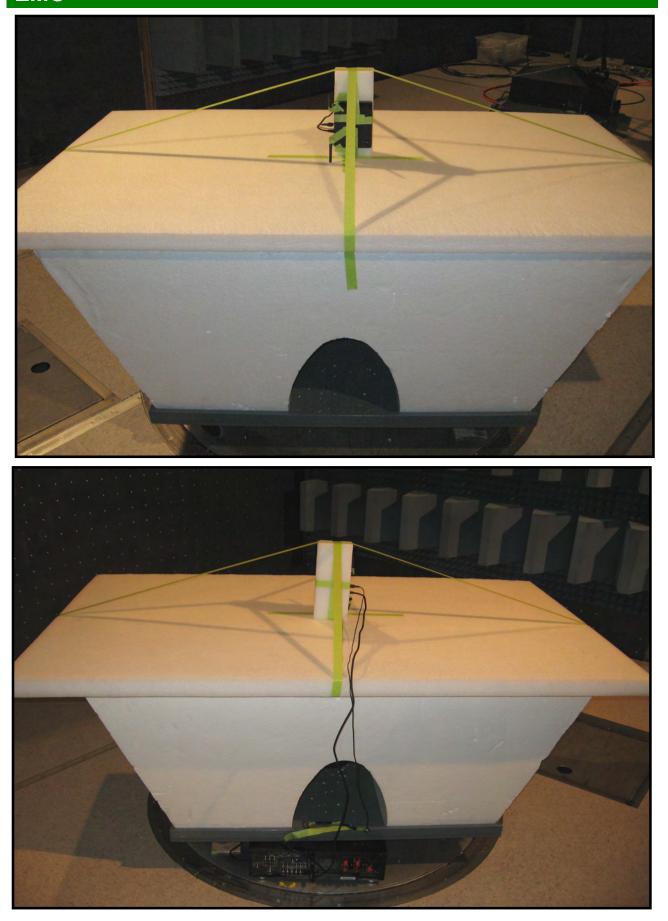
74.0


IRT Vertical Edge, low channel IRT Vertical Facing, high channel -11.2 -11.3

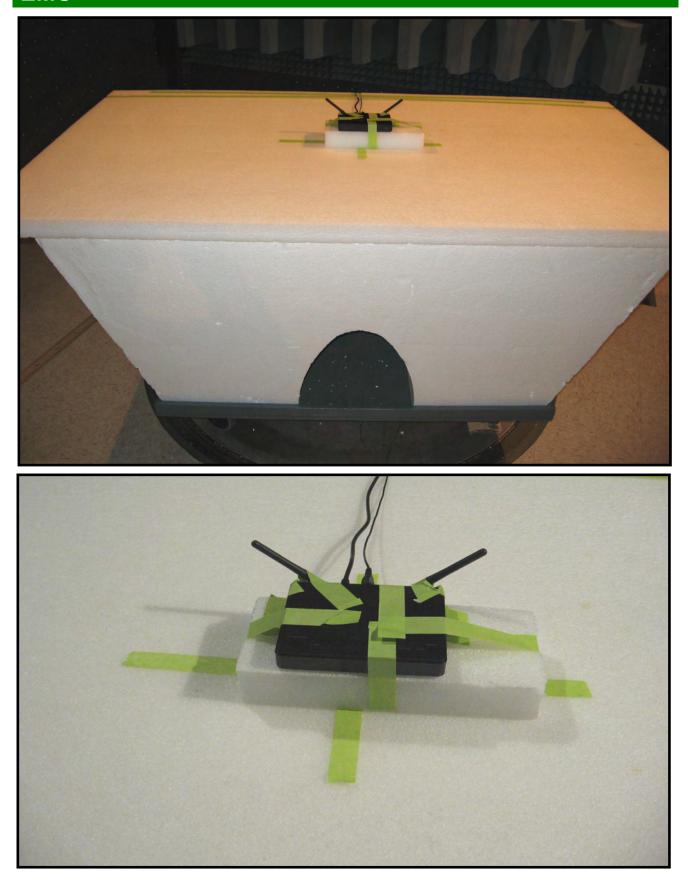


		S	PURI	OUS	RADI	ATED	EMIS	SION	S		Р	SA 2008.07.21 EMI 2008.1.9
EMC	UT: IRT									ork Orden	AVNE007	1
Serial Num									VV		04/15/10	1
	ner: Avnera								Ter	nperature		
	ees: Fred Weis	s, Ward Ra	msdell							Humidity		
	ect: None by: Greg Kiem					Dowor	From DVR		Barome	etric Pres.: Job Site:		
TEST SPECIFIC		lei				Power:	Test Metho			Job Sile.	EVUI	
FCC 15.247:201							ANSI C63.					
TEST PARAME	TERO											
Antenna Height		1 - 4				Test Dista	nce (m)	3				
COMMENTS												
DVR on floor, S	bub cable											
EUT OPERATIN												
Transmitting ty DEVIATIONS F												
No deviations F	ROMIESISIA	ANDARD										
Run #		1								1.1.0		
Configuration #	ŧ .	1							And'	J.K-P		
Results	Pa	ISS						Signature	00			
I												
80.0												
												-
70.0 -												
60.0 -												
												4
50.0 -												
5												
W/N ap								-				
a 40.0									¥		* *	
q			•									
30.0 -			-					•				
20.0 -												
2010												
10.0 -												
0.0 +												
10.0	000					100.000					10	000.000
						MHz						
					1	External			Distance			Compared to
Freq	Amplitude (dBuV)	Factor (dB)	Azimuth (degrees)	Height (meters)	Distance (meters)	Attenuation (dB)	Polarity	Detector	Adjustment (dB)	Adjusted dBuV/m	Spec. Limit dBuV/m	Spec. (dB)
(MHz) 249.872	42.6	-0.8	223.0	1.2	3.0	0.0	H-Bilog	PK	0.0	41.8	46.0	-4.2
231.614	42.4	-1.7	127.0	1.0	3.0	0.0	V-Bilog	PK	0.0	40.7	46.0	-5.3
213.329 853.316	40.2 28.6	-2.1 11.6	242.0 158.0	1.5 1.0	3.0 3.0	0.0 0.0	H-Bilog V-Bilog	PK PK	0.0 0.0	38.1 40.2	43.5 46.0	-5.4 -5.8
384.015	36.8	3.4	190.0	1.0	3.0	0.0	H-Bilog	PK	0.0	40.2	46.0	-5.8
243.819	41.2	-1.1	262.0	1.0	3.0	0.0	H-Bilog	PK	0.0	40.1	46.0	-5.9
249.911	40.4	-0.8	223.0	1.2	3.0	0.0	H-Bilog	QP	0.0	39.6	46.0	-6.4
231.623 768.006	41.1 28.7	-1.7 10.5	127.0 149.0	1.0 1.0	3.0 3.0	0.0 0.0	V-Bilog H-Bilog	QP PK	0.0 0.0	39.4 39.2	46.0 46.0	-6.6 -6.8
731.442	28.6	10.5	145.0	1.0	3.0	0.0	H-Bilog	PK	0.0	39.1	46.0	-6.9
877.754	27.1	11.9	199.0	1.5	3.0	0.0	V-Bilog	PK	0.0	39.0	46.0	-7.0
384.002 213.337	35.2 38.1	3.4 -2.1	190.0 242.0	1.0 1.5	3.0 3.0	0.0 0.0	H-Bilog H-Bilog	QP QP	0.0 0.0	38.6 36.0	46.0 43.5	-7.4 -7.5
853.327	26.9	11.6	158.0	1.0	3.0	0.0	V-Bilog	QP	0.0	38.5	46.0	-7.5
60.976	38.7	-6.3	3.0	1.0	3.0	0.0	V-Bilog	PK	0.0	32.4	40.0	-7.6
34.930 243.813	30.7 37.9	1.6 -1.1	161.0 262.0	1.5 1.0	3.0 3.0	0.0 0.0	V-Bilog H-Bilog	PK QP	0.0 0.0	32.3 36.8	40.0 46.0	-7.7 -9.2
255.985	37.1	-0.7	178.0	1.3	3.0	0.0	H-Bilog	PK	0.0	36.4	46.0	-9.6
255.996	36.6	-0.7	223.0	1.8	3.0	0.0	V-Bilog	PK	0.0	35.9	46.0	-10.1
256.014 237.687	33.7 33.5	-0.7 -1.3	118.0 179.0	1.3 1.4	3.0 3.0	0.0 0.0	V-Bilog H-Bilog	PK PK	0.0 0.0	33.0 32.2	46.0 46.0	-13.0 -13.8

SPURIOUS RADIATED EMISSIONS



SPURIOUS RADIATED EMISSIONS



NORTHWEST EMC

SPURIOUS RADIATED EMISSIONS

SPURIOUS RADIATED EMISSIONS

AC POWERLINE CONDUCTED EMISSIONS

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION

Transmit mode, continous high channel, Antenna 1 (port 0) Transmit mode, continous mid channel, Antenna 1 (port 0) Transmit mode, continous low channel, Antenna 1 (port 0)

POWER SETTINGS INVESTIGATED

120VAC/60Hz

CONFIGURATIONS INVESTIGATED

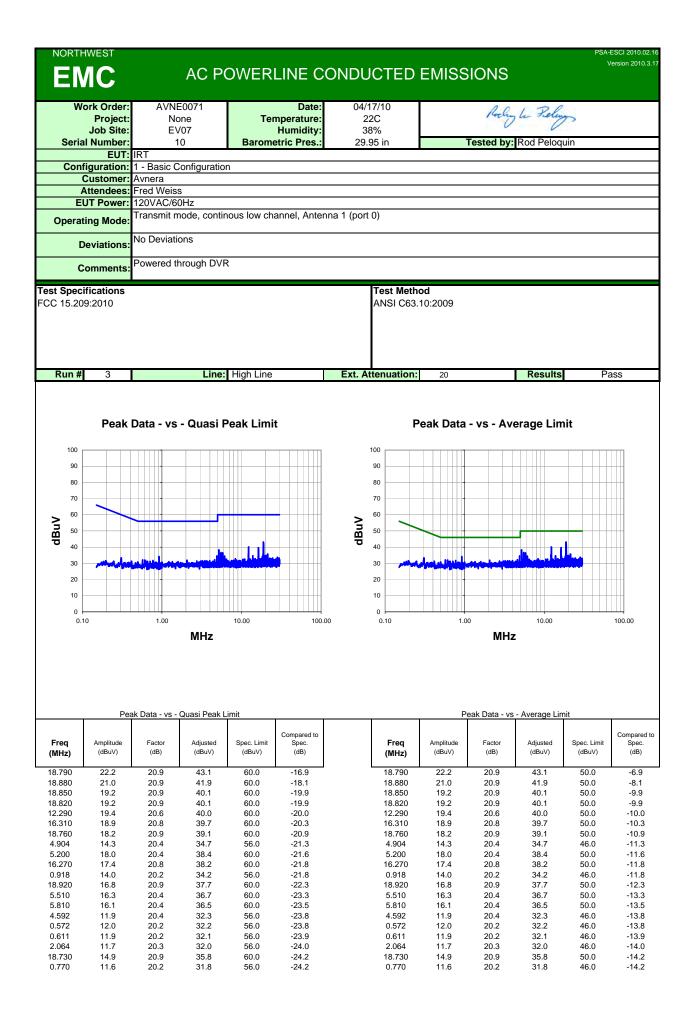
AVNE0071 - 1

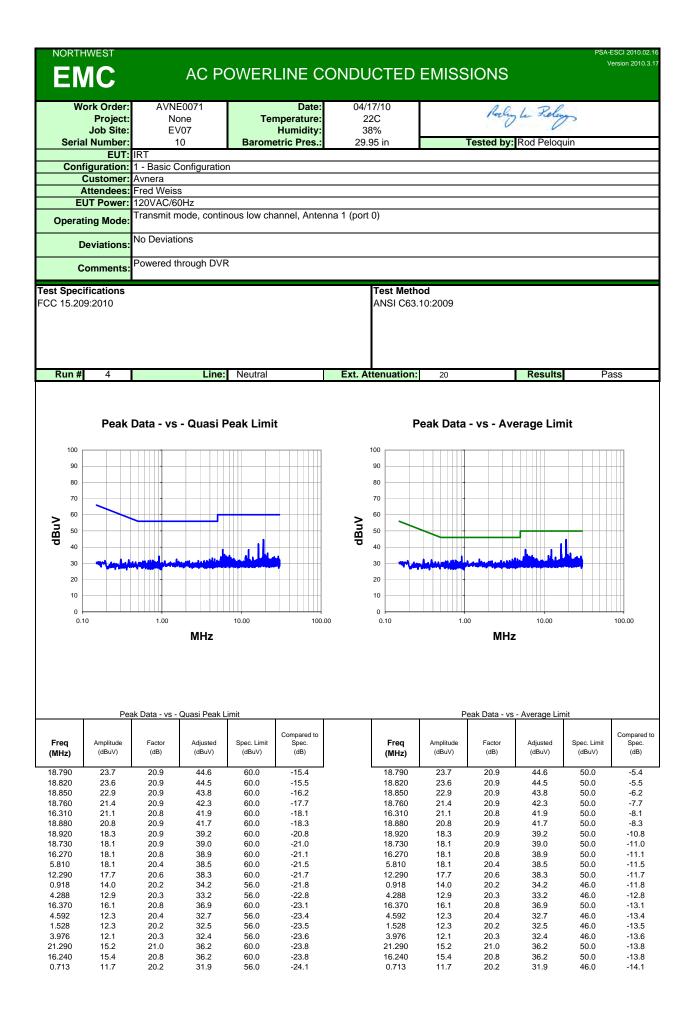
SAMPLE CALCULATIONS

Conducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator

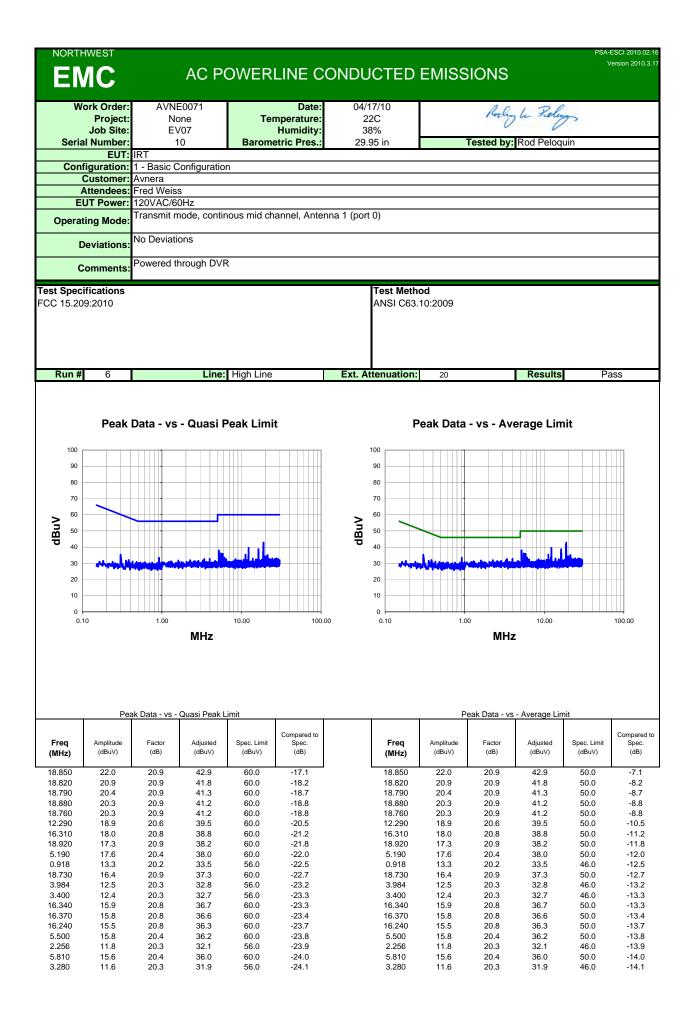
TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Receiver	Rohde & Schwarz	ESCI	ARH	9/25/2009	13 mo
High Pass Filter	TTE	H97-100K-50-720B	HFX	2/16/2010	13 mo
Attenuator	Coaxicom	66702 2910-20	ATO	7/21/2009	13 mo
LISN	Solar	9252-50-R-24-BNC	LIP	3/2/2010	13 mo
EV07 Cables		Conducted Cables	EVG	6/1/2009	13 mo

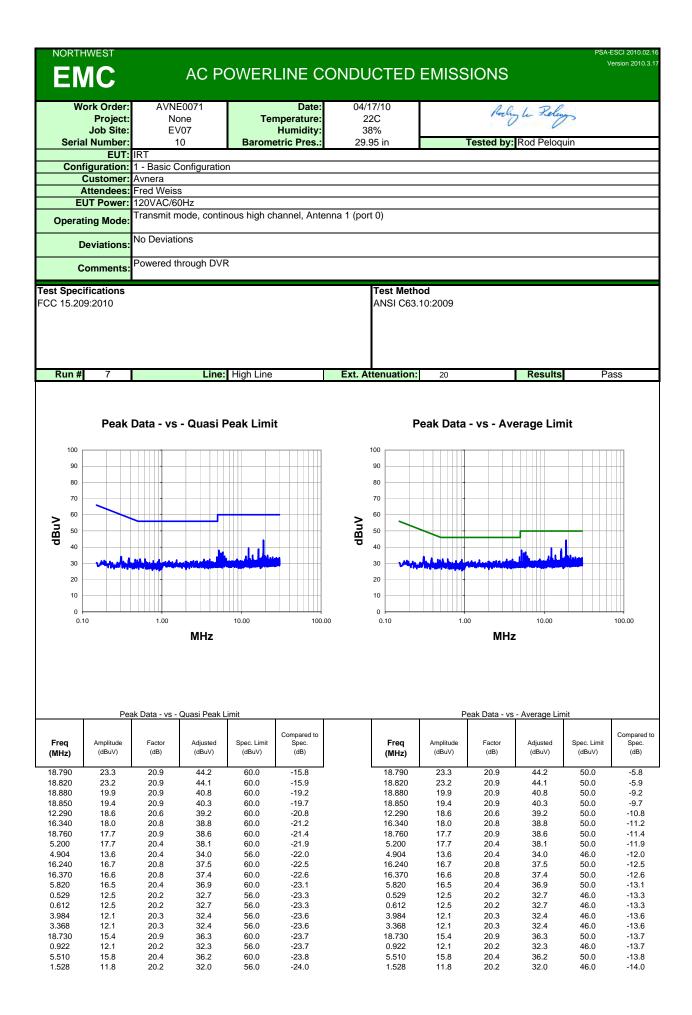
MEASUREMENT BANDWIDTHS

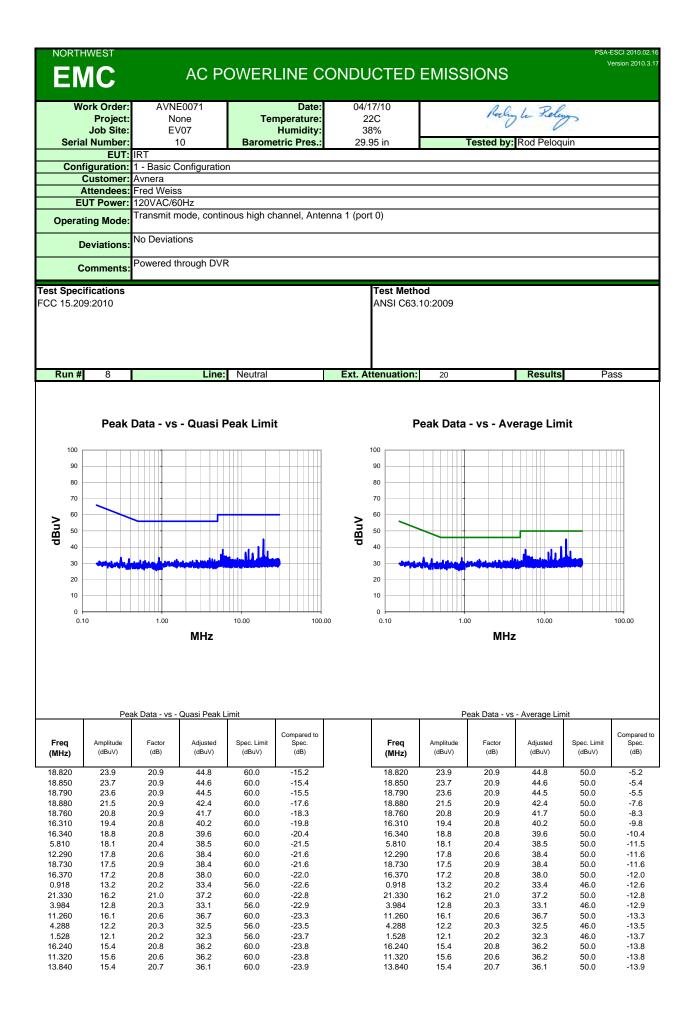

	Frequency Range	Peak Data	Quasi-Peak Data	Average Data
	(MHz)	(kHz)	(kHz)	(kHz)
	0.01 - 0.15	1.0	0.2	0.2
	0.15 - 30.0	10.0	9.0	9.0
	30.0 - 1000	100.0	120.0	120.0
	Above 1000	1000.0	N/A	1000.0
Mea	surements were made us	ing the bandwidths and dete	ctors specified. No video filte	er was used

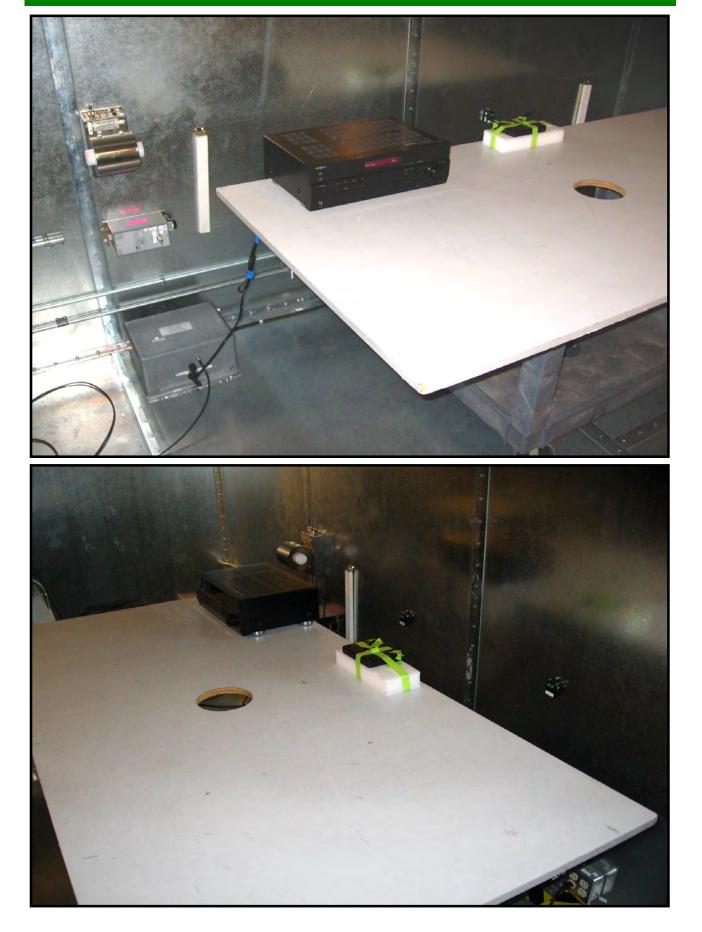

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.


TEST DESCRIPTION


Using the mode of operation and configuration noted within this report, conducted emissions tests were performed. The frequency range investigated (scanned), is also noted in this report. Conducted power line measurements are made, unless otherwise specified, over the frequency range from 150 kHz to 30 MHz to determine the line-to-ground radio-noise voltage that is conducted from the EUT power-input terminals that are directly (or indirectly via separate transformer or power supplies) connected to a public power network. Equipment is tested with power cords that are normally used or that have electrical or shielding characteristics that are the same as those cords normally used. Typically those measurements are made using a LISN (Line Impedance Stabilization Network), the 50ohm measuring port is terminated by a 50ohm EMI meter or a 50ohm resistive load. All 50ohm measuring ports of the LISN are terminated by 50ohm.





AC Powerline Conducted Emissions

AC Powerline Conducted Emissions

