FCC RF EXPOSURE REPORT

FCC ID: ATMCR375

Project No. : 1701C249A
Equipment : Bluetooth stereo Audio Module
Model : B426-AB1510
Applicant : Onkyo Corporation
Address : 2-1 Nisshin-cho,neyagawa-shi Osaka Japan 572-8540
According: : FCC Guidelines for Human Exposure IEEE C95.1

BTEIINC.

No.3, Jinshagang 1st Road, Shixia, Dalang Town, Dongguan, China. TEL: +86-769-8318-3000 FAX: +86-769-8319-6000

Table for Filed Antenna

Ant.	Manufacturer	Model Name	Antenna Type	Connector	Gain(dBi)
1	N/A	N/A	PCB	N/A	2.3

GENERAL CONCULUSION:

The upper tolerance is included in this calculation.
Maximum measured transmitter power:

OutputPower (dBm)	Output Power (mW)	Limit (mW)
-0.85	0.82	10

According to FCC KDB447498 V06, Appendix A, SAR Test Exclusion Thresholds for $100 \mathrm{MHz}-6 \mathrm{GHz}$ and $\leq 50 \mathrm{~mm}$
The maximum measured output peak power of this EUT is 0.82 mW , less than 10 mW at 5 mm distance.

Conclusion: No SAR evaluation required since transmitter power is below FCC threshold

MPE calculation:

MPE CALCULATION METHOD:

Calculation Method of RF Safety Distance:

$$
S=\frac{P G}{4 \pi^{2}}=\frac{E I R P}{4 \pi^{2}}
$$

where:
$\mathrm{S}=$ power density
$\mathrm{P}=$ power input to the antenna
$\mathrm{G}=$ power gain of the antenna in the direction of interest relative to an isotropic radiator
$R=$ distance to the center of radiation of the antenna

Table for Filed Antenna

Ant.	Manufacturer	Model Name	Antenna Type	Connector	Gain(dBi)
1	N/A	N/A	PCB	N/A	2.3

TEST RESULTS

Antenna Gain (dBi)	Antenna Gain (numeric)	Peak Output Power (dBm)	Peak Output Power (mW)	Power Density $(\mathrm{S})\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$	Limit of Power Density (S) $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$	Test Result
2.3	1.6982	-0.85	0.8222	0.00028	1	Complies

Note: the calculated distance is 20 cm .

