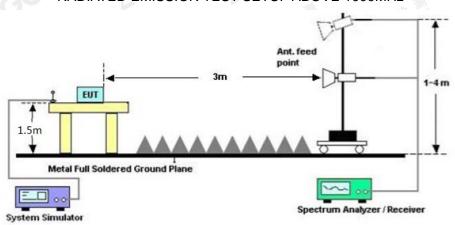


10.2. TEST SETUP


Radiated Emission Test-Setup Frequency Below 30MHz

RADIATED EMISSION TEST SETUP 30MHz-1000MHz

RADIATED EMISSION TEST SETUP ABOVE 1000MHz

The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ACC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

Report No.: AGC00079190201FE02

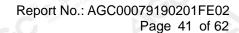
Page 40 of 62

10.3. LIMITS AND MEASUREMENT RESULT

15.209 Limit in the below table has to be followed

Frequencies (MHz)	Field Strength (micorvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	The state of the s
216~960	200	3
Above 960	500	3

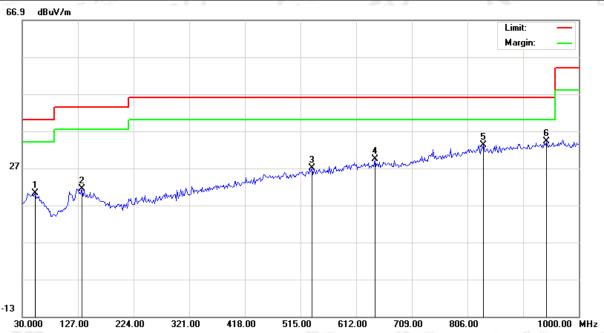
Note: All modes were tested For restricted band radiated emission,


the test records reported below are the worst result compared to other modes.

10.4. TEST RESULT

RADIATED EMISSION BELOW 30MHZ

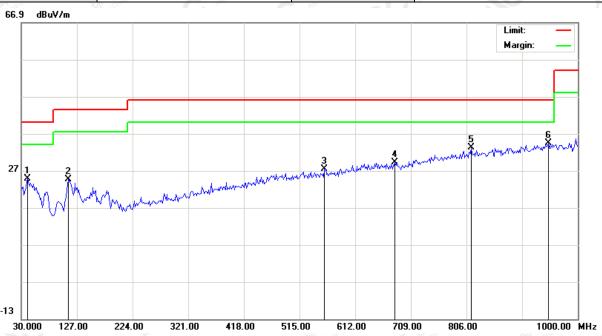
No emission found between lowest internal used/generated frequencies to 30MHz.


The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.go.tt.com.

RADIATED EMISSION BELOW 1GHZ

E	JT	Bluetooth 5.0 In-ear Earphones with Built-in and Multimedia Function	Model Name	18LY09
Te	emperature	25°C	Relative Humidity	55.4%
Pr	essure	960hPa	Test Voltage	Normal Voltage
Te	est Mode	Mode 4	Antenna	Horizontal

No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
	•	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		cm	degree	
1		52.6333	0.68	19.50	20.18	40.00	-19.82	peak			
2		133.4667	2.62	18.82	21.44	43.50	-22.06	peak			
3		534.4000	1.42	25.66	27.08	46.00	-18.92	peak			
4		644.3333	1.86	27.48	29.34	46.00	-16.66	peak			
5		833.4833	2.38	30.84	33.22	46.00	-12.78	peak			
6	*	943.4167	2.04	32.07	34.11	46.00	-11.89	peak			


RESULT: PASS

The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 1000, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.

EUT	Bluetooth 5.0 In-ear Earphones with Built-in and Multimedia Function	Model Name	18LY09
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 4	Antenna	Vertical

No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		cm	degree	
1		41.3167	4.68	20.04	24.72	40.00	-15.28	peak			
2		112.4500	7.39	17.23	24.62	43.50	-18.88	peak			
3		558.6500	1.21	26.14	27.35	46.00	-18.65	peak			
4		681.5167	1.26	27.93	29.19	46.00	-16.81	peak			
5		814.0833	2.58	30.59	33.17	46.00	-12.83	peak			
6	*	948.2667	2.31	32.12	34.43	46.00	-11.57	peak			

RESULT: PASS

Note: 1. Factor=Antenna Factor + Cable loss, Margin=Measurement-Limit.

2. All test modes had been pre-tested. The mode 4 is the worst case and recorded in the report.

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ACC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Report No.: AGC00079190201FE02

Page 43 of 62

RADIATED EMISSION ABOVE 1GHZ

EUT	Bluetooth 5.0 In-ear Earphones with Built-in and Multimedia Function	Model Name	18LY09
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 1	Antenna	Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Value Type
4804.062	48.02	3.76	51.78	74.00	-22.22	peak
4804.062	44.01	3.76	47.77	54.00	-6.23	AVG
7206.093	36.88	8.17	45.05	74.00	-28.95	peak
7206.093	33.62	8.17	41.79	54.00	-12.21	AVG
					THE SALE	一根 1000
		-ul	lin:		K a Complian	3N Global College
emark:		Alexander Alice	Kil pollance	® A Tonot	(8)	station of

EUT	Bluetooth 5.0 In-ear Earphones with Built-in and Multimedia Function	Model Name	18LY09	
Temperature	25°C	Relative Humidity	55.4%	
Pressure	960hPa	Test Voltage	Normal Voltage	
Test Mode	Mode 1	Antenna	Vertical	

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	- value Type
4804.062	49.99	3.76	53.75	74.00	-20.26	peak
4804.062	43.29	3.76	47.05	54.00	-6.95	AVG
7206.093	38.28	8.17	46.45	74.00	-27.56	peak
7206.093	35.83	8.17	44.00	54.00	-10.00	AVG
		nil.	TILL:	That Compile	F Got	sal so
litie	極	aucs Ar.	K compilance (8)	ation of Giv	Allestation C	
Remark:	* Chopal Court	0 m 3	Globa	Attes		
Factor = Ante	enna Factor + Ca	able Loss –	Pre-amplifier.			line.
					Illian	1900

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 1000, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Attestation of Global Compliance

Report No.: AGC00079190201FE02 Page 44 of 62

EUT	Bluetooth 5.0 In-ear Earphones with Built-in and Multimedia Function	Model Name	18LY09
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 2	Antenna	Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Value Type
4882.062	46.54	3.78	50.32	74.00	-23.68	peak
4882.062	42.98	3.78	46.76	54.00	-7.24	AVG
7323.093	39.95	8.23	48.18	74.00	-25.82	peak
7323.093	38.62	8.23	46.85	54.00	-7.15	AVG
					The same	~ 极
		-ul	LIE:	- 4	L al Complian	The Global College
Remark:		AST MALOS	The Manager of the Ma	® A sion of C	(B) 1	and destation of
actor = Ante	enna Factor + Ca	ble Loss -	Pre-amplifier.	Alles		

EUT	T Bluetooth 5.0 In-ear Earphones with Built-in and Multimedia Function Model Name		18LY09
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 2	Antenna	Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type
4882.062	48.00	3.78	51.78	74.00	-22.22	peak
4882.062	45.21	3.78	48.99	54.00	-5.01	AVG
7323.093	40.39	8.23	48.62	74.00	-25.38	peak
7323.093	36.79	8.23	45.02	54.00	-8.98	AVG
	AG.	ance Min	K Mindiance	Fin of Globe	® station of C	- 60
42 "300°	I I hal come	4	(0)01/100	Attesta	G1 ***	
Remark:	® A tation of Gu	Alte station				
Factor = Ante	enna Factor + Ca	able Loss –	Pre-amplifier.		li <u>li</u>	The San
			_		MAN 1.00	- 11 - Oliv

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 100°C, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at although the confirmed at all the

Report No.: AGC00079190201FE02 Page 45 of 62

EUT	Bluetooth 5.0 In-ear Earphones with Built-in and Multimedia Function	Model Name	18LY09
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 3	Antenna	Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type
4960.062	46.67	3.81	50.48	74.00	-23.52	peak
4960.062	45.11	3.81	48.92	54.00	-5.08	AVG
7440.093	39.78	8.27	48.05	74.00	-25.95	peak
7440.093	37.32	8.27	45.59	54.00	-8.42	AVG
- C			Till:	3	K Compliant	The state of the s
emark:		43 mg	The Manager of the Control of the Co	® SE STORY	3/05/20	estation of the

Factor = Antenna Factor + Cable Loss – Pre-amplifier.

EUT	Bluetooth 5.0 In-ear Earphones with Built-in and Multimedia Function	Model Name	18LY09
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 3	Antenna	Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type
4960.062	47.64	3.81	51.45	74.00	-22.55	peak
4960.062	44.64	3.81	48.45	54.00	-5.55	AVG
7440.093	38.78	8.27	47.05	74.00	-26.95	peak
7440.093	37.28	8.27	45.55	54.00	-8.45	AVG
(A) (B) (B) (B) (B) (B) (B) (B) (B) (B) (B	of Globa.	ijion oi	(3C)	GU		
Remark:	100					AST SALES
actor = Ante	enna Factor + Ca	ble Loss – l	Pre-amplifier.	The Tital plane	- 3N	al Court

RESULT: PASS

Note:

Other emissions from 1G to 25 GHz are considered as ambient noise. No recording in the test report. Factor = Antenna Factor + Cable loss - Amplifier gain, Over=Measure-Limit.

The "Factor" value can be calculated automatically by software of measurement system.

All test modes had been tested. The GFSK modulation is the worst case and recorded in the report.

The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

TEST RESULT FOR RESTRICTED BANDS REQUIREMENTS

EUT	Bluetooth 5.0 In-ear Earphones with Built-in and Multimedia Function	Model Name	18LY09
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 1	Antenna	Horizontal

PK

ΑV

RESULT: PASS

The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ACC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

VGC 8



EUT	Bluetooth 5.0 In-ear Earphones with Built-in and Multimedia Function	Model Name	18LY09
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 1	Antenna	Vertical

PK

AV

RESULT: PASS

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 40°C, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

AGC 8

EUT	Bluetooth 5.0 In-ear Earphones with Built-in and Multimedia Function	Model Name	18LY09
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 3	Antenna	Horizontal

PK

AV

RESULT: PASS

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

AGC 8

EUT	Bluetooth 5.0 In-ear Earphones with Built-in and Multimedia Function	Model Name	18LY09
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 3	Antenna	Vertical

PΚ

AV

RESULT: PASS

Note: The factor had been edited in the "Input Correction" of the Spectrum Analyzer. So the Amplitude of test plots is equal to Reading level plus the Factor in dB. Use the A dB(μ V) to represent the Amplitude. Use the F dB(μ V/m) to represent the Field Strength. So A=F. All test modes had been pre-tested. The GFSK modulation is the worst case and recorded in the report.

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a true;//www.agc.gett.com.

Report No.: AGC00079190201FE02 Page 50 of 62

11. NUMBER OF HOPPING FREQUENCY

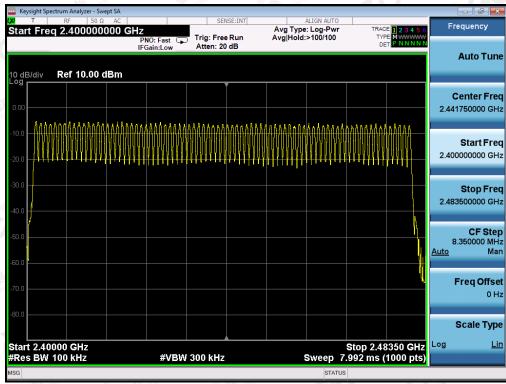
11.1. MEASUREMENT PROCEDURE

The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:

- 1. Span: The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen.
- 2. RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.
- 3. VBW > RBW. Sweep: Auto. Detector function: Peak. Trace: Max hold.
- 4. Allow the trace to stabilize.

11.2. TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)

Same as described in section 8.2


11.3. MEASUREMENT EQUIPMENT USED

The same as described in section 6

11.4. LIMITS AND MEASUREMENT RESULT

TOTAL NO. OF	LIMIT (NO. OF CH)	MEASUREMENT (NO. OF CH)	RESULT
HOPPING CHANNEL	>=15	79	PASS

TEST PLOT FOR NO. OF TOTAL CHANNELS

Note: The GFSK modulation is the worst case and recorded in the report.

The results spowford this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 40°C, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Attestation of Global Compliance

(GC) S

Report No.: AGC00079190201FE02

Page 51 of 62

12. TIME OF OCCUPANCY (DWELL TIME)

12.1. MEASUREMENT PROCEDURE

The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:

- 1. Span: Zero span, centered on a hopping channel.
- 2. RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel.
- 3. Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel.
- 4. Detector function: Peak. Trace: Max hold.
- 5. Use the marker-delta function to determine the transmit time per hop.
- 6. Repeat the measurement using a longer sweep time to determine the number of hops over the period specified in the requirements. The sweep time shall be equal to, or less than, the period specified in the requirements. Determine the number of hops over the sweep time and calculate the total number of hops in the period specified in the requirements, using the following equation:

(Number of hops in the period specified in the requirements) = (number of hops on spectrum analyzer) \times (period specified in the requirements / analyzer sweep time)

7. The average time of occupancy is calculated from the transmit time per hop multiplied by the number of hops in the period specified in the requirements.

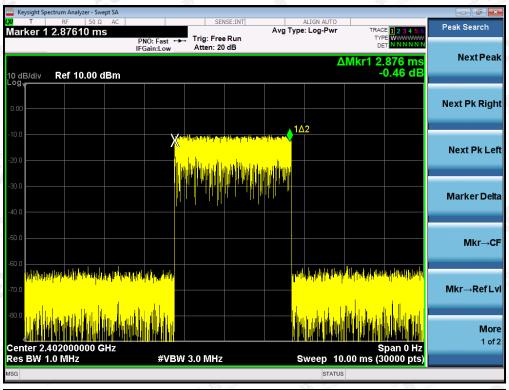
12.2. TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)

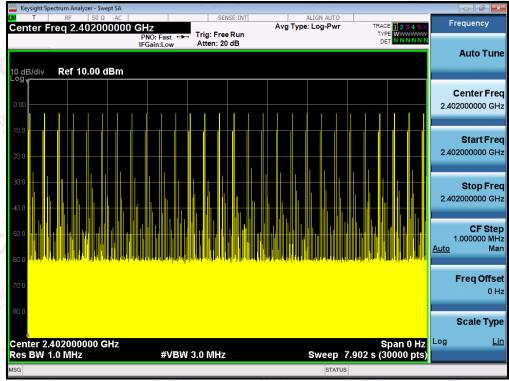
Same as described in section 8.2

12.3. MEASUREMENT EQUIPMENT USED

The same as described in section 6

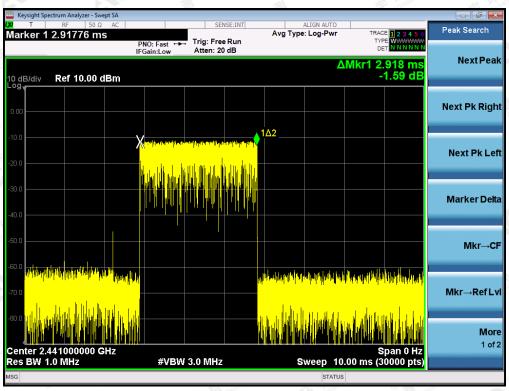
12.4. LIMITS AND MEASUREMENT RESULT

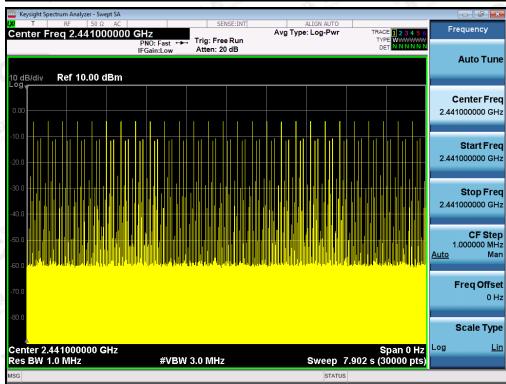

Channel	Time of Pulse for DH5 (ms)	Number of hops in the period specified in the requirements	Sweep Time (ms)	Limit (ms)
Low	2.876	28*4	322.112	400
Middle	2.918	27*4	315.144	400
High	2.917	28*4	326.704	400


Note: The 8-DPSK modulation is the worst case and recorded in the report.

The results spowning this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gott.com.

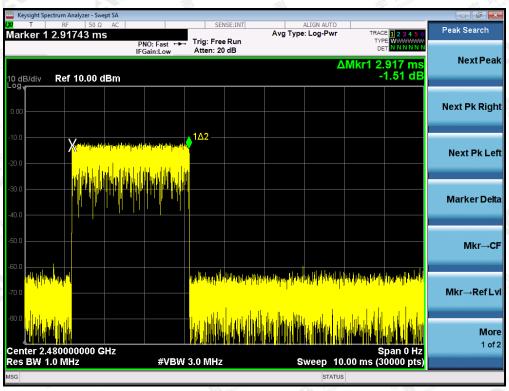
TEST PLOT OF LOW CHANNEL

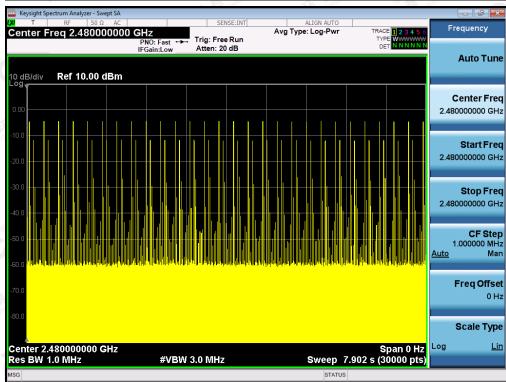



The results shows the sample (s) tested unless otherwise stated and the sample (s) are retained for 30 days only. The document is issued by (CC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a true; //www.agc cant.com.

IGC 8

TEST PLOT OF MIDDLE CHANNEL





The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

TEST PLOT OF HIGH CHANNEL

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 40°C, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-cert.com.

@ 400 089 2118

13. FREQUENCY SEPARATION

13.1. MEASUREMENT PROCEDURE

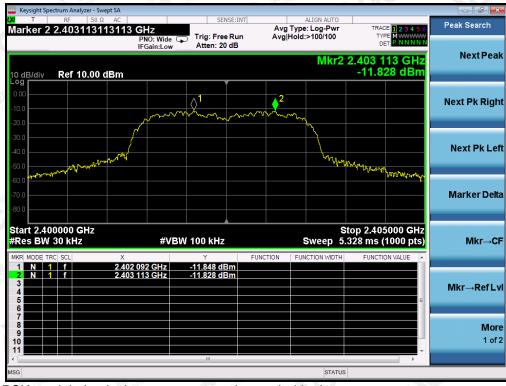
The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:

- 1. Span: Wide enough to capture the peaks of two adjacent channels.
- 2. RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.
- 3. Video (or average) bandwidth (VBW) ≥ RBW.
- 4. Sweep: Auto. e) Detector function: Peak. f) Trace: Max hold. g) Allow the trace to stabilize.

Use the marker-delta function to determine the separation between the peaks of the adjacent channels.

13.2. TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)

Same as described in section 6.2


13.3. MEASUREMENT EQUIPMENT USED

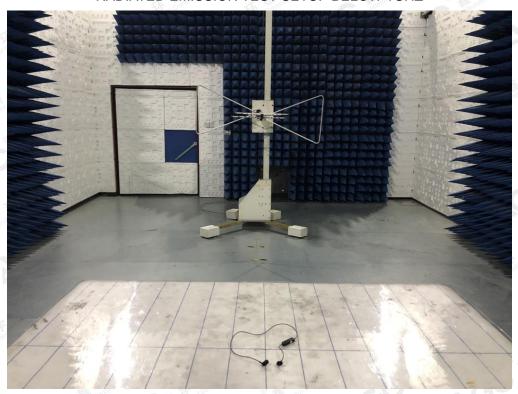
The same as described in section 6.3

13.4. LIMITS AND MEASUREMENT RESULT

CHANNEL	CHANNEL SEPARATION	LIMIT	RESULT
	KHz	KHz	The Parameter of the state of t
CH01-CH02	1000	>=25 KHz or 2/3 20 dB BW	Pass

TEST PLOT FOR FREQUENCY SEPARATION

Note: The 8-DPSK modulation is the worst case and recorded in the report.


The results spowfil this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

(GC) S

APPENDIX A: PHOTOGRAPHS OF TEST SETUP

RADIATED EMISSION TEST SETUP BELOW 1GHZ

RADIATED EMISSION TEST SETUP ABOVE 1GHZ

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Attestation of Global Compliance

Tel: +86-755 2908 1955 Fax: +86-755 2600 8484 E-mail: agc@agc-cert.com @ 400 089 2118 Add: 2/F., Building 2, No.1-4,Chaxi Sanwei Technical Industrial Park,Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China

APPENDIX B: PHOTOGRAPHS OF EUT

ALL VIEW OF EUT

TOP VIEW OF EUT

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ACC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

Attestation of Global Compliance

\GC g

Tel: +86-755 2908 1955 Fax: +86-755 2600 8484 E-mail: agc@agc-cert.com @ 400 089 2118 Add: 2/F., Building 2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China

BOTTOM VIEW OF EUT

FRONT VIEW OF EUT

The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ACC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

Attestation of Global Compliance

AGC 8

BACK VIEW OF EUT

LEFT VIEW OF EUT

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

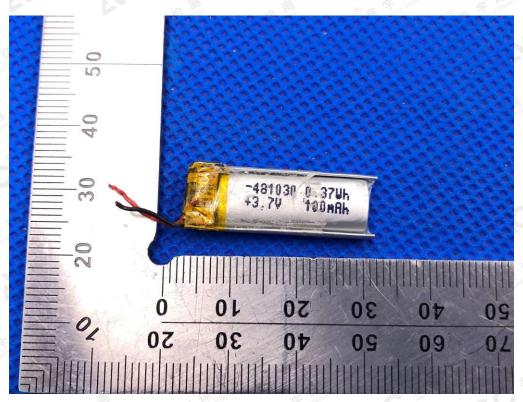
Attestation of Global Compliance

\GC g

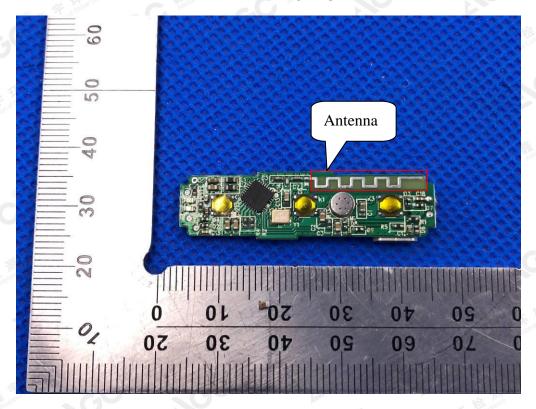
Tel: +86-755 2908 1955 Fax: +86-755 2600 8484 E-mail: agc@agc-cert.com @ 400 089 2118 Add: 2/F., Building 2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China

RIGHT VIEW OF EUT

OPEN VIEW OF EUT

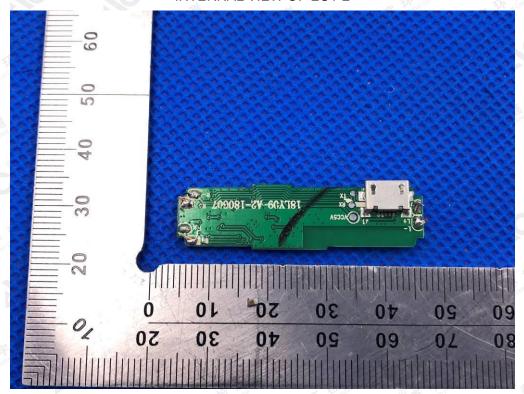

The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ACC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

Attestation of Global Compliance

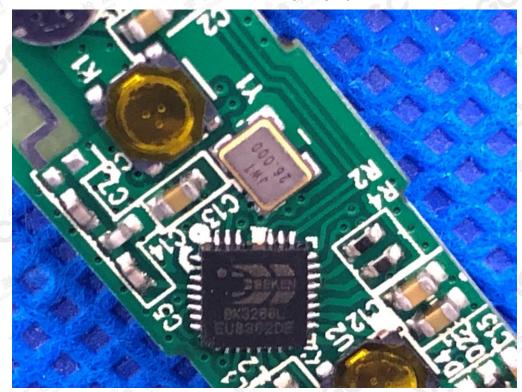

Tel: +86-755 2908 1955 Fax: +86-755 2600 8484 E-mail: agc@agc-cert.com @ 400 089 2118 Add: 2/F. , Building 2, No.1-4,Chaxi Sanwei Technical Industrial Park,Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China

VIEW OF BATTERY

INTERNAL VIEW OF EUT-1


The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Attestation of Global Compliance


Tel: +86-755 2908 1955 Fax: +86-755 2600 8484 E-mail: agc@agc-cert.com @ 400 089 2118 Add: 2/F., Building 2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China

INTERNAL VIEW OF EUT-2

INTERNAL VIEW OF EUT-3

----END OF REPORT----

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

Attestation of Global Compliance

Tel: +86-755 2908 1955 Fax: +86-755 2600 8484 E-mail: agc@agc-cert.com @ 400 089 2118 Add: 2/F., Building 2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China