

Engineering and Testing for EMC and Safety Compliance

CERTIFICATION APPLICATION REPORT
FCC PART 90 & INDUSTRY CANADA RSS-119

Test Lab:		Applicant:	
Rhein Tech Laboratories, Inc. Phone: 703-689-0368 360 Herndon Parkway Fax: 703-689-2056 Suite 1400 Web: www.rheintech.com Herndon, VA 20170 Contact: FCCINFO@rheintech.com		E. F. Johnson Company Phone: 507-835-6276 299 Johnson Ave. Fax: 507-835-6666 P.O. Box 1249 Contact: Ann Jones Waseca, MN 56093-0514	
FCC ID:	ATH2424140	FRN NUMBER:	0005-8136-88
MODEL:	242-414x-xxx	RTL WORK ORDER NUMBER:	2004211
EQUIPMENT TYPE:	UHF-H PTT	RTL QUOTE NUMBER:	QRTL04-376
DATE OF TEST REPORT:	December 17, 2004		
FCC Classification:	<input checked="" type="checkbox"/> TNF – Licensed Non-Broadcast Transmitter Held to Face		
FCC Rule Part(s):	Part 90: Private Land Mobile Radio Services		
Industry Canada Standard:	RSS-119: Land Mobile and Fixed Radio Transmitters and Receivers, 27.41 MHz to 960 MHz		
Frequency Range (MHz)	Output Power (W)	Freq. Tolerance (PPM, %, or Hz)	Emission Designator
450 – 512	4.7	4.63 PPM	11K0F3E
450 - 512	4.7	4.63 PPM	16K0F3E
450 - 512	4.7	4.63 PPM	8K10F1E
450 - 512	4.7	4.63 PPM	8K10F1D

We, the undersigned, hereby declare that the equipment tested and referenced in this report conforms to the identified standard(s) as described in this test report. No modifications were made to the equipment during testing in order to achieve compliance with these standards.

Furthermore, there was no deviation from, additions to or exclusions from the FCC Part 2, FCC Part 90, Industry Canada RSS-119, ANSI C63.2, ANSI/TIA-603-B-2002 and ANSI/TIA/EIA 603-1.

Signature:

Date: December 17, 2004

Typed/Printed Name: Desmond A. Fraser

Position: President

Signature:

Date: December 17, 2004

Typed/Printed Name: Daniel Baltzell

Position: Test Engineer

TABLE OF CONTENTS

1	GENERAL INFORMATION	5
1.1	SCOPE	5
1.2	TEST FACILITY	5
1.3	RELATED SUBMITTAL(S)/GRANT(S)	5
2	EQUIPMENT INFORMATION.....	6
2.1	TEST SYSTEM DETAILS.....	6
2.2	WORST CASE CONFIGURATION OF TESTED SYSTEM	7
3	FCC PART 2.1033(C)(8); DC VOLTAGES AND CURRENTS	8
4	RF POWER OUTPUT - §2.1046 / RSS-119 §6.2.....	9
4.1	ANSI/TIA-603-B-2002, SECTION 2.2.1 TEST PROCEDURE	9
4.2	RF POWER OUTPUT TEST EQUIPMENT	9
4.3	RF POWER OUTPUT TEST DATA	10
5	MODULATION CHARACTERISTICS - §2.1047 TEST PROCEDURE / RSS-119 §6.6	11
5.1	MODULATION CHARACTERISTICS TEST EQUIPMENT	11
6	FCC PART 2 §2.1047 (A): MODULATION CHARACTERISTICS - AUDIO FREQUENCY RESPONSE.....	11
6.1	TEST PROCEDURE.....	11
6.2	TEST DATA.....	12
7	FCC PART 2 §2.1047 (A): MODULATION CHARACTERISTICS - AUDIO LOW PASS FILTER RESPONSE	13
7.1	TEST PROCEDURE.....	13
7.2	TEST DATA.....	13
8	FCC PART 2 §2.1047 (B): MODULATION CHARACTERISTICS - MODULATION LIMITING	14
8.1	TEST PROCEDURE.....	14
8.2	TEST DATA.....	14
9	OCCUPIED BANDWIDTH - §2.1049 / RSS-119 §6.4.....	18
9.1	OCCUPIED BANDWIDTH - §2.1049 TEST PROCEDURE	18
9.2	OCCUPIED BANDWIDTH TEST EQUIPMENT	18
9.3	OCCUPIED BANDWIDTH TEST DATA	19
10	SPURIOUS EMISSIONS AT ANTENNA TERMINAL - §2.1051 / RSS-119 §6.3	22
10.1	SPURIOUS EMISSIONS AT ANTENNA TERMINAL - §2.1051 TEST PROCEDURE	22
10.2	SPURIOUS EMISSIONS AT ANTENNA TERMINAL TEST EQUIPMENT	22
10.3	CONDUCTED SPURIOUS EMISSIONS TEST DATA.....	22
11	RADIATED SPURIOUS AND HARMONIC EMISSIONS - §2.1053 / RSS-119 §6.3	25
11.1	RADIATED SPURIOUS AND HARMONIC EMISSIONS - §2.1053	25
11.2	RADIATED SPURIOUS TEST EQUIPMENT	25
11.3	RADIATED SPURIOUS EMISSIONS TEST DATA - §2.1053	26
12	FREQUENCY STABILITY / TEMPERATURE VARIATION - §2.1055 / RSS-119 §7.0.....	27
12.1	MEASUREMENT METHOD:	27
12.2	TIME PERIOD AND PROCEDURE:	27
12.3	FREQUENCY TOLERANCE:	27
12.4	FREQUENCY STABILITY TEST EQUIPMENT	27
12.5	FREQUENCY STABILITY TEST DATA - §2.1055	28
13	FCC PART 90 §90.214 / RSS-119 §6.5: TRANSIENT FREQUENCY BEHAVIOR.....	31
13.1	TRANSIENT FREQUENCY BEHAVIOR TEST PROCEDURE	31
13.2	TRANSIENT FREQUENCY BEHAVIOR LIMITS	31
13.3	TRANSIENT FREQUENCY BEHAVIOR TEST DATA	32
14	FCC PART 2.202: NECESSARY BANDWIDTH AND EMISSION BANDWIDTH	36
15	CONCLUSION.....	37

FIGURE INDEX

FIGURE 2-1: WORST CASE CONFIGURATION OF SYSTEM UNDER TEST	7
FIGURE 4-1: ILLUSTRATION OF HOW THE EQUIPMENT IS CONNECTED	9

TABLE INDEX

TABLE 2-1: EQUIPMENT UNDER TEST (EUT)	6
TABLE 2-2: EXTERNAL COMPONENTS IN TEST CONFIGURATION.....	6
TABLE 4-1: RF POWER OUTPUT TEST EQUIPMENT	9
TABLE 4-2: RF POWER OUTPUT TEST DATA ZONE 1	10
TABLE 4-3: MODULATION CHARACTERISTICS TEST EQUIPMENT.....	11
TABLE 8-1: OCCUPIED BANDWIDTH TEST EQUIPMENT	18
TABLE 9-1: SPURIOUS EMISSIONS AT ANTENNA TERMINAL TEST EQUIPMENT	22
TABLE 9-2: CONDUCTED SPURIOUS EMISSIONS (CHANNEL 4 AT 450 MHZ).....	22
TABLE 9-3: CONDUCTED SPURIOUS EMISSIONS (CHANNEL 5 AT 480 MHZ).....	23
TABLE 9-3: CONDUCTED SPURIOUS EMISSIONS (CHANNEL 6 AT 512 MHZ).....	24
TABLE 10-1: RADIATED SPURIOUS TEST EQUIPMENT.....	25
TABLE 10-3: RADIATED SPURIOUS EMISSIONS DATA §2.1053.....	26
TABLE 11-1: FREQUENCY STABILITY TEST EQUIPMENT	27
TABLE 11-2: FREQUENCY STABILITY DATA - §2.1055: TEMPERATURE.....	28
TABLE 11-3: FREQUENCY STABILITY DATA - §2.1055: VOLTAGE	30
TABLE 12-1: REQUIREMENTS FOR EUT WITH 25 KHZ CHANNEL SPACING:.....	31
TABLE 12-2: REQUIREMENTS FOR EUT WITH 12.5 KHZ CHANNEL SPACING:.....	31
TABLE 12-3: TRANSIENT FREQUENCY BEHAVIOR TEST EQUIPMENT	32

PLOT INDEX

PLOT 6-1: AUDIO FREQUENCY RESPONSE.....	12
PLOT 7-1: AUDIO LOW PASS FILTER RESPONSE (CHANNEL 3).....	13
PLOT 8-1: MODULATION LIMITING RESPONSE (WIDEBAND POSITIVE PEAK), CHANNEL 2, 480 MHZ.....	14
PLOT 8-2: MODULATION LIMITING RESPONSE (WIDEBAND; NEGATIVE PEAK), CH 2, 480 MHZ	15
PLOT 8-3: MODULATION LIMITING RESPONSE (NARROWBAND; POSITIVE PEAK), CH 5, 480 MHZ.....	16
PLOT 8-4: MODULATION LIMITING RESPONSE (NARROWBAND; NEGATIVE PEAK), CH 5, 480 MHZ	17
PLOT 9-1: MASK D (480 MHZ; CH 5; NARROWBAND)	19
PLOT 9-2: MASK B (480 MHZ; CH 2; WIDEBAND)	20
PLOT 9-3: MASK B (480 MHZ, CH 8, P25 DIGITAL)	21
PLOT 12-1: TEMPERATURE FREQUENCY STABILITY - §2.1055	29
PLOT 12-2: VOLTAGE FREQUENCY STABILITY - §2.1055.....	30
PLOT 13-1: (ON TIME) – CHANNEL 2: 480 MHZ (12.5 KHZ NARROWBAND)	32
PLOT 13-2: (OFF TIME) – CHANNEL 2: 480 MHZ (12.5 KHZ NARROWBAND)	33
PLOT 13-3: (ON TIME) – CHANNEL 2: 480 MHZ (25 KHZ WIDEBAND)	34
PLOT 13-4: (OFF TIME) – CHANNEL 2: 480 MHZ (25 KHZ WIDEBAND)	35

APPENDIX INDEX

APPENDIX A:	RF EXPOSURE	38
APPENDIX B:	AGENCY AUTHORIZATION LETTER	39
APPENDIX C:	CONFIDENTIALITY REQUEST LETTER	40
APPENDIX D:	ATTESTATION LETTER	41
APPENDIX E:	LABEL AND LABEL LOCATION	42
APPENDIX F:	PRODUCT DESCRIPTION	44
APPENDIX G:	BILL OF MATERIAL (PARTS LIST)	45
APPENDIX H:	TUNE UP / ALIGNMENT	46
APPENDIX I:	SCHEMATIC	47
APPENDIX J:	BLOCK DIAGRAM	48
APPENDIX K:	USER'S MANUAL	49
APPENDIX L:	TEST PHOTOGRAPHS	50
APPENDIX M:	EXTERNAL PHOTOGRAPHS	52
APPENDIX N:	INTERNAL PHOTOGRAPHS	57

PHOTOGRAPH INDEX

PHOTOGRAPH 1:	FCC ID LABEL SAMPLE	42
PHOTOGRAPH 2:	RF LABEL	43
PHOTOGRAPH 3:	RADIATED FRONT VIEW	50
PHOTOGRAPH 4:	RADIATED BACK VIEW	51
PHOTOGRAPH 5:	RADIO FRONT	52
PHOTOGRAPH 6:	RADIO BACK	53
PHOTOGRAPH 7:	RADIO ACCESSORY CONNECTOR SIDE	54
PHOTOGRAPH 8:	RADIO TOP	55
PHOTOGRAPH 9:	RADIO PTT SIDE	56
PHOTOGRAPH 10:	CHASSIS WITH SHIELDS	57
PHOTOGRAPH 11:	CHASSIS WITH SHIELDS REMOVED	58
PHOTOGRAPH 12:	POWER SUPPLY BOARD TOP	59
PHOTOGRAPH 13:	POWER SUPPLY BOARD BOTTOM	60
PHOTOGRAPH 14:	RF BOARD BOTTOM	61
PHOTOGRAPH 15:	RF BOARD TOP	62
PHOTOGRAPH 16:	DIGITAL BOARD IN FRONT COVER	63
PHOTOGRAPH 17:	FRONT COVER WITH DIGITAL BOARD AND CONTROL ASSEMBLY	64
PHOTOGRAPH 18:	FRONT COVER WITH DIGITAL BOARD REMOVED	65

Rhein Tech Laboratories
360 Herndon Parkway
Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

Report #: 2004211
FCC ID: ATH2424140
Model: 242-414x-xxx
Standards: FCC Part 90 & IC RSS-119
Date: December 17, 2004

1 GENERAL INFORMATION

1.1 SCOPE

FCC Rules Part 90 (Subpart K): This subpart sets forth special requirements applicable to the use of certain frequencies or frequency bands.

Industry Canada RSS-119: This document sets out standards for radio transmitters and receivers for the land mobile and fixed services in bands allocated within the 27.41 MHz to 960 MHz range.

All measurements contained in this application were conducted in accordance with the FCC Rules and Regulations CFR47 Part 90, Industry Canada RSS-119 and ANSI/TIA-603-B-2002 Land Mobile FM or PM Communications Equipment Measurement and Performance Standards. The measurement instrumentation conforms to the ANSI C63.2; standard for EMI and Field Strength Instrumentation. Calibration checks are performed regularly on the instruments, and all accessories including high pass filter, coaxial attenuator, preamplifier and cables.

1.2 TEST FACILITY

The open area test site and conducted measurement facility used to collect the radiated data is located at 360 Herndon Parkway, Suite 1400, Herndon, Virginia 20170. This site has been fully described in a report and approved by the Federal Communications Commission to perform AC line conducted and radiated emissions testing (ANSI C63.2).

1.3 RELATED SUBMITTAL(S)/GRANT(S)

This is an original application for certification. A DoC report is on file for the receiver section and digital interface for the EUT. The IF, LO and up to the 2nd LO were investigated.

Rhein Tech Laboratories
360 Herndon Parkway
Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

Report #: 2004211
FCC ID: ATH2424140
Model: 242-414x-xxx
Standards: FCC Part 90 & IC RSS-119
Date: December 17, 2004

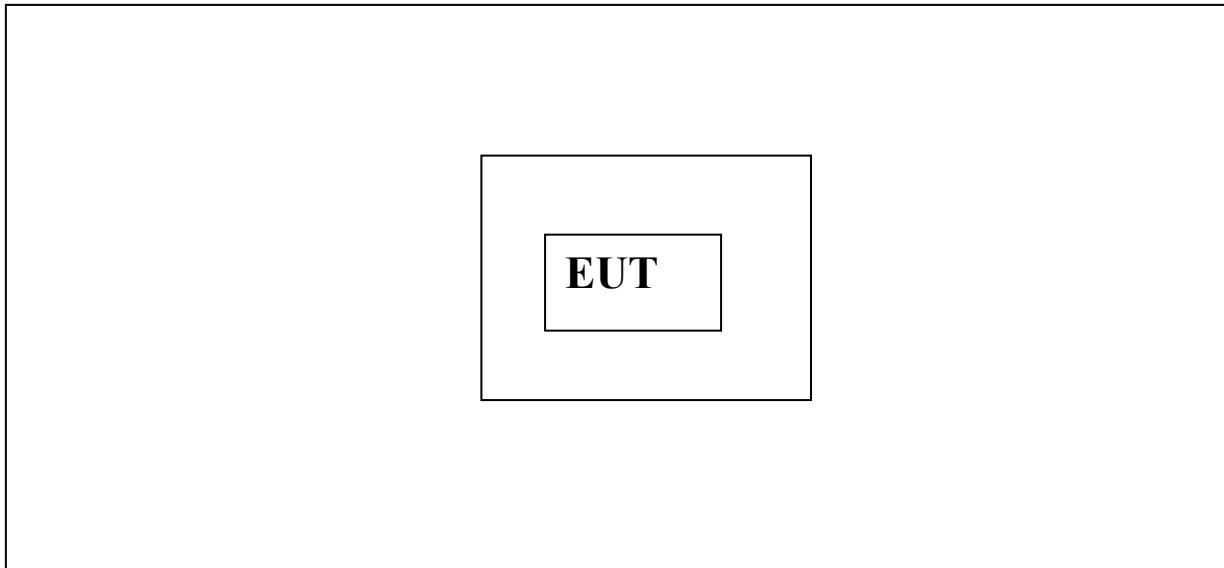
2 EQUIPMENT INFORMATION

2.1 TEST SYSTEM DETAILS

The test sample was received on 12/3/04. The FCC Identifiers for all equipment, plus descriptions of all cables used in the tested system are:

TABLE 2-1: EQUIPMENT UNDER TEST (EUT)

Part	Manufacturer	Model	Serial Number	FCC ID	Cable Description	RTL Bar Code
Portable Radio	EF Johnson	242-414x-xxx (UHF-High)	N/A	ATH2424140	N/A	016319


TABLE 2-2: EXTERNAL COMPONENTS IN TEST CONFIGURATION

Part	Manufacturer	Model	Serial Number	FCC ID	Cable Description	RTL Bar Code
NIMH Battery (7.5 VDC)	EF Johnson	N/A	CLI=059906	N/A	N/A	016389
Battery Charger	EF Johnson	N/A	CLI-059909	N/A	N/A	016393
AC Adapter	Ault, Inc.	T48240833A300G	0209	N/A	1.6 M Unshielded	016395
Handset	EF Johnson	V2-10023	0237	N/A	0.8m shielded	015068
Headset	EF Johnson	5890015059	N/A	N/A	1m shielded	014860
1/4 wave Antenna	EF Johnson	N/A	CLI-058932	N/A	N/A	016394
Adapter	EF Johnson	N/A	N/A	N/A	N/A	015825

Rhein Tech Laboratories
360 Herndon Parkway
Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

Report #: 2004211
FCC ID: ATH2424140
Model: 242-414x-xxx
Standards: FCC Part 90 &IC RSS-119
Date: December 17, 2004

2.2 WORST CASE CONFIGURATION OF TESTED SYSTEM

FIGURE 2-1: WORST CASE CONFIGURATION OF SYSTEM UNDER TEST

Rhein Tech Laboratories
360 Herndon Parkway
Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

Report #: 2004211
FCC ID: ATH2424140
Model: 242-414x-xx
Standards: FCC Part 90 &IC RSS-119
Date: December 17, 2004

3 FCC PART 2.1033(C)(8); DC VOLTAGES AND CURRENTS

The dc voltages applied to and dc currents into the several elements of the final radio frequency amplifying device for normal operation over the power range where:

7.5 volts @ 3.77A

4 RF POWER OUTPUT - §2.1046 / RSS-119 §6.2

4.1 ANSI/TIA-603-B-2002, SECTION 2.2.1 TEST PROCEDURE

Connect the equipment as illustrated below. Measure the transmitter output power during the defined duty cycle. The EUT was connected to a coaxial attenuator having a 50Ω load impedance.

FIGURE 4-1: ILLUSTRATION OF HOW THE EQUIPMENT IS CONNECTED

4.2 RF POWER OUTPUT TEST EQUIPMENT

TABLE 4-1: RF POWER OUTPUT TEST EQUIPMENT

RTL Asset #	Manufacturer	Model	Part Type	Serial Number	Cal Due Date
901184	Agilent Technologies	E4416A	EPM-P Power Meter, single channel	GB41050573	08/02/2005
901186	Agilent Technologies	E9323A (50 MHz - 6 GHz)	Peak & Average Power Sensor	US40410380	09/10/2005

Rhein Tech Laboratories
360 Herndon Parkway
Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

Report #: 2004211
FCC ID: ATH2424140
Model: 242-414x-xxx
Standards: FCC Part 90 &IC RSS-119
Date: December 17, 2004

4.3 RF POWER OUTPUT TEST DATA

TABLE 4-2: RF POWER OUTPUT TEST DATA ZONE 1

Frequency (MHz)	Channel	Power Measured (dBm)	Power (Watt)
450	1,4, and 7	36.6	4.6
480	2,5, and 8	36.7	4.7
512	3,6, and 9	36.6	4.6

NOTE: CW measurements used for all power measurements

TEST PERSONNEL:

DANIEL BALTZELL

DECEMBER 1, 2004

TEST TECHNICIAN/ENGINEER

SIGNATURE

DATE OF TEST

Rhein Tech Laboratories
360 Herndon Parkway
Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

Report #: 2004211
FCC ID: ATH2424140
Model: 242-414x-xxx
Standards: FCC Part 90 &IC RSS-119
Date: December 17, 2004

5 MODULATION CHARACTERISTICS - §2.1047 TEST PROCEDURE / RSS-119 §6.6

The modulation characteristic tests apply to analog modulation, and do not apply to digital modulation.

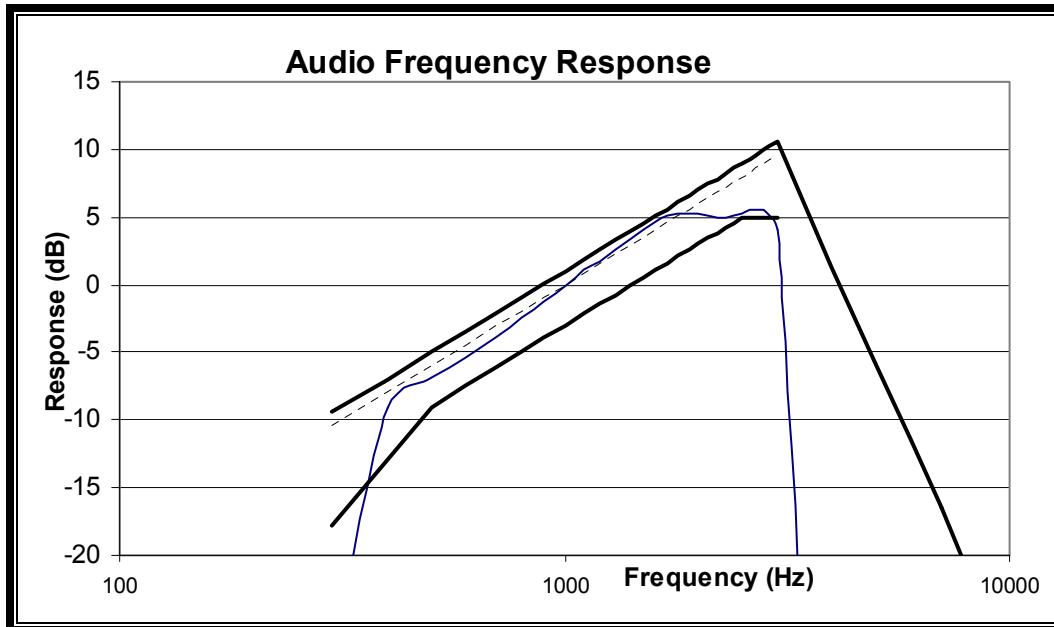
5.1 MODULATION CHARACTERISTICS TEST EQUIPMENT

TABLE 5-1: MODULATION CHARACTERISTICS TEST EQUIPMENT

RTL Asset #	Manufacturer	Model	Part Type	Serial Number	Cal Due Date
901118	Hewlett Packard	HP8901B	Modulation Analyzer 150 kHz-1300 MHz	2406A00178	7/7/05
901054	Hewlett Packard	HP3586B	Selective Level Meter	1928A01892	9/8/05
901057	Hewlett Packard	3336B	Synthesizer/Level Generator	2514A02585	9/8/05

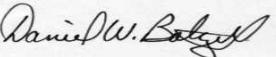
6 FCC PART 2 §2.1047 (A): MODULATION CHARACTERISTICS - AUDIO FREQUENCY RESPONSE

6.1 TEST PROCEDURE


ANSI/TIA-603-B-2002, section 2.2.6. The audio frequency response is the degree of closeness to which the frequency deviation of the transmitter follows a prescribed characteristic. The input audio level at 1000 Hz is set to produce 20% of the rated system deviation. This point is shown as the 0 dB reference level, noted DEVref. The audio signal generator was varied from 100 Hz to 5 kHz with the input level held constant. The deviation in kHz was recorded using a modulation analyzer as DEVfreq. The response in dB relative to 1 kHz was calculated as follows: Audio Frequency Response = 20 LOG (DEVfreq/DEVref)

Rhein Tech Laboratories
360 Herndon Parkway
Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

Report #: 2004211
FCC ID: ATH2424140
Model: 242-414x-xxx
Standards: FCC Part 90 &IC RSS-119
Date: December 17, 2004


6.2 TEST DATA

PLOT 6-1: AUDIO FREQUENCY RESPONSE

TEST PERSONNEL:

DANIEL BALTZELL
TEST TECHNICIAN/ENGINEER

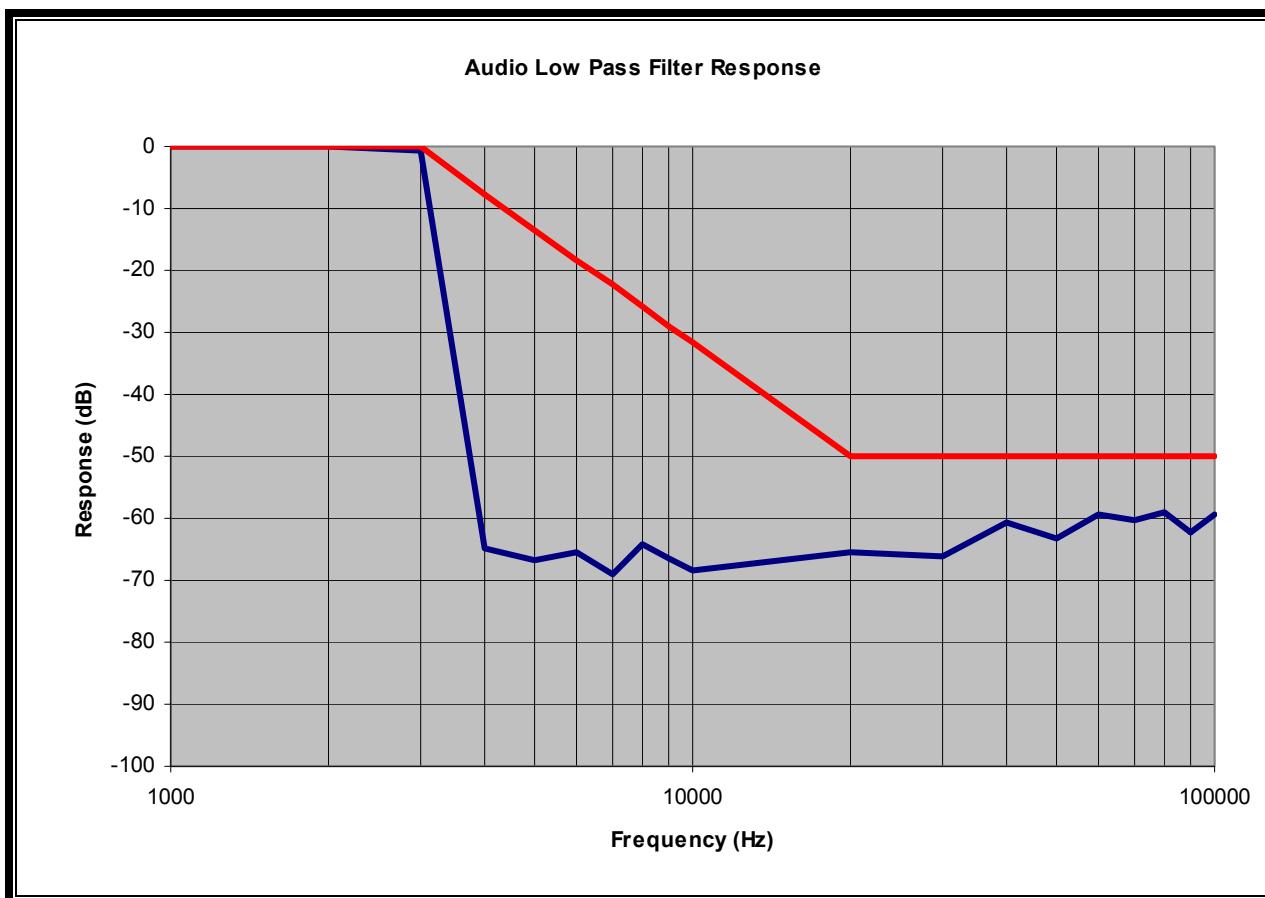
SIGNATURE

DECEMBER 16, 2004
DATE OF TEST

Rhein Tech Laboratories
360 Herndon Parkway
Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

Report #: 2004211
FCC ID: ATH2424140
Model: 242-414x-xxx
Standards: FCC Part 90 & IC RSS-119
Date: December 17, 2004

7 FCC PART 2 §2.1047 (A): MODULATION CHARACTERISTICS - AUDIO LOW PASS FILTER RESPONSE


7.1 TEST PROCEDURE

ANSI/TIA-603-B-2002, 2.2.15

The Audio Low Pass Filter Response is the frequency response of the post limiter low pass filter circuit above 3000 Hz.

7.2 TEST DATA

PLOT 7-1: AUDIO LOW PASS FILTER RESPONSE (CHANNEL 3)

TEST PERSONNEL:

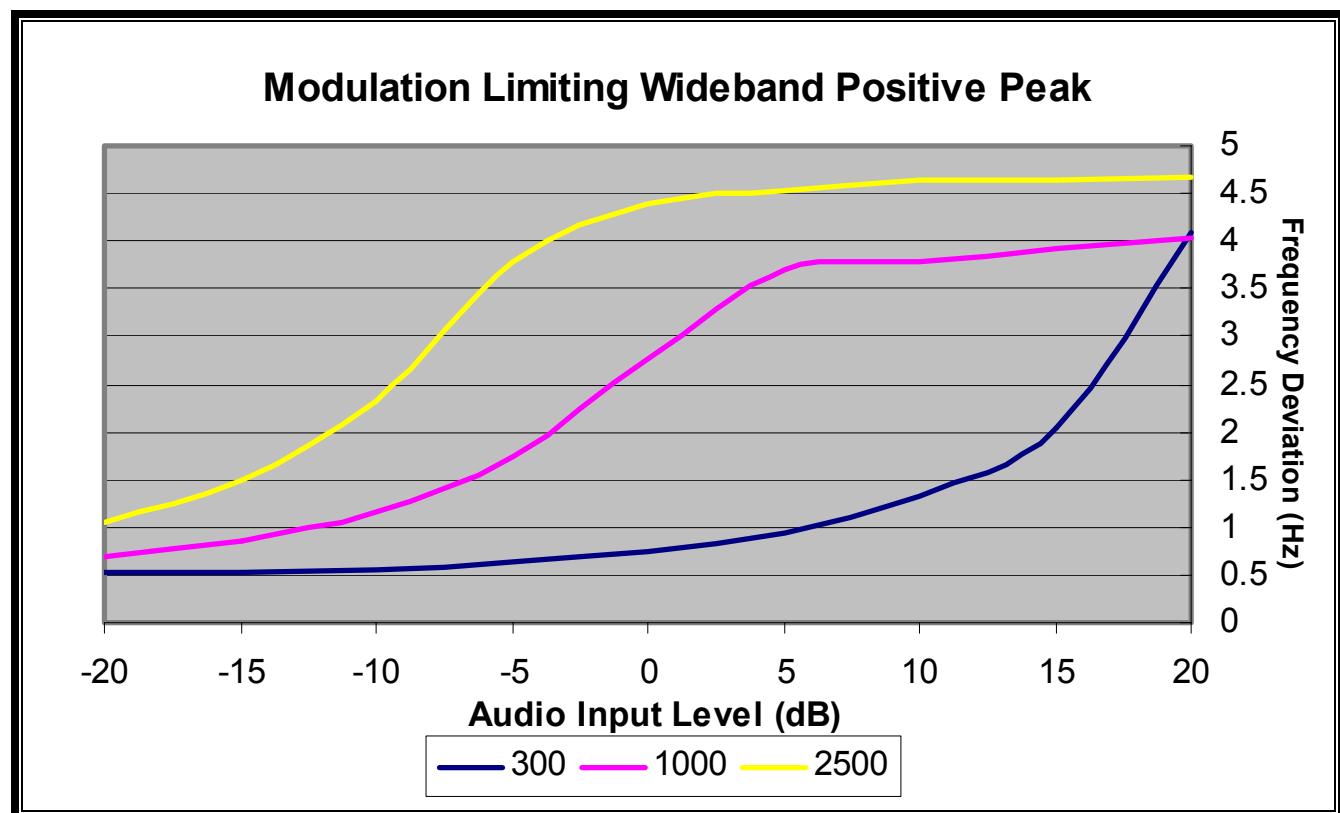
DANIEL BALTZELL
TEST TECHNICIAN/ENGINEER

SIGNATURE

DECEMBER 16, 2004

DATE OF TEST

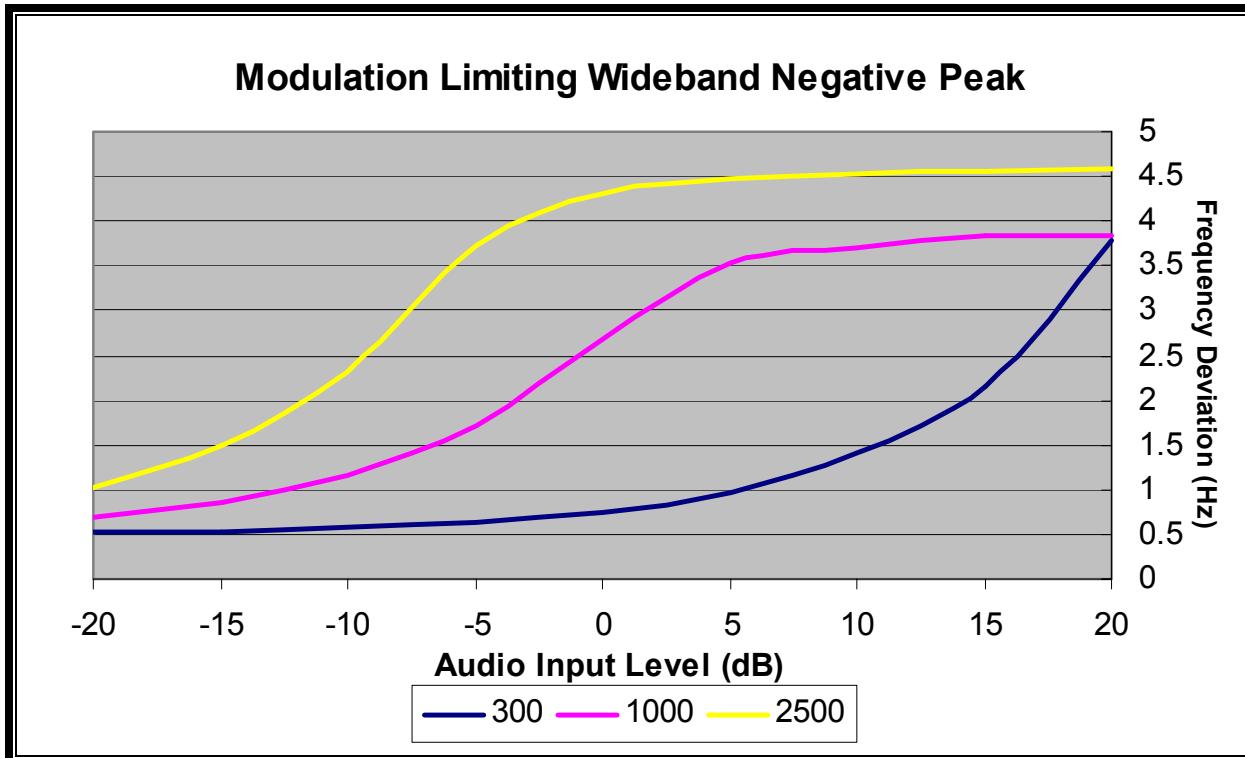
8 FCC PART 2 §2.1047 (B): MODULATION CHARACTERISTICS - MODULATION LIMITING


8.1 TEST PROCEDURE

ANSI/TIA-603-B-2002, section 2.2.3

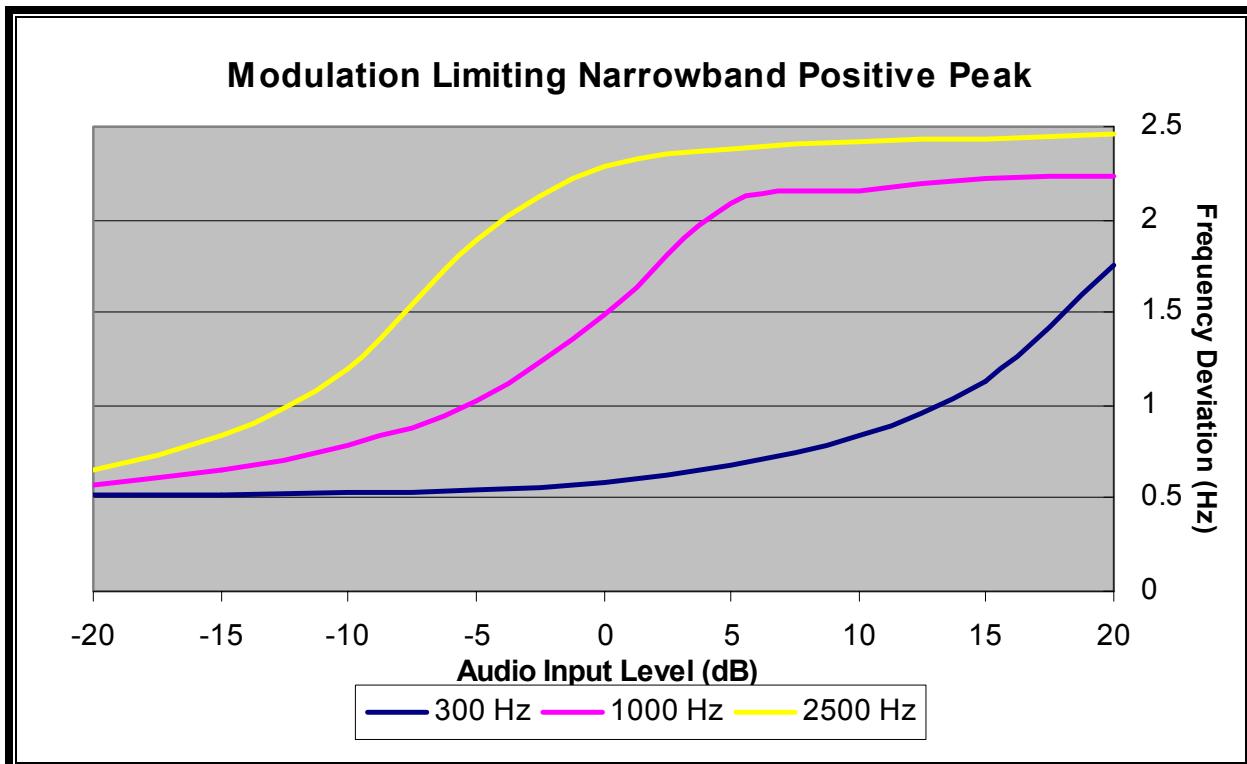
The transmitter is adjusted for full rated system deviation. The audio input level is adjusted for 60% of rated system deviation at 1000 Hz. Using this level as a reference (0 dB), the audio input level is varied from the reference to a level +20 dB above it and -20 dB under it, for modulation frequencies of 300 Hz, 1000 Hz, and 2500 Hz. The system deviation obtained as a function of the input level is recorded. Both Positive and Negative Peak deviations were recorded.

8.2 TEST DATA


PLOT 8-1: MODULATION LIMITING RESPONSE (WIDEBAND POSITIVE PEAK), CHANNEL 2, 480 MHZ

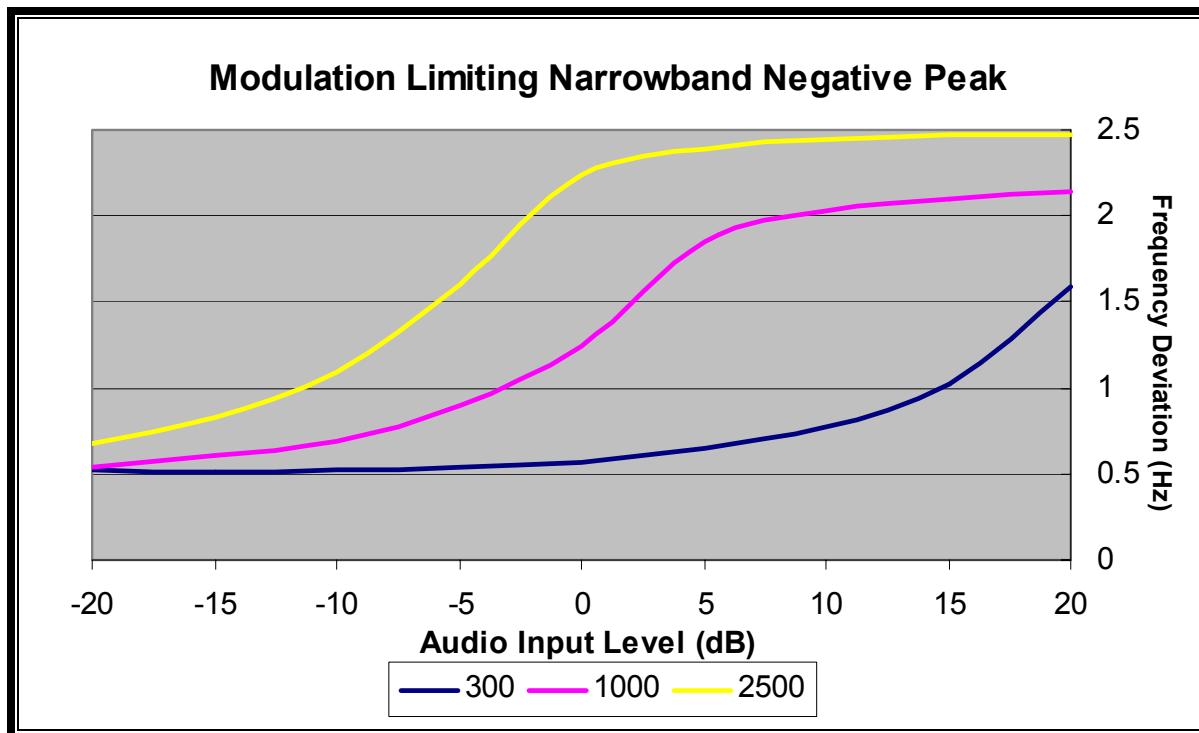
Rhein Tech Laboratories
360 Herndon Parkway
Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

Report #: 2004211
FCC ID: ATH2424140
Model: 242-414x-xxx
Standards: FCC Part 90 & IC RSS-119
Date: December 17, 2004


PLOT 8-2: MODULATION LIMITING RESPONSE (WIDEBAND; NEGATIVE PEAK), CH 2, 480 MHZ

Rhein Tech Laboratories
360 Herndon Parkway
Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

Report #: 2004211
FCC ID: ATH2424140
Model: 242-414x-xxx
Standards: FCC Part 90 & IC RSS-119
Date: December 17, 2004


PLOT 8-3: MODULATION LIMITING RESPONSE (NARROWBAND; POSITIVE PEAK), CH 5, 480 MHZ

Rhein Tech Laboratories
360 Herndon Parkway
Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

Report #: 2004211
FCC ID: ATH2424140
Model: 242-414x-xxx
Standards: FCC Part 90 & IC RSS-119
Date: December 17, 2004

**PLOT 8-4: MODULATION LIMITING RESPONSE (NARROWBAND; NEGATIVE PEAK), CH 5,
480 MHZ**

TEST PERSONNEL:

DANIEL BALTZELL

TEST TECHNICIAN/ENGINEER

SIGNATURE

DECEMBER 16, 2004

DATE OF TEST

9 OCCUPIED BANDWIDTH - §2.1049 / RSS-119 §6.4

9.1 OCCUPIED BANDWIDTH - §2.1049 TEST PROCEDURE

The antenna output terminal of the EUT was connected to the input of a 50W spectrum analyzer through a matched 40 dB attenuator. The radio transmitter was operating at maximum output power with and without internal data modulation. 100% of the in-band modulation was below the specified mask. Specified Limits:

(b) *Emission Mask B*. For transmitters that are equipped with an audio low-pass filter pursuant to §90.211(a), the power of any emission must be below the unmodulated carrier power (P) as follows:

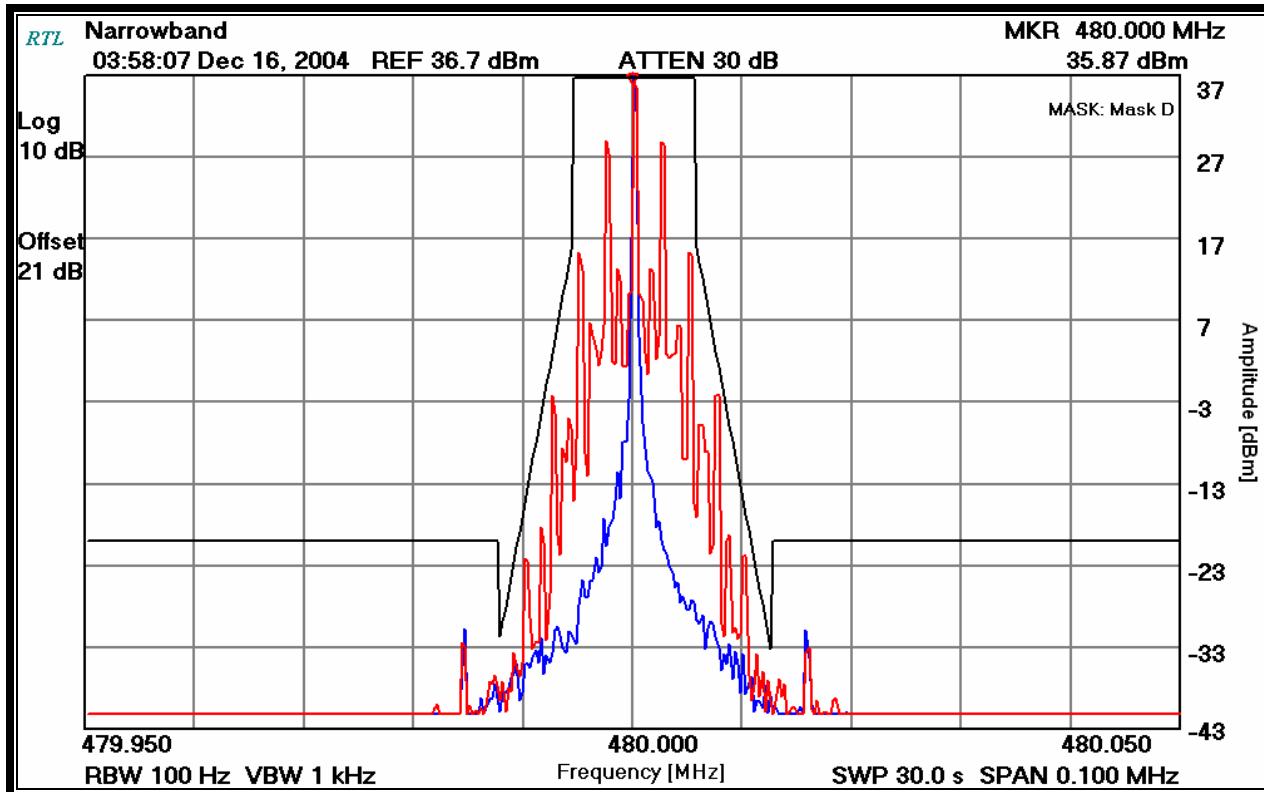
- (1) On any frequency removed from the assigned frequency by more than 50 percent, but not more than 100 percent of the authorized bandwidth: At least 25 dB.
- (2) On any frequency removed from the assigned frequency by more than 100 percent, but not more than 250 percent of the authorized bandwidth: At least 35 dB.
- (3) On any frequency removed from the assigned frequency by more than 250 percent of the authorized bandwidth: At least $43 + 10 \log (P)$ dB.

(d) *Emission Mask D—12.5 kHz channel bandwidth equipment*. For transmitters designed to operate with a 12.5 kHz channel bandwidth, any emission must be attenuated below the power (P) of the highest emission contained within the authorized bandwidth as follows:

- (1) On any frequency from the center of the authorized bandwidth f_0 to 5.625 kHz removed from f_0 : Zero dB.
- (2) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 5.625 kHz but no more than 12.5 kHz: At least $7.27(f_d - 2.88 \text{ kHz})$ dB.
- (3) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 12.5 kHz: At least $50 + 10 \log (P)$ dB or 70 dB, whichever is the lesser attenuation.

9.2 OCCUPIED BANDWIDTH TEST EQUIPMENT

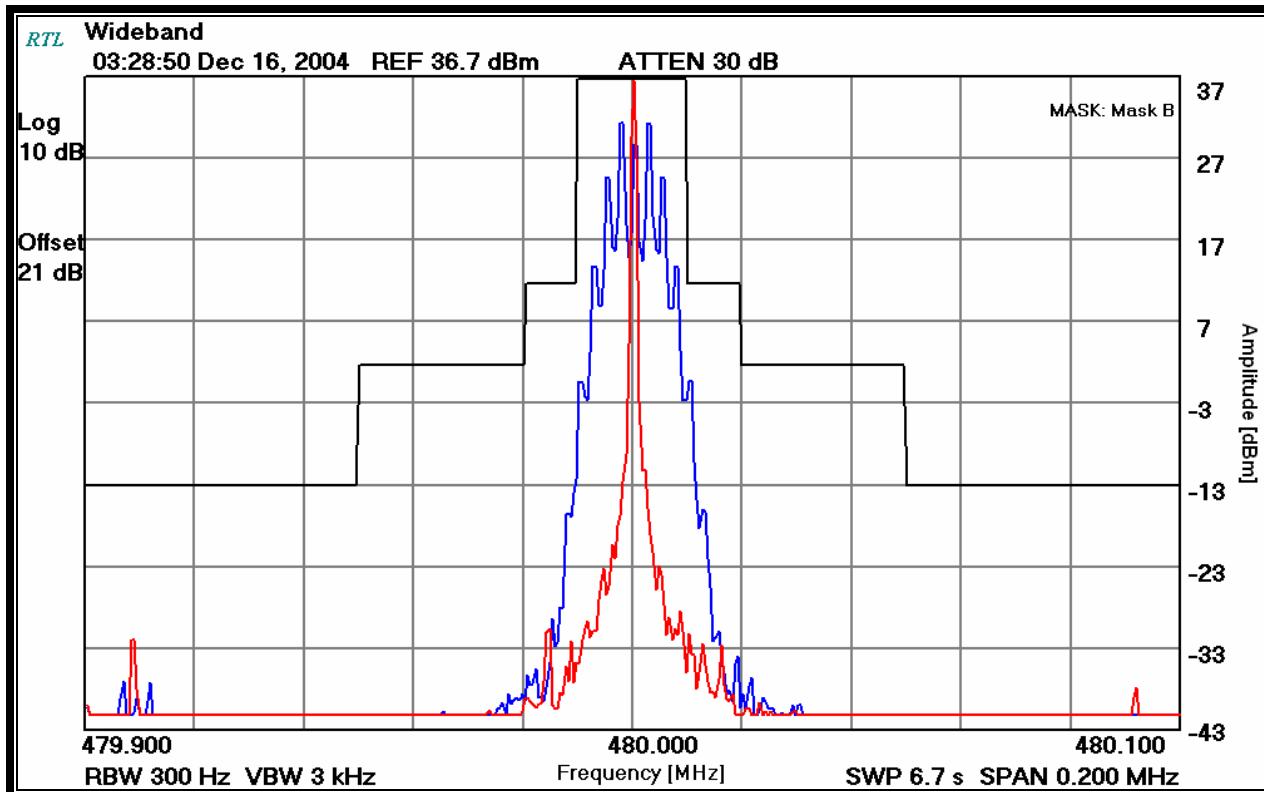
TABLE 9-1: OCCUPIED BANDWIDTH TEST EQUIPMENT


RTL Asset #	Manufacturer	Model	Part Type	Serial Number	Cal Due Date
901020	Hewlett Packard	8564E	Portable Spectrum Analyzer (9 kHz - 40 GHz)	3943A01719	8/11/05
901138	Weinschel Corp.	48-40-34 DC-18GHz	Attenuator, 100W 40dB	BK5883	5/13/05
901057	Hewlett Packard	3336B	Synthesizer/Level Generator	2514A02585	9/8/05

Rhein Tech Laboratories
360 Herndon Parkway
Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

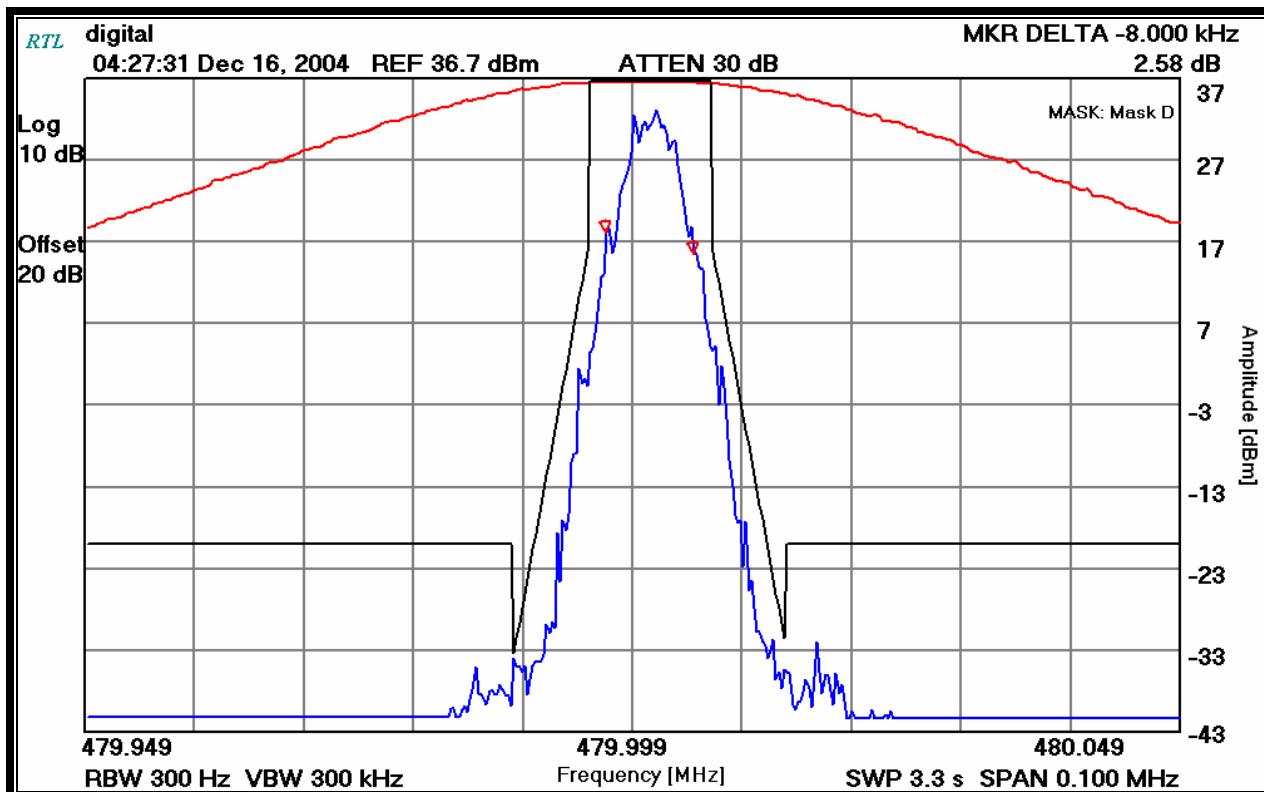
Report #: 2004211
FCC ID: ATH2424140
Model: 242-414x-xxx
Standards: FCC Part 90 & IC RSS-119
Date: December 17, 2004

9.3 OCCUPIED BANDWIDTH TEST DATA


PLOT 9-1: MASK D (480 MHZ; CH 5; NARROWBAND)

Rhein Tech Laboratories
360 Herndon Parkway
Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

Report #: 2004211
FCC ID: ATH2424140
Model: 242-414x-xxx
Standards: FCC Part 90 & IC RSS-119
Date: December 17, 2004


PLOT 9-2: MASK B (480 MHZ; CH 2; WIDEBAND)

Rhein Tech Laboratories
360 Herndon Parkway
Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

Report #: 2004211
FCC ID: ATH2424140
Model: 242-414x-xxx
Standards: FCC Part 90 & IC RSS-119
Date: December 17, 2004

PLOT 9-3: MASK B (480 MHZ, CH 8, P25 DIGITAL)

TEST PERSONNEL:

DANIEL BALTZELL
TEST TECHNICIAN/ENGINEER

SIGNATURE

DECEMBER 16, 2004
DATE OF TEST

Rhein Tech Laboratories
360 Herndon Parkway
Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

Report #: 2004211
FCC ID: ATH2424140
Model: 242-414x-xxx
Standards: FCC Part 90 & IC RSS-119
Date: December 17, 2004

10 SPURIOUS EMISSIONS AT ANTENNA TERMINAL - §2.1051 / RSS-119 §6.3

10.1 SPURIOUS EMISSIONS AT ANTENNA TERMINAL - §2.1051 TEST PROCEDURE

The level of the various conducted spurious frequencies was measured by means of a calibrated spectrum analyzer. The antenna output terminal of the EUT was connected to the input of a $50\ \Omega$ spectrum analyzer through a notch filter. The transmitter was operating at maximum power.

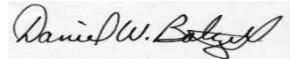
10.2 SPURIOUS EMISSIONS AT ANTENNA TERMINAL TEST EQUIPMENT

TABLE 10-1: SPURIOUS EMISSIONS AT ANTENNA TERMINAL TEST EQUIPMENT

RTL Asset #	Manufacturer	Model	Part Type	Serial Number	Cal Due Date
900931	Hewlett Packard	8566B	Spectrum Analyzer (100 Hz - 22 GHz)	3138A07771	6/23/05
901132	PAR Electronics	806-902 (25W)	UHF Notch Filter	N/A	5/13/05

10.3 CONDUCTED SPURIOUS EMISSIONS TEST DATA

TABLE 10-2: CONDUCTED SPURIOUS EMISSIONS (CHANNEL 4 AT 450 MHZ)


Operating Frequency (MHz): 450
Channel: 4
Measured Conducted Power (dBm): 36.6
Modulation: Analog
Limit (dBc): 56.6 (50+10LogP)

Frequency (MHz)	Spectrum Analyzer Level (dBm)	Notch Filter Insertion Loss (dB)	Corrected Spectrum Analyzer Level (dBc)	Margin (dB)
900	-35.6	-0.9	71.3	-14.7
1350	-56.6	-0.3	92.9	-36.3
1800	-65.5	-0.7	101.4	-44.8
2250	-66.6	-0.6	102.6	-46.0
2700	-70.0	-0.7	105.9	-49.3
3150	-66.8	-0.7	102.7	-46.1
3600	-67.8	-1.2	103.2	-46.6
4050	-62.4	-7.0	92.0	-35.4
4500	-70.9	-1.5	106.0	-49.4

TEST PERSONNEL:

DANIEL BALTZELL

TEST TECHNICIAN/ENGINEER

SIGNATURE

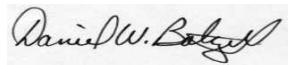
DECEMBER 1, 2004

DATE OF TEST

Rhein Tech Laboratories
360 Herndon Parkway
Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

Report #: 2004211
FCC ID: ATH2424140
Model: 242-414x-xxx
Standards: FCC Part 90 & IC RSS-119
Date: December 17, 2004

TABLE 10-3: CONDUCTED SPURIOUS EMISSIONS (CHANNEL 5 AT 480 MHZ)


Operating Frequency (MHz): 480
Channel: 5
Measured Conducted Power (dBm): 36.7
Modulation: Analog Narrowband
Limit (dBc): 56.7

Frequency (MHz)	Spectrum Analyzer Level (dBm)	Notch Filter Insertion Loss (dB)	Corrected Spectrum Analyzer Level (dBc)	Margin (dB)
960	-49.8	-0.8	85.7	-29.0
1440	-54.6	-0.5	90.8	-34.1
1920	-65.6	-0.6	101.7	-45.0
2400	-71.5	-1.3	106.9	-50.2
2880	-56.9	-0.6	93.0	-36.3
3360	-69.7	-0.8	105.6	-48.9
3840	-74.7	-3.8	107.6	-50.9
4320	-67.4	-7.2	96.9	-40.2
4800	-54.1	-2.3	88.5	-31.8

TEST PERSONNEL:

DANIEL BALTZELL

TEST TECHNICIAN/ENGINEER

SIGNATURE

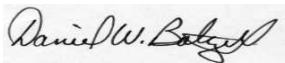
DECEMBER 1, 2004

DATE OF TEST

Rhein Tech Laboratories
360 Herndon Parkway
Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

Report #: 2004211
FCC ID: ATH2424140
Model: 242-414x-xxx
Standards: FCC Part 90 & IC RSS-119
Date: December 17, 2004

TABLE 10-4: CONDUCTED SPURIOUS EMISSIONS (CHANNEL 6 AT 512 MHZ)


Operating Frequency (MHz): 512
Channel: 6
Measured Conducted Power (dBm): 36.6
Modulation: Analog Narrowband
Limit (dBc): 56.6

Frequency (MHz)	Spectrum Analyzer Level (dBm)	Notch Filter Insertion Loss (dB)	Corrected Spectrum Analyzer Level (dBc)	Margin (dB)
1024	-48.9	-0.4	85.1	-28.5
1536	-51.0	-0.6	87.0	-30.4
2048	-72.8	-1.0	108.4	-51.8
2560	-73.1	-0.4	109.3	-52.7
3072	-59.4	-0.6	95.4	-38.8
3584	-65.6	-1.4	100.8	-44.2
4096	-67.4	-7.4	96.6	-40.0
4608	-69.6	-2.0	104.2	-47.6
5120	-43.3	-1.7	78.2	-21.6

TEST PERSONNEL:

DANIEL BALTZELL

TEST TECHNICIAN/ENGINEER

SIGNATURE

DECEMBER 1, 2004

DATE OF TEST

11 RADIATED SPURIOUS AND HARMONIC EMISSIONS - §2.1053 / RSS-119 §6.3

11.1 RADIATED SPURIOUS AND HARMONIC EMISSIONS - §2.1053

Radiated and harmonic emissions were measured at a 3 meter outdoor site. The EUT was placed on the turntable with the transmitter transmitting into a non-radiating load. A receiving antenna located 3 meters from the turntable received any signal radiated from the transmitter and its operating accessories. The receiving antenna was varied from 1 to 4 meters and the polarization was varied to determine the worst-case emission level. The EUT was measured in three orthogonal planes with the receive antenna positioned in both horizontal and vertical polarities. The EUT was replaced by a substitution antenna and a signal generator level was obtained by correcting for the cable loss and transmitting gain antenna (referenced to a half-wave dipole). This level was checked using a power divider at the transmitting antenna to assure there was no impedance mismatch between the 50 ohm signal generator and the transmitting antenna.

11.2 RADIATED SPURIOUS TEST EQUIPMENT

TABLE 11-1: RADIATED SPURIOUS TEST EQUIPMENT

RTL Asset #	Manufacturer	Model	Part Type	Serial Number	Cal Due Date
901053	Schaffner Chase	CBL6112B	Bi-Log Antenna (20 MHz - 2 GHz)	2648	9/20/05
900931	Hewlett Packard	8566B	Spectrum Analyzer (100 Hz - 22 GHz)	3138A07771	6/23/05
900928	Hewlett Packard	83752A	Synthesized Sweeper, (0.01 - 20 GHz)	3610A00866	9/5/05
900905	Rhein Tech Labs	PR-1040	Pre Amplifier 40dB (10 MHz – 2 GHz)	1006	9/1/05
900814	Electro-Metrics	EM-6961 (RGA-60)	Double Ridged Guide Antenna (1 - 18 GHz)	2310	2/17/06
900154	Compliance Design	Roberts Dipole	Adjustable Elements Dipole Antenna (30 - 1000 MHz)	N/A	10/6/05
900772	EMCO	3161-02	Horn Antenna (2.0 - 4.0 GHz)	9804-1044	5/20/07
900321	EMCO	3161-03	Horn Antenna (4.0 - 8.2 GHz)	9508-1020	5/20/07
900932	Hewlett Packard	8449B OPT H02	Preamplifier (1 - 26.5 GHz)	3008A00505	5/5/05

Rhein Tech Laboratories
360 Herndon Parkway
Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

Report #: 2004211
FCC ID: ATH2424140
Model: 242-414x-xxx
Standards: FCC Part 90 & IC RSS-119
Date: December 17, 2004

11.3 RADIATED SPURIOUS EMISSIONS TEST DATA - §2.1053

Operating Frequency (MHz): 480
Channel: 5
Measured Conducted Power (dBm): 36.7
Modulation: Analog Narrowband
Distance (m): 3
Limit (dBc): 56.7 (50+10LogP)

TABLE 11-2: RADIATED SPURIOUS EMISSIONS DATA §2.1053

Frequency (MHz)	Spectrum Analyzer Level (dBuV)	Signal Generator Level (dBm)	Cable Loss (dB)	Antenna Gain (dBd)	Corrected Level (dBc)	Margin (dB)
960	39.6	-37.4	0.5	-1.3	75.9	-19.2
1440	13.0	-63.6	0.7	4.1	96.9	-40.2
1920	20.3	-54.0	0.5	4.8	86.4	-29.7
2400	37.3	-44.2	0.6	5.1	76.4	-19.7
2880	42.2	-40.5	1.0	6.0	72.2	-15.5
3360	34.9	-45.5	1.2	6.0	77.4	-20.7
3840	29.3	-49.6	1.0	5.9	81.4	-24.7
4320	36.5	-34.9	1.2	6.6	66.2	-9.5
4800	42.1	-29.5	1.3	7.0	60.5	-3.8

TEST PERSONNEL:

DANIEL BALTZELL
TEST TECHNICIAN/ENGINEER

SIGNATURE

DECEMBER 17, 2004

DATE OF TEST

12 FREQUENCY STABILITY / TEMPERATURE VARIATION - §2.1055 / RSS-119 §7.0

12.1 MEASUREMENT METHOD:

The frequency stability of the transmitter was measured by:

1. Temperature: The temperature was varied from -30°C to +60°C at intervals no more than 10°C throughout the temperature range using an environmental chamber. A period of time sufficient to stabilize all of the components in the equipment shall be allowed prior to each frequency measurement.
2. Primary Supply Voltage: The primary supply voltage was varied from 85% to 115% of the voltage normally at the input to the device or at the power supply terminals if cables are not normally supplied. The EUT was tested down to the battery endpoint.

12.2 TIME PERIOD AND PROCEDURE:

1. The carrier frequency of the transmitter was measured at room temperature (25°C to 27°C to provide a reference).
2. The equipment was subjected to a period of 1 hour to stabilize at -30°C without any power applied.
3. After the stabilization period at -30°C, the measurement of the carrier frequency of the transmitter was made within a three-minute interval after applying power to the transmitter.
4. Frequency measurements were made at 10°C intervals up to +50°C. A minimum period of 1/2 hour was provided to allow stabilization of the equipment at each temperature level.

12.3 FREQUENCY TOLERANCE:

The minimum frequency stability shall be 5 ppm.

12.4 FREQUENCY STABILITY TEST EQUIPMENT

TABLE 12-1: FREQUENCY STABILITY TEST EQUIPMENT

RTL Asset #	Manufacturer	Model	Part Type	Serial Number	Cal Due Date
900946	Tenney Engineering, Inc	TH65	Temperature Chamber with Humidity	11380	2/3/05
901020	Hewlett Packard	8564E	Portable Spectrum Analyzer (9 kHz - 40 GHz)	3943A01719	8/11/05
901247	Wavetek	DM25XT	Multimeter	40804098	3/3/05

Rhein Tech Laboratories
360 Herndon Parkway
Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

Report #: 2004211
FCC ID: ATH2424140
Model: 242-414x-xxx
Standards: FCC Part 90 &IC RSS-119
Date: December 17, 2004

12.5 FREQUENCY STABILITY TEST DATA - §2.1055

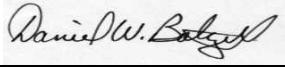
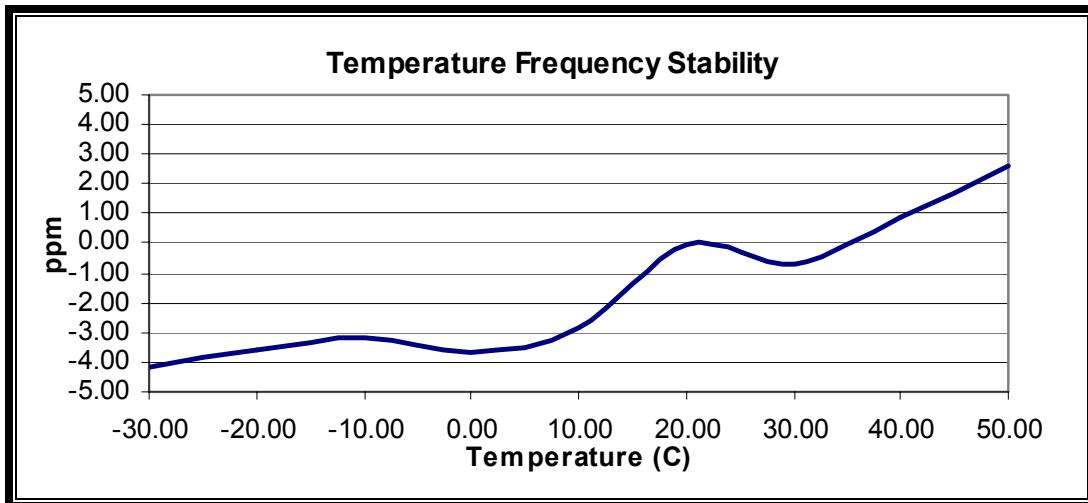

Operating Frequency: 480 MHz
Channel: 2
Reference Voltage: 7.5 VDC
Deviation Limit: 5 PPM

TABLE 12-2: FREQUENCY STABILITY DATA - §2.1055: TEMPERATURE

Temperature (°C)	Measured Frequency (MHz)	ppm
-30	479.998006	-4.15
-20	479.998287	-3.57
-10	479.998492	-3.14
0	479.998235	-3.68
10	479.998648	-2.82
20	480.000000	0.00
30	479.999663	-0.70
40	480.000435	0.91
50	480.001268	2.64

TEST PERSONNEL:

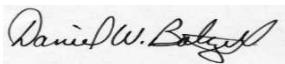


DANIEL BALTZELL
TEST TECHNICIAN/ENGINEER SIGNATURE DECEMBER 17, 2004
DATE OF TEST

Rhein Tech Laboratories
360 Herndon Parkway
Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

Report #: 2004211
FCC ID: ATH2424140
Model: 242-414x-xxx
Standards: FCC Part 90 &IC RSS-119
Date: December 17, 2004

PLOT 12-1: TEMPERATURE FREQUENCY STABILITY - §2.1055



TEST PERSONNEL:

DANIEL BALTZELL

TEST TECHNICIAN/ENGINEER

SIGNATURE

DECEMBER 17, 2004

DATE OF TEST

Rhein Tech Laboratories
360 Herndon Parkway
Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

Report #: 2004211
FCC ID: ATH2424140
Model: 242-414x-xxx
Standards: FCC Part 90 &IC RSS-119
Date: December 17, 2004

TABLE 12-3: FREQUENCY STABILITY DATA - §2.1055: VOLTAGE

Voltage (DC)	Measured Frequency (MHz)	ppm
6*	480.002220	4.63
6.375	480.001854	3.86
7.5	479.998995	-2.09
8.625	479.999652	-0.72

* Battery End Point

PLOT 12-2: VOLTAGE FREQUENCY STABILITY - §2.1055

TEST PERSONNEL:

DANIEL BALTZELL

TEST TECHNICIAN/ENGINEER

SIGNATURE

DECEMBER 16, 2004

DATE OF TEST

13 FCC PART 90 §90.214 / RSS-119 §6.5: TRANSIENT FREQUENCY BEHAVIOR

13.1 TRANSIENT FREQUENCY BEHAVIOR TEST PROCEDURE

ANSI/TIA-603-B-2002, section 2.2.19

13.2 TRANSIENT FREQUENCY BEHAVIOR LIMITS

TABLE 13-1: REQUIREMENTS FOR EUT WITH 25 KHZ CHANNEL SPACING:

Time Intervals (*)(**)	Maximum Frequency Difference (***)	150-174 MHz	421-512 MHz
t1(****)	± 25 kHz	5.0 mSec	10.0 mSec
t2	± 12.5 kHz	20.0 mSec	25.0 mSec
t3(****)	± 25 kHz	5.0 mSec	10.0 mSec

TABLE 13-2: REQUIREMENTS FOR EUT WITH 12.5 KHZ CHANNEL SPACING:

Time Intervals (*)(**)	Maximum Frequency Difference(***)	150-174 MHz	421-512 MHz
t1(****)	± 12.5 kHz	5.0 mSec	10.0 mSec
t2	± 6.25 kHz	20.0 mSec	25.0 mSec
t3(****)	± 12.5 kHz	5.0 mSec	10.0 mSec

(*) t_{on} is the instant when a 1 kHz test signal is completely suppressed, including any capture time due to phasing.

t_1 is the time period immediately following t_{on} .

t_2 is the time period immediately following t_1 .

t_3 is the time period from the instant when the transmitter is turned off until t_{off} .

t_{off} is the instant when the 1 kHz test signal starts to rise.

(**) During the time from the end of t_2 to the beginning of t_3 , the frequency difference must not exceed the limits specified in §90.213.

(***) The difference between the actual transmitter frequency and the assigned transmitter frequency.

(****) If the transmitter carrier output power rating is 6 watts or less, the frequency difference during this time period may exceed the maximum frequency difference for this time period.

Maximum frequency difference between time T2 and T3: Calculation for Channel 2:

The frequency stability is required to be 2.5 PPM.

Calculation for Channel 2:

4 div. on scope represents 12.5 kHz for narrow band channel.

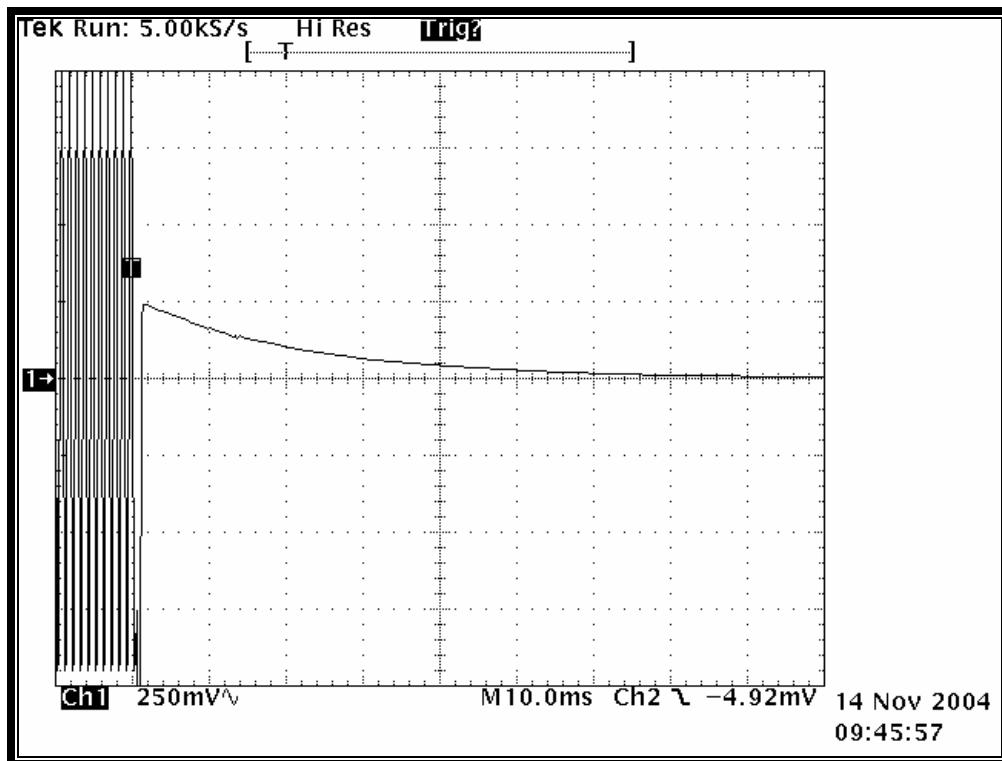

Therefore, 480 MHz times 2.5 PPM times +/- 4 Divisions divided by 12.5 kHz equals about +/- 0.38 division. 0.38 Div. corresponds to 1.2 kHz.

TABLE 13-3: TRANSIENT FREQUENCY BEHAVIOR TEST EQUIPMENT

RTL Asset #	Manufacturer	Model	Part Type	Serial Number	Cal Due Date
900917	Hewlett Packard	8648C	Synthesized Signal Generator (9 KHz - 200 MHz)	3537A01741	7/6/05
901118	Hewlett Packard	HP8901B	Modulation Analyzer (150 kHz – 1300 MHz)	2406A00178	7/7/2005
900561	Tektronix	TDS540A	Oscilloscope	B020129	3/25/05
901214	Hewlett Packard	HP8471D	Detector	2952A19822	Not Required
900352	WERLATONE	C1795	Directional Coupler, 100 watt, (1 – 1000 MHz)	4067	7/1/2005
901138	Weinschel Corp.	48-40-34 DC-18GHz	Attenuator, 100W 40 dB	BK5883	5/13/05
901140	Weinschel Corp.	47-10-34 DC-18GHz	Attenuator, 50W 10 dB	BK6203	5/13/05

13.3 TRANSIENT FREQUENCY BEHAVIOR TEST DATA

PLOT 13-1: (ON TIME) – CHANNEL 2: 480 MHZ (12.5 KHZ NARROWBAND)

Carrier ON time:

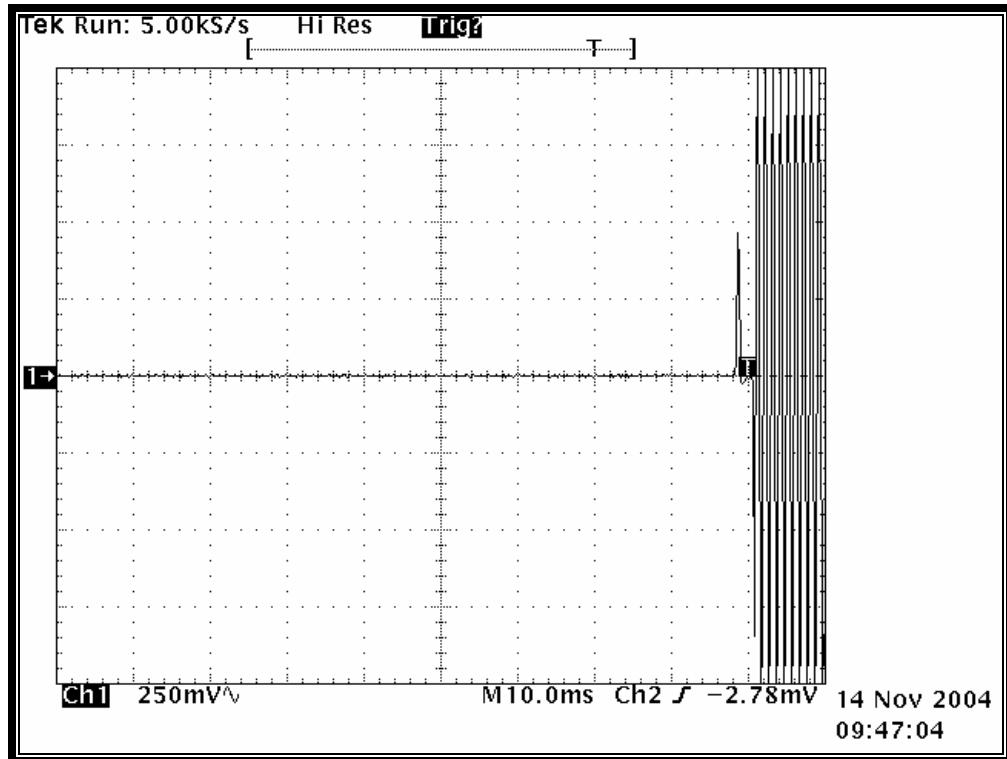
Power: 4.7 W

Channel 2: 480 MHz NB (12.5 kHz)

RF Signal Generator: Modulation 12.5 kHz deviation

Timebase: 10 ms/div

Trigger: On negative edge of Ch 2, level -4.92mV


Ch 1: 250mV/div, Probe 1.000:1

Vertical scale: +/- 4 div. corresponds to +/- 12.5 kHz

Rhein Tech Laboratories
360 Herndon Parkway
Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

Report #: 2004211
FCC ID: ATH2424140
Model: 242-414x-xxx
Standards: FCC Part 90 & IC RSS-119
Date: December 17, 2004

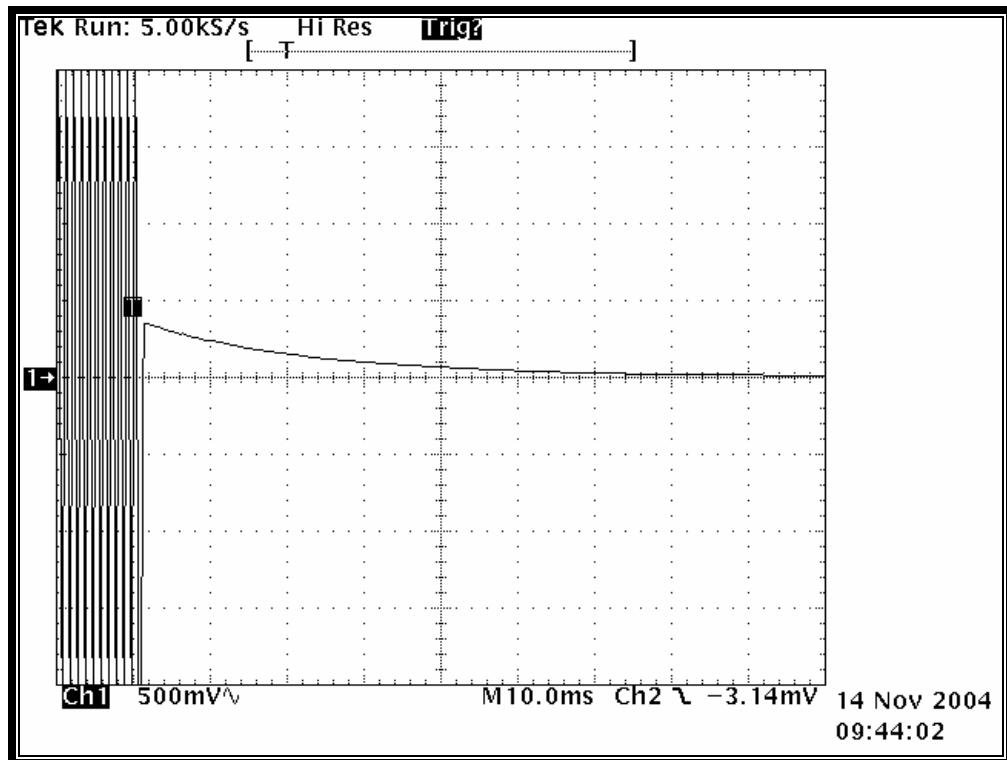
PLOT 13-2: (OFF TIME) – CHANNEL 2: 480 MHZ (12.5 KHZ NARROWBAND)

Carrier ON time:

Power: 4.7 W
Channel 2: 480 MHz NB (12.5 kHz)
RF Signal Generator: Modulation 12.5 kHz deviation

Timebase: 10 ms/div

Trigger: On positive edge of Ch 2, level -2.78mV


Ch 1: 250mV/div, Probe 1.000:1

Vertical scale: +/- 4 div. corresponds to +/- 12.5 kHz

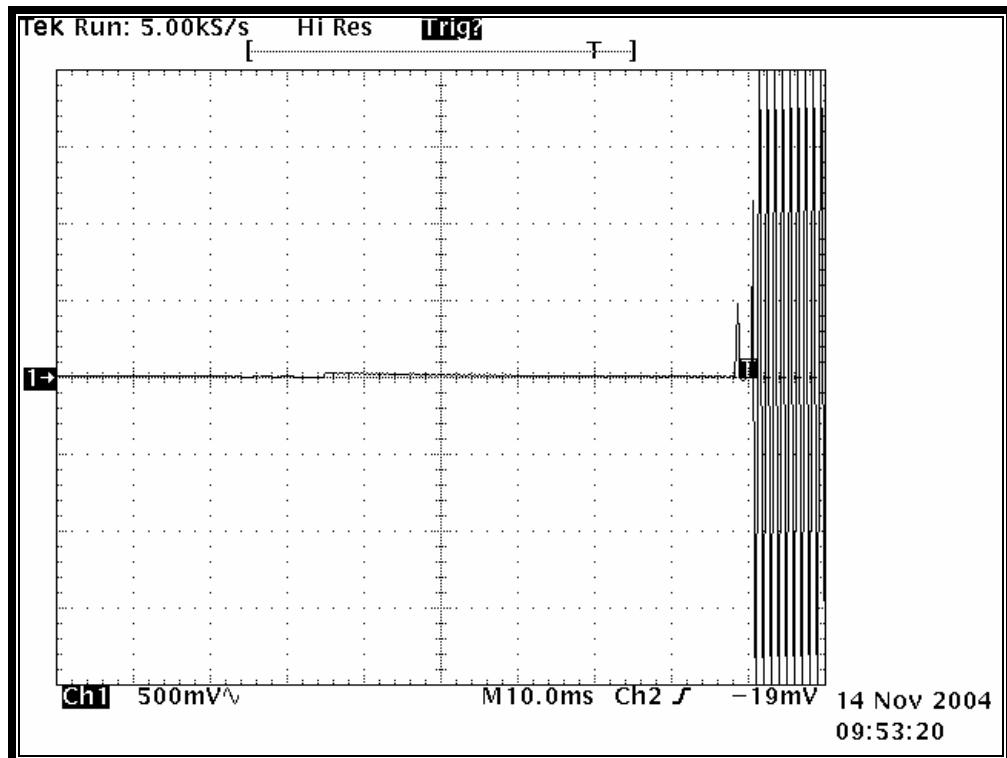
Rhein Tech Laboratories
360 Herndon Parkway
Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

Report #: 2004211
FCC ID: ATH2424140
Model: 242-414x-xxx
Standards: FCC Part 90 & IC RSS-119
Date: December 17, 2004

PLOT 13-3: (ON TIME) – CHANNEL 2: 480 MHZ (25 KHZ WIDEBAND)

Carrier ON time:

Power: 4.7 W
Channel 2: 480 MHz WB (25 kHz)
RF Signal Generator: Modulation 25 kHz deviation


Timebase: 10 ms/div

Trigger: On negative edge of Ch 2, level -3.14mV
Ch 1: 500mV/div, Probe 1.000:1
Vertical scale: +/- 4 div. corresponds to +/- 25 kHz

Rhein Tech Laboratories
360 Herndon Parkway
Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

Report #: 2004211
FCC ID: ATH2424140
Model: 242-414x-xxx
Standards: FCC Part 90 & IC RSS-119
Date: December 17, 2004

PLOT 13-4: (OFF TIME) – CHANNEL 2: 480 MHZ (25 KHZ WIDEBAND)

Carrier OFF time:

Power: 4.7 W

Channel 2: 480 MHz WB (25 kHz)

RF Signal Generator: Modulation 25 kHz deviation

Timebase: 10 ms/div

Trigger: On positive edge of Ch 2, level -19mV

Ch 1: 500mV/div, Probe 1.000:1

Vertical scale: +/- 4 div. corresponds to +/- 25 kHz

TEST PERSONNEL:

DANIEL BALTZELL

TEST TECHNICIAN/ENGINEER

SIGNATURE

NOVEMBER 14, 2004

DATE OF TEST

Rhein Tech Laboratories
360 Herndon Parkway
Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

Report #: 2004211
FCC ID: ATH2424140
Model: 242-414x-xxx
Standards: FCC Part 90 & IC RSS-119
Date: December 17, 2004

14 FCC PART 2.202: NECESSARY BANDWIDTH AND EMISSION BANDWIDTH

Type of Emission: F3E and F1E

Necessary Bandwidth and Emission Bandwidth calculation

The 25 kHz Analog modulation necessary bandwidth: $B_n = 16K0F3E$

The 12.5 kHz Analog modulation necessary bandwidth: $B_n = 11K0F3E$

The P25 Digital modulation necessary bandwidth: $B_n = 8K10F1E$

Calculation:

Max modulation (M) in kHz: 3

Max deviation (D) in kHz for (25 kHz channel spacing analog): 5

Max deviation for (D) in kHz for (12.5 kHz channel spacing): 2.5

Constant factor (K): 1

$$B_{n(25 \text{ kHz analog})} = 2xM + 2xDK = (2x3) + (2x5x1) = 16 \text{ kHz}$$

$$B_{n(12.5 \text{ kHz})} = 2xM + 2xDK = (2x3) + (2x2.5x1) = 11 \text{ kHz}$$

For P25 digital (with a 9600 bps data rate and peak symbol deviation of +/- 1.65 kHz)

where R = data rate in bps, D = peak deviation in Hz, and S = number of states in each symbol

$B_n = [R/\log_2(S)] + 2DK$, where K=1

$$B_{n(P25 \text{ Digital})} = [9600/\log_2(4)] + 2(1650)(1) = 8.1 \text{ kHz}$$

Rhein Tech Laboratories
360 Herndon Parkway
Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

Report #: 2004211
FCC ID: ATH2424140
Model: 242-414x-xxx
Standards: FCC Part 90 &IC RSS-119
Date: December 17, 2004

15 CONCLUSION

The data in this measurement report shows that E.F. Johnson Model 242-414x-xxx, FCC ID: ATH2424140, complies with all the applicable requirements of Parts 2 and 90 of the FCC Rules and Industry Canada RSS-119.