

Deutsche Akkreditierungsstelle D-PL-12076-01-00

Testing laboratory

CETECOM ICT Services GmbH Untertuerkheimer Strasse 6 – 10 66117 Saarbruecken / Germany Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 9075 Internet: <u>http://www.cetecom.com</u> e-mail: <u>ict@cetecom.com</u>

Accredited Testing Laboratory: The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2005) by the Deutsche Akkreditierungsstelle GmbH (DAkkS) The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with the registration number: D-PL-12076-01-00

Applicant

Raytheon Anschütz GmbHZeyestraße 16-2424106 Kiel / GERMANYPhone:+49 (0)431 301-994866Contact:Carsten Reitere-mail:Carsten_Reiter@raykiel.comPhone:+49 (0)431 301-994866

Manufacturer

Raytheon Anschütz GmbH Zeyestraße 16-24 24106 Kiel / GERMANY

Test standard/s

FCC CFR 47 Part 80 Stations in the Maritime Services

FCC CFR 47 Part 15B Radio Frequency Devices / Unintentional Radiators

For further applied test standards please refer to section 4 of this test report.

	Test Item
Kind of test item:	Shipborne Radar - X-Band Down Mast Pedestal
Model name:	NSX X Down + X-Ped
Туре:	770-002.NG001
FCC-ID:	ASLNSX-25D
Frequency range:	9.3 – 9.5 GHz
Tx power conducted:	25 kW (nominal peak power)
Power Supply:	115/230 V AC
,	
Temperature Range:	-25°C to +55°C

This test report is electronically signed and valid without handwriting signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:

Meheza Walla Lab Manager Radio Communications & EMC **Test performed:**

Karsten Geraldy Lab Manager Radio Communications & EMC

1 Table of contents

1	Table	of contents	2
2	Gener	al information	3
	2.1	Notes and disclaimer	3
	2.2	Application details	3
3	Test l	ocation	3
4	Test s	tandard/s and Reference/s	4
5	Test e	nvironment	4
6	Test la	aboratory/ies sub-contracted	4
7	Test i	em	5
	7.1	General Description	5
	7.2	List of components	
	7.3	Antenna system(s)	5
	7.4	Operating conditions	
	7.5	Additional information	5
8	Descr	ption of test setup	6
	8.1	Conducted measurements	6
	8.2	Radiated measurements	7
9	Seque	nce of testing	10
	9.1	Sequence of testing radiated spurious 9 kHz to 30 MHz	10
	9.2	Sequence of testing radiated spurious 30 MHz to 1 GHz	11
	9.3	Sequence of testing radiated spurious 1 GHz to 12.75 GHz	
	9.4	Sequence of testing radiated spurious above 12.75 GHz	
	9.5	Test environment	
	9.6	Measurement uncertainties	
10	Т	est results	15
	10.1	Summary	15
	10.2	Overview	16
Anr	nex A	Test equipment and ancillaries used for tests	26
Anr	nex B	Measurement results, part 1 (PPA)	28
Anr	nex C	Measurement results, part 2 (FCC Part 80)	33
Anr	nex D	Measurement results, part 3 (FCC Part 15B)	64
Anr	nex E	Document history	71
Anr	nex F	Further information	71
Anr	nex G	Accreditation Certificate	72

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CETECOM ICT Services GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CETECOM ICT Services GmbH.

The testing service provided by CETECOM ICT Services GmbH has been rendered under the current "General Terms and Conditions for CETECOM ICT Services GmbH".

CETECOM ICT Services GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CETECOM ICT Services GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CETECOM ICT Services GmbH test report include or imply any product or service warranties from CETECOM ICT Services GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CETECOM ICT Services GmbH.

All rights and remedies regarding vendor's products and services for which CETECOM ICT Services GmbH has prepared this test report shall be provided by the party offering such products or services and not by CETECOM ICT Services GmbH.

In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

2.2 Application details

Date of receipt of order:	2015-10-28
Date of receipt of test item:	2015-11-23
Start of test:	2015-11-25
End of test:	2015-12-04
Laboratory reference number:	038.15
Person(s) present during the test:	Mr. Daniel Hamann

3 Test location

CETECOM ICT Services GmbH Untertuerkheimer Strasse 6 - 10 66117 Saarbruecken / GERMANY

4 Test standard/s and Reference/s

Test standard/s	Date	Description
FCC CFR 47 Part 80	2013/2014	Stations in the Maritime Services
FCC CFR 47 Part 15B	2013/2014	Radio Frequency Devices / Unintentional Radiators
Reference/s	Data	
Nelelence/S	Date	Description
ITU-R M.1177-4	2011-04	Techniques for measurement of unwanted emissions of radar systems

5 Test environme	nt	
Temperature:	T _{nom} T _{min} T _{max}	+22 °C during room temperature tests -30 °C +55 °C
Relative humidity:		45 %
Barometric pressure:		not relevant for this kind of testing
Power supply:	Vnom	115/230 V AC

6 Test laboratory/ies sub-contracted

none

7 Test item

7.1 General Description

Kind of test item	Shipborne Radar - X-Band Down Mast Pedestal
Model name	NSX X Down + X-Ped
Type identification	770-002.NG001 consisting of: NSX X Down MTR (770-002.NG010) and X-Ped (770-001.NG010)
S/N serial number	X-Ped: 4006109000105 NSX X Down MTR: 4006107000103
Frequency band	9.3 – 9.5 GHz
TX output power conducted	25 kW (nominal peak power of magnetron)
Type of modulation	sequence of unmodulated pulses
Type of radio transmission	PON
Power supply	115/230 V AC
Temperature range	-25°C to +55°C

7.2 List of components

NSX X Down + X-Ped equipped with:

- 25 kW magnetron, EEV Magnetron, Type MG5424, S/N 0086619

7.3 Antenna system(s)

Antenna size	Concept	Manufacturer	Туре	TX gain dBi (mid)	Polarization	pattern / test report
8 ft	endfed slotted waveguide	Kelvin Hughes	LPR-A25	31.0	horizontal	data sheet / spec. available

7.4 Operating conditions

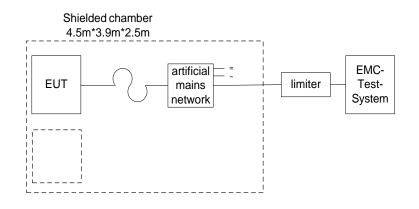
Operating condition 1: X-Band radar, 25 kW, EEV Magnetron, Type MG5424, S/N 0086619

7.5 Additional information

The indirect test method as described in ITU-R M.1177 was used to perform the measurements.

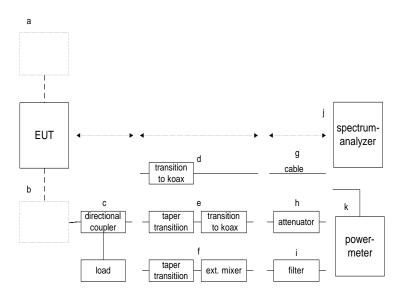
Test setup- and EUT-photos are included in test report:

1-0663_15-01-02_AnnexA (External Photos) 1-0663_15-01-02_AnnexB (Internal Photos) 1-0663_15-01-02_AnnexD (Test Setup)



8 Description of test setup

Following diagrams show possible test setups. They can be considered as applicable in general. Depending on the tests performed and/or depending on the EUT configuration (e.g. amount of different components, setup, ...) the real test setup may vary slightly from the diagrams shown below.


8.1 Conducted measurements

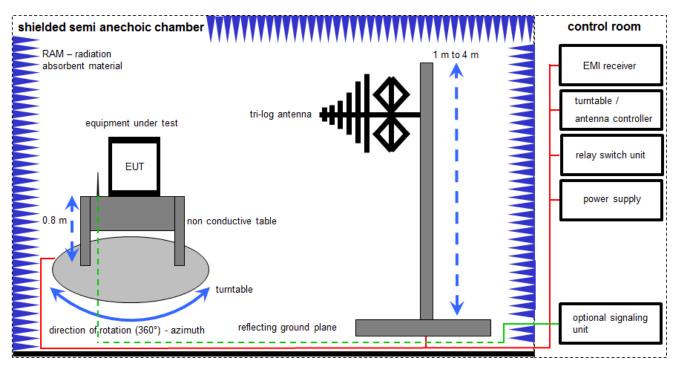
Setup 1.1: AC conducted emissions

Equipment table:

See Annex A

Setup 1.2 x...x: conducted emissions in test lab

Equipment table:

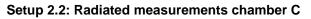

See Annex A

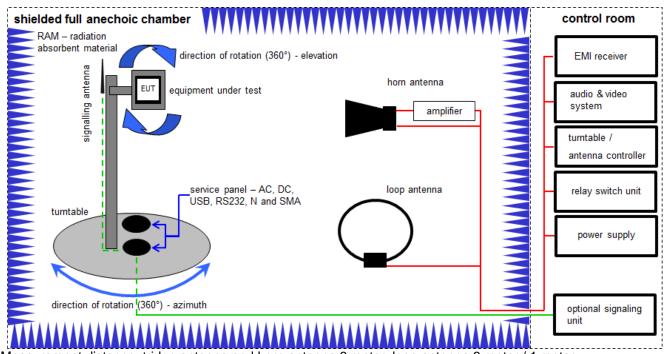
8.2 Radiated measurements

Setup 2.1: Radiated measurements chamber F

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 9 kHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are confirmed with specifications ANSI C63.10-2013, American National Standard for Testing Unlicensed Wireless Devices. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

Measurement distance: tri-log antenna 10 meter


FS = UR + CL + AF (FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)


Example calculation:

FS $[dB\mu V/m] = 12.35 [dB\mu V/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dB\mu V/m] (35.69 \mu V/m)$

Equipment table: See Annex A

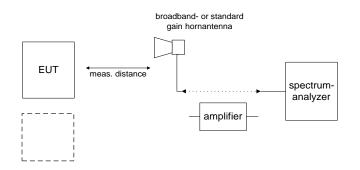
Measurement distance: tri-log antenna and horn antenna 3 meter; loop antenna 3 meter / 1 meter

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

<u>Example calculation</u>: FS [dB μ V/m] = 40.0 [dB μ V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB μ V/m] (71.61 μ V/m)

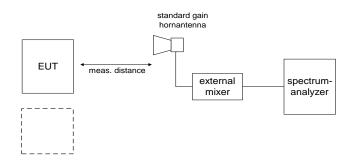
OP = AV + D - G + CA


(OP-radiated output power; AV-analyzer value; D-free field atteuation of measurement distance; G-antenna gain+amplifier gain; CA-loss signal path)

Example calculation:

OP [dBm] = -65.0 [dBm] + 50 [dB] - 20 [dBi] + 5 [dB] = -30 [dBm] (1 µW)

Equipment table: See Annex A


Setup 2.3: Radiated measurements in test lab up to 50 GHz

Equipment table:

See Annex A

Setup 2.4: Radiated measurements in test lab above 50 GHz

Equipment table: See Annex A

9 Sequence of testing

9.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1.5 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

- Identified emissions during the premeasurement are maximized by the software by rotating the turntable from 0° to 360°. In case of the 2-axis positioner is used the elevation axis is also rotated from 0° to 360°.
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

9.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

9.3 Sequence of testing radiated spurious 1 GHz to 12.75 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

9.4 Sequence of testing radiated spurious above 12.75 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate (e.g. 0.5 m).
- The EUT is set into operation.

Premeasurement

• The test antenna is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

9.5 Test environment

The environment conditions are documented with each test (see annex(e) with measurement results).

9.6 Measurement uncertainties

The measurement and test setup is in accordance to the specification and schematically shown in 8. The reference to each test is shown in annex(e) with measurement results.

Measurement uncertainties: Potential error sources/effects in that setup:

- mismatch HF Cable RF Input of Analyzer
- mismatch Waveguide Adaptor HF Cable
- mismatch Waveguide Adaptor Directional Coupler
- mismatch Pedestal Flange Directional Coupler
- Spectrum Analyzer frequency response
- Spectrum Analyzer IF gain uncertainty
- HF-Cable frequency response calibration uncertainty
- HF-Cable frequency response data conversion uncertainty
- Directional Coupler frequency response calibration uncertainty
- Directional Coupler frequency response data conversion uncertainty
- Attenuator frequency response calibration uncertainty
- Attenuator frequency response data conversion uncertainty

Our total uncertainty for above listed factors with a 95% confidence level (acc. UKAS, ETSI) is $\leq \pm 1.5$ dB.

10 Test results

10.1 Summary

\boxtimes	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained

The present test report:

describes the first test
describes an additional test
is a verification of documents
is only valid with the test report no.:

TC identifier	Description	Verdict	Date	Remark
RF-Testing	FCC CFR 47 Part 80 / FCC CFR 47 Part 15B	see below	2016-02-05	-/-

Test Specification Clause	Test Case	Pass	Fail	N/A	N/P	Results
§2.1046 / §80.215	Measurements required: RF power output / Transmitter power.	х				pk: 72.3 dBm avg: 40.7 dBm
§2.1047 / §80.213	Measurements required: Modulation characteristics / Modulation requirements	X				complies
§2.1049	Measurements required: Occupied bandwidth (Necessary Bandwidth)	х				max 66.0 MHz max 69.6 MHz
§2.1051 / §80.211	Measurements required: Spurious emissions at antenna terminals / Emission limitations (conducted emissions)	x				complies
§2.1053 / §80.211	Measurements required: Field strength of spurious radiation / Emission limitations (radiated emissions)	Х				complies
§2.1055 / §80.209	Measurements required: Frequency stability / Transmitter frequency tolerances	x				+1013 ppm -521 ppm
§15.107	Conducted limits	Х				complies
§15.109	Radiated emission limits	Х				complies

N/A: Not Applicable N/P: Not Performed

10.2 Overview

I.	Transmitter characteristics / output power	17
II.	Modulation requirements	18
III.	Occupied bandwidth / Necessary bandwidth / B-40 dB bandwidth	19
IV.	Emission limits (RF spectrum mask)	20
V.	Emissions limits (conducted emissions)	21
VI.	Emissions limits (radiated emissions)	22
VII.	Transmitter frequency tolerance	23
VIII.	AC conducted limits	24
IX.	Radiated emission limits	25

I. Transmitter characteristics / output power

Description / Limit:

§ 80.215

(a) Transmitter power shown on the radio station authorization is the maximum power the licensee is authorized to use. Power is expressed in the following terms:(3) For P0N and F3N emission: Mean power.

Limit: no limitations

Test setup: no. 1.2

Measurement results:

Mode	T _{pulse} [ns]	T _{rise} [ns]	T _{fall} [ns]	PRF [Hz]	P _{out pulse} [dBm]	P _{out mean} [dBm]
short pulse	49.0	13.5	36.7	3000	71.4	33.1
medium 1 pulse	267.8	13.2	53.1	2000	72.3	39.6
medium 2 pulse	471.1	11.7	47.7	1000	72.3	39.0
long pulse	913.3	12.3	48.3	750	72.3	40.7

Note:

 $\overline{P_{\text{out mean}}}$ is calculated based on $P_{\text{out pulse}}$ and duty cycle of transmitter. see also Annex B, plots 1 - 8

II. Modulation requirements

Description / Limit:

§ 80.213

(a) Transmitters must meet the following modulation requirements:

(g) Radar stations operating in the bands above 2.4 GHz may use any type of modulation consistent with the bandwidth requirements in § 80.209(b).

§ 80.209

(b) When pulse modulation is used in land and ship radar stations operating in the bands above 2.4 GHz the frequency at which maximum emission occurs must be within the authorized bandwidth and must not be closer than 1.5/T MHz to the upper and lower limits of the authorized bandwidth where "T" is the pulse duration in microseconds.

Test setup: no. 1.2

Measurement results:

see page 23, VII Transmitter frequency tolerance

III. Occupied bandwidth / Necessary bandwidth / B-40 dB bandwidth

Description:

§ 2.1049

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured.

ITU-R SM.1541: Necessary bandwidth

For a given class of emission, the width of the frequency band which is just sufficient to ensure the transmission of information at the rate and with the quality required under specified conditions.

ITU-R SM.1541, Annex 8, 2.1 Un-modulated radar pulses

Recommendation ITU-R SM.853 provides guidance for determining the necessary bandwidth (20 dB below the peak envelope value) for rectangular and trapezoidal pulses. For these systems, the necessary bandwidth B_N is the smaller of:

$$\mathsf{B}_{\mathsf{N}} = \frac{1.79}{\sqrt{t \cdot tr}} \text{ or } \frac{6.36}{t}$$

where *t* is the pulse duration (at half amplitude) and *tr* is the rise time, both in seconds.

ITU-R SM.1541, Annex 8, 3.1 Formulas for the 40 dB bandwidth

The following formulas for the 40 dB bandwidth (B–40) of primary radar transmitters have been established. For non-FM pulse radars, including spread spectrum or coded pulse radars, the bandwidth is the lesser of:

$$\mathsf{B}_{-40\mathsf{dB}} = \frac{K}{\sqrt{t \cdot tr}} \text{ or } \frac{64}{t}$$

where the coefficient *K* is 7.6 for lower-power radars (< 100kW) and radars operating in the radionavigation service in the 2 900-3 100 MHz and 9 200-9 500 MHz bands. The latter expression applies if the rise time *tr* is less than about 0.0094t when *K* is 6.2, or about 0.014t when *K* is 7.6.

Limit: no limitations

Measurement results:

Mode	measured occupied bw [MHz]	calculated necessary bw [MHz]	calculated B _{-40 dB} bandwidth [MHz]	see annex C, plot no.
short pulse	66.0	69.6	295.5	5
medium 1 pulse	23.1	23.7	127.8	6
medium 2 pulse	19.0	13.5	102.4	7
long pulse	12.0	6.96	70.1	8

Note:

see also Annex C, plots 5 – 8

IV. Emission limits (RF spectrum mask)

Description / Limit:

§ 80.211

The emissions must be attenuated according to the following schedule:

(f) The mean power when using emissions other than those in paragraphs (a), (b), (c) and (d) of this section: (1) On any frequency removed from the assigned frequency by more than 50 percent up to and including 100 percent of the authorized bandwidth: At least 25 dB;

(2) On any frequency removed from the assigned frequency by more than 100 percent up to and including 250 percent of the authorized bandwidth: At least 35 dB; and

(3) On any frequency removed from the assigned frequency by more than 250 percent of the authorized bandwidth: At least 43 plus 10log10 (mean power in watts) dB.

Test setup: no. 1.2

Measurement results:

Mode	see following plots
short pulse	Annex C, plot no. 9
medium 1 pulse	Annex C, plot no.10
medium 2 pulse	Annex C, plot no.11
long pulse	Annex C, plot no.12

Note:

see also Annex C, plots 9 – 12

V. Emissions limits (conducted emissions)

Description / Limit:

§ 80.212

The emissions must be attenuated according to the following schedule:

(f) The mean power when using emissions other than those in paragraphs (a), (b), (c) and (d) of this section:
(1) On any frequency removed from the assigned frequency by more than 50 percent up to and including 100 percent of the authorized bandwidth: At least 25 dB;

(2) On any frequency removed from the assigned frequency by more than 100 percent up to and including 250 percent of the authorized bandwidth: At least 35 dB; and

(3) On any frequency removed from the assigned frequency by more than 250 percent of the authorized bandwidth: At least 43 plus 10log10 (mean power in watts) dB.

Test setup: no. 1.2

Measurement results:

	Conducted Spurious Emissions [dBm]								
	short pulse		limit line			long pulse			
F [GHz]	Detector	Level [dBm]	Limit [dBm]		Limit [dBm]	F [GHz]	Level [dBm]		
18.84	RMS	-43.0	-13		-13	18.84	RMS	-31.2	
28.24	RMS	-67.7	-13		-13	28.26	RMS	-56.9	
Measurement uncertainty			± 1.5 dB						

n.f. = nothing found

Note:

see also Annex C, plots 13 – 20

For performing the measurements the indirect test method as described in ITU-R M.1177-4 was used. A directional coupler with dummy load was connected at the transmitter output.

VI. Emissions limits (radiated emissions)

Description / Limit:

§ 80.212

The emissions must be attenuated according to the following schedule:

(f) The mean power when using emissions other than those in paragraphs (a), (b), (c) and (d) of this section: (1) On any frequency removed from the assigned frequency by more than 50 percent up to and including 100 percent of the authorized bandwidth: At least 25 dB;

(2) On any frequency removed from the assigned frequency by more than 100 percent up to and including 250 percent of the authorized bandwidth: At least 35 dB; and

(3) On any frequency removed from the assigned frequency by more than 250 percent of the authorized bandwidth: At least 43 plus 10log10 (mean power in watts) dB.

Test setup: no. 2.2 and 2.3

Measurement results:

	Radiated Spurious Emissions [dBm]								
	short pulse			limit line			long pulse		
F [GHz]	Detector	Level [dBm]	Limit [dBm]		Limit [dBm]	F [GHz]	F [GHz] Detector		
11.19	RMS	-63.3	-13		-13	11.19	RMS	-67.2	
18.84	RMS	-55.3	-13		-13	18.83	RMS	-42.8	
28.26	RMS	-63.7	-13		-13	28.25	RMS	-57.7	
Measurement uncertainty				1	± 3	dB			

n.f. = nothing found v / h = vertical / horizontal

Note:

see also Annex C, plots 21 - 30

VII. Transmitter frequency tolerance

Description:

§ 80.209

(b) When pulse modulation is used in land and ship radar stations operating in the bands above 2.4 GHz the frequency at which maximum emission occurs must be within the authorized bandwidth and must not be closer than 1.5/T MHz to the upper and lower limits of the authorized bandwidth where "T" is the pulse duration in microseconds.

Mode	T _{pulse} [ns]	1.5/T [MHz]	f _{min} [GHz]	f _{max} [GHz]	
short pulse	49.0	30.61	9.3306	9.4694	
medium 1 pulse	267.8	5.60	9.3056	9.4944	
medium 2 pulse	471.1	3.18	9.3032	9.4968	
long pulse	913.3	1.64	9.3016	9.4984	

Note:

 f_{min} and f_{max} are based on 9.3 GHz – 9.5 GHz band.

Test setup: no. 1.2

Measurement results:

Temperature	Voltage	Reference Frequency	Measured Frequency	Deviation [MHz]	Deviation [ppm]
-30	115	9414012500	9423545000	9532500	1013
-20	115	9414012500	9421487500	7475000	794
-10	115	9414012500	9419482500	5470000	581
0	115	9414012500	9417487500	3475000	369
10	115	9414012500	9415642500	1630000	173
20	115	9414012500	9414012500	0	0
20	115	9414012500	9414012500	0	0
20	98	9414012500	9414012500	0	0
30	132	9414012500	9412372500	-1640000	-174
40	115	9414012500	9410842500	-3170000	-337
50	115	9414012500	9409112500	-4900000	-521

VIII. AC conducted limits

Description / Limit:

§15.107 / 207

(a) Except for Class A digital devices, for equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the band edges.

Frequency of omission [MH7]	Conducted limit [dBµV]				
Frequency of emission [MHz]	Quasi-peak	Average			
0.15 - 0.5	66 to 56*	56 to 46*			
0.5 - 5	56	46			
5 - 30	60	50			

*Decreases with the logarithm of the frequency.

Test setup: 1.1

Measurement results:

AC conducted emissions < 30 MHz [dBµV/m]							
Frequency [MHz]	Detector	Level [dBµV/m]					
No critical peaks detec	No critical peaks detected. All detected peak values are below the average limits.						
Measurement uncertainty ± 3 dB							

Note:

see also Annex D, plot 1 – 2

IX. Radiated emission limits

Description / Limit:

§15.109 / 209

(a) Except for Class A digital devices, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:

Frequency of emission [MHz]	Field strength [microvolts/meter]	Field strength [dBµV/meter]	Measurement distance (m)
0.009 - 0.490	2400/F(kHz)		300
0.490 – 1.705	24000/F(kHz)		30
1.705 – 30	30	29.5	30
30 – 88	100	40.0	3
88 – 216	150	43.5	3
216 – 960	200	46.0	3
above 960	500	54.0	3

(c) In the emission tables above, the tighter limit applies at the band edges.

Test setup: 2.1 – 2.3

Measurement results:

Spurious Emissions Radiated [dBµV/m]							
Frequency [GHz]	Detector	Level [dBµV/m]					
No critical peaks dete	No critical peaks detected. All detected peak values are below the average limits.						
Measurement uncertainty ± 3 dB							

Note:

see also Annex D, plots 3 – 8

Annex A Test equipment and ancillaries used for tests

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, rf-generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Chamber 'G' / AC conducted emissions:

No.	Lab / Item	Equipment	Туре	Manufact.	Serial No.		Kind of Calibration	Last Calibration	Next Calibration
1	n. a.	Netznachbildung	ESH3-Z5	R&S	892475/017	300002209	k	17.06.2014	17.06.2016
2	68	EMI-Receiver	8542E	HP	3617A00170	300000568	k	28.01.2015	28.01.2016
3	n. a.	Analyzer-Reference- System (Harmonics and Flicker)	ARS 16/1	SPS	A3509 07/0 0205	300003314	Ve	11.02.2014	11.02.2016

Semi Anechoic Chamber 'F':

No.	Lab / Item	Equipment	Туре	Manufact.	Serial No.	INV. No Cetecom	Kind of Calibration	Last Calibration	Next Calibration
1	n. a.	Netznachbildung	ESH3-Z5	R&S	892475/017	300002209	k	17.06.2014	17.06.2016
2	45	Switch-Unit	3488A	HP	2719A14505	300000368	ev		
3	50	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP	2920A04466	300000580	ne		
4	68	EMI-Receiver	8542E	HP	3617A00170	300000568	k	28.01.2015	28.01.2016
5	67	RF-Filter-section	85420E	HP	3427A00162	300002214	k	27.11.2006	

Fully Anechoic Chamber 'C':

No.	Lab / Item	Equipment	Туре	Manufact.	Serial No.	INV. No Cetecom	Kind of Calibration	Last Calibration	Next Calibration
1	n. a.	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP	2818A03450	300001040	Ve	20.01.2015	20.01.2018
2	n. a.	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	8812-3088	300001032	viKI!	20.05.2015	20.05.2017
3	n. a.	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev		
4	n. a.	Switch / Control Unit	3488A	HP	*	300000199	ne		
5	9	Isolating Transformer	MPL IEC625 Bus Regeltrenntravo	Erfi	91350	300001155	ne		
6	90	Active Loop Antenna 10 kHz to 30 MHz	6502	EMCO/2	8905-2342	300000256	k	24.06.2015	24.06.2017
7	n. a.	Amplifier	js42-00502650-28- 5a	Parzich GMBH	928979	300003143	ne		
8	n. a.	Band Reject filter	WRCG1855/1910- 1835/1925-40/8SS	Wainwright	7	300003350	ev		
9	n. a.	Band Reject filter	WRCG2400/2483- 2375/2505-50/10SS	Wainwright	11	300003351	ev		
10	n. a.	Highpass Filter	WHKX7.0/18G-8SS	Wainwright	18	300003789	ne		
11	n.a.	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck	371	300003854	viKi!	29.10.2014	29.10.2017
12	n. a.	MXE EMI Receiver 20 Hz to 26,5 GHz	N9038A	Agilent Technologies	MY51210197	300004405	k	06.03.2015	06.03.2016
13	n. a.	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000037	300004509	ne		
14	n. a.	EMI Test Receiver 9kHz-26,5GHz	ESR26	R&S	101376	300005063	k	04.09.2015	04.09.2016

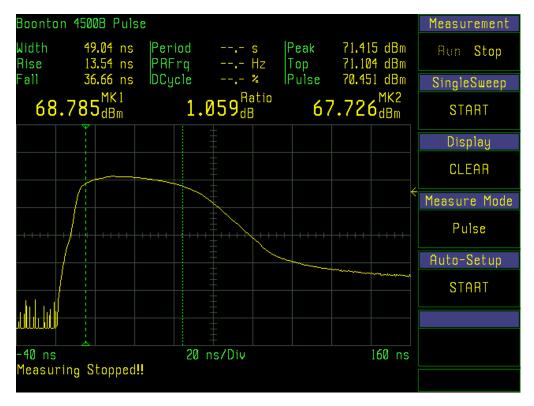
Test laboratory 'RCE-SYS':

No.	Lab / Item	Equipment	Туре	Manufact.	Serial No.	INV. No Cetecom	Kind of Calibration	Last Calibration	Next Calibration
1	U231	Stub Tuner (double)	N300A	Microlab/Fxr	00419	300002042	ev		
2	W240	Directional Coupler RPS90	90-2-N-F-40-SP-SP- C	СМТ	900687-002	300001598	ev		
3	C219	HF-Cable	ST18/SMAm/SMAm/ 72	H&S	-/-	-/-	ev		
4		Dummy Load 250 kW	Model 320B	Narda	-/-	300002371	ev		
5	R001	Spectrum Analyzer 9kHz-50GHz portable spectrum analyzer	8565E	HP Meßtechnik	3515A00283	300000916	Ve	12.02.2015	12.02.2017
6	W241	Waveguide Directional Coupler, 8.2 to 12.4 GHz, 20 dB	X752D	HP	1829A21784	300000484	ev		
7	U214	Attenuator (N- connector)	10 dB / 10 W	Spinner	745379	40000047	ev		
8		RF Peak Power Analyzer+ PPA Sensor	4500B + 58318	Boonton Electronics	12331 + 6276	300003871	k	28.01.2015	28.01.2016
9	11b	Microwave System Amplifier, 0.5-26.5 GHz	83017A	HP Meßtechnik	00419	300002268	ev		
10	CR 79	Std. Gain Horn Antenna 26.5-40.0 GHz	V637	Narda	7911	300001751	ne		
11	A026	Std. Gain Horn Antenna 12.4 to 18.0 GHz	639	Narda	8402	300000787	k	14.08.2015	14.08.2017
12	A029	Std. Gain Horn Antenna 18.0 to 26.5 GHz	638	Narda		300000486	k	10.09.2015	10.09.2017
13		PXA Spectrum Analyzer 3Hz to 50GHz	N9030A PXA Signal Analyzer	Agilent Technologies	US51350267	300004338	k	07.01.2015	07.01.2016
14	BAT	Climatic Chamber	TW-60/3Ex/I	CTS GmbH	094009	300003884	ne		

Agenda: Kind of Calibration

- k calibration / calibrated
- ne not required (k, ev, izw, zw not required)
- ev periodic self verification
- Ve long-term stability recognized
- vlkl! Attention: extended calibration interval
- NK! Attention: not calibrated

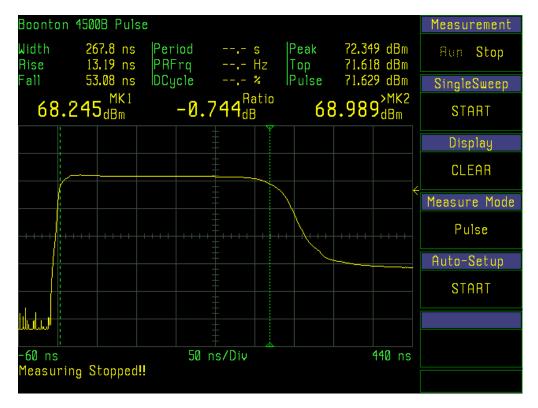
- EK limited calibration
- zw cyclical maintenance (external cyclical maintenance)
- izw internal cyclical maintenance
- g blocked for accredited testing
- *) next calibration ordered / currently in progress



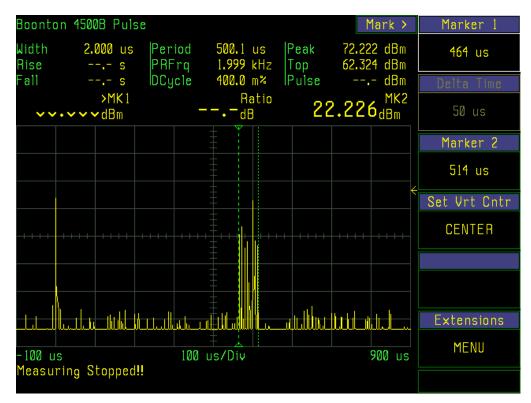
Annex B Measurement results, part 1 (PPA)

This annex consists of 5 pages including this page.

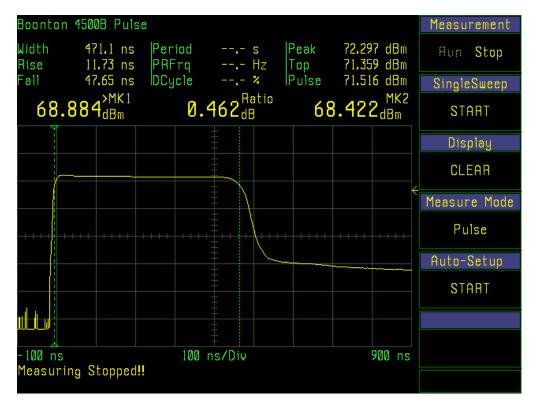
Plot No. 1: short pulse



Plot No. 2: short pulse

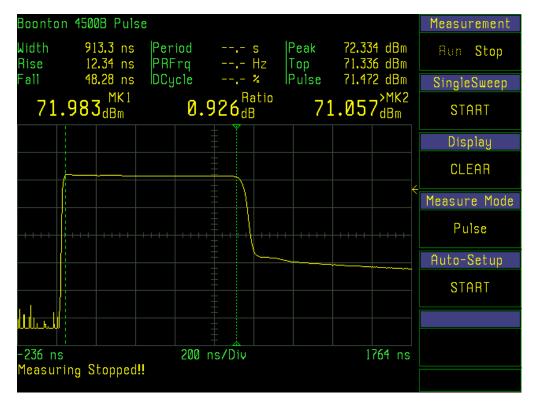

Boontor	n 4500B Puls	е			Mark >	Marker 1
Width Rise	1.000 us s		336.0 us 2.975 kHz		71.476 dBm 57.666 dBm	302 us
Fall	s	DCycle	297.6 m%	Pulse	dBm	Delta Time
28.	.731 ^{>MK1} dBm	-2.	519_{dB}^{Ratio}	31	$.251_{dBm}^{MK2}$	45 us
						Marker 2
			+ + + + + + + + + + + + + + + + + + + +			347 us
					(Set Vrt Cntr
						CENTER
	անուն տես և հետել	ևալլելոս				Extensions
-40 us			‡ us/Div		460 us	MENU
rleasuri	ing Stopped!	-				

Plot No. 3: medium 1 pulse

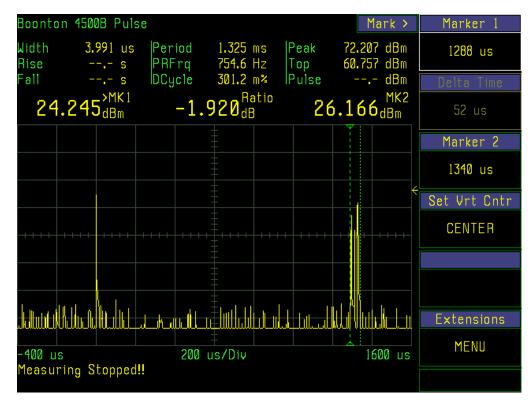


Plot No. 4: medium 1 pulse

Plot No. 5: medium 2 pulse

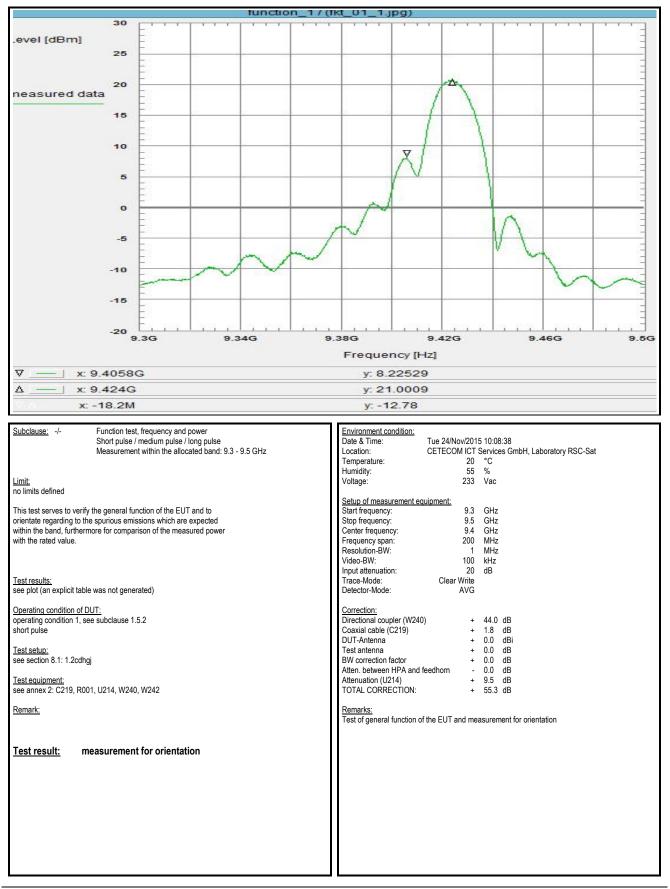


Plot No. 6: medium 2 pulse


Boonton	4500B Puls	e			Mark >	Marker 1
	4.000 us s	Period PRFrq	996.2 us 1.003 kHz	Peak Top		960 us
	s		401.6 m%		dBm	Delta Time
48.7	7 48 dBm	29.9	941_{dB}^{Ratio}	18	.807 ^{>MK2} dBm	1 8 us
			+ + +			Marker 2
						1008 us
						Set Vrt Cntr
			+ + + + + + + + + + + + + + + + + + +			CENTER
			+			
					لمباله مللب	Extensions
-400 us			± us/Div		1600 us	MENU
Measurin	ng Stopped					

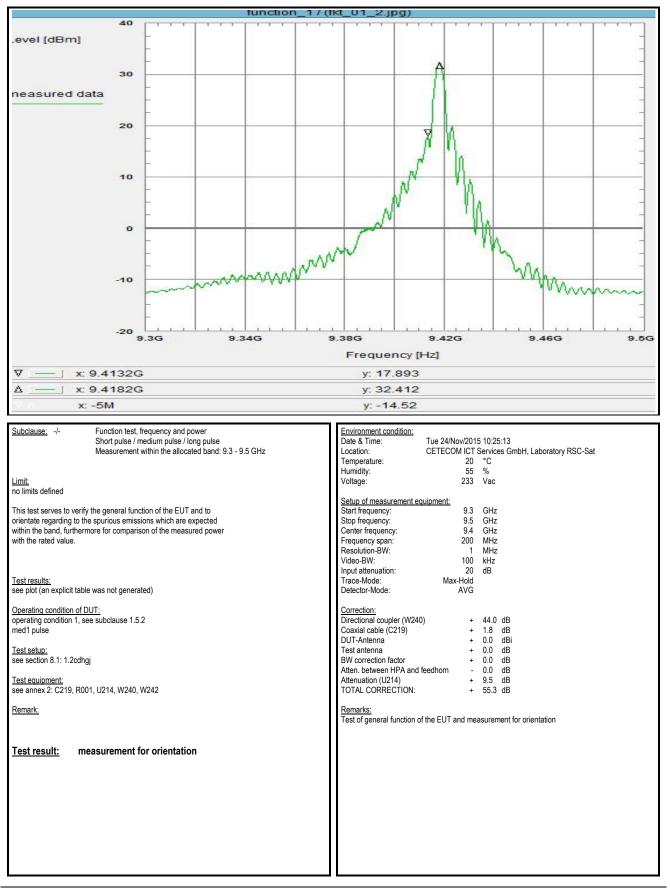
Plot No. 7: long pulse

Plot No. 8: long pulse

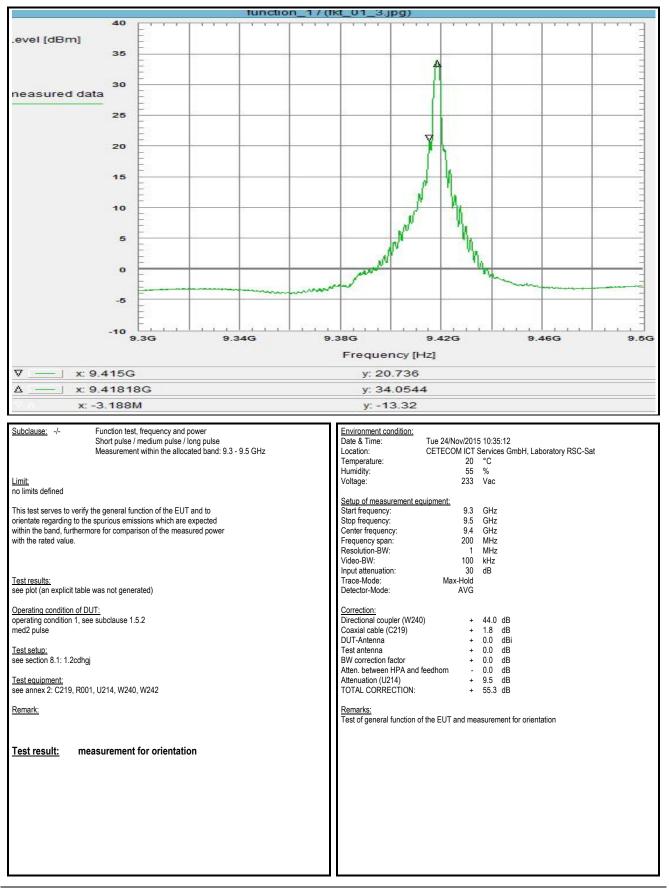


Annex C Measurement results, part 2 (FCC Part 80)

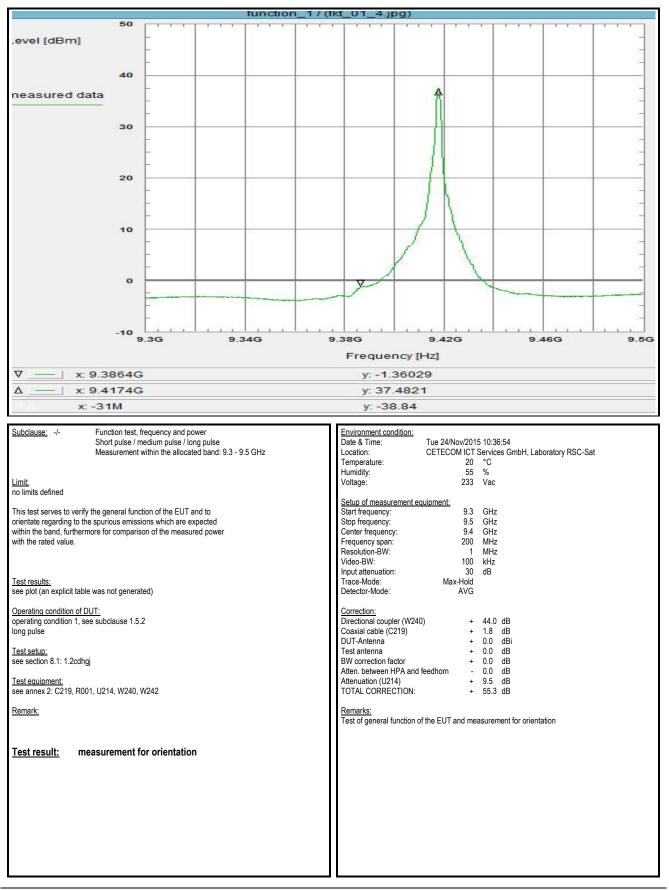
This annex consists of 31 pages including this page.



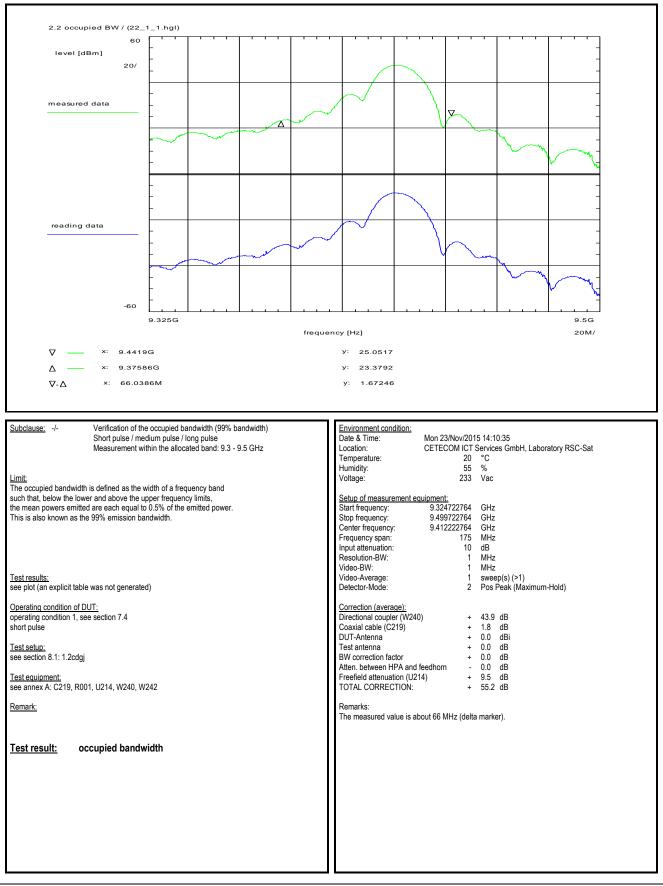
Plot No. 1 (30)



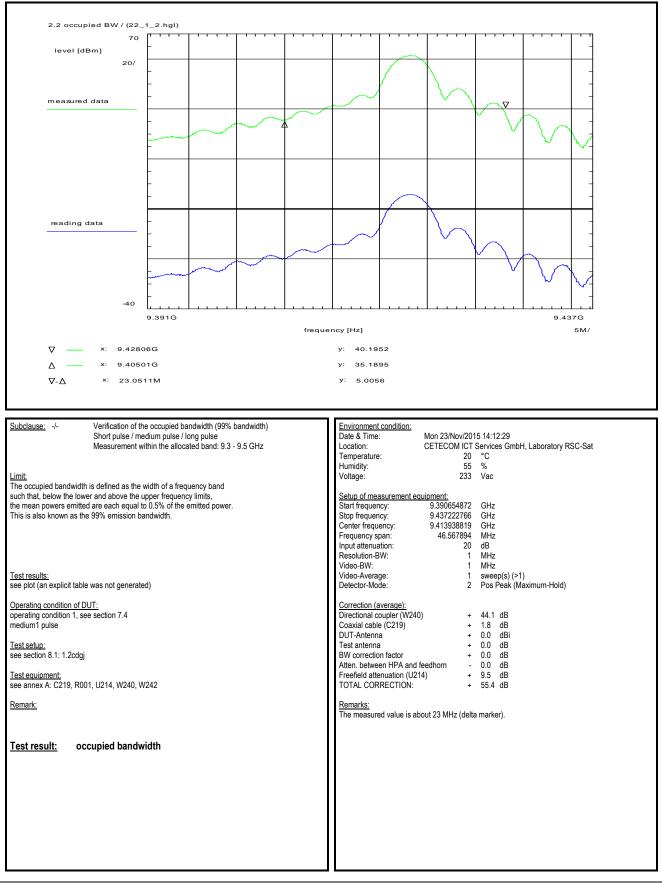
Plot No. 2 (30)



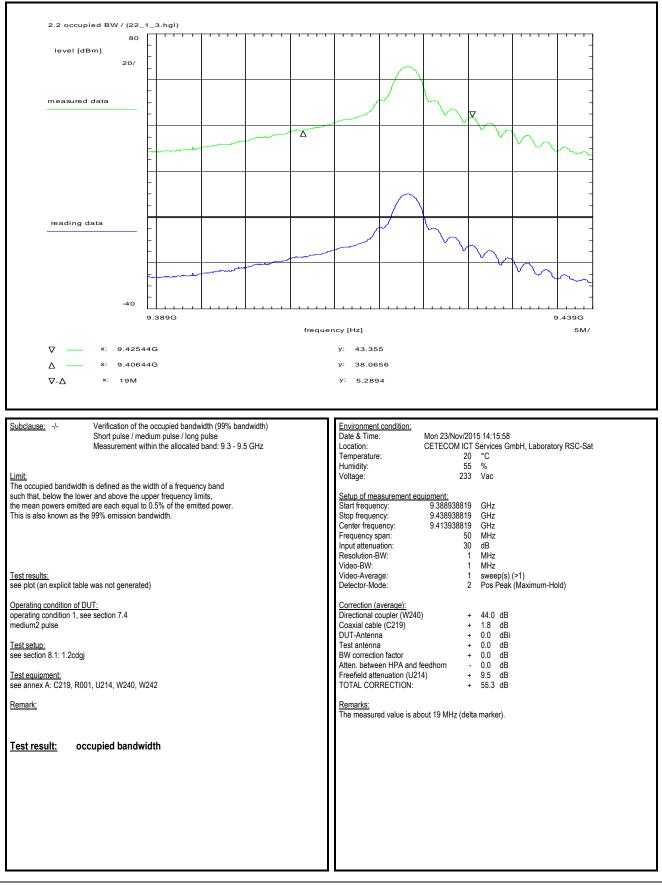
Plot No. 3 (30)



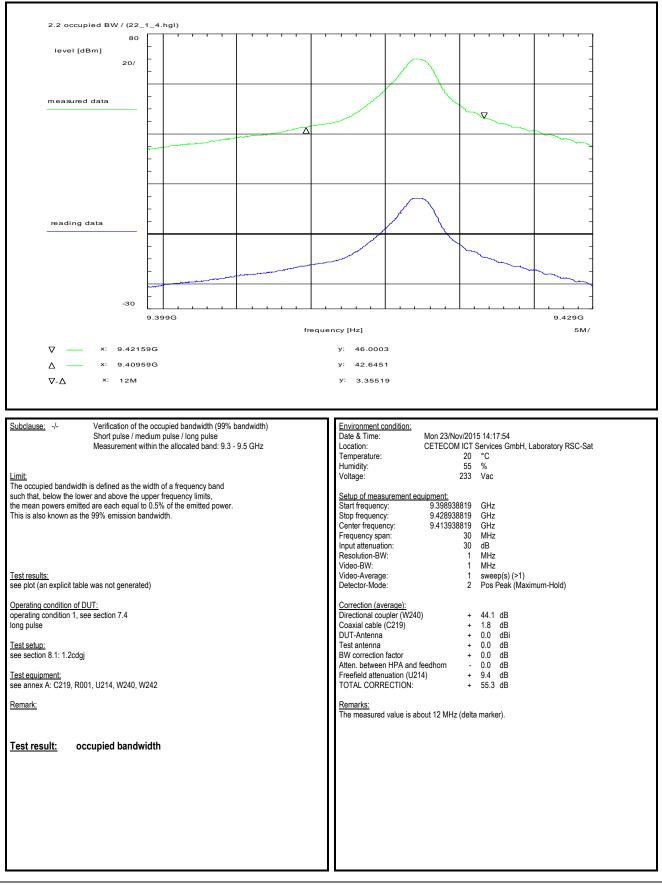
Plot No. 4 (30)



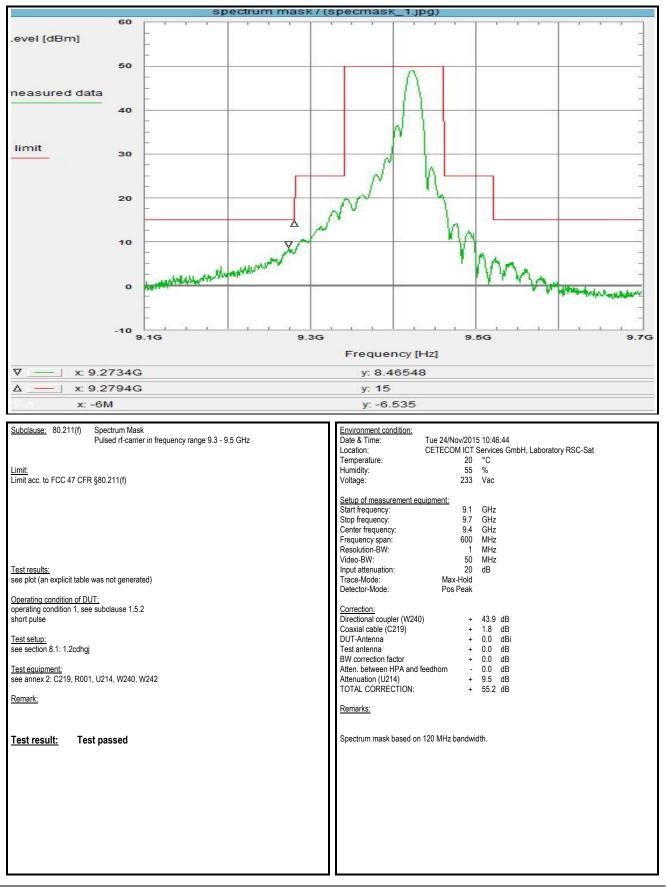
Plot No. 5 (30)



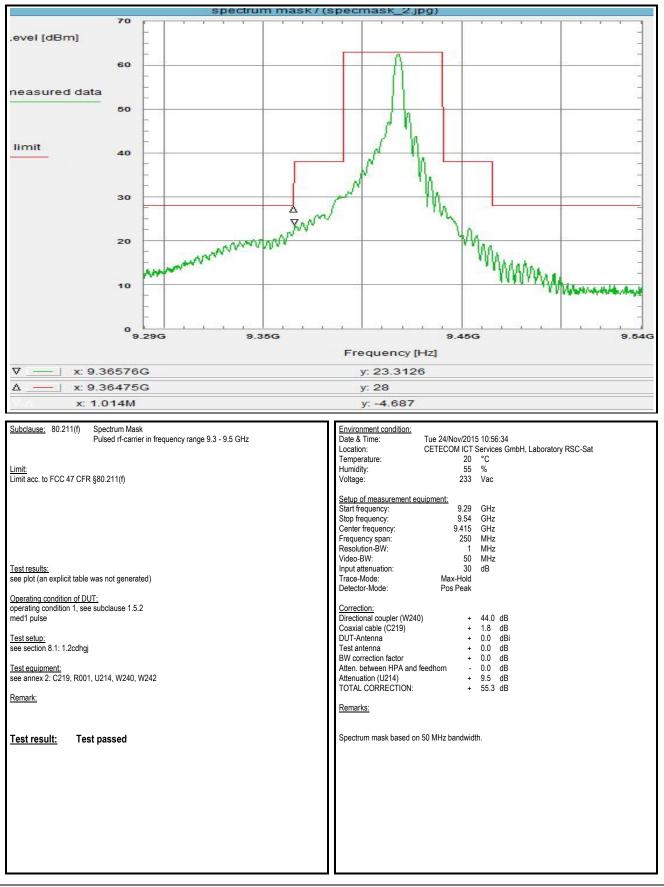
Plot No. 6 (30)



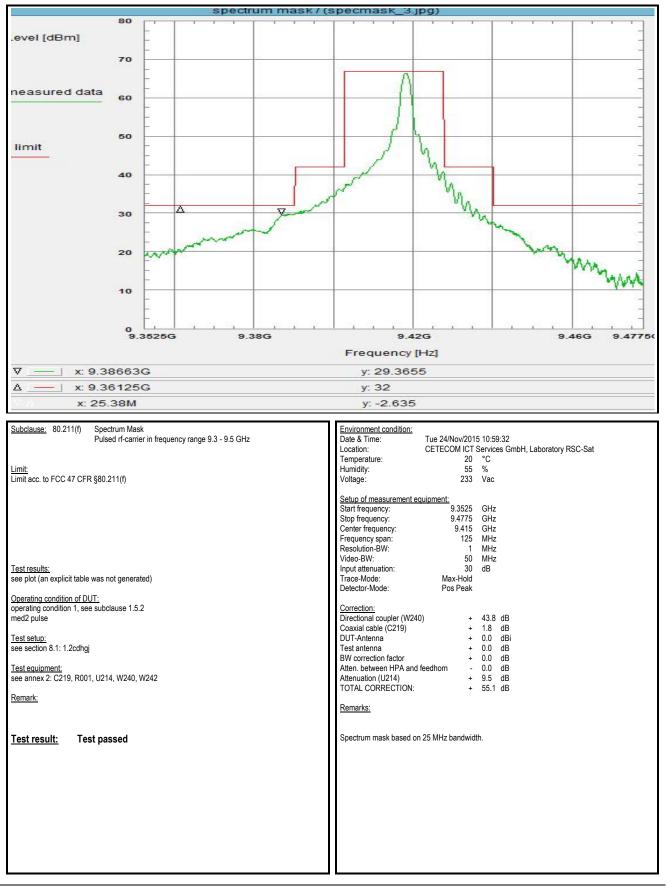
Plot No. 7 (30)



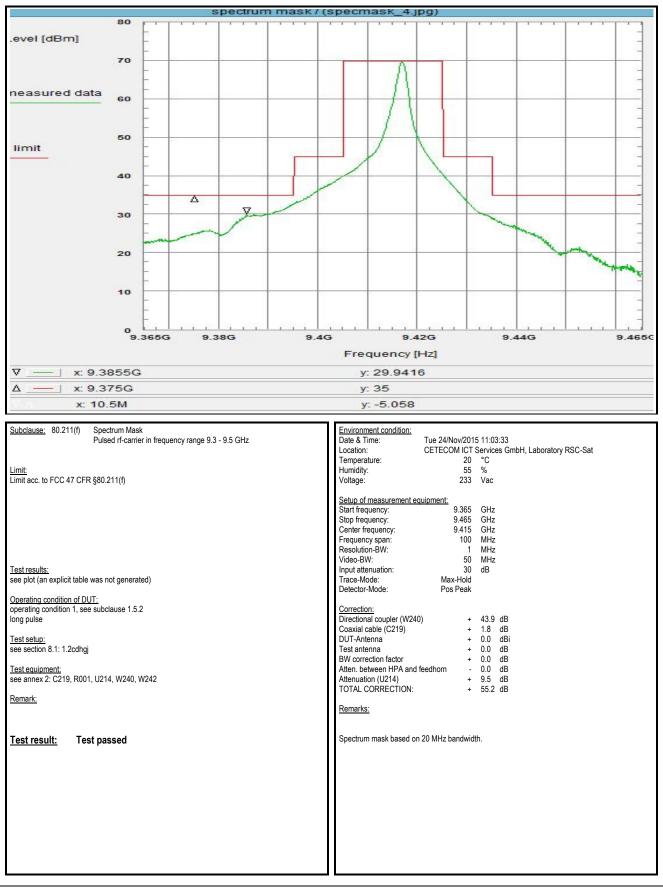
Plot No. 8 (30)



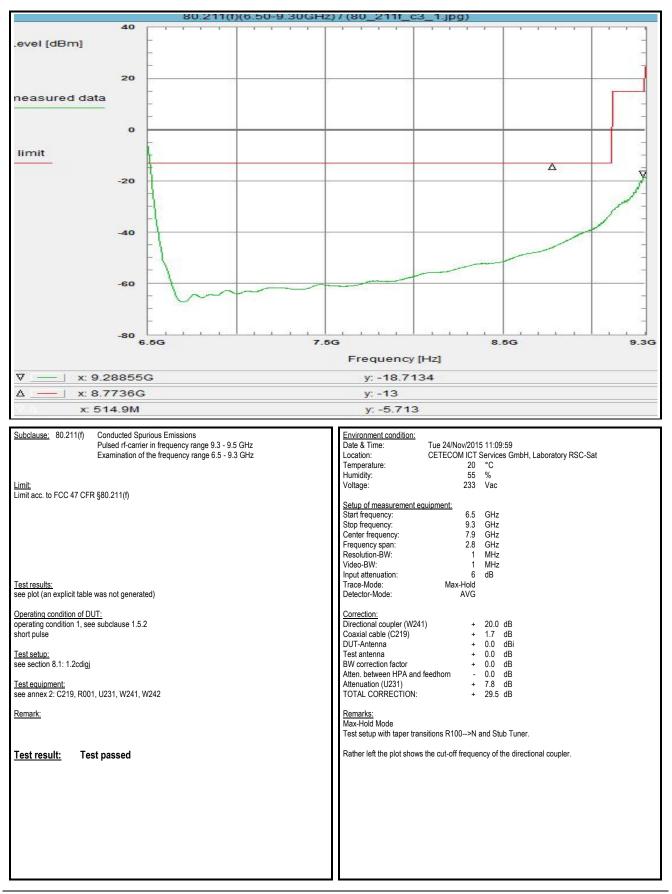
Plot No. 9 (30)



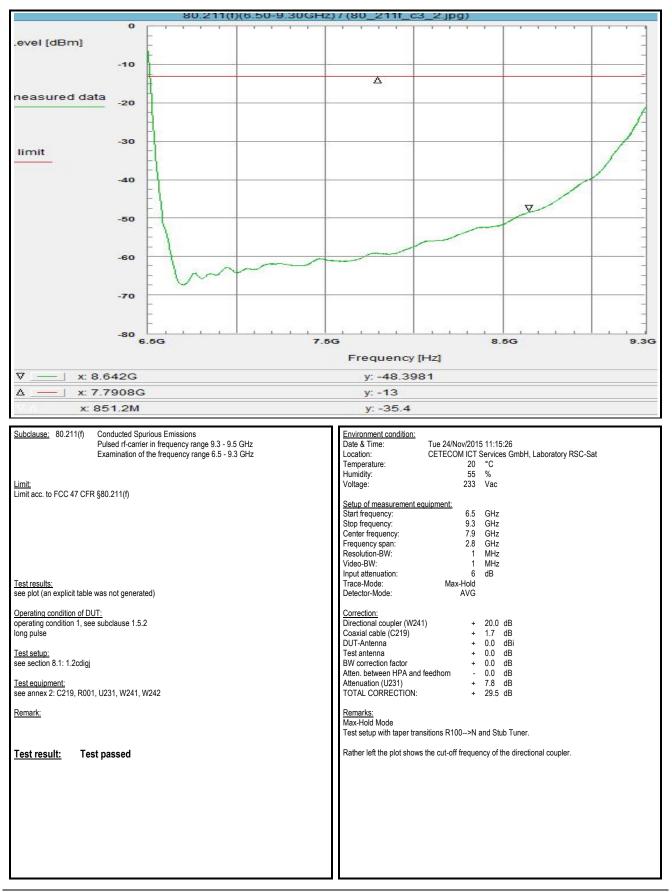
Plot No. 10 (30)



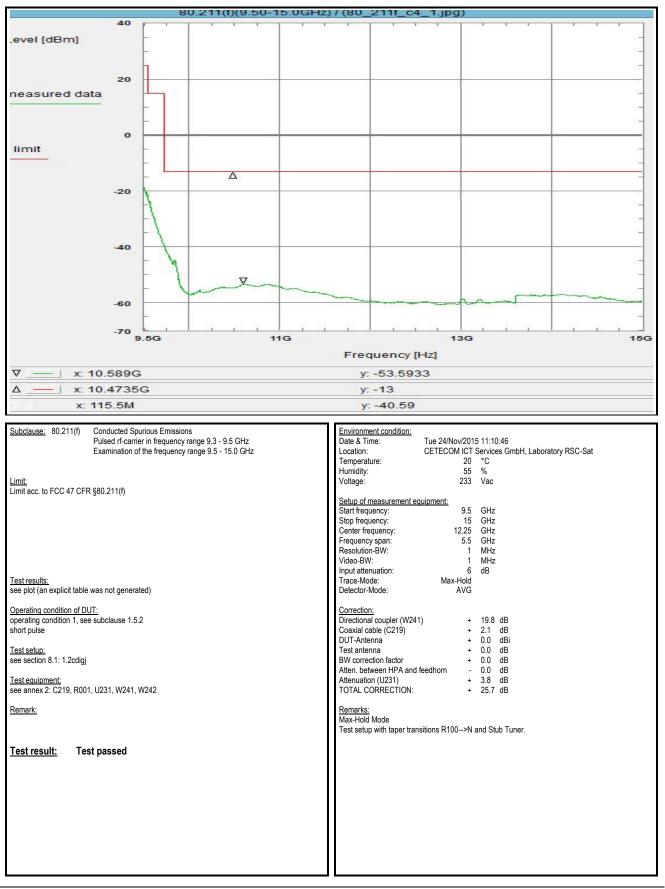
Plot No. 11 (30)



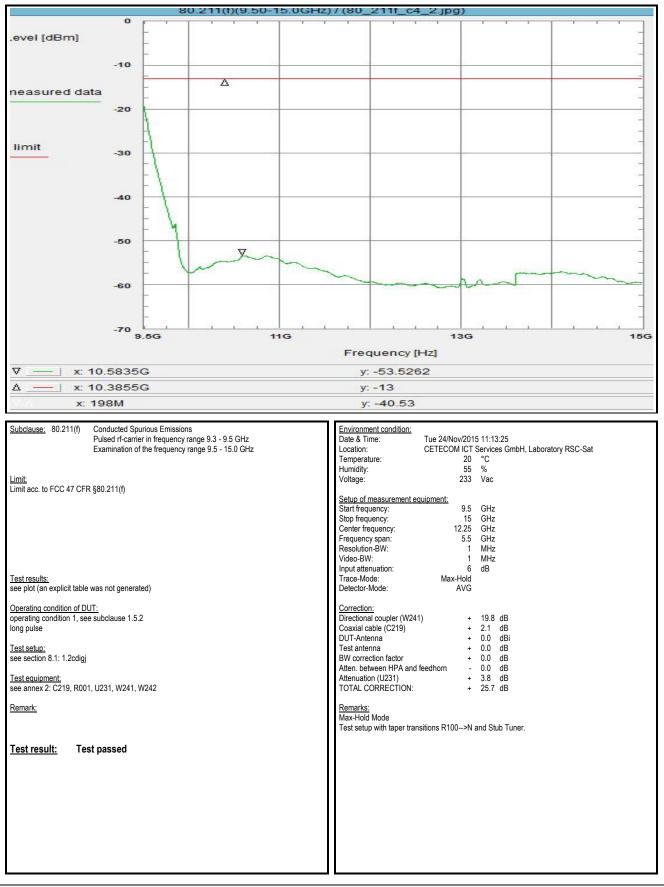
Plot No. 12 (30)



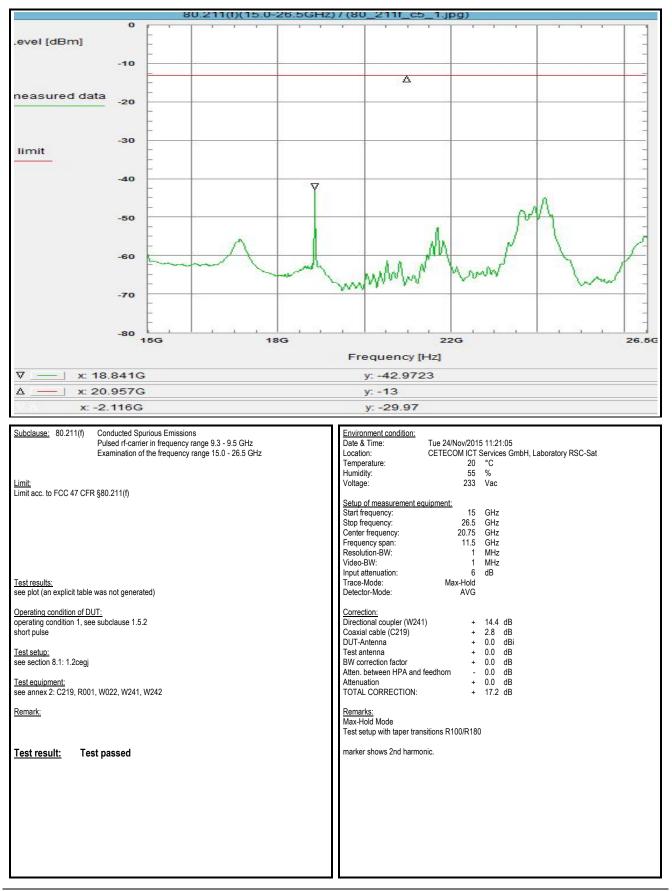
Plot No. 13 (30)



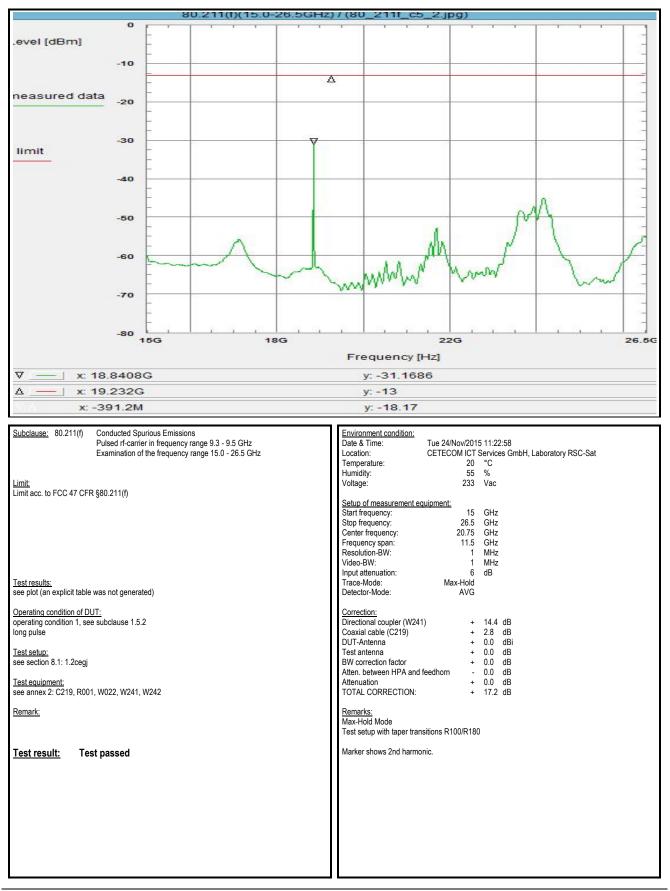
Plot No. 14 (30)



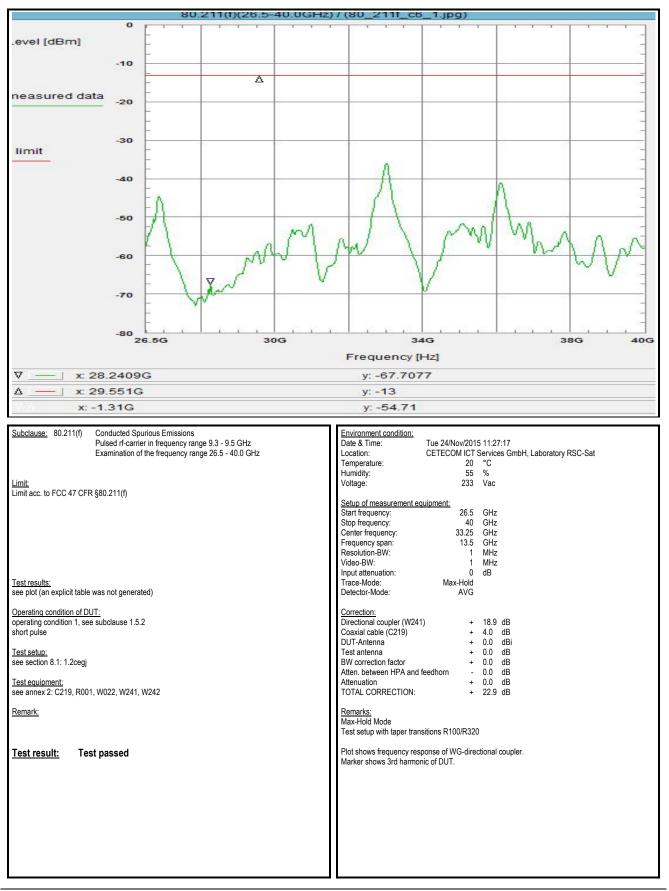
Plot No. 15 (30)



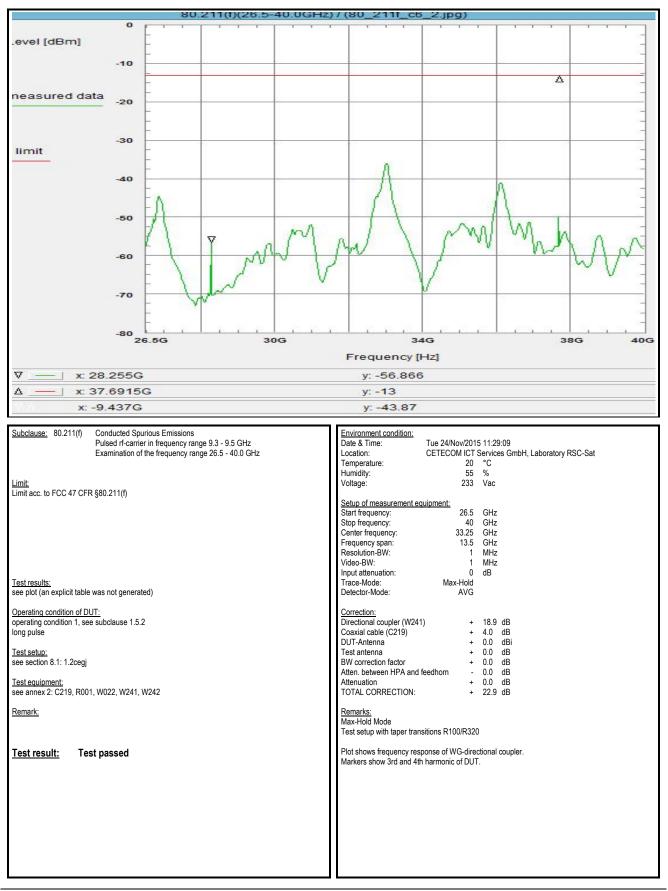
Plot No. 16 (30)



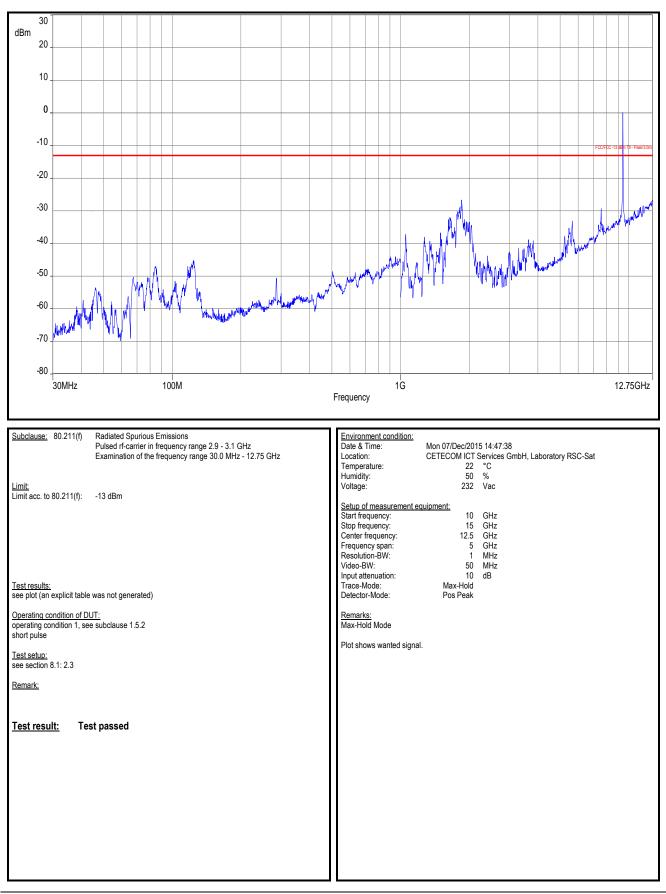
Plot No. 17 (30)



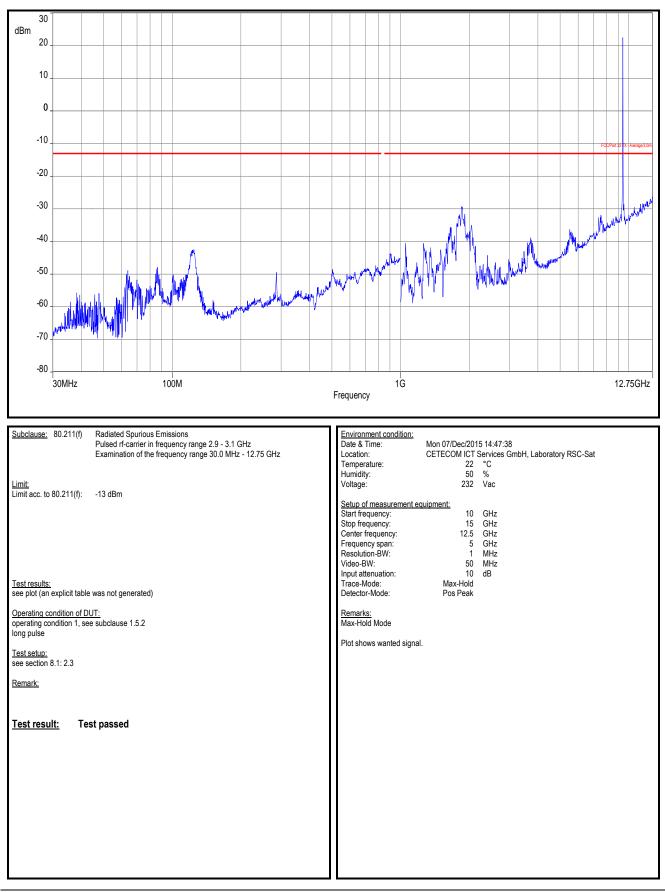
Plot No. 18 (30)



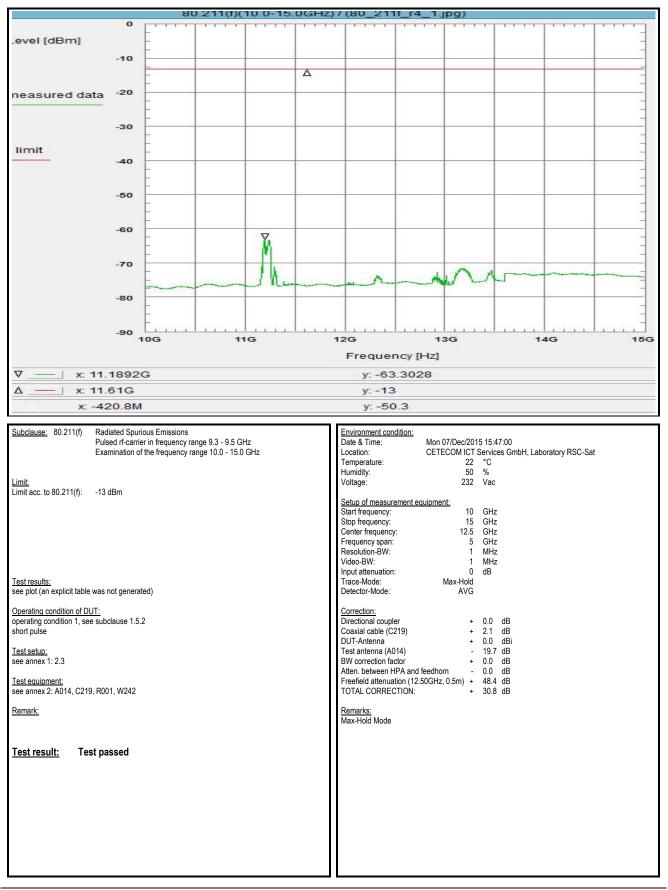
Plot No. 19 (30)



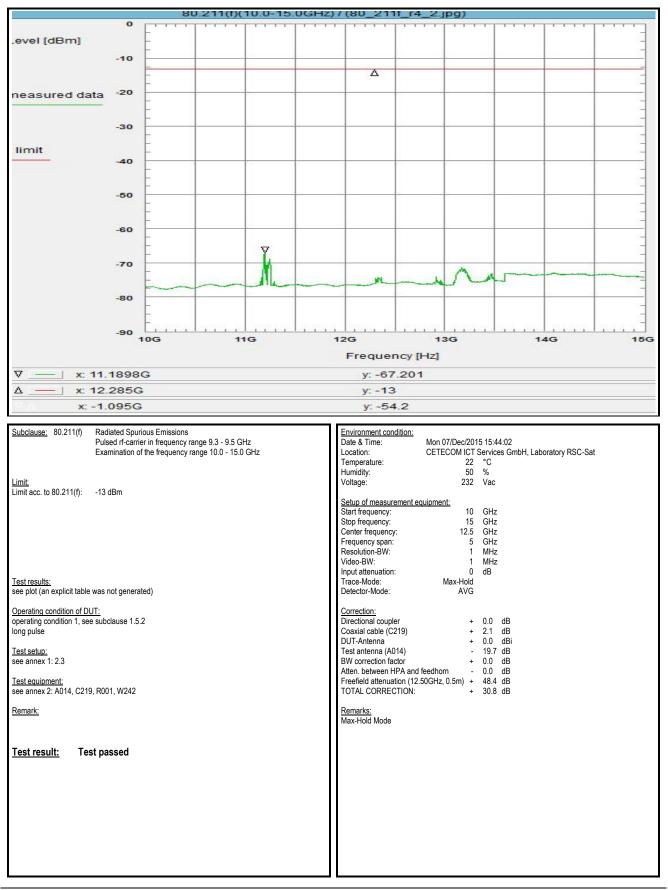
Plot No. 20 (30)



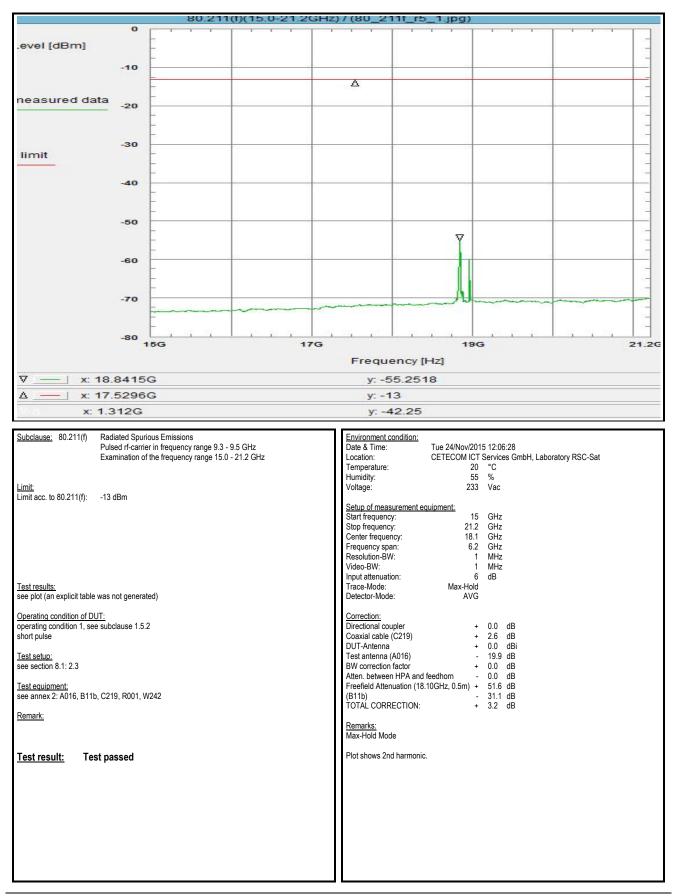
Plot No. 21 (30)



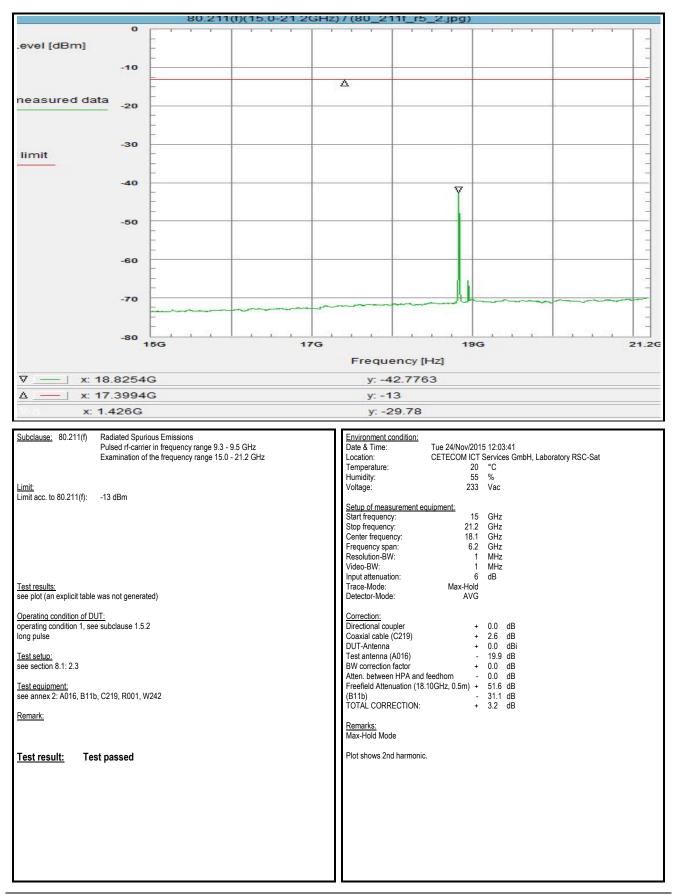
Plot No. 22 (30)



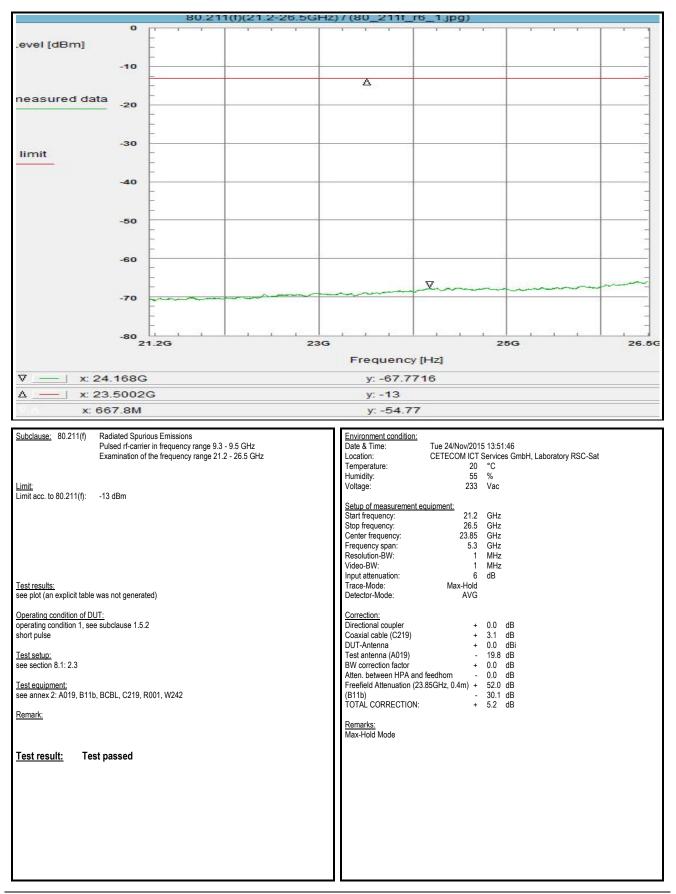
Plot No. 23 (30)



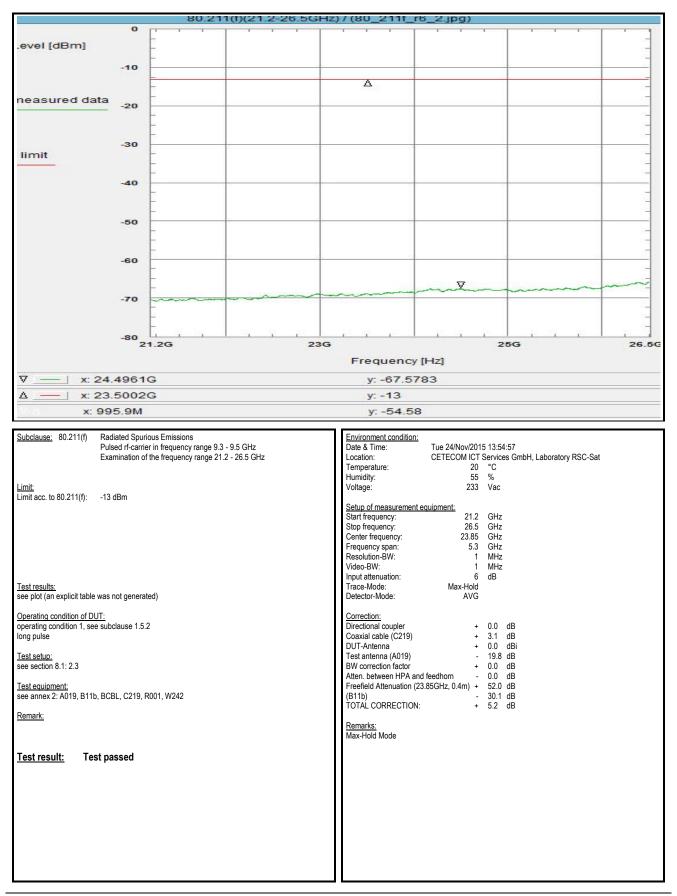
Plot No. 24 (30)



Plot No. 25 (30)

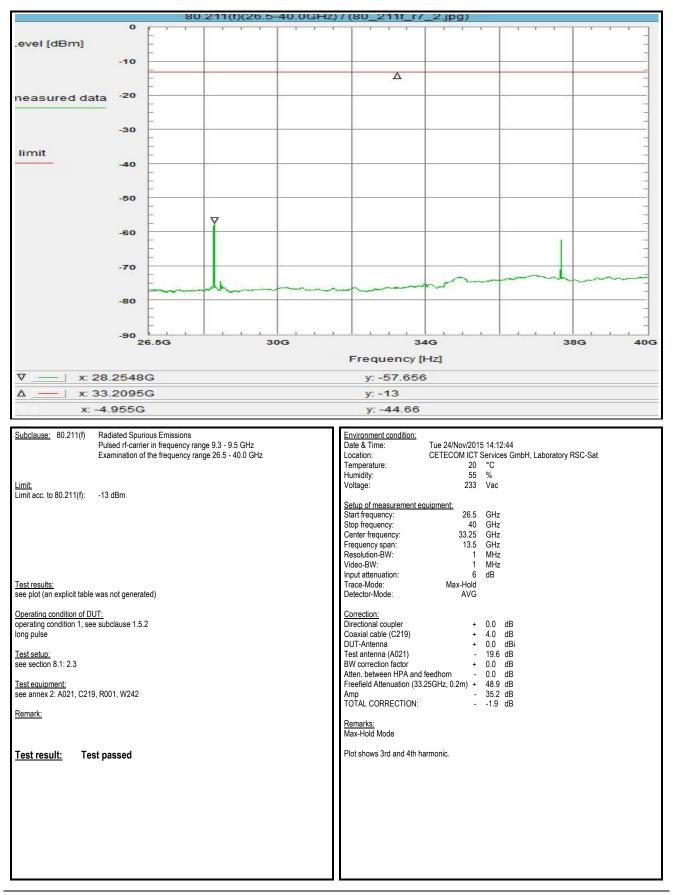


Plot No. 26 (30)



Plot No. 27 (30)

Plot No. 28 (30)

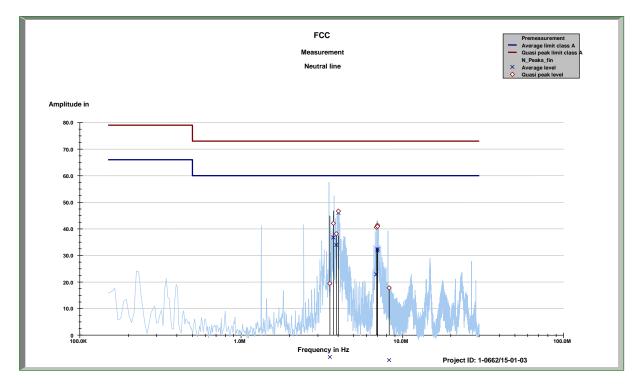


Plot No. 29 (30)

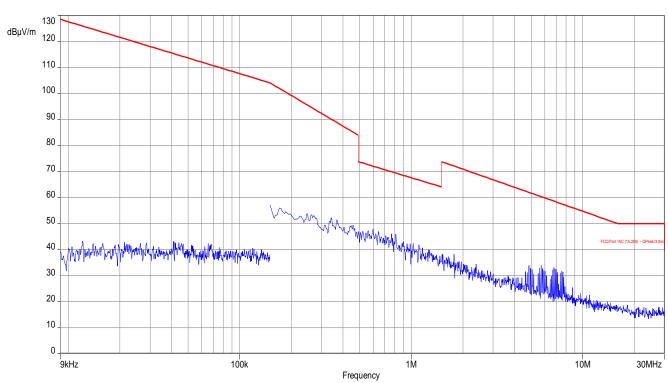
Plot No. 30 (30)

Annex D Measurement results, part 3 (FCC Part 15B)

This annex consists of 7 pages including this page.

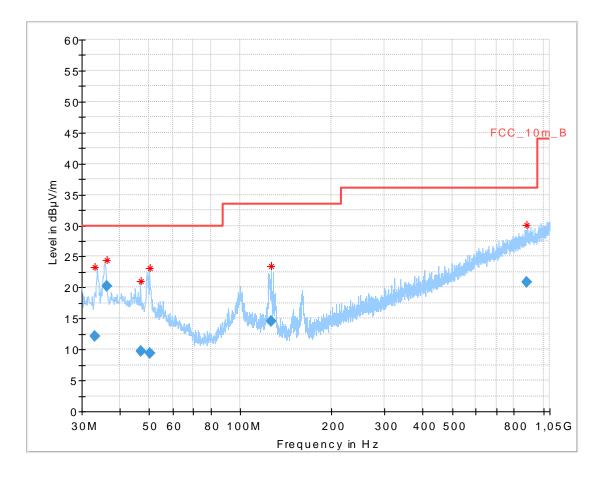

Plot No. 1: AC conducted

Frequency	Quasi peak level	Margin quasi peak	Average level	Margin average
MHz	dBµV	dBµV	dBµV	dBµV
0.23642	15.41	63.59	11.74	54.26
3.1633	34.13	38.87	19.92	40.08
3.9734	46.57	26.43	45.03	14.97
3.9738	46.55	26.45	45.22	14.78
3.9759	46.53	26.47	45.94	14.06
6.818	24.17	48.83	-11.65	71.65
7.0174	40.51	32.49	30.90	29.10
7.0202	40.85	32.15	31.99	28.01
7.0211	40.72	32.28	31.94	28.06



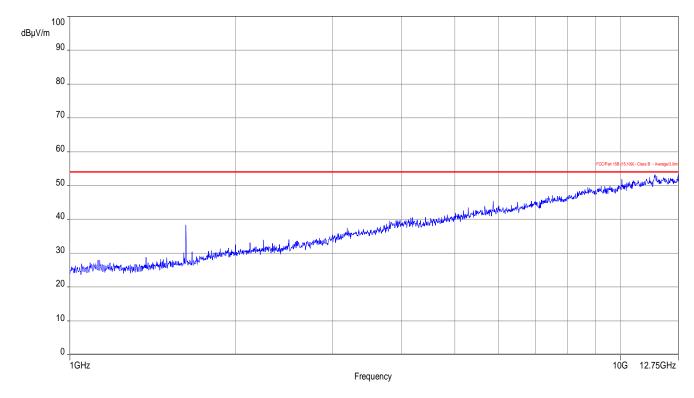
Plot No. 2: AC conducted

Frequency	Quasi peak level	Margin quasi peak	Average level	Margin average
MHz	dBµV	dBµV	dBµV	dBµV
0.23642	15.41	63.59	11.74	54.26
3.1633	34.13	38.87	19.92	40.08
3.9734	46.57	26.43	45.03	14.97
3.9738	46.55	26.45	45.22	14.78
3.9759	46.53	26.47	45.94	14.06
6.818	24.17	48.83	-11.65	71.65
7.0174	40.51	32.49	30.90	29.10
7.0202	40.85	32.15	31.99	28.01
7.0211	40.72	32.28	31.94	28.06

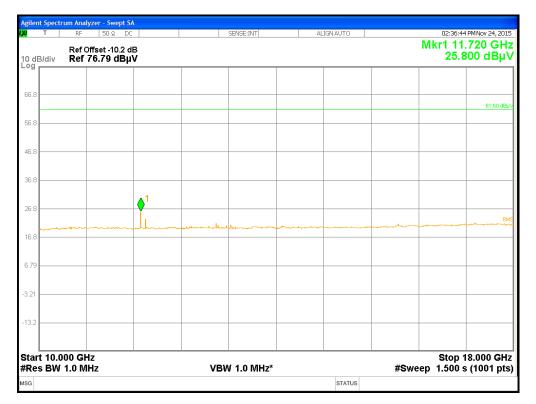


Plot No. 3: magnetic

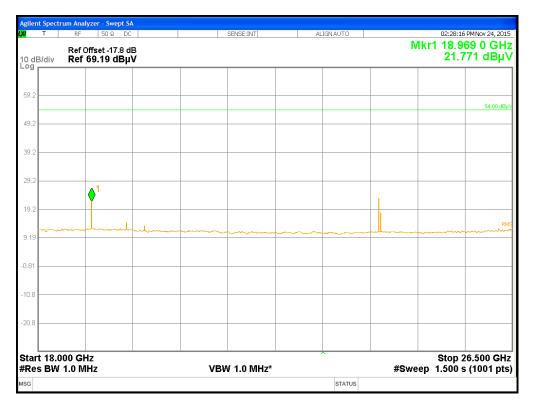
Plot No. 4: 30 MHz – 1 GHz



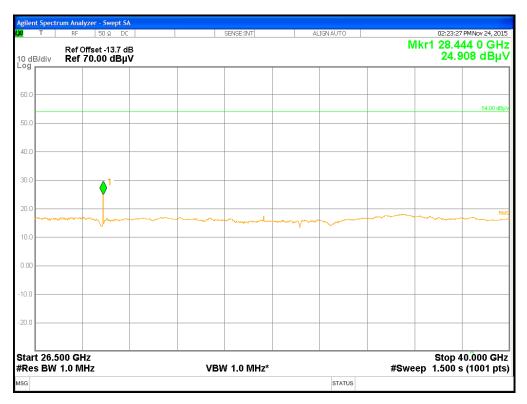
Final_Result


Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
33.123600	12.07	30.00	17.93	1000.0	120.000	172.0	V	282	13.6
36.180000	20.21	30.00	9.79	1000.0	120.000	103.0	V	265	13.9
47.078250	9.64	30.00	20.36	1000.0	120.000	200.0	V	5	13.3
50.299800	9.33	30.00	20.67	1000.0	120.000	200.0	V	5	12.6
126.155850	14.62	33.50	18.88	1000.0	120.000	100.0	V	53	9.7
884.496600	20.88	36.00	15.12	1000.0	120.000	200.0	Н	232	23.9

Plot No. 5: 1 GHz – 12.75 GHz



Plot No. 6: 10 – 18 GHz



Plot No. 7: 18 – 26.5 GHz

Plot No. 8: 26.5 GHz – 40 GHz

Annex E Document history

Version	Applied changes	Date of release	
DRAFT	Initial release - DRAFT	2016-01-25	
	minor changes based on manufacturer's information	2016-02-05	

Annex F Further information

<u>Glossary</u>

AVG	-	Average
DUT	-	Device under test
EMC	-	Electromagnetic Compatibility
EN	-	European Standard
EUT	-	Equipment under test
ETSI	-	European Telecommunications Standard Institute
FCC	-	Federal Communication Commission
FCC ID	-	Company Identifier at FCC
HW	-	Hardware
IC	-	Industry Canada
Inv. No.	-	Inventory number
N/A	-	Not applicable
PP	-	Positive peak
QP	-	Quasi peak
S/N	-	Serial number
SW	-	Software

Annex G Accreditation Certificate

Front side of certificate	Back side of certificate			
Deutsche Akkreditierungsstelle GmbH Beliehene gemäß § & Absatz 1 AkkStelleG i.v.m. § 1 Absatz 1 AkkStelleGBV Unterzeichnerin der Multikareukn Akksommen von EA, II.AC und IAF zur gegenseitigen Anerkennung	Deutsche Akkreditierungsstelle GmbH Standort Berlin Standort Frankfurt am Main Stender: Brounschweig Spittelmarkt 10 Gartenstraße 6 Bindesaltes 100			
Akkreditierung	10117 šeriln 60594 frankfurt am Main 38116 Braunschweig			
Die Deutsche Akkreditierungsstelle GmbH bestätigt hiermit, dass das Prüflaboratorium CETECOM ICT Services GmbH				
Untertürlicheimer Straße 6-10, 66117 Saarbrücken dir Kompetenz nach DIN EN ISO/IEC 17025:2005 besitzt, Prüfungen in folgenden Bereichen durchzuführen:				
Dia Algebundene Kommunikation einschließlich xDSL vaP und DECT Ausstik Funk einschließlich WLAN Short Range Deutes (SRD) RFID WilMax und Richfunk Mobilitunk (GSM / DCS, Over the Air (OTA) Performance) Elektromagnetische Verträglichkeit (EMV) einschließlich Automotive Produktischerheit SAR und Hearing Aid Compatibility (HAC) Umweitsimulation Smart Carq Terminals Bluebooth Wi-FI-Services Die Alkreditierungseunkande pil nur in Verbindung mit dem Bescheid vom 07.03.2014 mit der Aktreditierungseunkande pil nur in Verbindung mit dem Bescheid vom 07.03.2014 mit der Aktreditierungseunner FP-FI-2070-60 um sitz giltig 12.01.2018. Sie besteht aus diesem Deckblatt, der Rödskeite des Deckblacts und der fulgenden Anlage mit Ingesamt 72 Seiten. Regibtuierungseunner der Urkunde: D-FI-12076-01-00	Die auszugsweite Veröffentlichung der Akkreditierungspräunde besahl der weiherigen schriftlichen Zuerinnung der Deutsche Akkreditierungsstelle Grithf (DAMAS), Augenenmen davon ist die segmale Weiherverschung des Deckblattes durch die umseitig gesennte Kunformillitabewerlungsstelle in unweih detter Form. Die Akkreditierung erfolgte gemößt des Stacktes über die Akkreditierung auch auf Bereiche entreck, die über den durch die DAAS bestätigten Akkreditierungsbereich innangehen. Die Akkreditierung erfolgte gemößt des Stacktes über die Akkreditierungsbereich vom 31. Juli 2009 (BGN). 15. 2023 sowie der Verschnung (DA) (NR, 755/2018 des Longalschen Parlamentz und des Rates vom 9. Juli 2008 über die Verschnung (DA) (NR, 755/2018 des Longalschen Parlamentz und des Rates vom 9. Juli 2008 über die Verschnung (DA) (NR, 755/2018 des Longalschen Parlamentz und des Rates vom 9. Juli 2008 über die Verschnung (DA) (NR, 755/2018 des Longalschen Parlamentz und des Rates vom 9. Juli 2008 über die Verschnung (DA) (DL 2018 vom 2. Juli 2008, 5. 30). Die DAAKreditier in der zufahlichen Akkermen auf gegente Ugen Arnetischung der Europron ein operandie führ Anzeiten (DA). (DL 2018 vom 2. Juli 2008), 5. 30). Die DAAKreditier in der zufahlichen Klaummen auf gegente Ugen Arnetischung der Europron ein der Ander Vergleinderschlaum (DA). Die Unterrachthere eiseer Abkommen enterkommen ihre Akkreditierung gegenzeitig an. Der abtes die Stund der Vergleinderschlaum (Da) (DAC). Die Unterrachthere eiseer Abkommen enterkommen ihre Akkreditierung gegenzeitig genzeitig an Arnetischung eiser Halle, weweitigten Halle, weweitigten			
Frankfurr zm. M.zin, 107, 20, 20, 24 in Angfung Trill, Impund Abstallungsleiter 28 Nitudin under Tomata				

Note:

The current certificate including annex may be received from CETECOM ICT Services on request.