

Accredited testing-laboratory

DAR registration number: DAT-P-176 / 94-D1

Federal Motor Transport Authority (KBA) DAR registration number: KBA-P 00070-97

Recognized by the Federal Communications Commission Anechoic chamber registration no.: 90462 (FCC) Anechoic chamber registration no.: 3462C-1 (IC) Certification ID: DE 0001 Accreditation ID: DE 0002

> Accredited Bluetooth[®] Test Facility (BQTF) The Bluetooth word mark and logos are owned by the Bluetooth SIG, Inc. and any use of such marks by Cetecom ICT is under license

Test report no.	:	2-4973-02-01/09
Type identification	:	MK2 X-MTR/PED 25kW
Applicant	:	Raytheon Anschütz GmbH
FCC ID	:	ASL9RAN-SUR-25U

Test standards

: FCC CFR 47 Part 90

Table of contents

1	Ge	neral information	3
	1.1	Notes	3
	1.2	Testing laboratory	4
	1.3	Details of applicant	4
	1.4	Application details	4
2	Tee	chnical tests	5
	2.1	Details of manufacturer	5
	2.1.	.1 Test item	5
	2.1.	.2 EUT operating modes	6
	2.1.	.3 Nominal conditions for testing	6
3	Su	mmary of Measurement Results and list of all performed test cases	7
4	RF	measurement testing	
	4.1	Description of test set-up	8
	4.1.	.1 Radiated measurements	8
	4.1.	2 Conducted measurements	9
	4.2	Referenced Documents	10
	4.3	Additional comments	10
	4.4	RF power output §2.1046 / § 90.205(r)	11
	4.5	Occupied bandwidth §2.1049	16
	4.6	Emission masks §2.1051 / §90.210(b)(n)	19
	4.7	Spurious Emissions at antenna terminals §2.1051 / §90.210(b)(n)	21
	4.8	Field strength of spurious radiation §2.1053 / §90.210(b)(n)	
	4.9	Frequency stability §2.1055 / §90.213	40
5	Tes	st equipment and ancillaries used for tests	41
6	Ph	otographs of the Test Set-up	43
7	Ext	ternal photographs of the EUT	
8	Int	ternal photographs of the EUT	

1 General information

1.1 Notes

The test results of this test report relate exclusively to the test item specified in 3.1.1. The CETECOM ICT Services GmbH does not assume responsibility for any conclusions and generalisations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of the CETECOM ICT Services GmbH.

Test laboratory manager:

2009-11-12Karsten GeraldyGurallyDateNameSignature

Technical responsibility for area of testing:

2009-11-12 Date Nicolas Stamber Name

. Itamber

Signature

1.2 Testing laboratory

CETECOM ICT Services GmbH

Untertürkheimer Straße 6 - 10 66117 Saarbrücken Germany Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 9075 e-mail: info@ICT.cetecom.de Internet: http://www.cetecom-ict.de

State of accreditation:	The test laboratory (area of testing) is accredited according to DIN EN ISO / IEC 17025
	DAR registration number: DAT-P-176 / 94-D1
Accredited by:	Federal Motor Transport Authority (KBA)
	DAR registration number: KBA-P 00070-97

Testing location, if different from CETECOM ICT Services GmbH:

Name:Street:Town:Country:Phone:Fax:

1.3 Details of applicant

Name:	Raytheon Anschütz GmbH	
Street:	Zeyestraße 16-24	
Town:	24106 Kiel	
Country:	Germany	
Telephone:	+49 (0)431 3019 613	
Fax:	+49 (0)431 3019 558	
Contact:	Robert Zissen	
E-mail:	Robert_Zissen@raykiel.com	
Telephone:	+49 (0)431 3019 613	

1.4 Application details

Date of receipt of order:	2009-10-23
Date of receipt of test item:	2009-08-11
Date of start test: Date of end test	2009-10-23 2009-10-28
Persons(s) who have been present during the test:	-/-

2 Technical tests

2.1 Details of manufacturer

Name:	Raytheon Anschütz GmbH
Street:	Zeyestraße 16-24
Town:	24106 Kiel
Country:	Germany

2.1.1 Test item

Kind of test item:	X-Band Radar System
Type identification:	MK2 X-MTR/PED 25kW
S/N:	000659
Frequency:	9300 - 9500 MHz
Nominal output power:	25 kW peak
Type of Modulation:	single fixed frequency pulsed unmodulated carrier
Emission Designator:	PON
Antenna:	8ft X-Band Antenna, Drg. No. LPR-A25, P/N 2808435
Power Supply:	115 Vac
Temperature Range:	-25 °C to +55 °C

Nominal Pulse Characteristics:

Pulse type:	Short Pulse	Medium 1 Pulse	Medium 2Pulse	Long Pulse
Pulse length (tp):	70 ns	250 ns	500 ns	1 µs
PRF:	3000 Hz	2000 Hz	1000 Hz	750 Hz

FCC ID:

ASL9RAN-SUR-25U

2.1.2 EUT operating modes

EUT operating mode(s)	Short Pulse	Medium 1 Pulse	Medium 2 Pulse	Long Pulse
Range	¹ /4, ¹ /2, ³ /4, 1 ¹ /2 Nm	3 Nm	6, 12 Nm	24, 48, 96 Nm
Pulse Width	70 ns	250 ns	500 ns	1.0 µs
Pulse Repetition Frequency	3000 Hz	2000 Hz	1000 Hz	750 Hz

2.1.3 Nominal conditions for testing

Description	Shortcut	Unit	Value
Nominal Temperature	T _{nom}	°C	23
Nominal Humidity	H _{nom}	%	45
Nominal Power Source	V _{nom}	Vac	115

Type of power source: 115 Vac

Extreme conditions are reported in chapter 4.10.

3 Summary of Measurement Results and list of all performed test cases

No deviations from the technical specifications were ascertained

 \Box There were deviations from the technical specifications ascertained

TC identifier	Description	verdict		da	ite	Remark
RF-Testing	FCC CFR 47 Part 90	PASS		2009-11-12		-/-
		_	-	_		
Test Specification / Clause	Test Case	Pass	Fail	N/A	N/P	Results
§ 2.1046 / § 90.205	Measurements required: RF power output / Power and antenna height limits	X				short: 72.2 dBm med1: 73.0 dBm med2: 72.9 dBm long: 73.0 dBm
§ 2.1049	Measurements required: Occupied bandwidth	x				short: 69.5 MHz med1: 29.2 MHz med2: 20.2 MHz long: 13.3 MHz
\$2.1051 / \$ 90.210	Measurements required: Spurious emissions at antenna terminals / Emission masks	X				complies
§ 2.1051 / § 90.210	Measurements required: Spurious emissions at antenna terminals / Spurious Emissions - conducted	x				complies
§ 2.1053 / § 90.210	Measurements required: Field strength of spurious radiation / Spurious Emissions - radiated	X				complies
§ 2.1055 / § 90.213	Measurements required: Frequency stability / Frequency stability	X				max. 1221 ppm

N/A: Not Applicable N/P: Not Performed

4 **RF** measurement testing

4.1 Description of test set-up

4.1.1 Radiated measurements

EIRP Measurements

Measuring the EIRP using Substitution Method:

(a) The measurements were performed with full rf output power and modulation.

(b) Test was performed at listed 3m test site (listed with FCC, IC).

(c) The transmitter under test was placed at the specified height on a non-conducting turntable (80 cm height)

(d) The TRILOG antenna (20 MHz to 1 GHz) or HORN antenna (1 GHz to 18 GHz) was used for measuring.

(e) Load an appropriate correction factors file in EMI Receiver for correcting the field strength reading level

Total Correction Factor recorded in the EMI Receiver = Cable Loss + Antenna Factor

E (dBuV / m) = Reading (dBuV) + Total Correction Factor (dB / m)

(f) Set the EMI Receiver and #2 as follows:

Center Frequency: test frequency

Resolution BW: 100 kHz

Video BW: same

Detector Mode: positive

Average: off

Span: 3 x the signal bandwidth

(g) The test antenna was lowered or raised from 1 to 4 meters until the maximum signal level was detected.

(h) The transmitter was rotated through 360° about a vertical axis until a higher maximum signal was received.

(i) The test antenna was lowered or raised again from 1 to 4 meters until a maximum was obtained. This level was recorded.

(j) The recorded reading was corrected to the true field strength level by adding the antenna factor, cable loss and subtracting the pre-amplifier gain.

(k) The above steps were repeated with both transmitters' antenna and test receiving antenna placed in vertical and horizontal polarization. Both readings with the antennas placed in vertical and horizontal polarization shall be recorded. (l) Repeat for all different test signal frequencies

Measuring the EIRP of Spurious / Harmonic Emissions using Substitution Method

(a) Set the EMI Receiver (for measuring E-Field) and Receiver #2 (for measuring EIRP) as follows:

(,	()
Center Frequency	: equal to the signal source
Resolution BW	: 10 kHz
Video BW	: same
Detector Mode	: positive
Average	: off
Span	: 3 x the signal bandwidth

(b) Load an appropriate correction factors file in EMI Receiver for correcting the field strength reading level Total Correction Factor recorded in the EMI Receiver = Cable Loss + Antenna Factor

E (dBuV / m) = Reading (dBuV) + Total Correction Factor (dB / m)

(c) Select the frequency and E-field levels for ERP / EIRP measurements.

(d) Substitute the EUT by a signal generator and one of the following transmitting antennas (substitution antenna): DIPOLE antenna for frequency from 30-1000 MHz or .HORN antenna for frequency above 1 GHz}.

(e) Mount the transmitting antenna at 1.5 meter high from the ground plane.

(f) Use one of the following antenna as a receiving antenna: .DIPOLE antenna for frequency from 30-1000 MHz or .HORN antenna for frequency above 1 GHz.

(g) If the DIPOLE antenna is used, tune its elements to the frequency as specified in the calibration manual.

(h) Adjust both transmitting and receiving antenna in a VERTICAL polarization.

(i) Tune the EMI Receivers to the test frequency.

(j) Lower or raise the test antenna from 1 to 4 meters until the maximum signal level was detected.

(k) The transmitter was rotated through 360° about a vertical axis until a higher maximum signal was received.

(1) Lower or raise the test antenna from 1 to 4 meters until the maximum signal level was detected.

Test report no.: 2-4973-02-01/09

(m) Adjust input signal to the substitution antenna until an equal or a known related level to that detected from the transmitter was obtained in the test receiver. (n) Record the power level read from the Average Power Meter and calculate the ERP / EIRP as follows: P = P1 - L1 = (P2 + L2) - L1 = P3 + A + L2 - L1EIRP = P + G1 = P3 + L2 - L1 + A + G1ERP = EIRP - 2.15 dBTotal Correction factor in EMI Receiver #2 = L2 - L1 + G1Where: P: Actual RF Power fed into the substitution antenna port after corrected. P1: Power output from the signal generator P2: Power measured at attenuator A input P3: Power reading on the Average Power Meter EIRP: EIRP after correction ERP: ERP after correction (o) Adjust both transmitting and receiving antenna in a HORIZONTAL polarization, then repeat step (k) to (o) (p) Repeat step (d) to (o) for different test frequency (q) Repeat steps (c) to (j) with the substitution antenna oriented in horizontal polarization. (r) Actual gain of the EUT's antenna is the difference of the measured EIRP and measured RF power at the RF port. Correct the antenna gain if necessary.

4.1.2 Conducted measurements

The EUT's RF signal is coupled out via an WG-directional coupler. The signal is connected to the spectrum analyzer. The specific losses for signal path are first checked within a calibration. The measurement readings on the spectrum analyzer are corrected by the specific test set-up losses. The directional coupler, attenuator, power divider and the spectrum analyzer are impedance matched to 50 Ohm.

Exemplary test setup:

4.2 Referenced Documents

none

4.3 Additional comments

For testing, the EUT antenna was removed and replaced by a 20 dB / 40 dB waveguide directional coupler. This was done in order to get access to the magnetron output at the antenna port and to provide sufficient attenuation with respect to the high transmitter output power. Any losses incurred with the test fixtures were accounted for the final test results.

4.4 **RF** power output

§2.1046 / § 90.205(r)

TEST CONDITIONS			PEAK OUTPUT POWER				
Frequency (MHz)			short pulse	med 1 pulse	med 2 pulse	long pulse	
T _{nom} 23 °C	V _{nom} 115 Vac	Peak (cond)	72.2 dBm	73.0 dBm	72.9 dBm	73.0 dBm	
		AVG (cond)	35.6 dBm	40.7 dBm	39.8 dBm	41.7 dBm	
		Peak (rad.)	101.2 dBm	102 dBm	101.9 dBm	102 dBm	
		AVG (rad.)	64.6 dBm	69.7 dBm	68.8 dBm	70.7 dBm	
	Rise time	tr	12.4 ns	14.1 ns	15.05 ns	15.4 ns	
	Pulse width	tp	72.7 ns	290.3 ns	487.0 ns	984.6 ns	
	Pulse repetition frequency	PRF	3039 Hz	2016 Hz	1002 Hz	749 Hz	
Measure	ment uncertainty	7	±1.2 dB				

Remark:

The conducted RF output power was measured with a Boonton Peak Power Analyzer.

The radiated values (EIRP) are calculated based on the conducted measurement results plus an antenna gain of 29 dBi as specified by the manufacturer.

Limit according to §90.205(r):

Under normal test conditions only	(r) All other frequency bands. Requested transmitter power will be
	considered and authorized on a case by case basis.

Test result: passed

Plot No. 1: Short Pulse

Plot No. 2: Short Pulse

2009-08-1	1 13:41:39					Measurement
Width Rise	1.985 us s	Period PRFrq	328.9 us 3.039 kHz	OffTm Peak	327.0 us 71.840 dBm	Aun Stop
Fall	s	DCyc1e	603.6 m%	Pulse	dBm	SingleSweep
53.6	50 _{dBm}			~~	>MK2	START
						Display
			+			CLEAR
					<u> </u>	Measure Mode
			± 			Pulse
			+			Auto-Setup
			÷ ÷	1		START
0		100	+ /D:		1000	
⊘ us Measurin	o Stopped	ששו	JS7 DIV		IUUU US	
	g overprou.					

Plot No. 3: Medium 1 Pulse

Plot No. 4: Medium 1 Pulse

Plot No. 5: Medium 2 Pulse

2009-08	8-11 13:52:5	б					Measurement
Width Rise	487.0 ns 15.05 ns	Period PRFrq	s Hz	OffTm Peak	s 72.947 d	; IBm	Aun <mark>Stop</mark>
Fall	101.9 ns	lDCyc1e	%	Pulse	72.430 c	Bm	SingleSweep
69	.239 ^{MK1}	-0.2	89_{dB}^{Ratio}	69	.528 ^{×1}	1K2 3m	START
							Display
							CLEAR
						÷	Measure Mode
		+++++++++++++++++++++++++++++++++++++++		+++++++++++++++++++++++++++++++++++++++			Pulse
							Auto-Setup
							START
200		100	(D)		000		
-zww ne Measur	ino Stopped	100 ne	57 D I V		800	ns	
, out out	ing osoppoo						

Plot No. 6: Medium 2 Pulse

Plot No. 7: Long Pulse

2009-08-11 14:03:01			Measurement
Width <mark>984.6</mark> ns Per Rise 15.36ns PR	riod s Frq Hz	OffTms Peak 73.002 dBm	Aun <mark>Stop</mark>
Fall 95.15 ns IDC	jcle %	Pulse 72.515 dBm	SingleSweep
70.296 ^{MK1} dBm	0.425_{dB}^{Ratio}	69.871 ^{MK2} dBm	START
			Display
			CLEAR
			← Measure Mode
			Pulse
			Auto-Setup
			START
100			
-400 hs Measuring StoppedH	200 ns/Div	1600 ns	
neusuring stopped::			

Plot No. 8: Long Pulse

4.5 Occupied bandwidth

§2.1049

TEST	CONDITIONS		OCCUPIED BANDWIDTH (MHz)				
Frequency (MHz)			short pulse	short pulse med 1 pulse med 2 pulse long			
T _{nom} 23 °C	V _{nom} 115 Vac	Peak	69.5 MHz	29.2 MHz	20.2 MHz	13.3 MHz	
Measurement uncertainty			± 10 kHz				

Remark:

The internal function of the spectrum analyzer was used to determine the occupied bandwidth (99%). Below plots show two traces. The blue one is the original spectrum analyzer data. These data corrected by directional coupler loss, attenuation, and cable loss result in the green trace.

Plot No. 9: Short Pulse

Test report no.: 2-4973-02-01/09

Plot No. 10: Medium 1 Pulse

Plot No. 11: Medium 2 Pulse

Test report no.: 2-4973-02-01/09

Plot No. 12: Long Pulse

4.6 Emission masks

§2.1051 / §90.210(b)(n)

Plot No. 13: Short Pulse

Plot No. 14: Long Pulse

Remark:

The emission mask were performed only on the short pulse and long pulse setting as these were found to have the worst case emissions during the pre-tests.

Previous plots show two traces. The blue one is the original spectrum analyzer data. These data corrected by directional coupler loss, attenuation, and cable loss result in the green trace.

Limit according to §90.210(b):

Under normal test conditions only	 (b) <i>Emission Mask B</i>. For transmitters that are equipped with an audio lowpass filter, the power of any emission must be attenuated below the unmodulated carrier power (P) as follows: (1) On any frequency removed from the assigned frequency by more than 50 percent, but not more than 100 percent of the authorized bandwidth: At least 25 dB. (2) On any frequency removed from the assigned frequency by more than 100 percent, but not more than 250 percent of the authorized bandwidth: At least 35 dB. (3) On any frequency removed from the assigned frequency by more than 250 percent of the authorized bandwidth: At least 35 dB.
	250 percent of the authorized bandwidth: At least $43 + 10 \log (P) dB$.

Test result: passed

4.7 Spurious Emissions at antenna terminals

§2.1051 / §90.210(b)(n)

Plot No. 15: Short Pulse

Plot No. 16: Short Pulse

Test report no.: 2-4973-02-01/09

Plot No. 17: Short Pulse

Plot No. 18: Short Pulse

Plot No. 19: Short Pulse

Plot No. 20: Short Pulse

Test report no.: 2-4973-02-01/09

Plot No. 21: Short Pulse

Plot No. 22: Short Pulse

Test report no.: 2-4973-02-01/09

Plot No. 23: Long Pulse

Plot No. 24: Long Pulse

Test report no.: 2-4973-02-01/09

Plot No. 25: Long Pulse

Plot No. 26: Long Pulse

Plot No. 27: Long Pulse

Plot No. 28: Long Pulse

Test report no.: 2-4973-02-01/09

Plot No. 29: Long Pulse

Plot No. 30: Long Pulse

Remark:

The spurious emissions were performed only on the short pulse and long pulse setting as these were found to have the worst case emissions during the pre-tests.

All measurements were done with 1 MHz resolution filter / 1 MHz video filter, positive peak detector and maxhold mode.

Previous plots show two traces. The blue one is the original spectrum analyzer data. These data corrected by directional coupler loss, attenuation, and cable loss result in the green trace.

	SPURIOUS EMISSIONS LEVEL (dBm)								
	Short Pulse			Long Pulse					
F [GHz]	Detector	Level [dBm]	F [GHz]	Detector	Level [dBm]	F [GHz]	Detector	Level [dBm]	
8.339	pos-peak	-26.8	8.327	pos-peak	-28.4				
8.883	pos-peak	-15.1	8.887	pos-peak	-15.8				
11.057	pos-peak	-17.7	11.039	pos-peak	-18.3				
14.194	pos-peak	-19.1	13.778	pos-peak	-22.4				
18.776	pos-peak	-18.7	18.833	pos-peak	-16.1				
28.278	pos-peak	-18.7	28.255	pos-peak	-20.5				
37.660	pos-peak	-17.8	37.683	pos-peak	-14.3				
Measu	rement uncer	rtainty			±3	dB			

RBW: 1MHz VBW: 1MHz Pos-Peak Detector / Max-Hold

Limit according to §90.210(b):

Under normal test conditions only	 (b) <i>Emission Mask B</i>. For transmitters that are equipped with an audio lowpass filter, the power of any emission must be attenuated below the unmodulated carrier power (P) as follows: (1) On any frequency removed from the assigned frequency by more than 50 percent, but not more than 100 percent of the authorized bandwidth: At least 25 dB
	 (2) On any frequency removed from the assigned frequency by more than 100 percent, but not more than 250 percent of the authorized bandwidth: At least 35 dB. (3) On any frequency removed from the assigned frequency by more than 250 percent of the authorized bandwidth: At least 43 + 10 log (P) dB.

Test result: passed

4.8 Field strength of spurious radiation

§2.1053 / §90.210(b)(n)

Plot No. 31: Short Pulse

Plot No. 32: Short Pulse, horizontal polarization

Plot No. 34: Short Pulse, vertical polarization

Plot No. 35: Short Pulse, vertical polarization

Plot No. 36: Short Pulse

Test report no.: 2-4973-02-01/09

Plot No. 37: Short Pulse

Plot No. 38: Short Pulse

Plot No. 39: Short Pulse

Plot No. 40: Long Pulse

Test report no.: 2-4973-02-01/09

Plot No. 42: Long Pulse, horizontal polarization

Test report no.: 2-4973-02-01/09

Plot No. 44: Long Pulse, vertical polarization

Test report no.: 2-4973-02-01/09

Plot No. 45: Long Pulse

Plot No. 46: Long Pulse

Test report no.: 2-4973-02-01/09

Plot No. 47: Long Pulse

Plot No. 48: Long Pulse

	SPURIOUS EMISSIONS LEVEL (dBm)								
	Short Pulse			Long Pulse					
F [GHz]	Detector	Level [dBm]	F [GHz]	Detector	Level [dBm]	F [GHz]	Detector	Level [dBm]	
18.834	pos-peak	-28.4	18.813	pos-peak	-24.6				
28.255	pos-peak	-29.0	28.255	pos-peak	-27.7				
Measu	rement uncer	rtainty			±3	dB			

RBW: 100 kHz / 1MHz VBW: 100 kHz / 1MHz

Limit according to §90.210(b):

Under normal test conditions only	 (b) <i>Emission Mask B.</i> For transmitters that are equipped with an audio lowpass filter, the power of any emission must be attenuated below the unmodulated carrier power (P) as follows: (1) On any frequency removed from the assigned frequency by more than 50 percent, but not more than 100 percent of the authorized bandwidth: At least 25 dB. (2) On any frequency removed from the assigned frequency by more than 100 percent, but not more than 250 percent of the authorized bandwidth: At least 35 dB. (3) On any frequency removed from the assigned frequency by more than 250 percent of the authorized bandwidth: At least 43 + 10 log (P) dB.
-----------------------------------	---

Test result: passed

§2.1055 / §90.213

4.9 Frequency stability

Short Pulse:

U _{AC} [V]	Temperature [°C]	Carrier frequency [MHz]	Measured frequency [MHz]	Difference [kHz]	Difference [ppm]
115	-30.0	9415	9426.5	11.5	1221
115	-20.0	9415	9425.8	10.8	1147
115	-10.0	9415	9424.5	9.5	1009
115	0.0	9415	9423.0	8.0	850
115	+10.0	9415	9420.8	5.8	616
98	+20.0	9415	9417.9	2.9	308
115	+20.0	9415	9417.7	2.7	287
132	+20.0	9415	9417.8	2.8	297
115	+30.0	9415	9414.7	-0.3	-32
115	+40.0	9415	9411.2	-3.8	-404
115	+50.0	9415	9408.1	-6.9	-733

Long Pulse:

U _{AC} [V]	Temperature [°C]	Carrier frequency [MHz]	Measured frequency [MHz]	Difference [kHz]	Difference [ppm]
115	-30.0	9415	9422.3	7.3	775
115	-20.0	9415	9420.9	5.9	627
115	-10.0	9415	9419.4	4.4	467
115	0.0	9415	9417.8	2.8	297
115	+10.0	9415	9416.4	1.4	149
98	+20.0	9415	9414.7	-0.3	-32
115	+20.0	9415	9414.6	-0.4	-42
132	+20.0	9415	9414.7	-0.3	-32
115	+30.0	9415	9412.5	-2.5	-266
115	+40.0	9415	9409.9	-5.1	-542
115	+50.0	9415	9407.2	-7.8	-828

Limit according to §90.213:

Note 10: Except for DSRCS equipment in the 5850–5925 MHz band, frequency stability is to be specified in the station authorization. Frequency stability for DSRCS equipment in the 5850–5925 MHz band is specified in subpart M of this part.

Test result: passed

5 Test equipment and ancillaries used for tests

To simplify the identification on each page of the test equipment used, on each page of the test report, each item of test equipment and ancillaries such as cables are identified (numbered) by the Test Laboratory, below.

All reported calibration intervals are calibrations according to the EN / ISO / IEC 17025 standard. These calibrations were performed from an accredited external calibration laboratory.

Additional to these calibrations the laboratory performed comparison measurements with other calibrated systems and performed a weekly chamber inspection.

All used devices are connected with a 10 MHz external reference.

According to the manufacturers' instruction is it possible to establish a calibration interval for the FSP unit of 24 month, if the device has an external 10 MHz reference.

Chamber C:

No	Equipment/Type	Manuf.	Serial No.	Cetecom ID	Last Calibration	Frequency (months)	
1	Anechoic chamber	MWB	87400/02	300000996	monthly verificat	tion	
2	System-Rack 85900	HP I.V.	*	300000222	n.a.		
3	Measurement System 1						
4	PSA-Spektrumanalysator 3 Hz - 26.5 GHz (E4440A)	Agilent	MY48250080	300003812	05.08.2008	24	
5	EMI Preselector 9 kHz - 1 GHz (N9039A)	Agilent	MY48260003	300003825	19.08.2008	24	
6	Microwave Analog Signal Generator (N5183A)	Agilent	MY47420220	300003813	06.08.2008	24	
7	PC	F+W			n.a.		
8	TILE	TILE			n.a.		
9	TRILOG Super Broadband Antenna (VULB9163)	Schwarzbeck	371	300003854	monthly verification	tion (System cal.)	
10	Double Ridged Antenna 3115	EMCO	3088	300001032	monthly verification	monthly verification (System cal.)	
11	Active Loop Antenna 6502	EMCO	2210	300001015	monthly verification	monthly verification (System cal.)	
12	Switch / Control Unit 3488A	HP	2719A15013	300001156	n.a.		
13	Power Supply 6032A	HP	2818A03450	300001040	08.01.2009	36	
14	Busisolator	Kontron		300001056	n.a.		
15	Leitungsteiler 11850C	HP		300000997	monthly verification	tion (System cal.)	
16	Power attenuator 8325	Byrd	1530	300001595	monthly verification	tion (System cal.)	
17	Band reject filter WRCG1855/1910	Wainwright	7	300003350	monthly verificat	tion (System cal.)	
18	Band reject filter WRCG2400/2483	Wainwright	11	300003351	monthly verification	tion (System cal.)	
19	Hochpassfilter WHK1.1/15G- 10SS	Wainwright	3	300003255	monthly verification (System cal.)		
20	Hochpassfilter WHKX2.9/18G- 12SS	Wainwright	1	300003492	monthly verifica	monthly verification (System cal.)	
21	Hochpassfilter WHKX7.0/18G- 8SS	Wainwright	18	300003789	monthly verifica	monthly verification (System cal.)	
22	Switch / Control Unit 3488A	HP	2605e08770	300001443	n.a.		
23	Trenntrafo RT5A	Grundig	9242	300001263	n.a.		
24	Relais Matrix PSU	R&S	890167/024	300001168	n.a.		
25	Netznachbildung ESH3-Z5	R&S	828576/020	300001210	n.a.		

Test report no.: 2-4973-02-01/09

Test laboratory 010:

Item	Measuring-	Manufacturer	Туре	Serial No.	Cetecom	Last	Frequency
No.	equipment				ID	Calibration	(months)
ECT2	Climatic box	Heraeus Vötsch	VUK 04 / 1500	31098	300001507	27.07.2009	24
A014	Standard gain horn 9.84-15.0 GHz	Flann	1724-20	89	300001957	cyclic verificatio	n
A016	Standard gain horn 14.5-22.0 GHz	Flann	1924-20	33	300001963	cyclic verificatio	n
A019	Standard gain horn 17.6-26.7 GHz	Flann	2024-20	156	300001968	cyclic verificatio	n
A021	Standard gain horn 26.4-40.1 GHz	Flann	2224-20	233	300001973	cyclic verificatio	n
C217	1.5 m 50 Ω / K	Insulated Wire Inc.	KPS-1533-590	101995	300002290	cyclic verificatio	n
R001	Spectrum analyzer	Hewlett Packard	HP 8565E	3515A00283	300000916	28.11.2008	24
R031	Peak Power Analyzer	Boonton	4500B	12331	300003871	19.11.2008	24
R032	Peak Power Sensor .5-18GHz	Boonton	58318	6276		19.11.2008	24
U214	Attenuator 10dB, N-con.	Spinner	BN 745379	7/93	40000047	cyclic verificatio	n
U231	Double Stub Tuner	MICROLAB/FXR	N300A	-/-	300002042	cyclic verificatio	n
W022	Taper transitions	Flann	several	-/-	300001615	cyclic verificatio	n
W053	Transition to koaxial	Flann	17093SF40	733	300000931	cyclic verificatio	n
W063	Transition to koaxial	Flann	20094KF	85	300000839	cyclic verificatio	n
W065	Transition to koaxial	Flann	22093KF20	551	300000931	cyclic verificatio	n
W072	Transition to koaxial	СМТ	RA62-K-F-UBR140-C	951753-001	300000791	cyclic verificatio	n
W240	Coupler RPS90	Continental Microwave	90-2-N-F-40-SP-SP-C	900687-002	300001598	cyclic verificatio	n
W241	Directional Coupler 20dB	Hewlett-Packard	HP X752D	1829A21784	300000484	cyclic verificatio	n
W242	Dummy-Load	Narda	320B	-/-	300002371	cyclic verificatio	n

6 Photographs of the Test Set-up

Test report no.: 2-4973-02-01/09

Photo No. 2

Photo No. 3

2009-11-12

Page 44 of 60

Test report no.: 2-4973-02-01/09

Photo No. 4

Test report no.: 2-4973-02-01/09

Photo No. 6

Photo No. 7

2009-11-12

Page 46 of 60

Test report no.: 2-4973-02-01/09

7 External photographs of the EUT

Photo No. 1

Test report no.: 2-4973-02-01/09

Photo No. 3

Test report no.: 2-4973-02-01/09

Photo No. 5

Photo No. 6

2009-11-12

Page 50 of 60

Test report no.: 2-4973-02-01/09

Photo No. 7

Photo No. 8

2009-11-12

Page 51 of 60

Test report no.: 2-4973-02-01/09

Photo No. 9

Test report no.: 2-4973-02-01/09

Photo No. 11

Photo No. 12

2009-11-12

Page 53 of 60

8 Internal photographs of the EUT

Photo No. 1: Modulator board

Photo No. 2: Modulator board

Test report no.: 2-4973-02-01/09

Photo No. 3: Modulator board

Photo No. 4: Motor, fan, magnetron

Test report no.: 2-4973-02-01/09

Photo No. 5: Magnetron

Photo No. 6: Magnetron

Test report no.: 2-4973-02-01/09

Photo No. 7: Controller board

Photo No. 8: Controller board

Test report no.: 2-4973-02-01/09

Photo No. 9: Receiver, motor, AC filter

Photo No. 10

380/440V	24 DDM
ROTARY SHIM (in.) 0.51	40 RPM
Baytheon Anschütz GmbH. Gern MK2 X-MTR/PED 25KW 115/220 1PH G624364-1 E01 40017080000	1761

Page 58 of 60

Test report no.: 2-4973-02-01/09

Photo No. 11: Receiver

Test report no.: 2-4973-02-01/09

Photo No. 12: AC mains filter

