

A"/A3 Band – Left Edge 2-carrier cdma2000 (3G-1x)

Applicant: Lucent Technologies

A"/A3 Band – Left Edge 2-carrier IS-856 (3G-1xEV)

Applicant: Lucent Technologies

A"/A3/A2 Band – Left Edge 3-carrier cdma2000 (3G-1x)

B3/B2 Band – Right Edge 3-carrier cdma2000 (3G-1x)

Applicant: Lucent Technologies

A"/A3/A2 Band – Left Edge 4-carrier cdma2000 (3G-1x)

Applicant: Lucent Technologies

SUBEXHIBIT 10.6

Section 2.1053 MEASUREMENT REQUIRED: FIELD STREGTH OF SPURIOUS RADIATION

The field strength measurements were made in the FCC registered three-meter semi-anechoic chamber which is maintained by Lucent Technologies Bell Laboratories in Columbus, Ohio, USA (FCC # 92731).

The AS5ONEBTS-11 UMTS CDMA transceiver was configured in both cdma2000 (3G-1x) mode with pilot, page, sync and traffic channels per 3GPP2 cdma2000 standards and IS-856 (3G-1xEV) mode with pilot, MAC and data channels per 3GPP2 High Rate Packet Data standards. The system was configured as a "six-sector" base transceiver station, with three sectors cdma2000 (3G-1X) modulation (four cdma2000 carriers per transmit port, 12 cdma2000 carriers total) and three sectors IS-856 (3G-1xEV) modulation (two IS-856 carriers per transmit port, six IS-856 carriers total). The carrier power level at each transmit port end antenna connector (EAC) of the AS5ONEBTS-11 UMTS CDMA transceiver Base Transceiver Station (BTS) was transmitting to the maximum rated mean power (25 watts per carrier, maximum 100 watts with four carriers).

The AS5ONEBTS-11 UMTS CDMA transceiver was investigated from 10 MHz to the 10th harmonic of the carrier or 10 GHz, per Section 21057(a)(1). The equipment under test (EUT) was configured in the normal mode of installation and operation. The recommendations of ANSI C63.4 were followed for EUT testing setup and cabling.

Measurements were made using both horizontally and vertically polarized broadband antennas. Per FCC regulations, the comparison of out of band spurious emissions directly to the limit is appropriately made using the substitution method. However, when the emissions are more than 20 dB below the specification limit, the use of field strength measurements for compliance determination is acceptable and those emissions are considered not reportable (Section 2.1053 and the FCC Interpretive database for 2.1053). For this case the evaluation of acceptable radiated field strength is as follows.

The calculated emission levels were found by:

E(dBuV/m) = Vmeas(dBuV) + Amplifier Gain / Cable Loss (dB) + Antenna Factor

Section 2.1053 contains the requirements for the levels of spurious radiation as a function of the EIRP of the unmodulated carrier. The reference level for the unmodulated carrier is calculated as the field produced by an isotropic radiator excited by the transmitter output power using the relation between the electric field strength of an ideal dipole and the power given in Reference Data for Radio Engineers, 6 4th edition, ITT Corp. The emission limit calculated equals the following:

$$E = (120\pi P)^{1/2} = [(30*P)^{1/2}] / R$$

 $20 \log (E^*10^6) - (43 + 10 \log P) = 84.1 \text{ dB }\mu\text{V/meter}$

Where:

R = Distance in meters = 3 m

P = Transmitted Power in watts = 25 W/ Carrier

E = Field Intensity in Volts/ meter

Frequency of Emission	Distance	E	E	RBW
(MHz)	(m)	(dBuV/m)	(dBm)	
10-10,000	3	84.1	-22.9	100 kHz

Applicant: Lucent Technologies

Sections 2.1051 and 2.1057 (c) specify that the spurious emissions attenuated more than 20 dB below the permissible value need note be reported. Therefore, the reportable limit at 3 meters is 64.1 dBuV/m (-42.9 dBm).

All measurement equipment used was calibrated in accordance with ISO9000 processes. The EUT configuration diagram is given in the following Figure 10.6.1.

Results

The measurement results over the frequency spectrum investigated (10 MHz to 10 GHz) demonstrate full compliance with the Rules of the Commission.

Frequen	Antenna	Measured	Measure	Path	Antenna	Equivalent	Equivalen	Pass /
cy	Polarity	Radiated	Radiated	Gain	Factor	Transmit	Field	Fail
(MHz)		Field	Field	Amp/	(dB)	Power	Strength	
		Strength	Strength	Cable		(dBm)	(dBuV/m)	
		(dBm)	(dBuV/m	(dB)				
27.2	Н	-51.0	56.0	24.34	8.89	-66.46	40.54	Pass
77.6	Н	-48.90	58.1	23.48	9.53	-62.85	44.15	Pass
978.0	Н	-65.6	41.4	16.73	24.04	-58.29	48.71	Pass
1769	V	-54.3	52.7	36.2	28.38	-62.12	44.88	Pass
3049	Н	-57.0	50.0	35.25	32.31	-59.94	47.06	Pass
7637	V	-67.2	39.8	34.97	39.74	-62.34	44.66	Pass

Worst Case FIELD STREGTH OF SPURIOUS RADIATION

FIELD STREGTH OF SPURIOUS RADIATION Plots - 10 to 30 MHz

FIELD STREGTH OF SPURIOUS RADIATION Plots – 30 to 230 MHz Applicant: Lucent Technologies

Page 44 of 54 **Lucent Technologies Inc. – Proprietary** Use pursuant to Company Instructions

FIELD STREGTH OF SPURIOUS RADIATION Plots – 200 to 1000 MHz

FIELD STREGTH OF SPURIOUS RADIATION Plots -1 to 2.5 GHz

n or i								¥k	rt 1,7	59 GH3
Ret 11 Sano	9.8.081	1	Alten	10.08					52.1	68 p V
Log										
10										
08/				-			-			
			_				-			
	Sweer	Tim	e							
	38.00	ms								
VAvg						ģ				
vi s2	norma		Marah	runnum	when	Aven	nderseter	winty	mm	an pa
S3 FC		-		-	-		-			
200		_	_	_			_			
Start	GHz	_		- 53)		60	0.00		Stop 2	.5 GH2

¥ Agilent 20:22:00 Jan 4, 2006

Applicant: Lucent Technologies

Refil	8.8.48	μV	Atten	Mir1 3.049 GHz n 10 dB 50 dB j V						
Samp Log 10 dB/										
VAvq 10 M1 S2	Mark 3.04	er 9000 00 de	000 JµV	GHZ	have a	adma.al	muli		hhree	upur
S3 FC AA										
Start	2.4 GH;							S	top 5.0	78 GH3

FIELD STREGTH OF SPURIOUS RADIATION Plots – 2.5 to 5 GHz

Applicant: Lucent Technologies

FIELD STREGTH OF SPURIOUS RADIATION Plots -5 to 10 GHz

Section 2.1055 MEASUREMENT REQUIRED: FREQUENCY STABILITY

The output frequency of the AS5ONEBTS-11 UMTS CDMA transceiver is determined by the internal transmit synthesizer and the external OM. The 15 MHz output frequency of OM is disciplined by the CTU using Bell Laboratories proprietary phase lock loop (PLL) software and GPS reference.

The stability of the AS5ONEBTS-11 UMTS CDMA transceiver output frequency was measured at the transmit port end antenna connector (EAC) from -40 °C to +50 °C in 10 °C steps and with a variation of primary supply voltage from 85% to 115% of the nominal value per Section 2.1055. The nominal supply voltage is +24 VDC. The 85% of 24 VDC is 20.4 V and 115% is 27.6 V. The AS5ONEBTS-11 UMTS CDMA transceiver was set to transmit at CDMA Cellular Channel 425, 882.75 MHz. The frequency was measured at the radio output every 30 seconds at each temperature and each supply voltage. Seven data were collected at each temperature and each supply voltage.

At each temperature and each supply voltage, the AS5ONEBTS-11 UMTS CDMA transceiver was given sufficient time for its thermal stabilization. Thermal-couplers were attached to the MCR faceplate, CTU faceplate and the exterior surface of the Modular Cell. The primary OM was used for providing 15MHz reference frequency to the CTU. The temperature was recorded during the testing to ensure that the thermal stability was achieved at each temperature prior to frequency measurement.

The minimum requirement specified in Section 22.355 for CDMA Cellular transmitter is ± 1.50 ppm (i.e. maximum frequency error of 1303 Hz ~ 1341 Hz). TIA/EIA specifies the minimum requirement is ± 0.050 ppm (i.e. maximum frequency error of 44 Hz).

The maximum measured frequency derivations (Δf) from 882.75MHz at each temperature and supply voltage are summarized in the following table.

Stabilized	Δf	Δf	Δf
Temp.	85% V _{norm}	100% V _{norm}	115% V _{norm}
(°C)	(Hz)	(Hz)	(Hz)
-40	2.656	1.278	1.342
-30	1.235	1.839	1.081
-20	2.459	1.237	1.042
-10	0.766	0.956	3.470
0	1.698	1.254	1.184
+10	1.336	1.776	0.947
+20	2.026	1.941	3.092
+30	2.440	1.340	0.623
+40	1.087	2.335	2.339
+50	1.617	2.146	0.821

All the measurement equipment was calibrated in accordance with ISO 9001 process. The EUT configuration diagram is given in the following.

Results:

The output frequency of the 850 MCR at the Channel 425 deviated from the 882.75 MHz by a maximum error of 6.04E-3 ppm. The AS5ONEBTS-11 UMTS CDMA transceiver, subject of this application, demonstrate full compliance with the Rules of the Commission.

SET-UP FOR MEASUREMENT OF FREQUENCY STABILITY

SUBEXHIBIT 11.6

Section 2.947 LISTING OF TEST EQUIPMENT USED

Equipment	Manufacturer	Model	Serial No.	Calibrated	Due Cal.
1 5 GHz Filter	Agilant		84300 80037		
3 5 GHz Filter	Agilent		84300-80037	N/A	N/A
8 2 GHz Filter	Agilent		84300-80039	N/A N/A	N/A
Spectrum Analyzer	Agilent	F4440A	US42221614	10/20/05	10/20/06
Coaxial Resistor	Bird	8201	4252	N/A	N/A
Coaxial Resistor	Bird	8329	204506	N/A	N/A
Coaxial Resistor	Bird	8890-300	204500	N/A	N/A
Antenna Positioning System	FMCO	1051	1321	N/A	N/A
Bore Sight Antenna Mast	EMCO	2071-2	2239	N/A	N/A
Antenna Mast	EMCO	2075-2	2388	N/A	N/A
Biconical Antenna	EMCO	3110B	3127	3/16/04	4/16/06
Biconical Antenna	EMCO	3110B	3128	3/16/04	4/16/06
Horn Antenna	EMCO	3115	3324	4/20/05	5/20/07
Horn Antenna	EMCO	3115	5638	3/8/04	4/8/06
Log Periodic Antenna	EMCO	3148	1030	3/12/04	4/12/06
Log Periodic Antenna	EMCO	3148	1029	3/12/04	4/12/06
Active Rod Antenna	EMCO	3301B	9312-3477	7/21/05	7/21/07
Active Loop Antenna	EMCO	6502	3441	7/15/05	7/16/06
Active Loop Antenna	EMCO	6502	3442	4/20/05	4/20/06
Near Filed Probe Set	EMCO	7405	1385	N/A	N/A
Multi-Device Controller	ETS	2090	9804-1319	N/A	N/A
Multi-Device Controller	ETS	2090	9912-1477	N/A	N/A
Current Probe	Fisher Comm Co	F-2000	68	11/11/05	11/11/06
Current Probe	Fisher Comm Co	F-2000	67	11/11/05	11/11/06
Current Probe	Fisher Comm Co	F-51	283	11/11/05	11/11/06
Current Probe	Fisher Comm Co	F-51	284	11/11/05	11/11/06
Balance Voltage Probe	Fisher Comm Co	FCC-BCP-1	62	11/11/05	11/11/06
Multimeter	Fluke	23	49330331	1/13/06	1/13/07
AC/DC Current Multimeter	FWB	C-600	94040227	1/13/06	1/13/07
Microwave Synthesizer	Giga-tronics	12520A	0032007	4/15/05	4/15/06
Microwave Synthesizer	Giga-tronics	12520A	0214004	4/15/05	4/15/06
Power Sensor	Giga-tronics	80421A	1830056	7/15/05	7/15/06
Power Sensor	Giga-tronics	80621A	1950053	10/11/05	10/11/06
High Power Sensor	Giga-tronics	80621A	1950054	1/17/06	1/17/07
Power Meter	Giga-tronics	8542C	1834318	1/17/06	1/17/07
Power Meter	Giga-tronics	8542C	1834280	10/11/05	10/11/06
Power Meter	Hewlett-Packard	437B	312SU11066	1/05/06	1/05/07
Power Sensor	Hewlett-Packard	8482A	2652A22587	1/05/06	1/05/07
Power Supply 0-36 V.0-25A	HL	520A	1754	NA	NA
Power Supply 0-36 V.0-25A	HL	520A	1755	NA	NA
Power Supply 0-36 V,0-25A	HL	520A	4L1919	NA	NA
Power Supply 0-36 V 100A	HL	6456B	5H0646	NA	NA

Applicant: Lucent Technologies

			rowere	d by bell Labs	
Power Supply 0-36 V,100A	HL	6456B	5H0232	NA	NA
Power Supply 0-36 V,100A	HL	6472A	5M0107	NA	NA
Power Supply 0-36 V,100A	HL	6472A		NA	NA
RF Limiter	HP	11693A	03532	NA	NA
Spectrum Analyzer	Agilent	E4440A	US41421393	7/27/05	7/27/06
Spectrum analyzer, RF Sec	Hewlett-Packard	8566B	3026A19151	4/6/05	4/6/06
Spectrum analyzer, Disp Sec	Hewlett-Packard	8566B	3014A06682	4/6/05	4/6/06
EMI Test Receiver, Disp Sec	Rohde & Schwarz	ESA1-D	DE25102	12/06/05	12/06/06
EMI Test Receiver, RF Sec	Rohde & Schwarz	EMS1-RF	DE25102	12/06/05	12/06/06
Attenuator	Weinschel	6dB	AV9010	N/A	N/A
RF Limiter	Hewlett-Packard	11867A	03533	N/A	N/A
Loop Antenna	EMCO	6502	3441	7/15/2005	8/15/06
Biconical Antenna	EMCO	3110B	9807-3128	2/2/2006	2/2/07
Log-periodic Antenna	EMCO	3148	9707-1029	1/31/06	1/31/07
Double Ridged Horn Ant.	EMCO	3115	9812-5638	1/27/06	1/27/07
Pre-amplifier	Hewlett-Packard	8449B	3008A01355	1/18/06	1/18/07
Pre-amplifier	Sonoma - HP	310	185704	1/18/06	1/18/07
Multi-device Controller	EMCO	2090	9912-147-7	N/A	N/A
Thermal Coupler	Omega	Т	N/A	N/A	N/A
Directional Coupler	MECA	715-40-3.5	N/A	N/A	N/A
500 Resistive Load	Bird Electronic	8166	9349	N/A	N/A
500 Resistive Load	Bird Electronic	8166	8283	N/A	N/A
500 Pagistive Load	Bird Electronic	8166	8276	N/A	N/A
28V Dower Supply	Hewlett Dockard	6684.4	US36410420	N/A	N/A
28V Tower Supply	Howlett Doolvord	6694A	US36410423	N/A N/A	
DC Power Supply	Hewlett Deelvord	6692 A	26420280	IN/A N/A	IN/A
DC Power Supply	Hewlett Deelvord	6029A	30420289	IN/A N/A	IN/A N/A
Multi mater	Fluko	0030A	3023A-09939	1/12/06	1/12/07
DE Switch	Fluke Howlett Deelvord	23 11712 A	49550551	1/13/00 N/A	1/15/07 N/A
RF Switch	Hewlett Deelvord	11/13A 44477A	2223A01707	IN/A N/A	IN/A N/A
RF Switch	Hewlett Deelvord	444//A	MV42000140	IN/A N/A	IN/A
RF Switch	Hewlett Deelvord	444//A 8764C	2241 \ 00605	IN/A N/A	IN/A
RF Switch	Hewlett Deelvord	8764C	3241A00003	IN/A N/A	IN/A
RF Switch	A gilopt	8761D	74204	IN/A N/A	IN/A
RF Switch	Agilent	0/01D 9761D	74304	IN/A N/A	IN/A
RF Switch	Agilent	0/01D 9761D	74201	IN/A	IN/A
RF Switch	Agilent	0/01D 9761D	74303	IN/A	IN/A
Kr Switch	Agriciit Howlett Deelvord	0/01D 2499 A	74203	IN/A	IN/A
Switch Control Unit	Hewlett Deelvard	2400A	204923	IN/A	IN/A
Tunchle Dandreiget Filter		2400A	14202	IN/A	IN/A
Tunable Bandreject Filter	Kal	500/1000-N/N	1	IN/A	IN/A
Low Pass Filter	Trilithic	10LC800-3-AA	200201001	N/A	N/A
High Pass Filter	Hewlett-Packard	84300-80037	015	N/A	N/A
E4440A PSA	Agilent	E4440A	US42221740	10/13/05	10/13/06
Switch	SRFI	184	150	NA	NA
Power Divider	Weinschel	1506A		NA	NA
Attenuator	Weinschel	48-20-33		NA	NA
Universal Counter	Нр	5335A	2934A14399	7/11/05	7/11/06
Rectifier	TDI	AC-DC	128981-12	NA	NA