

Choose certainty. Add value.

# Report On

FCC Testing of the Nokia 7705 SAR-Hmc NA(3HE12473AAA) Base Station in accordance with FCC CFR 47 Part 2, FCC CFR 47 Part 96E COMMERCIAL-IN-CONFIDENCE

FCC ID: AS57705SARHMC-2 Contain FCC ID: N7NMC74B

PREPARED BY APPROVED BY

DATED

Jose Martinez Test Personnel

Drysdale

Scott Drysdale Authorised Signatory

\_\_\_\_\_

06 September 2023



# CONTENTS

#### Section

# Page No

| 1                                       | REPORT INFORMATION                                                                                                                                                       | .3                          |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| 1.1<br>1.2<br>1.3<br>1.4<br><b>2</b>    | Report Details<br>Brief Summary of Results<br>Configuration Description<br>Declaration of Build Status                                                                   | .5<br>.6<br>.7              |
| 1.5<br>1.6<br>1.7<br>1.8<br>1.9<br>1.10 | Product Information<br>Test Setup<br>Test Conditions<br>Deviation From The Standard<br>Modification Record                                                               | . 8<br>12<br>13<br>13<br>13 |
| 3                                       | TEST DETAILS                                                                                                                                                             | . 1                         |
| 2.1<br>2.2<br>2.3<br>2.4<br>2.5<br>2.6  | Peak Output Power and Peak to Average Ratio - Conducted<br>Occupied Bandwidth<br>Band Edge<br>Transmitter Spurious Emissions<br>Frequency Stability<br>Radiated Emission | 13<br>19<br>28<br>33        |
| 4                                       | TEST EQUIPMENT USED                                                                                                                                                      | 44                          |
| 3.1<br>3.2                              | Test Equipment Used<br>Measurement Uncertainty                                                                                                                           |                             |
| 5                                       | ACCREDITATION, DISCLAIMERS AND COPYRIGHT                                                                                                                                 | 47                          |
| 4.1                                     | Accreditation, Disclaimers and Copyright                                                                                                                                 | 48                          |



**SECTION 1** 

**REPORT INFORMATION** 



### 1.1 REPORT DETAILS

| Manufacturer                  | Nokia Canada Inc                                                                                                |
|-------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Address                       | 600 March Road<br>Ottawa<br>Ontario<br>K2K 2E6<br>Canada                                                        |
| Product Name                  | Nokia 7705 SAR-Hmc NA                                                                                           |
| Product Number                | 3HE12473AAA                                                                                                     |
| Serial Number(s)              | NS213860190                                                                                                     |
| Software Version              | TIMOS-B-21-10.B1-7                                                                                              |
| Hardware Version              | V.1.2                                                                                                           |
| Test Specification/Issue/Date | FCC CFR 47 Part 2: 2017<br>FCC CFR 47 Part 96: 11/29/2021                                                       |
| Product Name                  | NOKIA 7705 SAR-Hmc NA                                                                                           |
| Start of Test                 | 17 November, 2021                                                                                               |
| Finish of Test                | 23 February 2022                                                                                                |
| Name of Tester                | Jose Martinez                                                                                                   |
| Report issue / Revisions      | 000 – 11 <sup>th</sup> March 2022<br>001 – Sept 6, 2023 – Revisions to account for Category B<br>operation (SD) |
| Related Document(s)           | KDB 971168 D01 v03r01<br>KDB 662911 D01 v02r01<br>KDB 940660 D01 Part 96 CBRS Eqpt v01<br>ANSI C63.26:2015      |

# ENGINEERING STATEMENT

The measurements shown in this report were made in accordance with the procedures described on test pages. All reported testing was carried out on a sample equipment to demonstrate compliance with FCC CFR 47 Part 96. The sample tested was found to comply with the requirements defined in the applied rules.

Tester

Jose Martinez



# 1.2 BRIEF SUMMARY OF RESULTS

A brief summary of results for each configuration, in accordance with FCC CFR 47 Part 2, <u>FCC</u> <u>CFR 47 Part 96E</u> is shown below.

| Continn | Specif            | ication Clause          | Toot Deparintion                                                | Deput  |
|---------|-------------------|-------------------------|-----------------------------------------------------------------|--------|
| Section | FCC CFR 47 Part 2 | FCC CFR 47 Part 96      | Test Description                                                | Result |
| 2.1     | <u>§2.1046</u>    | <u>§96.41 (b)(c)(g)</u> | Peak Output Power and Peak to<br>Average Ratio – Conducted, PSD | Pass   |
| 2.2     | <u>§2.1049</u>    | <u>§96.41 (e)(3)</u>    | Occupied Bandwidth                                              | Pass   |
| 2.3     | <u>§2.1051</u>    | <u>§96.41 (e)(3)</u>    | Band Edge                                                       | Pass   |
| 2.4     | <u>§2.1051</u>    | <u>§96.41 (e)(1)</u>    | Transmitter Spurious Emissions                                  | Pass   |
| 2.5     | <u>§2.1055(d)</u> | -                       | Frequency Stability                                             | Pass   |
| 2.6     | <u>§2.1051</u>    | -                       | Radiated Spurious Emission                                      | Pass   |

| Tahle | 1 _Tos     | t Summarv    |
|-------|------------|--------------|
| Table | 1 - 1 - 25 | L OUTINIAI V |



### 1.3 CONFIGURATION DESCRIPTION

#### **1.3 CONFIGURATION DESCRIPTION**

The NOKIA 7705 SAR-Hmc NA (3HE12473AAA) LTE Test Model according to Table 3 in Band 48 (3550 MHz – 3700 MHz).

The LTE Test Models (as defined in 3GPP TS 36.141) were used to represent QPSK, and 16QAM modulation, respectively.

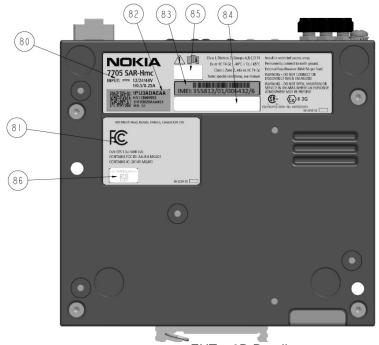
TX test cases: Maximum Conducted Output Power, Maximum Power Spectral Density, Spurious Emissions at Antenna Terminals (±1MHz) and Conducted Spurious Emissions, measurements were performed on the RF Port. All testing was performed with the EUT transmitting at maximum RF power unless otherwise stated.

The EUT was powered via Nokia HV power supply.



#### 1.4 **DECLARATION OF BUILD STATUS**

| Table 2 – Declaration                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |
|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|                                                                               | MAIN EUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |
| MANUFACTURING DESCRIPTION                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |
| MANUFACTURER                                                                  | Nokia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
| ТҮРЕ                                                                          | Remote Radio Base Station                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |
| PART NUMBER                                                                   | 3HE12473AA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |
| SERIAL NUMBER                                                                 | NS213860190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
| HARDWARE VERSION                                                              | V.1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
| SOFTWARE VERSION                                                              | TIMOS-B-21-10.B1-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |
| TRANSMITTER OPERATING RANGE                                                   | B48 3550 – 3700 MHz (TDD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |
| RECEIVER OPERATING RANGE                                                      | B48 3550 – 3700 MHz (TDD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |
| COUNTRY OF ORIGIN                                                             | Mexico                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
| INTERMEDIATE FREQUENCIES                                                      | DL: 110 – 150MHz, UL: 40 – 80MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
| EMISSION DESIGNATOR(S):<br>(i.e. G1D, GXW)                                    | LTE<br>5M00 W7D<br>10M0 W7D<br>15M0 W7D<br>20M0 W7D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |
| MODULATION TYPES:<br>(i.e. GMSK, QPSK)                                        | LTE: QPSK, 16QAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
| Antenna Gain                                                                  | 7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |
| HIGHEST INTERNALLY GENERATED<br>FREQUENCY                                     | 3.7 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |
| OUTPUT POWER (W or dBm)                                                       | 20dBm + 7 dBi (Category A) or 24 dBi (Category B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |
| FCC ID                                                                        | AS57705SARHMC-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |
| INDUSTRY CANADA ID                                                            | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |
| TECHNICAL DESCRIPTION (a brief description of the intended use and operation) | The Nokia 7705 SAR-Hm series includes feature-rich IP/MPLS service routers in a ruggedized and compact platform. With these routers, operators are able to support IP VPN, VPLS, and VPWS services over wireless networks, enabling an end-to-end, seamless, IP/MPLS service offering between wireless and wired devices. This enables critical infrastructure operators to fully realize the promise of smart grids, smart cities, and public safety mobile broadband to enhance safety, efficiency and responsiveness. The 7705 SAR-Hm series can be used in fixed or mobile locations for a variety of applications, such as supervisory control and data acquisition (SCADA), security monitoring, workforce voice and data connectivity in offices or vehicles, mass transit, fleet management, and vehicle remote control and monitoring. |  |  |  |  |  |  |




# 1.5 PRODUCT INFORMATION

#### 1.5.1 Technical Description

The Equipment Under Test (EUT) NOKIA 7705 SAR-Hmc NA (3HE12473AAA) is an Nokia radio Unit working in the public mobile service (3550-3700 MHz) band which provides communication connections to (Band) network. The NOKIA 7705 SAR-Hmc NA (3HE12473AAA) operates from a Nokia HV PSU 100V-240V.

The Equipment Under Test (EUT) is shown in the photograph below. A full technical description can be found in the Manufacturer's documentation.



EUT – 3D Rending



# 1.5.2 EUT configurations

| Test<br>No. | BW<br>(MHz) | Resource<br>Block | Resource<br>Block<br>Offset | MOD           | Test<br>No. | BW<br>(MHz) | Resource<br>Block | Resource<br>Block<br>Offset | MOD      |
|-------------|-------------|-------------------|-----------------------------|---------------|-------------|-------------|-------------------|-----------------------------|----------|
| 1           |             | 1                 | 0                           |               | 29          |             | 1                 | 0                           |          |
| 2           |             | 1                 | 49                          |               | 30          |             | 1                 | 25                          |          |
| 3           |             | 1                 | 99                          |               | 31          |             | 1                 | 49                          |          |
| 4           |             | 50                | 0                           | QPSK          | 32          |             | 25                | 0                           | QPSK     |
| 5           |             | 50                | 24                          |               | 33          |             | 25                | 12                          |          |
| 6           |             | 50                | 50                          |               | 34          |             | 25                | 25                          |          |
| 7           | 20          | 100               | 0                           |               | 35          | 10          | 50                | 0                           |          |
| 8           | 20          | 1                 | 0                           |               | 36          | 10          | 1                 | 0                           |          |
| 9           |             | 1                 | 49                          |               | 37          |             | 1                 | 25                          |          |
| 10          |             | 1                 | 99                          |               | 37          |             | 1                 | 49                          |          |
| 11          |             | 50                | 0                           | 16-QAM        | 38          |             | 25                | 0                           | 16-QAM   |
| 12          |             | 50                | 24                          |               | 39          |             | 25                | 12                          |          |
| 13          |             | 50                | 50                          |               | 40          |             | 25                | 25                          |          |
| 14          |             | 100               | 0                           |               | 41          |             | 50                | 0                           |          |
| 15          |             | 1                 | 0                           |               | 42          |             | 1                 | 0                           |          |
| 16          |             | 1                 | 37                          |               | 43          |             | 1                 | 12                          |          |
| 17          |             | 1                 | 74                          |               | 44          |             | 1                 | 24                          |          |
| 18          |             | 36                | 0                           | QPSK          | 45          |             | 12                | 0                           | QPSK     |
| 19          |             | 36                | 20                          |               | 46          |             | 12                | 7                           |          |
| 20          |             | 36                | 39                          |               | 47          |             | 12                | 13                          |          |
| 21          | 15          | 75                | 0                           |               | 48          | 5           | 25                | 0                           |          |
| 22          | 15          | 1                 | 0                           |               | 49          | J           | 1                 | 0                           |          |
| 23          |             | 1                 | 37                          |               | 50          |             | 1                 | 12                          |          |
| 24          |             | 1                 | 74                          |               | 51          |             | 1                 | 24                          |          |
| 25          |             | 36                | 0                           | 16-QAM        | 52          |             | 12                | 0                           | 16-QAM   |
| 26          |             | 36                | 20                          |               | 52          |             | 12                | 7                           |          |
| 27          |             | 36                | 39                          |               | 53          |             | 12                | 13                          |          |
| 28          |             | 75                | 0                           |               | 54          |             | 25                | 0                           |          |
| Note 2      | 1. Bold le  | etters, the w     | orst-case sce               | nario of test | t cases aco | cording to  | power cond        | ducted measu                | urements |

# Table 3 – EUT Test Configurations



# 1.5.3 Test Procedure

### 1.5.3.1 TDD Synchronization

| Gate View Sweep Time | Gate Delay | Gate length | Sweep Time |
|----------------------|------------|-------------|------------|
| (ms)                 | (ms)       | (ms)        | (s)        |
| 6.4                  | 2.7        | 2.9         |            |

# 1.5.3.1 Conducted Power

| Spectrum<br>Analyzer | Setting                               |
|----------------------|---------------------------------------|
| RBW                  | 1- 5% of OBW                          |
| VBW                  | 3 x OBW                               |
| Span                 | 1.5 x OBW                             |
| Seep                 | >2xSpan/RBW                           |
| Detector             | RMS                                   |
| BP integration       | 10MHz                                 |
| Detector             | RMS                                   |
| Trace mode           | Trace Averaging (RMS) over 100 sweeps |

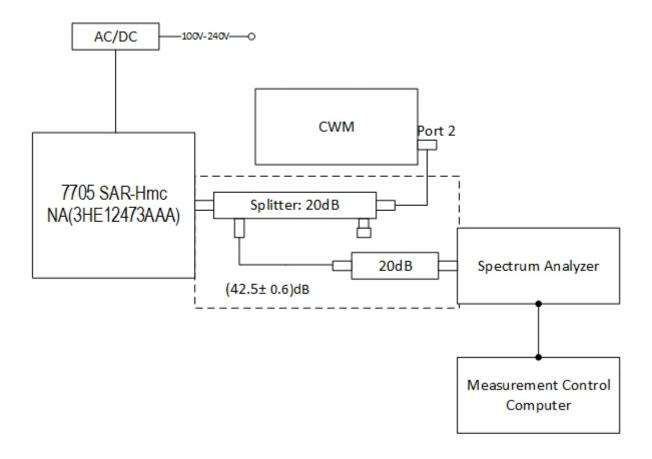
# 1.5.4 Frenquncy List

| BW(MHz) | Lowest<br>(MHz) | Middle<br>(MHz) | Highest<br>(MHz) |
|---------|-----------------|-----------------|------------------|
| 20      | 3560.0          | 3625.0          | 3690.0           |
| 15      | 3557.5          | 3625.0          | 3692.5           |
| 10      | 3555.0          | 3625.0          | 3695.0           |
| 5       | 3552.5          | 3625.0          | 3697.5           |

Table 4 – EUT Frequency per BW



# 1.5.5 Worst-Case Scenario


Testing was performed for all configurations. All EUT configurations were measured and only the worst-case scenario for each measurement is presented in graph format.

| 20MHz      |             | 15MHz      |             | 10MHz      |             | 5MHz       |             |
|------------|-------------|------------|-------------|------------|-------------|------------|-------------|
| (dBm/1MHz) | (dBm/10MHz) | (dBm/1MHz) | (dBm/10MHz) | (dBm/1MHz) | (dBm/10MHz) | (dBm/1MHz) | (dBm/10MHz) |
| 6.81       | 16.87       | 7.93       | 18.03       | 10.98      | 20.42       | 12.91      | 19.34       |

#### Table 5 – Worst Case QPSK of Power Conducted Measurements of Table 3



# 1.6 TEST SETUP





#### 1.7 TEST CONDITIONS

For all tests the EUT was set up in accordance with the relevant test standard and to represent typical operating conditions. Tests were applied with the EUT situated in a shielded enclosure, test laboratories or a chamber as appropriate.

FCC Measurement Facility Accreditation Designation Number: CA6845 TUV SUD Canada (Ottawa)

# 1.8 DEVIATION FROM THE STANDARD

No deviations from the applicable test standards or test plan were made during testing.

# 1.9 MODIFICATION RECORD

No modifications were made to the EUT during testing.

# 1.10 ALTERNATIVE TEST SITE

Under our Accreditation, TÜV SÜD Canada, Laval conducted the following tests at Nokia in Ottawa.

| Test Name                                                       | Name of Engineer(s) |
|-----------------------------------------------------------------|---------------------|
| Peak Output Power and Peak to Average<br>Ratio – Conducted, PSD | Jose Martinez       |
| Occupied Bandwidth                                              | Jose Martinez       |
| Band Edge                                                       | Jose Martinez       |
| Transmitter Spurious Emissions                                  | Jose Martinez       |
| Frequency Stability                                             | Jose Martinez       |
| Radiated Emissions                                              | Christopher Richer  |



**SECTION 2** 

**TEST DETAILS** 



# 2.1 PEAK OUTPUT POWER AND PEAK TO AVERAGE RATIO - CONDUCTED

#### 2.1.1 Specification Reference

FCC CFR 47 Part 2, Clause 2.1046 FCC CFR 47 Part 96, Clause 96.41 (b)(c)(g)

#### 2.1.2 Date of Test and Modification State

14 January 2021 – Modification State 0 03 February 2021 – Modification State 0

#### 2.1.3 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

#### 2.1.4 Environmental Conditions

Ambient Temperature21°CRelative Humidity20%

#### 2.1.5 Test Method

All measurements were made in accordance with FCC KDB 971168 D01, clause 5.2.1 and summed in accordance with FCC KDB 662911 D01. EIRP values were calculated by adding the Port A and Port B antenna gain of 2.6 dBi and the Port C and Port D antenna gain of 3.1 dBi

### 2.1.6 Test Results



### 2.1.6.1 Worst-case measurements

| Table 3 (Category A operation) |                                             |                                           |                                          |                                           |                                           |                                            |         |  |
|--------------------------------|---------------------------------------------|-------------------------------------------|------------------------------------------|-------------------------------------------|-------------------------------------------|--------------------------------------------|---------|--|
| Bandwidth<br>(MHz)             | Conducted<br>Average<br>Power<br>(dBm/1MHz) | Conducted<br>Average Power<br>(dBm/10MHz) | EIRP<br>(dBm/1MHz)<br><note 1=""></note> | Limit<br>(dBm/1MHz)<br><note 2=""></note> | EIRP<br>(dBm/10MHz)<br><note 1=""></note> | Limit<br>(dBm/10MHz)<br><note 2=""></note> | Results |  |
| 20                             | 6.81<br><note 3=""></note>                  | 16.87<br><note 3=""></note>               | 13.81                                    | 20                                        | 23.87                                     | 30                                         | Pass    |  |
| 15                             | <b>7.93</b><br><note 4=""></note>           | 18.03<br><note 4=""></note>               | 14.93                                    | 20                                        | 25.03                                     | 30                                         | Pass    |  |
| 10                             | 10.98<br><note 5=""></note>                 | 20.42<br><note 5=""></note>               | 17.98                                    | 20                                        | 27.42                                     | 30                                         | Pass    |  |
| 5                              | <b>12.91</b><br><note 6=""></note>          | <b>19.38</b><br><note 6=""></note>        | 19.91                                    | 20                                        | 26.38                                     | 30                                         | Pass    |  |
|                                |                                             |                                           |                                          |                                           |                                           |                                            |         |  |

| Table 6 – Worst-Case: QPSK Modulation – Conducted Power Measurements of test cases in |
|---------------------------------------------------------------------------------------|
| Table 3 (Category A operation)                                                        |

Note 1. EIRP (worst case) = Power (dBm/xMHz) + Gain(7.0 dBi) as per section 2.3 in <u>412172 D01</u>

Note 2. Limit according Category A CBSD of § 96.41 (b)

Note 3. Test case # 5 of Table 3 (Frequency: 3560Mz).

Note 4. Test case # 21 of Table 3 (Frequency: 3557.5MHz)

Note 5. Test case # 35 of Table 3 (Frequency: 3695MHz)

Note 6. Test case #48 of Table 3 (Frequency: 3697.5MHz)



|                    |                                             |                                           | (Catogory 2                              | /                                         |                                           |                                            |         |
|--------------------|---------------------------------------------|-------------------------------------------|------------------------------------------|-------------------------------------------|-------------------------------------------|--------------------------------------------|---------|
| Bandwidth<br>(MHz) | Conducted<br>Average<br>Power<br>(dBm/1MHz) | Conducted<br>Average Power<br>(dBm/10MHz) | EIRP<br>(dBm/1MHz)<br><note 1=""></note> | Limit<br>(dBm/1MHz)<br><note 2=""></note> | EIRP<br>(dBm/10MHz)<br><note 1=""></note> | Limit<br>(dBm/10MHz)<br><note 2=""></note> | Results |
| 20                 | 6.81<br><note 3=""></note>                  | <b>16.87</b><br><note 3=""></note>        | 30.81                                    | 37                                        | 40.87                                     | 47                                         | Pass    |
| 15                 | <b>7.93</b><br><note 4=""></note>           | 18.03<br><note 4=""></note>               | 31.93                                    | 37                                        | 42.03                                     | 47                                         | Pass    |
| 10                 | 10.98<br><note 5=""></note>                 | 20.42<br><note 5=""></note>               | 34.98                                    | 37                                        | 44.42                                     | 47                                         | Pass    |
| 5                  | <b>12.91</b><br><note 6=""></note>          | <b>19.38</b><br><note 6=""></note>        | 36.92                                    | 37                                        | 43.38                                     | 47                                         | Pass    |

# Table 7 – Worst-Case: QPSK Modulation – Conducted Power Measurements of test cases in Table 3 (Category B Operation)

Note 1. EIRP (worst case) = Power (dBm/xMHz) + Gain(24.0 dBi) as per section 2.3 in <u>412172 D01</u> for category B operation.

Note 2. Limit according Category B CBSD of § 96.41 (b)

Note 3. Test case # 5 of Table 3 (Frequency: 3560Mz).

Note 4. Test case # 21 of Table 3 (Frequency: 3557.5MHz)

Note 5. Test case # 35 of Table 3 (Frequency: 3695MHz)

Note 6. Test case #48 of Table 3 (Frequency: 3697.5MHz)

| Bandwidth<br>(MHz) | PAPR<br>(@.1%) | Limit | Result |
|--------------------|----------------|-------|--------|
| 20                 | 7.1            | 13    | Pass   |
| 15                 | 6.7            | 13    | Pass   |
| 10                 | 6.4            | 13    | Pass   |
| 5                  | 6.1            | 13    | Pass   |




# 2.1.6.1.1.1 Lower Channel: 3560MHz

| and Spa                                           | 50 Ω<br>an 30.00<br>Gate: L0 | 0000000 MHz<br>Input: RF PNO: Fast<br>IFGain:Low  | AC SENSE:1 | Avg                                                | ALIGNAUTO<br>Type: Pwr(RMS)                           | TYPE V                 | 23456<br>WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW | Band Adjust<br>Band/Interva         |
|---------------------------------------------------|------------------------------|---------------------------------------------------|------------|----------------------------------------------------|-------------------------------------------------------|------------------------|-----------------------------------------------|-------------------------------------|
| 0 dB/div                                          | Ref Offset<br>Ref 42.2       |                                                   |            |                                                    | Mkr1<br>Band Pov                                      | 3.560 00<br>ver 19.31  |                                               | Spa<br>30.00000000 MH               |
| 32.2<br>22.2<br>12.2                              |                              |                                                   |            |                                                    |                                                       |                        |                                               | Band/Interv<br>Le<br>3.545000000 GH |
| 20<br>.80<br>7,8                                  |                              |                                                   | <b>\</b>   |                                                    |                                                       |                        |                                               | Band/Inter<br>Rig<br>3.5750000000 G |
| 7.8                                               |                              |                                                   |            |                                                    |                                                       |                        |                                               |                                     |
|                                                   | 56000 GH2<br>200 kHz         | -                                                 | BW         |                                                    | #Sweep                                                | Span 40.<br>5.00 s (12 | 00 MHz<br>00 pts)                             |                                     |
| KR MODE TF<br>1 N 1<br>2 N 1<br>3 N 1<br>4 5<br>6 | f                            | X<br>3.560 00 GHz<br>3.560 00 GHz<br>3.560 00 GHz | 0.17 dBm   | FUNCTION<br>Band Power<br>Band Power<br>Band Power | FUNCTION WIDTH<br>30.00 MHz<br>10.00 MHz<br>1.000 MHz | 16.                    | ALUE<br>31 dBm<br>87 dBm<br>81 dBm            |                                     |
| 0<br>7<br>8<br>9<br>0                             |                              |                                                   |            |                                                    |                                                       |                        |                                               |                                     |

# Conducted Output Power – QPSK Modulation, BW: 20MHz – Test Case 35 of Table 3





PARP – QPSK Modulation, BW: 20MHz – Test Case #5 of Table 3



# 2.1.6.1.1.2 Lower Channel: 3557.5MHz

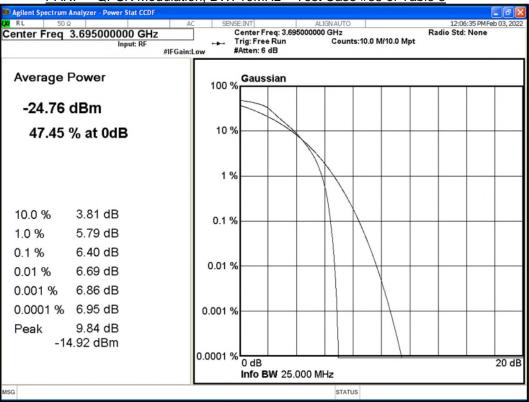
| E 1 2 3 4 5 6       | TRAC                                                                         | ALIGN AUTO<br>ype: Pwr(RMS)                                                                                   |                                                                                            | Trig: Free Ru                                                                                                                                                                                                                                                                                                                                                                                                  | Hz                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50 Ω<br>3.55750<br>Gate: L0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 50 GHz              | 3.557                                                                        |                                                                                                               |                                                                                            | Atten: 10 dB                                                                                                                                                                                                                                                                                                                                                                                                   | Gain:Low                                                                                                                           | t 42.2 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3/div                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                     |                                                                              |                                                                                                               |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                     |                                                                              |                                                                                                               |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                     | _                                                                            |                                                                                                               |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1200 pts)<br>NVALUE | 5.00 s (*                                                                    | FUNCTION WIDTH                                                                                                |                                                                                            | Y                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                    | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 200 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BW 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                     | 1                                                                            | 30.00 MHz<br>10.00 MHz<br>1.000 MHz                                                                           | Band Power                                                                                 | 1.05 dBm                                                                                                                                                                                                                                                                                                                                                                                                       | 0 GHz                                                                                                                              | 3.557                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | f<br>f<br>f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N 1<br>N 1<br>N 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                     |                                                                              |                                                                                                               |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                     | 50 GHz<br>33 dBm<br>0.00 MHz<br>1200 Uts<br>9.30 dBm<br>9.30 dBm<br>9.30 dBm | \$ 3.557 50 GHz<br>wer 7.93 dBm<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$ | Span 40.00 MHz         Span 40.00 MHz           #Sweep 5.00 s (1200 µts)         10.00 MHz | Avg Type: Pwr(RMS)         TRACE 123456           n         Trype Wwwwwwww           DET A N NNN         DET A N NNN           DET A N NNN         DET A N NNN           Mkr3 3.557 50 GHz         Band Power 7.93 dBm           Span 40.00 MHz         Span 40.00 MHz           #Sweep 5.00 s (1200 pts)         FUNCTION WALLE           Band Power         19.30 dBm           Band Power         19.30 dBm | Avg Type: Pwr(RMS)         TRACE 123456           Trig: Free Run<br>Atten: 10 dB         DYPE WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW | GHz       Avg Type: Pwr(RMS)       TRACE [123456]         PN0: Fast C       Trig: Free Run Atten: 10 dB       Mkr3 3.557 50 GHz         Band Power 7.93 dBm       Mkr3 3.557 50 GHz         Band Power 7.93 dBm       Span 40.00 MHz         #VBW       #Sweep 5.00 s (1200 pts)         So GHz       1.05 dBm       Band Power         50 GHz       1.05 dBm       Band Power         10.05 dBm       Band Power       10.00 MHz         10.05 dBm       Band Power       10.00 MHz         10.05 dBm       Band Power       10.00 MHz         10.05 dBm       Band Power       10.00 MHz | O000000 GHz         Input: RF       PN0: Fast         Irgain:Low       Trig: Free Run       Mkr3 3.557 50 GHz         0 dBm       Mkr3 3.557 50 GHz         0 dBm       Band Power 7.93 dBm         Span 40.00 MHz         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X | 3.557500000000 GHz         Avg Type: Pwr(RMS)         TRACE 12.3456           Gate: L0         Input: RF         PN0: Fast         Trig: Free Run<br>Atten: 10 dB           Mkr3 3.557 50 GHz           Ref 0ffset 42.2 dB         Mkr3 3.557 50 GHz           Ref 42.20 dBm         Mkr3 3.557 50 GHz           Span 40.00 MHz           To 50 GHz           Span 40.00 MHz           Span 40.00 MHz           To 50 GHz           Span 40.00 MHz           Span 40.00 MHz           To 50 GHz           Span 40.00 MHz           To 50 GHz           To 50 GHz           Span 40.00 MHz           Span 40.00 MHz           To 50 GHz           Span 40.00 MHz           To 50 GHz           To 50 GHz           To 50 GHz           Span 40.00 MHz |

# Conducted Output Power – QPSK Modulation, BW: 15MHz – Test Case #21 of Table 3



|                                                                                      | tion, BVV: 15MHZ – Test Case #21 of Table 3                                              |      |
|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------|
| Agilent Spectrum Analyzer - Power Stat CCDF     S0 Ω     Center Freq 3.557500000 GHz | AC SENSE:INT ALIGNAUTO 12:18:11 PMFeb 03<br>Center Freq: 3.557500000 GHz Radio Std: None |      |
| Input: RF                                                                            | ─┘ Trig: Free Run Counts:10.0 M/10.0 Mpt<br>in:Low #Atten: 6 dB                          | _    |
| Average Power                                                                        | 100 % Gaussian                                                                           |      |
| -22.86 dBm                                                                           |                                                                                          |      |
| 43.95 % at 0dB                                                                       | 10 %                                                                                     |      |
|                                                                                      | 1 %                                                                                      | _    |
| 10.0 % 4.16 dB<br>1.0 % 6.41 dB                                                      | 0.1 %                                                                                    | _    |
| 0.1 % 6.73 dB<br>0.01 % 6.82 dB<br>0.001 % 6.89 dB                                   | 0.01 %                                                                                   | _    |
| 0.0001 % 6.93 dB<br>Peak 7.48 dB                                                     | 0.001 %                                                                                  | _    |
| -15.38 dBm                                                                           | 0.0001 % 0 dB 2000 MHz 2000 MHz                                                          | ) dB |
| MSG                                                                                  | STATUS                                                                                   |      |

#### PARP – QPSK Modulation, BW: 15MHz – Test Case #21 of Table 3




### 2.1.6.1.2 Bottom Channel: 3695MHz

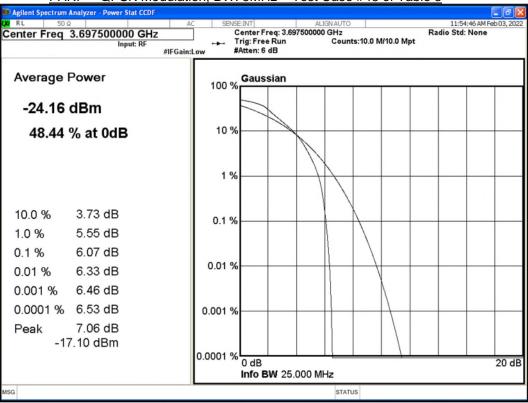
| <u>35 of Table 3</u> | <u> Case #3</u>                                                | - Test   | <u>/: 10MHz -</u>          | lation, BV               | SK Modu      | <u>ver – QF</u>  | <u>utput Pow</u> | ed Ou                       | duct  | onc    |
|----------------------|----------------------------------------------------------------|----------|----------------------------|--------------------------|--------------|------------------|------------------|-----------------------------|-------|--------|
|                      |                                                                |          |                            |                          |              |                  | zer - Swept SA   |                             | Spect | gilent |
| Marker               | M Jan 14, 2022<br>E 1 2 3 4 5 6<br>E WWWWWWWW<br>T A A N N N N | TRAC     | ALIGNAUTO<br>ype: Pwr(RMS) | Avg T                    | C SENSE:1    |                  | 00000000 (       | 50 Ω<br>3.69500<br>Sate: L0 |       | arke   |
| Select Marker<br>2   | 00 GHz                                                         | 3.695    |                            |                          | Atten: 10 dB | FGain:Low        | et 42.2 dB       | Ref Offset                  |       |        |
|                      |                                                                | /er 20.4 | Band Pov                   |                          |              |                  | .20 dBm          | Ref 42.2                    | iv    | dB/di  |
|                      |                                                                |          |                            |                          |              |                  |                  |                             |       | 2      |
| Norma                |                                                                |          | _                          |                          |              |                  |                  | _                           |       | .2     |
|                      |                                                                |          | _                          |                          | 2-           |                  |                  |                             |       | .2     |
|                      |                                                                | _        |                            |                          | <b>8</b> '   | 1                |                  |                             |       | 20     |
| Delt                 |                                                                |          | _                          | 1                        |              |                  |                  | _                           |       | 06     |
|                      |                                                                |          |                            |                          |              |                  |                  | _                           |       | .8     |
|                      | F                                                              |          |                            | \ \                      |              |                  |                  | _                           |       | .8     |
| Fixed                |                                                                | ~        |                            |                          |              |                  |                  |                             | _     | .8     |
| Tixea                |                                                                |          | _                          |                          |              |                  |                  |                             |       | .8     |
|                      | 0.00 MHz                                                       | Snan 4   |                            |                          |              |                  | H7 ^             | 500 GH                      | 3 60  |        |
| 0                    | 1200 pts)                                                      |          | #Sweep                     |                          |              | #VBW             |                  | 00 kHz                      |       |        |
| Ŭ                    | IN VALUE                                                       | FUNCTIO  | FUNCTION WIDTH             | FUNCTION                 | Y            |                  | ×                | SCL                         | E TRC | R MOD  |
|                      | 20.42 dBm<br>20.42 dBm                                         |          | 30.00 MHz<br>10.00 MHz     | Band Power<br>Band Power |              | 00 GHz<br>00 GHz |                  | f                           | 1     | N      |
|                      | 10.98 dBm                                                      |          | 1.000 MHz                  | Band Power               |              | 00 GHz           |                  | f                           | 1     | N      |
| Properties           |                                                                |          |                            |                          |              |                  |                  |                             |       | i      |
|                      |                                                                |          |                            |                          |              |                  |                  |                             |       |        |
|                      |                                                                |          |                            |                          |              |                  |                  |                             |       | 1      |
| Mor                  |                                                                |          |                            |                          |              |                  |                  |                             |       |        |
| 1 of                 |                                                                |          |                            |                          |              |                  |                  |                             |       |        |
|                      |                                                                |          | STATUS                     |                          |              |                  |                  |                             | _     |        |
|                      |                                                                |          | 010100                     |                          |              |                  |                  |                             |       |        |

#### ~ ~ ~ 4 D ... ODCK Madulation DW/ 40MULT To . . HOF (Table O





# PARP – QPSK Modulation, BW: 10MHz – Test Case #35 of Table 3




# 2.1.6.1.3 Top Channel: 3697.5MHz

|                                    |                                                   | SENSE:INT                                       | ALIGNAUTO<br>Avg Type: Pwr(RMS | S) TRACE 1 2<br>TYPE W    | 23456 Ma                      | arker         |
|------------------------------------|---------------------------------------------------|-------------------------------------------------|--------------------------------|---------------------------|-------------------------------|---------------|
| Ref Offset 4<br>0 dB/div Ref 42.20 | 2.2 dB                                            |                                                 |                                | r3 3.697 50<br>ower 12.91 | GHz                           | t Marker<br>3 |
| og<br>32.2<br>22.2                 |                                                   | <b>∂</b> 3                                      |                                |                           |                               | Norm          |
| .20                                |                                                   |                                                 |                                |                           |                               | Del           |
| 7.8                                |                                                   |                                                 |                                | *****                     |                               | Fixe          |
| enter 3.69750 GHz                  | #VBW                                              |                                                 | #Swee                          |                           | 0 pts)<br>UE                  | c             |
| Res BW 200 kHz                     | X 2 507 50 CU In                                  |                                                 | Dames 20.00 MI                 | - 40.2                    |                               |               |
|                                    | X<br>3.697 50 GHz<br>3.697 50 GHz<br>3.697 50 GHz | 6.16 dBm Band<br>6.16 dBm Band<br>6.16 dBm Band | Power 10.00 MH                 | z 19,3                    | 3 dBm<br>3 dBm<br>1 dBm<br>Pr | opertie       |

### Conducted Output Power – QPSK Modulation, BW: 5MHz – Test Case # 48 of Table 3





PARP – QPSK Modulation, BW: 5MHz – Test Case #48 of Table 3



#### 2.2 OCCUPIED BANDWIDTH

#### 2.2.1 Specification Reference

FCC CFR 47 Part 2, Clause 2.1049 FCC CFR 47 Part 96, Clause 96.41 (e)(3)

#### 2.2.2 Date of Test and Modification State

17 Novemberl 2021 - Modification State 0 18 Novemberl 2021 - Modification State 0 25 Novemberl 2021 - Modification State 0 26 Novemberl 2021 - Modification State 0 29 Novemberl 2021 - Modification State 0

#### 2.2.3 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

#### 2.2.4 Environmental Conditions

| Ambient Temperature | 22°C |
|---------------------|------|
| Relative Humidity   | 19%  |

#### 2.2.5 Test Method

All measurements were made in accordance with FCC KDB 971168 D01.

#### 2.2.6 Test Results

Maximum Output Power 18 dBm/10MHz

Table 9 – Worst Case of OBW of Measurements of tests cases in Table 3

| 20(MHz)          | 15 (MHz)           | 10 (MHz) | 5 (MHz) |
|------------------|--------------------|----------|---------|
| QPSK             | QPSK               | QPSK     | QPSK    |
| 17.9             | 13.4               | 8.9      | 4.5     |
| Note 1           | Note 2             | Note 3   | Note 4  |
| Note 1. Test cas | e No. 7 in Table 3 |          |         |
| Note 2. Test cas | e No. 21 in Table  | 3        |         |
| Note 3. Test cas | e No. 35 in Table  | 3        |         |
| Note 4. Test cas | e No. 49 in Table  | 3        |         |



# 2.2.6.1 17OBW – Test Case No.7 in Table 3

### 2.2.6.1.1 Middle Channel: 3625MHz

| x dB E | Bandwidth           | 19.       | .87 MHz    | x dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      | -26.00    | dB      |                         |                    |
|--------|---------------------|-----------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------|---------|-------------------------|--------------------|
|        | mit Freq Erro       | r 10.4    | 174 kHz    | OBW Po                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | wer                  | 99.00     |         |                         |                    |
|        |                     | 17.852    | MHz        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |           |         |                         |                    |
| Occu   | pied Bandw          | ridth     |            | Total Po                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | wer                  | -15.93 d  | Bm      |                         |                    |
|        | .625 GHz<br>200 kHz |           |            | #VBV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N 620 kH             | z         |         |                         | pan 40 M<br>Weep 1 |
|        |                     |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |           |         |                         |                    |
| 8      |                     |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |           |         |                         |                    |
| 6      |                     |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |           |         |                         |                    |
| 6 mm   | mannahlar           | UH LANA   | -          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |           | мL      | mannan                  | marra              |
| -      |                     |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |           | mi      |                         |                    |
| 6      |                     | n         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |           | 1       |                         |                    |
| .6     |                     | prv       | manstran   | and and a contraction of the con | Low Jaffal Analoused | man       | my      |                         | -                  |
| 6      |                     |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |           |         |                         |                    |
| dB/div | Ref -17.56          | dBm       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |           |         |                         |                    |
|        |                     | #         | IFGain:Low | #Atten: 6 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |           |         | Radio Dev               | ice: BTS           |
| rker 1 | 3.6325 GHz          | Input: RF |            | Center Freq<br>Trig: Free R<br>#Atten: 6 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | un                   | Avg Hold: | 200/200 | Radio Std:<br>Radio Dev |                    |
| RL     | 50 Q                |           | AC         | SENSE:INT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      | IGNAUTO   |         |                         | 16 PMNov 17        |



# 2.2.6.2 OBW – Test Case No.21 in Table 3:

| Agilent Spectrum Analyzer - Occupio<br>RL 50 Ω | AC             | SENSE:INT                                              | ALIGNAUTO                     | 04:36:05 PMNov 18,2                  |
|------------------------------------------------|----------------|--------------------------------------------------------|-------------------------------|--------------------------------------|
| urker 1 3.6869 GHz                             | #IFGain:Low    | Center Freq: 3.69250<br>Trig: Free Run<br>#Atten: 6 dB | 0000 GHz<br>Avg Held: 200/200 | Radio Std: None<br>Radio Device: BTS |
| g                                              |                |                                                        |                               |                                      |
| 2                                              |                |                                                        |                               |                                      |
| 2                                              | - Antoning     | son have many anormal                                  | mannon                        |                                      |
| 2                                              |                |                                                        |                               |                                      |
| 2                                              |                |                                                        | ¥                             |                                      |
| 2 14                                           | N <sup>1</sup> |                                                        |                               | A 10-10                              |
| 2 marmalinalina                                | n M            |                                                        | 1.m                           | m Horth Martham                      |
| 2                                              |                |                                                        |                               |                                      |
|                                                |                |                                                        |                               |                                      |
| 2                                              |                |                                                        |                               |                                      |
| 9                                              |                |                                                        |                               |                                      |
| nter 3.693 GHz<br>es BW 150 kHz                |                | #VBW 470                                               | kHz                           | Span 30 M<br>Sweep 1.333             |
| Occupied Bandwid                               |                | Total Power                                            | -18.55 dBm                    |                                      |
| 1                                              | 3.413 MHz      |                                                        |                               |                                      |
| Transmit Freg Error                            | 5.821 kHz      | <b>OBW Power</b>                                       | 99.00 %                       |                                      |
| x dB Bandwidth                                 | 14.27 MHz      | x dB                                                   | -26.00 dB                     |                                      |
|                                                |                |                                                        | 20100 42                      |                                      |
|                                                |                |                                                        |                               |                                      |
|                                                |                |                                                        | STATUS                        |                                      |

# 2.2.6.2.1 Bottom Channel: 3692.5MHz



# 2.2.6.3 OBW – Test Case No.35 in Table 3:

| RL 50 Q                           | AC            | SENSE:INT<br>Center Freq: 3.555000        | ALIGNAUTO         | 06:02:39 PMNov 25, 20<br>Radio Std: None |
|-----------------------------------|---------------|-------------------------------------------|-------------------|------------------------------------------|
| arker 1 3.5550 GHz                | #IFGain:Low   | → Trig: Free Run<br>#Atten: 6 dB          | Avg Hold: 200/200 | Radio Device: BTS                        |
| g                                 | <u> </u>      |                                           |                   |                                          |
| 28                                | muniman       | mar har har har har har har har har har h | valant man        |                                          |
| 38                                | (             |                                           |                   |                                          |
| 8                                 | 1             |                                           | h                 |                                          |
| 8                                 | A             |                                           | - Kho             |                                          |
| 8 minun minun Minu                | nd            |                                           |                   | Marlmarlander and a                      |
| I I I                             |               |                                           |                   | h<br>Harmannangan                        |
| 8                                 |               |                                           |                   |                                          |
| 8                                 |               |                                           |                   |                                          |
| 3                                 |               |                                           |                   |                                          |
| enter 3.555 GHz<br>les BW 100 kHz |               | #VBW 300 k                                | Hz                | Span 20 Mi<br>Sweep 1.933 r              |
| Occupied Bandwidtl                | ո<br>9383 MHz | Total Power                               | -15.64 dBm        |                                          |
|                                   |               |                                           |                   |                                          |
| Transmit Freq Error               | 7.140 kHz     | OBW Power                                 | 99.00 %           |                                          |
| x dB Bandwidth                    | 9.676 MHz     | x dB                                      | -26.00 dB         |                                          |

#### 2.2.6.3.1 Bottom Channel: 3555MHz



# 2.2.6.3.2 High Channel: 3695MHz

| RL                  | rum Analyzer - Occupied<br>50 Ω |                        | AC S      | ENSE:INT       |            | IGNAUTO                |       |                             | 6 PMNov 26,        |
|---------------------|---------------------------------|------------------------|-----------|----------------|------------|------------------------|-------|-----------------------------|--------------------|
| rker 1              | 3.6952 GHz                      | ıt: RF<br>#IFGain      | n:Low     |                |            | 0 GHz<br>Avg Hold: 200 | 0/200 | Radio Std: N<br>Radio Devic |                    |
|                     | Rei -18.01 dB                   | <u> </u>               |           |                |            |                        |       |                             |                    |
| ō                   |                                 |                        | -0        |                | ο . Δ.     |                        |       |                             |                    |
| 5                   |                                 | partison               | was hours | and the second | mannin     | arhanned               | 2     |                             |                    |
| 6                   |                                 |                        |           |                |            |                        | -     |                             |                    |
| 5                   |                                 |                        |           |                |            |                        | - 2   |                             |                    |
| 6                   |                                 | pr-                    |           |                |            |                        | had   | A.A. +                      |                    |
| and and             | month and                       |                        |           |                |            |                        |       | hum                         | man                |
| ;                   |                                 |                        |           |                |            |                        |       |                             |                    |
| ;                   |                                 |                        |           |                |            |                        |       |                             |                    |
|                     |                                 |                        |           |                |            |                        |       |                             |                    |
| nter 3.6<br>es BW / | 95 GHz<br>100 kHz               |                        |           | #VE            | BW 300 kH2 | z                      |       |                             | an 20 N<br>0 1.933 |
| Эссирі              | ied Bandwidt<br>8.              | <sup>h</sup><br>9415 M | Hz        | Total P        | ower       | -17.61 dBr             | n     |                             |                    |
| Fransm              | it Freq Error                   | 4.774                  | kHz       | OBW P          | ower       | 99.00                  | %     |                             |                    |
|                     | ndwidth                         | 9.585 [                |           | x dB           |            | -26.00 d               |       |                             |                    |



# 2.2.6.4 OBW – Test Case No.49 in Table 3:

|        | nit Freq Error<br>andwidth | -224 Hz<br>4.905 MHz    | OBW Power<br>x dB                                   | 99.00 %<br>-26.00 dB |                                       |
|--------|----------------------------|-------------------------|-----------------------------------------------------|----------------------|---------------------------------------|
|        |                            | 4723 MHz                | Total Power                                         | -14.84 dBm           |                                       |
|        | 698 GHz<br>51 kHz          |                         | #VBW 160                                            |                      | Span 10 M<br>Sweep 3.667              |
|        |                            |                         |                                                     |                      |                                       |
| 7      |                            |                         |                                                     |                      |                                       |
| 5      |                            |                         |                                                     |                      |                                       |
| sound  | mannon                     |                         |                                                     |                      | www.www.                              |
| 5      | and                        | Wend of a               |                                                     |                      | Wind at a                             |
| 5      |                            |                         |                                                     | <u> </u>             |                                       |
| 5      |                            |                         |                                                     |                      |                                       |
| 5      |                            | warden warden war       | - walk the way and a stranger was                   | man man man          |                                       |
| 5      |                            |                         |                                                     |                      |                                       |
| dB/div | Ref -16.5 dBm              | n                       |                                                     |                      |                                       |
|        |                            | it: RF ↔<br>#IFGain:Low | <ul> <li>Trig: Free Run<br/>#Atten: 6 dB</li> </ul> | Avg[Hold: 200/200    | Radio Device: BTS                     |
| rker 1 | 50 Ω<br>3.6978 GHz         | AC                      | SENSE:INT<br>Center Freq: 3.69750                   |                      | 01:59:11 PMNov 29,<br>Radio Std: None |

# 2.2.6.4.1 High Channel: 3697.5MHz



#### 2.3 BAND EDGE

#### 2.3.1 Specification Reference

FCC CFR 47 Part 2, Clause 2.1051 FCC CFR 47 Part 96, Clause 96.41 (e)(3)

#### 2.3.2 Date of Test and Modification State

17 November, 2021- Modification State 0 18 November, 2021- Modification State 0 25 November, 2021- Modification State 0 29 November, 2021- Modification State 0

#### 2.3.3 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

#### 2.3.4 Environmental Conditions

Ambient Temperature23°CRelative Humidity15%

#### 2.3.5 Test Method

All measurements were made in accordance with FCC KDB 971168 D01. The EUT was connected to a Spectrum Analyser via an attenuator and switching box. The path loss between the EUT and the Spectrum Analyser was measured using a Network Analyser. The measured path loss was entered as a Reference Level Offset in the Spectrum Analyser. The Spectrum Analyser RBW was adjusted to be at least 1% of the measured 26dB Bandwidth. Using an RMS detector, the frequency spectrum up to 1MHz away from the Band Edge was investigated.

The worst-case scenarios are given in Table 7: 20MHz OBW (test case No.7 & No.14); for 15MHz OBW (test case No.21 & 28); for 10MHz OBW (test case No.35 & 42) and for 5MHz OBW (test case No. 49 & 56).



### 2.3.6 Test Results

Maximum Output Power 19 dBm

#### 2.3.6.1 Test case No. 6 in Table 3

|         |    |           | Bottom Channe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | I: 3560MI                 | Ηz ·   | – QP                   | SKI | Mod   | ulatior   | n – BW:20M                | ЛНz                    |                                |
|---------|----|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------|------------------------|-----|-------|-----------|---------------------------|------------------------|--------------------------------|
|         |    |           | nalyzer - Swept SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           |        |                        |     |       |           |                           |                        |                                |
| RL      |    | 50 Q      | 62917536 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AC SI                     | ENSE:I | NT                     |     | ALI   | GNAUTO    | pe: Pwr(RMS)              |                        | 1 PM Nov 17, 2<br>RACE 1 2 3 4 |
|         | eq | 3.3       | Input: RF P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NO: Fast +++<br>Gain:High |        | g: Free F<br>ten: 0 di |     |       | Arg Iy    | pe. r wi(ruis)            |                        | DET A N N N                    |
| dB/div  |    |           | Offset 42.56 dB<br>22.56 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           |        |                        |     |       |           |                           | Mkr1 3.52<br>Power -58 |                                |
| 2.6     |    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |        |                        |     |       |           |                           |                        |                                |
|         |    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |        |                        |     |       |           |                           |                        |                                |
| 56      |    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |        |                        |     |       |           |                           |                        |                                |
| 14      | +  | +         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |        |                        |     |       |           |                           |                        | 1- yet 3.00                    |
| .4      | +  | +         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |        |                        |     |       |           |                           |                        | 1                              |
| .4      | +  | +         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |        |                        |     |       |           |                           |                        | +                              |
| .4      | +  | +         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |        |                        |     |       |           |                           |                        | 1                              |
| .4      | +  | +         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |        |                        |     |       |           | put for a construction of | Mary approximately and |                                |
| .4      |    |           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nontrananana              | -      |                        |     | en la |           |                           |                        |                                |
| 4       |    | <b>\$</b> | and the second of the second she was a second she was a second of the second seco |                           |        |                        |     |       |           |                           |                        |                                |
| art 3.5 |    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |        |                        |     |       |           |                           | Stop 3.                | 56292 G                        |
| tes BV  | _  | _         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | #VBV                      | V      |                        |     |       |           |                           | veep 5.00              | s (1001 p                      |
| R MODE  | _  | f         | ×<br>3.529 95 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -67.68 d                  | Bm     | Rund R                 |     |       | ION WIDTH | F                         | UNCTION VALUE          | -58.49 dE                      |
| 2 N     |    | f         | 3.529 50 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -68.20 d                  |        |                        |     |       | 000 MHz   |                           |                        | -48.29 di                      |
|         | +  | -         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           | -      |                        |     |       |           |                           |                        |                                |
| i       |    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |        |                        |     |       |           |                           |                        |                                |
| ;<br>,  | -  | -         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |        |                        |     | -     |           |                           |                        |                                |
| 3       | -  | _         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           | _      |                        |     |       |           |                           |                        |                                |
|         |    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |        |                        |     |       |           |                           |                        |                                |
| 2       | -  | -         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |        |                        |     |       |           |                           |                        |                                |
| 3       | _  | _         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |        |                        | _   |       | STATUS    |                           |                        |                                |
| 1       |    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |        |                        |     |       | araros    |                           |                        |                                |



|                     |               | тор                       | Channel                        | . 309(                       |          | - QF3                              |                | ouui   | auon -              | - DVV     | .2011 | 72                   |                  |        |
|---------------------|---------------|---------------------------|--------------------------------|------------------------------|----------|------------------------------------|----------------|--------|---------------------|-----------|-------|----------------------|------------------|--------|
|                     | ctrum A       | nalyzer - Swe             | pt SA                          |                              |          |                                    |                |        |                     |           |       |                      | (                |        |
| and Spa             | 50 Ω<br>an 1( | 00.00000                  | Input: RF                      | AC<br>PNO: Fas<br>IFGain:Hig | at       | E:INT<br>Trig: Free<br>#Atten: 0 d |                | AL     | IGN AUTO<br>Avg Ty  | pe: Pwr(  | RMS)  | 01:2                 |                  |        |
| 10 dB/div           |               | )ffset 42.56<br>22.56 dBi |                                |                              |          |                                    |                |        |                     | E         |       | kr1 3.72<br>Power -  |                  |        |
| 12.6                |               |                           |                                |                              |          |                                    |                |        |                     |           |       |                      |                  |        |
| 2.56                |               |                           |                                |                              |          |                                    |                |        |                     |           |       |                      |                  |        |
| 7.44                |               |                           |                                |                              |          |                                    |                |        |                     |           |       |                      |                  |        |
|                     | and the state | ground at more            | - Charles and                  |                              |          |                                    |                | _      |                     |           |       |                      |                  | -13.00 |
| 27.4                |               |                           |                                |                              |          |                                    |                |        |                     |           |       |                      |                  |        |
| 37.4                |               |                           |                                |                              |          |                                    |                |        |                     |           |       |                      |                  |        |
| 47.4                |               |                           | 1                              | X                            |          |                                    |                |        |                     |           |       |                      |                  |        |
| 57.4                |               |                           |                                | man                          | Mummun   | An                                 |                |        |                     |           |       |                      |                  | 1.2    |
| 57.4                |               |                           |                                |                              | Hummer   | an and                             | - anenad       | horner | Manager             | environen | man   | and the manufactures |                  |        |
|                     |               |                           |                                |                              |          |                                    |                |        |                     |           |       |                      |                  |        |
| tart 3.69<br>Res BW |               |                           |                                |                              | #VBW     |                                    |                |        |                     |           | #Sv   | Stop<br>veep 5.0     | 3.722<br>0 s (10 |        |
| KR MODE TR          |               |                           | ×                              |                              | Y        |                                    |                |        | TION WIDTH          |           | F     | UNCTION VALUE        |                  |        |
| 1 N 1<br>2 N 1      | f             |                           | 3.720 050 GHz<br>3.720 500 GHz |                              | 67.86 dB |                                    | Power<br>Power |        | 00.0 kHz<br>000 MHz |           |       |                      |                  | 47 dE  |
| 3                   |               |                           |                                |                              |          |                                    | 1 0/10/        |        |                     |           |       |                      |                  | 20 42  |
| 5                   |               |                           |                                | -                            |          | -                                  |                |        |                     |           |       |                      |                  |        |
| 6                   |               |                           |                                |                              |          | _                                  |                |        |                     |           |       |                      |                  |        |
| 8                   |               |                           |                                | -                            |          | -                                  |                |        |                     |           |       |                      |                  |        |
|                     |               |                           |                                |                              |          | -                                  |                |        |                     |           |       |                      |                  |        |
| 0                   |               |                           |                                |                              |          |                                    |                |        |                     |           |       |                      |                  |        |
| 9<br>0<br>1<br>2    |               |                           |                                | +                            |          | _                                  |                |        |                     |           |       |                      |                  |        |

#### Top Channel: 3690MHz – QPSK Modulation – BW:20MHz



|                 |       |                       | Bottom Channel                 | : 3557.5MH     | z – QPSK                     | Modulatio                       | n – BW:15    | MHz                                                                |
|-----------------|-------|-----------------------|--------------------------------|----------------|------------------------------|---------------------------------|--------------|--------------------------------------------------------------------|
|                 | Spect |                       | nalyzer - Swept SA             |                |                              |                                 |              |                                                                    |
| RL<br>tart F    | req   | 50 Ω<br>3.            |                                |                | rig: Free Run<br>Atten: 0 dB | ALIGNAUTO<br>Avg Ty             | pe: Pwr(RMS) | 01:09:37 PMNov 18, 2<br>TRACE 1 2 3 4<br>TYPE WWWWW<br>DET A N N N |
| ) dB/di         | v     |                       | Dffset 42.56 dB<br>22.56 dBm   |                |                              |                                 |              | kr1 3.529 950 GI<br>Power -58.75 dB                                |
| 2.6             |       |                       |                                |                |                              |                                 |              |                                                                    |
| .56             |       |                       |                                |                |                              |                                 |              |                                                                    |
| 44              |       |                       |                                |                |                              |                                 |              | 12.00                                                              |
| .4              |       |                       |                                |                |                              |                                 | p p          | antine washing and a star                                          |
| .4              | -     |                       |                                |                |                              |                                 |              |                                                                    |
| .4              |       |                       |                                |                |                              |                                 | 1            |                                                                    |
| .4              | -     |                       |                                |                |                              |                                 |              |                                                                    |
| .4              |       | 11-                   |                                |                |                              | and and a star and a star and a | CALLAR DATE  |                                                                    |
| 7.4             | L\$   | <b>Q</b> <sup>1</sup> |                                | and a superior | Kgrafilmatetinkalistationiky |                                 |              |                                                                    |
| art 3.<br>Res B |       |                       |                                | #VBW           | -                            |                                 | #Sv          | Stop 3.55750 G<br>veep 5.00 s (1001 p                              |
| R MODE          |       |                       | X                              | Y              |                              | FUNCTION WIDTH                  | F            | UNCTION VALUE                                                      |
| 1 N<br>2 N      | 1     | f                     | 3.529 950 GHz<br>3.529 500 GHz |                | Band Power<br>Band Power     | 100.0 kHz<br>1.000 MHz          |              | -58.75 de<br>-48.30 de                                             |
| 1               |       |                       |                                |                |                              |                                 |              |                                                                    |
| 5               |       |                       |                                |                |                              |                                 |              |                                                                    |
| 5               |       |                       |                                |                |                              |                                 |              |                                                                    |
| 3               |       |                       |                                |                |                              |                                 |              |                                                                    |
| )               |       |                       |                                |                |                              |                                 |              |                                                                    |
| 2               |       |                       |                                |                |                              |                                 |              |                                                                    |
| -               | -     | -                     |                                |                |                              |                                 |              |                                                                    |

# 2.3.6.2 Test case No. 16 in Table 3



| Aglient Spectrum Analyzer - Swept SA<br>RL 50 Ω AC SENSE:INT ALIGNAUTO 01:27:12 PMNov<br>and Span 100.000000 kHz<br>Input: RF PN0: Fast<br>IFGain:High<br>Ref Offset 42.56 dB<br>dB/div Ref 22.56 dBm<br>Gamma Sent Sent Sent Sent Sent Sent Sent Sent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| And Span 100.000000 kHz<br>Input: RF PN0: Fast<br>IFGain:High Trig: Free Run<br>#Atten: 0 dB<br>Ref Offset 42.56 dB<br>dB/div Ref 22,56 dBm<br>Mkr1 3.720 050<br>Band Power -57.47 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Input: RF     PN0: Fast<br>IFGain:High     Trig: Free Run<br>#Atten: 0 dB     Mkr1 3.720 050<br>Band Power -57.47 (d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| B/div Ref 22.56 dBm Band Power -57.47 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Minimum and a compared an                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| and and a second a |
| rt 3.69000 GHz Stop 3.72200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| #Sweep 5.00 s (100 #Sweep 5.00 s (100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| MODE         TRC         X         Y         FUNCTION         FUNCTION WIDTH         FUNCTION VALUE           N         1         f         3.720 050 GHz         -67.86 dBm         Band Power         100.0 kHz         -57.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| N 1 f 3.720 500 GHz -57.85 dBm Band Power 1.000 HHz -77.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| STATUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

#### Top Channel: 3692.5MHz – QPSK Modulation – BW:15MHz



# 2.3.6.3 Test case No. 35 in Table 3

|                      |               | Bottom Ch                       | annel: 3555                            | MHz QP                                 | SK Mo    | dulation            | – BW:10N     | IHz           |                                                                              |
|----------------------|---------------|---------------------------------|----------------------------------------|----------------------------------------|----------|---------------------|--------------|---------------|------------------------------------------------------------------------------|
|                      | pectrum       | Analyzer - Swept SA             |                                        |                                        |          |                     |              |               |                                                                              |
| Marker               | 50 s<br>1 3.5 | 2<br>29500000000 G<br>Input: RF | AC<br>HZ<br>PNO: Fast ↔<br>IFGain:High | SENSE:INT<br>Trig: Free<br>#Atten: 0 c |          | ALIGNAUTO<br>Avg Ty | pe: Pwr(RMS) |               | 3:54 PMNov 25, 2021<br>TRACE 1 2 3 4 5 6<br>TYPE WWWWWWWW<br>DET A N N N N 1 |
| 10 dB/div<br>Log     |               | Offset 42.56 dB<br>f 22.56 dBm  |                                        |                                        |          |                     |              |               | 9 500 GHz<br>47.86 dBm                                                       |
| 12.6                 |               |                                 |                                        |                                        |          | _                   | _            |               | _                                                                            |
| 2.56                 |               |                                 |                                        |                                        |          |                     |              |               |                                                                              |
| -7.44                |               |                                 |                                        |                                        |          |                     |              |               | -13.00 dBr                                                                   |
| -17.4                |               |                                 |                                        |                                        |          | _                   |              |               |                                                                              |
| -27.4                |               |                                 |                                        |                                        |          |                     |              | 1/            | -                                                                            |
| -37.4                |               |                                 |                                        |                                        |          |                     |              | 1             |                                                                              |
| -47.4                |               |                                 |                                        |                                        |          |                     |              |               |                                                                              |
| -57.4                |               |                                 |                                        |                                        |          |                     |              |               |                                                                              |
| -67.4                |               |                                 |                                        |                                        |          |                     |              |               |                                                                              |
| Start 3.5<br>#Res BV |               |                                 | #VE                                    | 3W                                     |          |                     | #S1          |               | 3.55500 GHz<br>0 s (1001 pts                                                 |
| MKR MODE             | TRC SCL       | ×                               | Y                                      | FUN                                    | CTION FU | INCTION WIDTH       |              | UNCTION VALUE |                                                                              |
| 1 N<br>2             | 1 f           | 3.529 500                       | GHz -57.66                             | dBm Band                               | Power    | 1.000 MHz           |              |               | -47,86 dBm                                                                   |
| 3                    |               |                                 |                                        |                                        |          |                     |              |               |                                                                              |
| 4 5                  |               |                                 |                                        |                                        |          |                     |              |               |                                                                              |
| 6                    | _             |                                 |                                        |                                        |          |                     |              |               |                                                                              |
| 8                    | _             |                                 |                                        |                                        |          |                     |              |               |                                                                              |
| 10                   |               |                                 |                                        |                                        |          |                     |              |               |                                                                              |
| 11<br>12             |               |                                 |                                        |                                        |          |                     |              |               |                                                                              |
|                      |               |                                 |                                        |                                        |          |                     |              |               |                                                                              |

# Bottom Channel: 3555MHz QPSK Modulation – BW:10MHz



|                                                | Top Channel:                       | 3695IVIHZ - | QPSK M                     | odulation -         | - BAA: LOIME | ΠZ                        |                                                           |
|------------------------------------------------|------------------------------------|-------------|----------------------------|---------------------|--------------|---------------------------|-----------------------------------------------------------|
| Agilent Spectru                                | m Analyzer - Swept SA              |             |                            |                     |              |                           |                                                           |
|                                                |                                    |             | ig: Free Run<br>tten: 0 dB | ALIGNAUTO<br>Avg Ty | pe: Pwr(RMS) | TRA                       | MNov 25, 202<br>CE 1 2 3 4 5<br>PE WWWWWW<br>ET A N N N N |
|                                                | ef Offset 42.56 dB<br>ef 22.56 dBm |             |                            |                     | M<br>Band I  | kr1 3.720 {<br>Power -47. | 500 GH<br>14 dBn                                          |
| 12.6                                           |                                    |             |                            |                     |              |                           |                                                           |
| 2.56                                           |                                    |             |                            |                     |              |                           | _                                                         |
| 7.44                                           |                                    |             |                            |                     |              |                           | 13.00 dB                                                  |
| 17.4                                           |                                    |             |                            |                     |              |                           | 10.00 42                                                  |
| 27.4                                           |                                    |             |                            |                     |              |                           |                                                           |
| 37.4                                           |                                    |             |                            |                     |              |                           | _                                                         |
| 47.4                                           |                                    |             |                            |                     |              |                           | <b>♦</b> <sup>1</sup>                                     |
| 57.4                                           |                                    |             |                            |                     |              |                           | ¥                                                         |
| 67.4                                           |                                    |             |                            |                     |              |                           |                                                           |
| Start 3.6950<br>Res BW 10                      |                                    | #VBW        |                            |                     | #Sv          | Stop 3.7<br>veep 5.00 s   | 2262 GH<br>(1001 pt                                       |
| KR MODE TRC S                                  |                                    | Y           |                            | FUNCTION WIDTH      | F            | UNCTION VALUE             |                                                           |
| 1 N 1                                          | f 3.720 500 GHz                    | -56.88 dBm  | Band Power                 | 1.000 MHz           |              |                           | 47.14 dBr                                                 |
| 3                                              |                                    |             |                            |                     |              |                           |                                                           |
| 5                                              |                                    |             |                            |                     |              |                           |                                                           |
| 6<br>7                                         |                                    |             |                            |                     |              |                           |                                                           |
| 8                                              |                                    |             |                            |                     |              |                           |                                                           |
| 10                                             |                                    |             |                            |                     |              |                           |                                                           |
| 11                                             |                                    |             |                            |                     |              |                           |                                                           |
| <u>~                                      </u> | -                                  |             |                            |                     |              |                           |                                                           |

### Top Channel: 3695MHz – QPSK Modulation – BW:10MHz



### 2.3.6.4 Test case No. 48 in Table 3

| Anilant Eng        | etrum An | Bottom                     | h Channe    | l: 3552                | 5MH    | z – G                 | PSK   | ( Мо  | dulatio   | on – BW:     | 5MHz              | FF                             |
|--------------------|----------|----------------------------|-------------|------------------------|--------|-----------------------|-------|-------|-----------|--------------|-------------------|--------------------------------|
| RL                 | 50 Q     | alyzer - Swep              | 1 JA        | AC                     | SENSE; | INT                   |       | ALI   | GNAUTO    |              | 1                 | 01:37:48 PMNov 29,             |
| top Fre            | q 3.5    | 5455191                    | nput: RF F  | PNO: Fast<br>Gain:High |        | ig: Free<br>tten: 0 d |       |       | Avg Ty    | pe: Pwr(RMS) |                   | TYPE WWWWW<br>DET A N N N      |
| ) dB/div           |          | ffset 42.56 d<br>22.56 dBn |             |                        |        |                       |       |       |           | Ban          | Mkr1 3.<br>d Powe | 529 500 G<br>r -48.27 dE       |
| pg                 |          |                            |             |                        |        |                       |       |       |           |              |                   |                                |
| 2.6                |          |                            |             |                        |        |                       |       |       |           |              |                   |                                |
| 56                 |          |                            |             |                        |        |                       |       |       |           |              |                   | 1                              |
| 44                 |          |                            |             |                        | -      |                       |       |       |           |              | _                 | -13.00                         |
| .4                 |          |                            |             |                        |        |                       |       |       |           |              |                   |                                |
| .4                 |          |                            |             |                        |        |                       |       |       |           |              | 1                 | _                              |
| 4                  |          |                            |             |                        | -      |                       |       |       |           |              |                   |                                |
| 4                  |          | 5                          |             |                        |        |                       |       |       | /         |              |                   |                                |
| 4                  |          |                            |             |                        |        |                       |       |       |           |              |                   |                                |
| .4                 |          |                            |             |                        |        |                       |       |       |           |              |                   |                                |
| art 3.52<br>tes BW |          |                            |             | #V                     | 'BW    |                       |       |       |           | #            | Sweep 5           | op 3.55455 G<br>i.00 s (1001 p |
| R MODE T           |          |                            | ×           | Y                      |        |                       | CTION | FUNCT | ION WIDTH |              | FUNCTION V        | ALUE                           |
| N 1                | f        | 3                          | 529 500 GHz | -58.0                  | 01 dBm | Band                  | Power | 1.0   | 00 MHz    |              |                   | -48.27 di                      |
|                    |          |                            |             |                        |        |                       |       |       |           |              |                   |                                |
|                    |          |                            |             |                        | _      |                       |       |       |           |              |                   |                                |
|                    |          |                            |             |                        |        |                       |       |       |           |              |                   |                                |
|                    |          |                            |             |                        |        |                       |       |       |           |              |                   |                                |
|                    | +        |                            |             |                        |        |                       |       |       |           |              |                   |                                |
|                    |          |                            |             |                        |        |                       |       |       |           |              |                   |                                |
|                    |          |                            |             | _                      |        |                       |       |       |           |              |                   |                                |



|         |                           | Top Channel: 3        |            | - QPSKI                   | viouulation         |              | ПΖ                |                                  |          |
|---------|---------------------------|-----------------------|------------|---------------------------|---------------------|--------------|-------------------|----------------------------------|----------|
|         |                           | zer - Swept SA        |            |                           |                     |              |                   |                                  |          |
| arker 1 | <sup>50 Ω</sup><br>3.7205 |                       |            | g: Free Run<br>tten: 0 dB | ALIGNAUTO<br>Avg Ty | pe: Pwr(RMS) | 09:               | TRACE 1 2<br>TYPE WWW<br>DET A N | 345      |
| dB/div  | Ref Offse<br>Ref 22.      | et 42.56 dB<br>56 dBm |            |                           |                     | Mk<br>Band   | r1 3.720<br>Power | 500 0 (<br>-47.49 c              | GF<br>JB |
| 2.6     |                           |                       |            |                           |                     |              |                   |                                  |          |
| 56      |                           |                       |            |                           |                     |              |                   |                                  |          |
| 14      | }                         |                       |            |                           |                     |              |                   |                                  |          |
| 4       |                           |                       |            |                           |                     |              |                   | -13                              | 3.00     |
| 4       |                           |                       |            |                           |                     |              |                   |                                  |          |
| 4       | 1                         | _                     |            |                           |                     |              |                   |                                  |          |
| 4       |                           |                       |            |                           |                     |              |                   |                                  |          |
| 4       |                           |                       |            |                           |                     |              | 5                 | 1                                | H        |
| 4       |                           |                       |            |                           |                     |              |                   |                                  |          |
|         | 750 GHz<br>100 kHz        |                       | #VBW       |                           |                     | #S1          | Stop<br>weep 5.0  | o 3.72100<br>10 s (1001          | G<br>1 p |
| MODE TR |                           | ×                     | Y          |                           | FUNCTION WIDTH      |              | FUNCTION VALU     |                                  |          |
| N 1     | f                         | 3.720 500 0 GHz       | -57.49 dBm | Band Power                | 1.000 MHz           |              |                   | -47.49                           | dE       |
|         |                           |                       |            |                           |                     |              |                   |                                  |          |
|         |                           |                       |            |                           |                     |              |                   |                                  | _        |
|         |                           |                       |            |                           |                     |              |                   |                                  |          |
|         |                           |                       |            |                           |                     |              |                   |                                  |          |
|         |                           |                       |            |                           |                     |              |                   |                                  | _        |
| 2       |                           |                       |            |                           |                     |              |                   |                                  |          |
|         |                           |                       |            |                           | STATUS              |              |                   |                                  |          |

## Top Channel: 3697.5MHz – QPSK Modulation – BW:5MHz



### 2.4 TRANSMITTER SPURIOUS EMISSIONS

#### 2.4.1 Specification Reference

FCC CFR 47 Part 2, Clause 2.1051 FCC CFR 47 Part 96, Clause 96.41 (e)(1)

#### 2.4.2 Date of Test and Modification State

17 November 2021 - Modification State 0 18 November 2021 - Modification State 0

#### 2.4.3 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

#### 2.4.4 Environmental Conditions

Ambient Temperature23°CRelative Humidity35%

#### 2.4.5 Test Method

All measurements were made in accordance with FCC KDB 971168 D01. The EUT was connected to a Spectrum Analyser via an attenuator and switching box. Prior to testing, a Network Analyser was used to calibrate the path loss between the EUT and the Spectrum Analyser. The worst-case path loss in the measured ranges was entered as a reference level offset. Over the measured ranges, the RBW was set to 1MHz with a VBW of 3MHz. All measurement results are specified as average with an RMS detector being used in conjunction with a trace setting of Max Hold. Measurements were performed in configurations of the EUT as reported below.

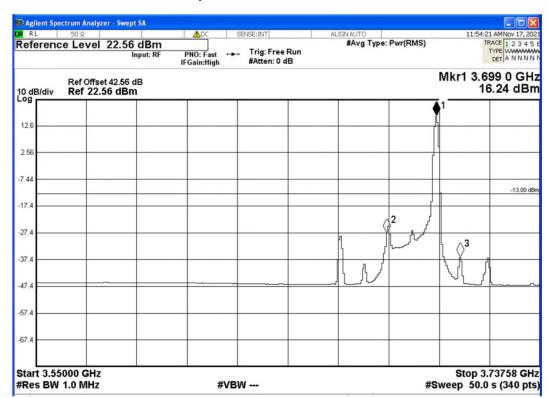
Testing was performed with a test limit of -40 dBm/MHz (for emissions < 3530 MHz and > 3720 MHz).

Testing was performed on this port with a test limit of -25 dBm/MHz (for emissions within 10 MHz of the carrier).

The worst-case test cases were: No.1; 3;5;7;9;11 and 13.



# 2.4.6 Test Results


Maximum Output Power 18 dBm

| Range Frequency (MHz)                                                                                                                                          | Limit (dBm) | Result                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------------------|
| 0.009 to 3530                                                                                                                                                  | -40         | Pass<br><note 1=""></note> |
| 3530 to 3650                                                                                                                                                   | -25         | Pass                       |
| 3650 to 3660                                                                                                                                                   | -13         | Pass                       |
| 3700 to 3710                                                                                                                                                   | -13         | Pass                       |
| 3710 to 3720                                                                                                                                                   | -25         | Pass                       |
| 3720 to 40000                                                                                                                                                  | -40         | Pass<br><note 2=""></note> |
| Note 1. The device was scanned from 9kH:<br>less than 6Bd from the limit) was fou<br>Note 2. The device was scanned up to 40G<br>6Bd from the limit) was found | Ind         | , a                        |

# 2.4.6.1 Worst-Case test No. 1 – Top Channel: 3690MHz

| rkor      | 1 1      | 50Ω<br>271 | 6480675                       | 516 GHz                    | Acc                   | SENSE:I          | VT]                      | ALIGNAUTO     |                                         | Pwr(RMS)  |                | 0 AMNov 17,       |
|-----------|----------|------------|-------------------------------|----------------------------|-----------------------|------------------|--------------------------|---------------|-----------------------------------------|-----------|----------------|-------------------|
| Kei       | 4 .      | 5.71       |                               | Input: RF P                | NO: Fast<br>Gain:High | Tri              | g: Free Run<br>ten: 0 dB |               | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | , mérano) |                | DET A N N N       |
| B/div     |          |            | )<br>ffset 42.56<br>22.56 dBr |                            |                       |                  |                          |               |                                         |           | Mkr4 3.7<br>-3 | 16 5 G<br>1.36 dE |
|           |          |            |                               |                            |                       |                  |                          |               |                                         | \Y1       |                |                   |
|           |          |            |                               |                            |                       |                  |                          |               |                                         | ſ         |                |                   |
|           |          |            |                               |                            |                       |                  |                          |               |                                         | ſ         |                |                   |
| _         |          |            |                               |                            |                       |                  |                          |               |                                         |           | A3             | -13.00            |
|           |          |            |                               |                            |                       |                  |                          |               | . 2                                     |           | . 8            |                   |
|           |          |            |                               |                            |                       |                  |                          |               | $\langle \rangle^2$                     |           |                |                   |
|           | _        |            |                               |                            |                       | _                |                          | ~~            | ſ` <u>`</u>                             | R         | 1              | 1                 |
|           |          |            |                               |                            |                       |                  |                          |               |                                         |           |                |                   |
|           |          |            |                               |                            |                       |                  |                          |               |                                         |           |                |                   |
|           |          |            |                               |                            |                       |                  |                          |               |                                         |           |                |                   |
|           |          | 00 G       |                               |                            |                       |                  |                          |               |                                         |           | Stop 3.        | 72000 G           |
| s Bl      | W 1      | .0 M       | Hz                            |                            | #\                    | /BW              |                          |               |                                         | #S        | weep 5.00      | s (340 j          |
| MODE<br>N | TRC<br>1 |            |                               | ×<br>3.681 4 GHz           | Y                     | 20 dBm           | FUNCTION                 | FUNCTION WID1 | H                                       | FL        | INCTION VALUE  |                   |
| N         | 1        | f          |                               | 3.661 8 GHz                | -36.                  | 54 dBm           |                          |               |                                         |           |                |                   |
| NN        | 1        | f          |                               | 3.698 9 GHz<br>3.716 5 GHz |                       | 60 dBm<br>36 dBm |                          |               | +                                       |           |                |                   |
|           |          | -          |                               | 0.11000112                 |                       | oo abiii         |                          |               |                                         |           |                |                   |
|           |          |            |                               |                            |                       |                  |                          |               |                                         |           |                |                   |
|           |          |            |                               |                            |                       |                  |                          |               |                                         |           |                |                   |
|           |          |            |                               |                            |                       |                  |                          | 1             |                                         |           |                |                   |
|           |          |            |                               |                            |                       |                  |                          |               |                                         |           |                |                   |





# 2.4.6.2 Worst-Case test No. 3 – Top Channel: 3690MHz

2.4.6.3 Wost-Case test No. 5 – Top Channel: 3690MHz

| RL     |            | 50 Q  |                   |                |                          | <u>∧</u> DC              | SENSE:1          | NT                    |      |          | AUTO    |          |          | 01:1            | 2:07 PMNov 17, 2                           |
|--------|------------|-------|-------------------|----------------|--------------------------|--------------------------|------------------|-----------------------|------|----------|---------|----------|----------|-----------------|--------------------------------------------|
| arke   | er 2       | 3.68  | 33485             |                |                          | 'NO: Fast +<br>Gain:High |                  | g: Free F<br>ten: 0 d |      |          | #Avg Ty | /pe: Pwi | r(RMS)   |                 | TRACE 1 2 3 4<br>TYPE WWWWW<br>DET A N N N |
| dB/    | div        |       | Offset 4<br>22.56 | 2.56 dB<br>dBm |                          |                          |                  |                       |      |          |         |          |          |                 | .683 5 GI<br>26.12 dB                      |
| 2.6    |            |       |                   |                |                          |                          |                  |                       |      |          |         |          |          |                 |                                            |
| 56 -   |            |       |                   |                |                          |                          | _                |                       |      |          |         |          |          | 1               |                                            |
| 44     |            | _     |                   |                |                          |                          | _                |                       |      |          |         | _        | _        |                 | -13.00                                     |
| 4      |            |       |                   | -              |                          |                          | +                |                       |      | _        |         | _        | 2        | ^3              | -13.00                                     |
| 4      |            |       |                   |                |                          |                          | -                |                       |      |          |         | -        | <b>y</b> | ¥.              | -                                          |
| 4      |            | -     |                   |                |                          |                          | -                |                       | -    |          |         | J.       |          |                 |                                            |
| 4      |            |       |                   | -              |                          |                          | +                |                       |      |          |         | -        |          | -               |                                            |
| .4     |            |       |                   |                |                          |                          | +                |                       |      |          |         |          |          |                 | -                                          |
| .4 -   |            |       |                   |                |                          |                          | -                | -                     |      |          |         |          |          |                 | +                                          |
|        | 3.55<br>BW |       |                   |                |                          | #V                       | 'BW              |                       |      |          |         |          | #S       | Stop<br>weep 50 | 3.73029 G<br>.0 s (340 p                   |
| R MO   | IDE TR     | C SCL |                   | ×              |                          | Y                        |                  | FUNC                  | TION | FUNCTION | N WIDTH |          | F        | UNCTION VALUE   |                                            |
|        |            | f     |                   |                | .689 9 GHz<br>.683 5 GHz |                          | 18 dBm<br>12 dBm |                       |      |          |         |          |          |                 |                                            |
| 3 N    |            | f     |                   |                | 697 3 GHz                |                          | 21 dBm           |                       |      |          |         |          |          |                 |                                            |
| 5      |            |       |                   |                |                          |                          |                  |                       |      |          |         |          |          |                 |                                            |
| 5      | +          | +     |                   |                |                          |                          |                  |                       |      |          |         |          |          |                 |                                            |
| B<br>9 |            |       |                   |                |                          |                          |                  |                       |      |          |         |          |          |                 |                                            |
|        | -          | +     |                   |                |                          |                          |                  |                       |      |          |         |          |          |                 |                                            |
| 0      | _          |       |                   |                |                          |                          |                  |                       |      |          |         |          |          |                 |                                            |



| RL                         |      | 50 Q |                             |                            | ADC SENS              | E:INT                         | ALIGNAUTO      |                     | 03:16:56 PM Nov 17, 20                         |
|----------------------------|------|------|-----------------------------|----------------------------|-----------------------|-------------------------------|----------------|---------------------|------------------------------------------------|
| isplay                     | y Li | ne   | -13.00 dB                   | Input: RF PI               |                       | Trig: Free Run<br>Atten: 0 dB | #Avg Ty        | ype: Pwr(RMS)       | TRACE 1 2 3 4<br>TYPE WWWWWW<br>DET A N N N    |
| ) dB/di                    |      |      | Offset 42.56 (<br>17.93 dBn |                            |                       |                               |                | Г                   | 4 14 17 18 18 18 18 18 18 18 18 18 18 18 18 18 |
| og<br>7.93                 |      |      |                             |                            |                       |                               |                |                     |                                                |
| .07                        |      |      |                             |                            |                       |                               |                | Jan King            | ~                                              |
| 2.1                        |      |      |                             |                            |                       |                               |                |                     | -13.00                                         |
| 2.1                        |      |      |                             |                            |                       |                               | 2.15           | _                   |                                                |
| 2.1                        |      | _    |                             |                            |                       |                               |                | $\langle \rangle^2$ | ♦3                                             |
| 2.1                        |      |      |                             |                            |                       |                               |                |                     |                                                |
| 21                         |      |      |                             |                            |                       |                               |                |                     |                                                |
| 2.1                        |      |      |                             |                            |                       |                               |                |                     |                                                |
| 2.1                        |      |      |                             |                            |                       |                               |                |                     |                                                |
| L                          |      |      |                             |                            |                       |                               |                |                     |                                                |
| tart 3.<br>Res B           |      |      |                             |                            | #VBW ·                |                               |                | #Sv                 | Stop 3.72948 Gl<br>veep 50.0 s (340 p          |
| KR MODE                    | TRC  | SCL  |                             | x                          | Y                     | FUNCTION                      | FUNCTION WIDTH | FUN                 | ICTION VALUE                                   |
| 1 N<br>2 N                 | 1    | f    |                             | 3.689 4 GHz<br>3.678 7 GHz | 3.57 dB<br>-33.09 dBr |                               |                |                     |                                                |
| 3 N                        | 1    | f    |                             | 3.700 9 GHz                | -33.03 dBi            | n                             |                |                     |                                                |
|                            | +    |      |                             |                            |                       |                               | +              |                     |                                                |
|                            |      |      |                             |                            |                       |                               |                |                     |                                                |
| 5                          |      |      |                             |                            |                       |                               |                |                     |                                                |
| 5<br>6<br>7<br>8           |      |      |                             |                            |                       |                               |                |                     |                                                |
| 4<br>5<br>6<br>7<br>8<br>9 |      |      |                             |                            |                       |                               |                |                     |                                                |
| 5<br>6<br>7<br>8           |      |      |                             |                            |                       |                               |                |                     |                                                |

# 2.4.6.4 Wost-Case test No. 7 - Top Channel : 3690MHz

## 2.4.6.5 Wost-Case test No. 9: Bottom Channel - 3560MHz

| 3.549217<br>Ref Offset |                       |                                                                                                                             |                                                                                                                 | #Ava Tva                                                                                                                                                                     | e: Pwr(RMS)                                                                                                                                                                                                                                          | TRACE 1 2 3                                                                                                                                                                                                                           |
|------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ref Offset             |                       | ain:High #At                                                                                                                | g: Free Run<br>ten: 0 dB                                                                                        |                                                                                                                                                                              | e. r wr(KMS)                                                                                                                                                                                                                                         | TYPE WWWW<br>DET A N N I                                                                                                                                                                                                              |
| Ref 22.5               |                       |                                                                                                                             |                                                                                                                 |                                                                                                                                                                              |                                                                                                                                                                                                                                                      | Mkr2 3.549 2 G<br>-25.22 dE                                                                                                                                                                                                           |
| ¥1                     |                       |                                                                                                                             |                                                                                                                 |                                                                                                                                                                              |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                       |
| 4                      |                       |                                                                                                                             |                                                                                                                 |                                                                                                                                                                              |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                       |
|                        |                       |                                                                                                                             |                                                                                                                 |                                                                                                                                                                              |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                       |
|                        |                       |                                                                                                                             |                                                                                                                 |                                                                                                                                                                              |                                                                                                                                                                                                                                                      | -13.00                                                                                                                                                                                                                                |
| 1.                     | <b>∂</b> <sup>3</sup> |                                                                                                                             |                                                                                                                 |                                                                                                                                                                              |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                       |
|                        |                       |                                                                                                                             |                                                                                                                 |                                                                                                                                                                              |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                       |
| r/                     | L 1                   |                                                                                                                             |                                                                                                                 |                                                                                                                                                                              |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                       |
| -                      |                       |                                                                                                                             |                                                                                                                 |                                                                                                                                                                              |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                       |
|                        |                       |                                                                                                                             |                                                                                                                 |                                                                                                                                                                              |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                       |
|                        |                       |                                                                                                                             |                                                                                                                 |                                                                                                                                                                              |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                       |
|                        |                       | #1/DW                                                                                                                       |                                                                                                                 |                                                                                                                                                                              |                                                                                                                                                                                                                                                      | Stop 3.72000 G                                                                                                                                                                                                                        |
|                        |                       | #VBW                                                                                                                        |                                                                                                                 |                                                                                                                                                                              |                                                                                                                                                                                                                                                      | weep 60.0 s (340 p                                                                                                                                                                                                                    |
|                        |                       | '                                                                                                                           | FUNCTION                                                                                                        | FUNCTION WIDTH                                                                                                                                                               | FU                                                                                                                                                                                                                                                   | NCTION VALUE                                                                                                                                                                                                                          |
| f                      | 3.549 2 GHz           | -25.22 dBm                                                                                                                  |                                                                                                                 |                                                                                                                                                                              |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                       |
| f                      | 3.559 8 GHz           | -28.53 dBm                                                                                                                  |                                                                                                                 |                                                                                                                                                                              |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                       |
|                        |                       |                                                                                                                             |                                                                                                                 |                                                                                                                                                                              |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                       |
|                        |                       |                                                                                                                             |                                                                                                                 |                                                                                                                                                                              |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                       |
|                        |                       |                                                                                                                             |                                                                                                                 |                                                                                                                                                                              |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                       |
|                        |                       |                                                                                                                             |                                                                                                                 |                                                                                                                                                                              |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                       |
|                        |                       |                                                                                                                             |                                                                                                                 |                                                                                                                                                                              |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                       |
|                        | 142 GHz<br>1.0 MHz    | 2<br>3<br>142 GHz<br>1.0 MHz<br>5<br>5<br>5<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 142 GHz<br>142 GHz<br>1.0 MHz<br>#VBW<br>5 Still X<br>f 3.5510 GHz<br>1.111 dBm<br>f 3.5549 2 GHz<br>-25 22 dBm | 2         3           142 GHz         #VBW           142 GHz         #VBW           5         551 0 GHz         14.11 dBm           f         3.551 0 GHz         -25.22 dBm | 2         3           42         3           142         GHz           1.0         MHz           #VBW           E         SEL           7         3.551 0 GHz           14.11 dBm           1           1           3.549 2 GHz           -252 2 dBm | 2         3           2         3           142 GHz         #VBW           10 MHz         #VBW           #VBW         #St           5         SEL           1         3.551 0 GHz           14.11 dBm           f         3.549 2 GHz |



| RL<br>arker | - | 50 ຊ<br>.691 | 41592                | 9204 GHz         | <u>_</u> DC            | SENSE:I  |                     |    | ALIGNAUTO<br>#Avg 1 | ype: Pwr(R) | MS) |                  | 145 PM Nov 17, 2<br>TRACE 1 2 3 4 |
|-------------|---|--------------|----------------------|------------------|------------------------|----------|---------------------|----|---------------------|-------------|-----|------------------|-----------------------------------|
|             |   |              |                      | Input: RF        | PNO: Fast<br>Gain:High |          | g:FreeRu<br>ten:0dB | n  |                     |             |     |                  | DET A N N N                       |
| dB/div      |   |              | set 42.56<br>2.56 dE |                  |                        |          |                     |    |                     |             | I   | 0 Mkr3 3.0<br>-2 | 691 4 GI<br>23.98 dB              |
| 2.6         | _ |              |                      | _                |                        |          | _                   |    |                     |             |     | <u>_1</u>        |                                   |
| 56          |   | -            |                      |                  |                        |          |                     |    |                     |             | A   | <u>~</u>         | -                                 |
| 14          |   |              |                      |                  |                        |          |                     |    |                     | _           |     | 3                | -13.00                            |
| .4          |   | -            |                      |                  |                        |          |                     |    |                     |             | 2   | -•*              |                                   |
| 4           |   |              |                      |                  |                        |          |                     |    |                     |             | Y   | -                |                                   |
| 4           |   |              |                      |                  |                        |          |                     | _  |                     |             |     |                  |                                   |
| 4           |   | _            |                      |                  |                        |          |                     |    |                     |             |     |                  |                                   |
| .4          |   | +            |                      |                  |                        | _        |                     |    |                     |             |     |                  |                                   |
| art 3.      |   |              |                      |                  |                        |          |                     |    |                     |             |     |                  | 3.72000 G                         |
| les Bl      |   |              | z                    |                  | #                      | VBW      |                     |    |                     |             |     |                  | 0 s (340 p                        |
| R MODE      |   | f            |                      | ×<br>3.686 9 GHz |                        | 5.42 dBm | FUNCTI              | ON | FUNCTION WIDTH      |             | FU  | NCTION VALUE     |                                   |
| N           | 1 | f            |                      | 3.679 4 GHz      | -3'                    | 1.35 dBm |                     |    |                     |             |     |                  |                                   |
| N           | 1 | f            |                      | 3.691 4 GHz      | -23                    | 3.98 dBm |                     | _  |                     |             |     |                  |                                   |
|             |   |              |                      |                  |                        |          |                     |    |                     |             |     |                  |                                   |
|             | - | _            |                      |                  |                        |          |                     | _  |                     |             |     |                  |                                   |
|             | + |              |                      |                  |                        |          |                     |    |                     |             |     |                  |                                   |
|             |   |              |                      |                  |                        |          |                     |    |                     |             |     |                  |                                   |
|             |   |              |                      |                  |                        |          |                     |    |                     |             |     |                  |                                   |
|             | + | -            |                      |                  |                        |          |                     |    |                     |             |     |                  |                                   |

## 2.4.6.6 Wost-Case test No. 11: Bottom Channel - 3560MHz

# 2.4.6.7 Wost-Case test No. 13 - Top Channel : 3590MHz

| RL         |     | 50 Ω |                      |                            | <u>∧</u> DC            | SENSE:1             | NT                       | AL   | IGN AUTO   |               |                | 16 AMNov 18, 2            |
|------------|-----|------|----------------------|----------------------------|------------------------|---------------------|--------------------------|------|------------|---------------|----------------|---------------------------|
| larkei     | 12  | 3.68 | 89364                |                            | PNO: Fast<br>Gain:High | → Tri<br>#At        | g: Free Run<br>ten: 0 dB |      | #Avg T     | ype: Pwr(RMS) |                | TYPE WWWWW<br>DET A N N N |
| 0 dB/di    |     |      | offset 42<br>22.56 c |                            |                        |                     |                          |      |            |               | Mkr2 3.0<br>-2 | 688 9 GI<br>1.71 dB       |
| 2.6        |     |      |                      |                            |                        |                     |                          |      |            |               | 1              |                           |
| .56        |     |      |                      |                            |                        |                     |                          |      |            | 2             | · ·            |                           |
| 44         |     |      |                      |                            |                        |                     |                          |      |            |               | ſ              |                           |
|            |     | _    |                      |                            |                        | _                   |                          |      |            | 2             | 3              | -13.00                    |
| .4         |     |      |                      |                            |                        |                     |                          |      |            |               | V              |                           |
| 7.4        |     |      |                      |                            |                        |                     |                          |      |            |               |                |                           |
| 7.4        | _   |      |                      |                            |                        | -                   |                          |      |            |               | 1              |                           |
| 7.4        | ~~~ | _    |                      |                            |                        | _                   | <u></u>                  |      |            |               |                | -                         |
| 7.4        |     |      |                      |                            |                        | -                   |                          |      |            |               |                |                           |
| 7.4        |     |      |                      |                            |                        |                     |                          |      |            |               |                |                           |
| tart 3     | 550 | 00.0 | 147                  |                            |                        |                     |                          |      |            |               | Stop 3         | 3.72944 G                 |
| Res B      |     |      |                      |                            | #                      | VBW                 |                          |      |            | #S1           | weep 60.       |                           |
| R MODE     | TRC | SCL  |                      | ×                          |                        | Y                   | FUNCTION                 | FUNC | TION WIDTH | FU            | NCTION VALUE   |                           |
| 1 N<br>2 N | 1   | f    |                      | 3.692 9 GHz<br>3.688 9 GHz |                        | 1.88 dBm<br>.71 dBm |                          | -    |            |               |                |                           |
| 3 N        | 1   | f    |                      | 3.700 3 GHz                |                        | .70 dBm             |                          | -    |            |               |                |                           |
| 4          |     |      |                      |                            |                        |                     |                          |      |            |               |                |                           |
| 5          |     | -    |                      |                            |                        |                     |                          | +    |            |               |                |                           |
| 7          |     |      |                      |                            |                        |                     |                          |      |            |               |                |                           |
| 8<br>9     |     |      |                      |                            |                        |                     |                          | -    |            |               |                |                           |
|            | -   | -    |                      |                            |                        |                     |                          |      |            |               |                |                           |
| 0          |     |      |                      |                            |                        |                     |                          |      |            |               |                |                           |



## 2.5 FREQUENCY STABILITY

#### 2.5.1 Specification Reference

FCC CFR 47 Part 2, Clause 2.1055 FCC CFR 47 Part 96, Clause 27.54

## 2.5.2 Date of Test and Modification State

29 November 2021 - Modification State 0

#### 2.5.3 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

## 2.5.4 Environmental Conditions

Ambient Temperature22°CRelative Humidity30%

#### 2.5.5 Test Method

All measurements were made in accordance with FCC KDB 971168 D01.

#### 2.5.6 Test Results

Worst Case Scenario

Maximum Output Power 18dBm

| Table 10 – Worst Case of Frequenc | v Ctobility Magguran  | ant (Test Cose No. 2 in Table 2) |
|-----------------------------------|-----------------------|----------------------------------|
| Table TU – Worst Case of Frequenc | v Slapililv Measurenn | eni (Tesi Case No. 2 in Table 3) |
|                                   |                       |                                  |

| Temperature                              | Voltage<br>(AC) | Frequency<br>Error (Hz) | Limit<br>ppm<br><note 2=""></note> | Error/Freq<br>ppm | Result      |
|------------------------------------------|-----------------|-------------------------|------------------------------------|-------------------|-------------|
| -30°C                                    | 115             | Note 1                  | ±1.5                               | 0.0012            | Pass        |
| -20°C                                    | 115             | 87.24                   | ±1.5                               | 0.0010            | Pass        |
| -10°C                                    | 115             | 34.21                   | ±1.5                               | 0.0004            | Pass        |
| 0°C                                      | 115             | 31.0                    | ±1.5                               | 0.0003            | Pass        |
| +10°C                                    | 115             | 20.50                   | ±1.5                               | 0.0002            | Pass        |
| +20°C                                    | 115             | 22.7                    | ±1.5                               | 0.0003            | Pass        |
| +20°C                                    | 90              | 21.22                   | ±1.5                               | 0.0002            | Pass        |
| +20°C                                    | 132             | 13.17                   | ±1.5                               | 0.0001            | Pass        |
| +30°C                                    | 115             | 16.34                   | ±1.5                               | 0.0002            | Pass        |
| +40°C                                    | 115             | 18.30                   | ±1.5                               | 0.0002            | Pass        |
| +55°C                                    | 115             | 4.62                    | ±1.5                               | 0.00005           | Pass        |
| The frequency states the authorized back |                 |                         | sure that the funda                | mental emissions  | stay within |



#### 2.6 RADIATED EMISSION

#### 2.6.1 Specification Reference

FCC CFR 47 Part §2.1051 FCC CFR 47 Part 96.41

#### 2.6.2 Date of Test and Modification State

22 November 2021 – Modification State 0 23 November 2021 – Modification State 0 23 February 2022 – Modification State 0

#### 2.6.3 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

### 2.6.4 Environmental Conditions

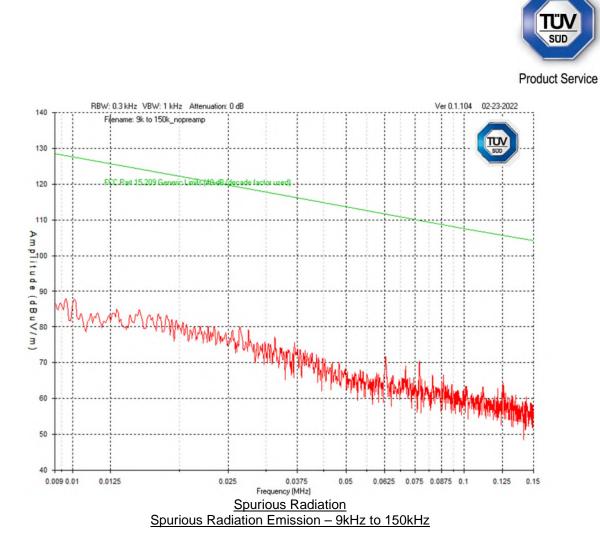
Ambient Temperature23.1°CRelative Humidity13.4%

#### 2.6.5 Test Method

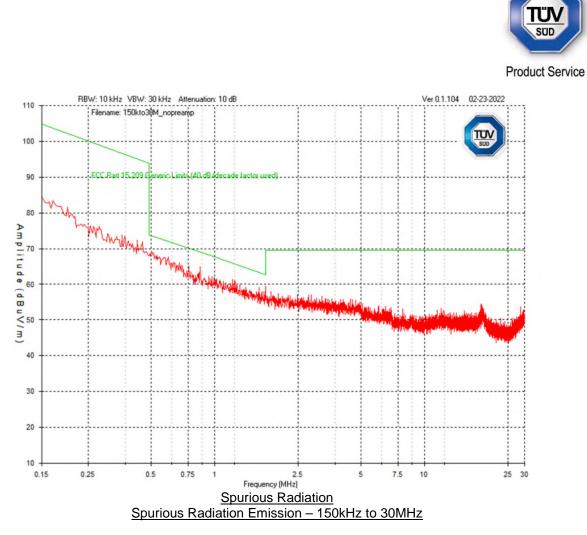
All measurements were made in accordance with:

- 971168 D01 Power Meas License Digital Systems v03r01 Clause 5.6
- 971168 D01 Power Meas License Digital Systems v03r01 Clause 7

Measurements were performed in configurations of the EUT as reported below. Testing was performed with RF on with a test limit of FCC 15 Subpart B Class A at 3m.

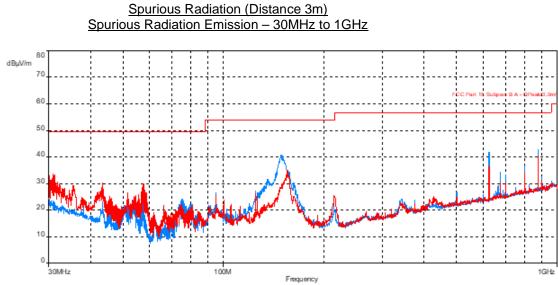



# 2.6.6 Test Results


A summary of the test result is depicted in the table below.

| Range Frequency (MHz)                 | Limit<br><note 1=""><br/>dBµV/m</note> | Result      |
|---------------------------------------|----------------------------------------|-------------|
| 0.009 to 0.150                        | 40dB/decade                            | Pass        |
| 0.15 to 30                            | 40dB/decade                            | Pass        |
| 30 to 1000                            | 49.5                                   | Pass        |
| 1000 to 4000                          | 59.96                                  | Pass        |
| 4000 to 10 000                        | 59.96                                  | Pass        |
| 10 000 to 18 000                      | 59.96                                  | Pass        |
| 18 000 to 26 500                      | 69.54                                  | Pass        |
| 26 500 to 40 000                      | 69.54                                  | Pass        |
| Note 1. Only the most restringing det | tector level (or limit in the range)   | is provided |

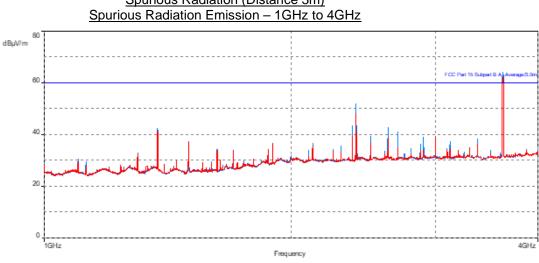
| Table 11 – Radiated Emission Measurement | (Test Cess Ne 7 in Teble 0)  |
|------------------------------------------|------------------------------|
| Table TT - Radiated Emission Measurement | (Test Case No. 7 In Table 3) |
|                                          |                              |




Note: No significant emission (i.e., less than 10dB below the limit) was noted.



Note: No significant emission was noted.



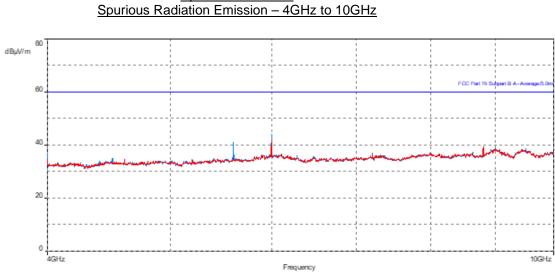



#### r inga na y

| QuasiPeak (7) |    |        |          |        |            |          |             |            |  |
|---------------|----|--------|----------|--------|------------|----------|-------------|------------|--|
| Frequency     | SR | Level  | Limit    | Margin | Height (m) | Azimuth  | Polarizatio | Correction |  |
| (MHz)         |    | (dBµV/ | (dBµV/m) | (dB)   | (dB)       | (°) (dB) | n (dB)      | (dB)       |  |
|               |    | m)     |          |        |            |          |             |            |  |
| 30.85368556   | 1  | 32.80  | 49.54    | -16.74 | 1.17       | 356.75   | Vertical    | -3.24      |  |
| 148.6364905   | 2  | 39.28  | 54.08    | -14.80 | 1.00       | 0.00     | Horizontal  | -9.67      |  |
| 155.9527531   | 1  | 34.02  | 54.08    | -20.06 | 1.00       | 203.75   | Vertical    | -10.03     |  |
| 625.0231185   | 2  | 40.88  | 56.80    | -15.92 | 1.00       | 127.25   | Horizontal  | -0.47      |  |
| 625.0229582   | 1  | 36.88  | 56.80    | -19.92 | 3.73       | 228.00   | Vertical    | -0.47      |  |
| 875.032311    | 2  | 40.73  | 56.80    | -16.07 | 1.87       | 335.75   | Horizontal  | 4.03       |  |
| 875.032311    | 1  | 40.86  | 56.80    | -15.94 | 1.00       | 41.00    | Vertical    | 4.03       |  |






# Spurious Radiation (Distance 3m)

Red=Vertical, Blue=Horizontal

# **Finals**

| AVG (6)     |   |          |          |        |            |          |             |            |  |  |
|-------------|---|----------|----------|--------|------------|----------|-------------|------------|--|--|
| Frequency   | S | Level    | Limit    | Margin | Height (m) | Azimuth  | Polarizatio | Correction |  |  |
| (MHz)       | R | (dBµV/m) | (dBµV/m) | (dB)   | (dB)       | (°) (dB) | n (dB)      | (dB)       |  |  |
| 1375.050321 | 2 | 42.02    | 59.96    | -17.94 | 2.14       | 41.00    | Horizontal  | -9.34      |  |  |
| 1375.051282 | 1 | 39.93    | 59.96    | -20.03 | 3.00       | 362.00   | Vertical    | -9.34      |  |  |
| 2400.088782 | 2 | 50.69    | 59.96    | -9.27  | 2.01       | 312.00   | Horizontal  | -4.96      |  |  |
| 2400.087821 | 1 | 46.84    | 59.96    | -13.12 | 1.04       | 218.25   | Vertical    | -4.96      |  |  |
| 3624.38141  | 1 | 53.40    | 59.96    | -6.56  | 1.46       | 341.00   | Vertical    | -3.71      |  |  |
| 3624.994231 | 2 | 53.23    | 59.96    | -6.73  | 1.00       | 31.25    | Horizontal  | -3.71      |  |  |

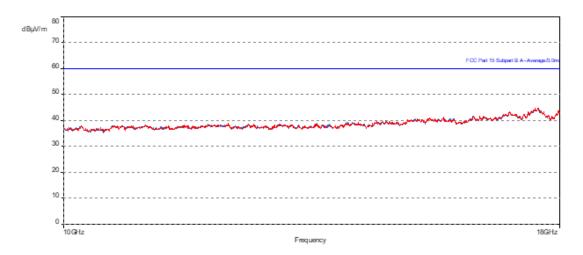




**Spurious Radiation** Spurious Radiation Emission – 4GHz to 10GHz

Red=Vertical, Blue=Horizontal

# **Finals**

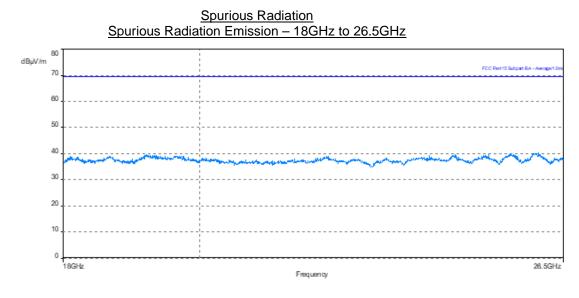

| AVG (3)   |     |   |          |          |        |            |          |             |            |  |
|-----------|-----|---|----------|----------|--------|------------|----------|-------------|------------|--|
| Frequence | :y  | S | Level    | Limit    | Margin | Height (m) | Azimuth  | Polarizatio | Correction |  |
| (MHz)     | -   | R | (dBµV/m) | (dBµV/m) | (dB)   | (dB)       | (°) (dB) | n (dB)      | (dB)       |  |
| 5600.2096 | 515 | 2 | 37.29    | 59.96    | -22.67 | 2.21       | 23.75    | Horizontal  | 0.74       |  |
| 6000.2237 | /18 | 2 | 43.77    | 59.96    | -16.19 | 3.55       | 55.25    | Horizontal  | 2.81       |  |
| 6000.2240 | 38  | 1 | 39.82    | 59.96    | -20.14 | 2.21       | 11.00    | Vertical    | 2.81       |  |



### Spurious Radiation Spurious Radiation Emission – 10GHz to 18GHz

"TÜV SÜD, by release of this raw data, does not imply that the tested product has demonstrated compliance to any standard. The raw data provided may not be complete and may require additional processing. If raw data provided includes engineering data, testing may not have been done according to a standard test method. "

| Emi CC test:C4 10-18 GHz 3m Number :125 Execution date: 11/23/2021 9:38:44 AM |                                   |  |  |  |  |  |  |  |
|-------------------------------------------------------------------------------|-----------------------------------|--|--|--|--|--|--|--|
| Limit                                                                         | FCC Part 15 Subpart B             |  |  |  |  |  |  |  |
| Class                                                                         | Class: A                          |  |  |  |  |  |  |  |
| Test Plan Number                                                              | 7169010408                        |  |  |  |  |  |  |  |
| Configuration Information                                                     | Test Case No.7                    |  |  |  |  |  |  |  |
| Results                                                                       | Pass                              |  |  |  |  |  |  |  |
| Model                                                                         | Nokia 7705 SAR-Hmc NA(3HE12472AA) |  |  |  |  |  |  |  |
| Tested by                                                                     | CR                                |  |  |  |  |  |  |  |
| Comments                                                                      | -                                 |  |  |  |  |  |  |  |

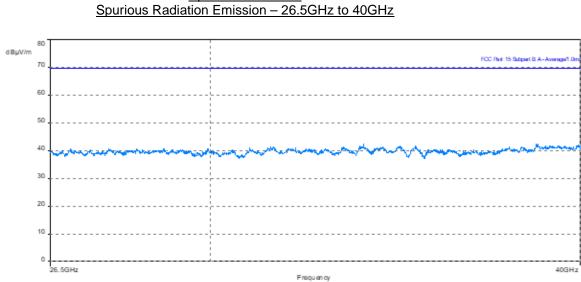



Red=Vertical, Blue=Horizontal

# **Finals**

| AVG (2)     |   |          |          |        |            |          |             |            |  |  |
|-------------|---|----------|----------|--------|------------|----------|-------------|------------|--|--|
| Frequency   | S | Level    | Limit    | Margin | Height (m) | Azimuth  | Polarizatio | Correction |  |  |
| (MHz)       | R | (dBµV/m) | (dBµV/m) | (dB)   | (dB)       | (°) (dB) | n (dB)      | (dB)       |  |  |
| 17473.75803 | 2 | 40.53    | 59.96    | -19.43 | 4.00       | 24.75    | Horizontal  | 16.79      |  |  |
| 17542.97627 | 1 | 41.12    | 59.96    | -18.84 | 4.00       | 16.50    | Vertical    | 16.72      |  |  |






Red=Vertical, Blue=Horizontal

# <u>Finals</u>

| Meas. Avg (1) |    |           |            |           |                |                 |  |  |  |  |
|---------------|----|-----------|------------|-----------|----------------|-----------------|--|--|--|--|
| Frequency     | SR | Meas.Avg  | Limit      | Meas Lim. | Polarization / | Correction (dB) |  |  |  |  |
| (MHz)         |    | (dBµV/m)  | (dBµV/m)   | (dB)      | Comments       |                 |  |  |  |  |
| 25009.66668   | 1  | 36.17     | 69.54      | -33.37    | Horizontal /   | -13.34          |  |  |  |  |
|               |    |           | Meas. peal | k (1)     |                |                 |  |  |  |  |
| Frequency     | SR | Meas.Peak | Limit      | Meas Lim. | Polarization / | Correction (dB) |  |  |  |  |
| (MHz)         |    | (dBµV/m)  | (dBµV/m)   | (dB)      | Comments       |                 |  |  |  |  |
| 25009.66668   | 1  | 49.46     | 89.50      | -40.04    | Horizontal /   | -13.34          |  |  |  |  |





**Spurious Radiation** 

Red=Vertical, Blue=Horizontal

# <u>Finals</u>

| Meas. Avg (1)  |    |           |          |           |                |                 |  |  |  |  |
|----------------|----|-----------|----------|-----------|----------------|-----------------|--|--|--|--|
| Frequency      | SR | Meas.Avg  | Limit    | Meas Lim. | Polarization / | Correction (dB) |  |  |  |  |
| (MHz)          |    | (dBµV/m)  | (dBµV/m) | (dB)      | Comments       |                 |  |  |  |  |
| 33794.51218    | 1  | 39.19     | 69.54    | -30.35    | Horizontal /   | -12.93          |  |  |  |  |
| Meas. peak (1) |    |           |          |           |                |                 |  |  |  |  |
| Frequency      | SR | Meas.Peak | Limit    | Meas Lim. | Polarization / | Correction (dB) |  |  |  |  |
| (MHz)          |    | (dBµV/m)  | (dBµV/m) | (dB)      | Comments       |                 |  |  |  |  |
| 33794.51218    | 1  | 52.58     | 89.50    | -36.92    | Horizontal /   | -12.93          |  |  |  |  |



# **SECTION 3**

# **TEST EQUIPMENT USED**



# 3.1 TEST EQUIPMENT USED

| Instrument                                   | Manufacturer       | Type No.                   | Serial No. | Calibration<br>Date | Calibration Due |  |  |  |  |  |
|----------------------------------------------|--------------------|----------------------------|------------|---------------------|-----------------|--|--|--|--|--|
| Bilog Antenna                                | TESEQ              | CBL 6111D                  | SSG013965  | 2021-05-04          | 2022-05-04      |  |  |  |  |  |
| Horn Antenna 3MCH<br>00003                   | ETS                | 3117                       | LAVE04211  | 2021-03-30          | 2022-03-30      |  |  |  |  |  |
| EMI Receiver                                 | Rohde &<br>Schwarz | ESU26                      | SSG013729  | 2021-03-31          | 2022-03-31      |  |  |  |  |  |
| Spectrum analyzer                            | Rohde &<br>Schwarz | ESU-40                     | LAVE04092  | 2020-07-17          | 2022-07-17      |  |  |  |  |  |
| Coaxial Cable                                | Huber &<br>Suhner  | 106A                       | SSG012455  | 2021-01-05          | 2023-01-05      |  |  |  |  |  |
| Coaxial Cable                                | Huber &<br>Suhner  | 106A                       | SSG012711  | 2021-01-05          | 2023-01-05      |  |  |  |  |  |
| Coaxial Cable                                | Huber &<br>Suhner  | 104PEA                     | SSG012041  | 2021-01-05          | 2023-01-05      |  |  |  |  |  |
| Coaxial Cable                                | Huber &<br>Suhner  | ST18/Nm/Nm/36              | SSG012785  | 2021-01-06          | 2023-01-06      |  |  |  |  |  |
| Coaxial Cable                                | Micro-Coax         | UFA 210B-1-<br>1500-504504 | SSG012376  | 2021-01-06          | 2023-01-06      |  |  |  |  |  |
| Pre-Amplifier                                | Нр                 | 8447D                      | SSG013045  | 2021-01-29          | 2023-01-29      |  |  |  |  |  |
| Pre-Amplifier                                | BNR                | LNA                        | SSG012594  | 2021-04-12          | 2022-04-12      |  |  |  |  |  |
| Pre-Amplifier                                | BNR                | LNA                        | SSG012360  | 2020-11-16          | 2022-11-16      |  |  |  |  |  |
| Power Supply                                 | Hewlett<br>Packard | 6216A                      | SSG013063  | not required        | not required    |  |  |  |  |  |
| N/A: No applicable<br>O/P Mon – Output monit |                    |                            |            |                     |                 |  |  |  |  |  |

List of absolute measuring and other principal items of test equipment.



# 3.2 MEASUREMENT UNCERTAINTY

For a 95% confidence level, the measurement uncertainties for defined systems are:-

| Test Discipline                     | Frequency / Parameter      | MU       |
|-------------------------------------|----------------------------|----------|
| Conducted Maximum Peak Output Power | 30 MHz to 20 GHz Amplitude | ± 0.1 dB |
| Conducted Emissions                 | 30 MHz to 20 GHz Amplitude | ± 2.3 dB |
| Frequency Stability                 | 30 MHz to 2 GHz            | ± 5.0 Hz |
| Occupied Bandwidth                  | Up to 20 MHz Bandwidth     | ± 1.1 Hz |
| Band Edge                           | 30 MHz to 20 GHz Amplitude | ± 2.3 dB |



**SECTION 5** 

ACCREDITATION, DISCLAIMERS AND COPYRIGHT



# 4.1 ACCREDITATION, DISCLAIMERS AND COPYRIGHT



This report relates only to the actual item/items tested.

This report does not imply product endorsement by any government, accreditation agency, or TÜV SÜD Canada Inc.

Opinions or interpretations expressed in this report, if any, are outside the scope of TÜV SÜD Canada Inc. accreditations. Any opinions expressed do not necessarily reflect the opinions of TÜV SÜD Canada Inc., unless otherwise stated.

© 2023 TÜV SÜD Product Service